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ABSTRACT

 The successful prediction of the crystal structure and symmetry of a material can give 

valuable insight into many  of its properties, as well as the feasibility  of thermodynamically stable 

polymorphs to exist.  It  is not uncommon, however, for numerous theoretical structures to be 

found within a narrow energy range, making absolute characterisation of the crystal structure 

impossible.  The aim of this project was to investigate a number of structures from this scenario,  

highlighting the key differences between three potential methods for the automated comparison of 

predicted and experimental crystal structures.

 This work was carried out by  comparing the simulated powder diffraction patterns of 

theoretical predicted crystal structures of small organic materials with their experimental powder 

diffraction patterns, so that the experimentally  identified structure could be automatically  singled 

out  from the many calculated. The use of traditional agreement factors (eg. Rwp) was compared 

with more sophisticated approaches namely  PolySNAP, which uses principal-component analysis, 

and Compare.x, an algorithm based on weighted cross-correlation. Five structures were analysed, 

two of which had not been previously characterised.  As the structure prediction calculations are 

carried out at  0K, and experimental data were collected over a range of temperatures (10K-293K), 

the effect of the resulting variations in lattice parameters on the automated processes is discussed. 

 In all cases, Rwp has proven to be a poor and unreliable discriminator in the comparison of 

predicted and experimental structures.  The more contemporary methods based on PolySNAP and 

Compare.x both gave encouraging results when used to study the three known structures 

imidazole, chlorothalonil and 5-azauracil, and they  have consequently  been used in the successful 

solution of the two previously  unknown structures adenine and guanine.  A difference in 

sensitivity  in the matching of data collected at different  temperatures between the latter 

approaches was noted.  It was found that although there is considerable overlap between the two 

methods, they  are not absolutely  interchangeable, and this distinction may  be exploited in future 

work where more case-specific comparisons are carried out. Automated comparison techniques 

cannot yet replace visual comparison completely, but  they reduce it  drastically.  Ultimately, 

comparisons made computationally  serve as a complement to human judgement, but they  may  not 

yet eliminate it.  
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1.  INTRODUCTION

1.1  Background 

 

 Crystals have been objects of fascination throughout the history  of mankind, with mystical, 

magical and even medicinal properties being attributed to them over the ages.  Evidence of this 

are the carvings depicting their use as ornaments, amulets and charms, discovered by 

archaeologists in prehistoric tombs.  However, crystals were not only used as ornaments in their 

natural form.  They  were also refined and used, together with sound, to produce artificial light, as 

the French explorer Captain Auvergne reported on his return from Tibet.  This effect is also 

observed in New Grange in Ireland, built circa 3200BC in honour of Oenghus, god of love.  

Covering the facade of this temple is white quartz, a material of particular interest in the history  of 

crystallography, since it was the first to be described as a “crystal”.  The term, which comes from 

the Greek word κρύσταλλοσ meaning frozen droplet, was chosen because of the icy appearance of 

quartz.

As crystals and their structure lie at  the core of this project, a brief overview of how the study 

of crystals came to be the important area of solid state chemistry it is today, is due.  The term 

“crystallography” derives from the two words κρύσταλλοσ and γράφιµο , the latter meaning 

“writing”.  It thus follows that documenting the description of crystals as accurately  and 

thoroughly as possible constitutes the main focus of every crystallographer’s job description.

Although crystals had been admired for their external appearance for millennia, it wasn’t until 

1665 that the first  connection between external form and internal order was made by Robert 

Hooke, who suggested that  the different shapes of crystals could arise from the packing together 

of spheres or globules1 [Figure 1.1].  In 1669, Nicolaus Steno cut sections across quartz  crystals, 

showing that  regardless of the size of the faces on the crystals, they  were always inclined to one 

another at constant dihedral angles2.
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Figure 1.1.  “Scheme VII” from Hooke’s Micrographia, 1665, showing hypothetical crystal structures 
arising from packing of globules.
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Later that century, Guglielmini made some observations about  the constant nature of cleavage 

directions in crystals.  He suggested the presence of crystal planes along which the crystal could 

be caused to split regularly, and this led him to believe that  the building blocks of crystals 

suggested by  Hooke must themselves be miniature crystals with plane faces3.  In 1784, in his 

work entitled Essay d’une théorie sur la structure des crystaux appliquée a plusieurs genres de 

substances crystallisées, René Just Haüy  reported experiments suggesting that continued cleavage 

would ultimately lead to a smallest possible unit  (molécule intégrante), by a repetition of which 

the whole crystal is built2.  If each of these units is replaced by  a point, regardless of its contents, 

and adjacent points are joined, the resulting structural unit is a complete representation of the 

contents of the whole structure [Figure 1.2].  Thus Haüy, having given birth to the concept of the 

unit cell, is deemed the “Father of Crystallography”.

Figure 1.2.  Development of the “unit cell” by replacing cubes with points.

1.2  Crystallinity and Crystal Packing

A material can be considered crystalline if its constituent molecules, atoms or ions exhibit 

long-range three-dimensional periodic order.  This structural arrangement can be described in a 

complete manner by taking into consideration the repeating unit (the unit cell), its contents (the 

structural motif) and the manner in which the unit cell is repeated (the symmetry).
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The unit  cell can be described by three vectors a, b and c which are the lattice vectors and 

form a parallelepiped.  The directions specified by  these vectors can be represented by the X, Y 

and Z orthogonal axes respectively, while α, β and γ are the angles between them [Figure 1.3]. 

           

α
βγ

a

b

c

A
B

C

Figure 1.3  Unit cell notation. The directions of vectors a, b and c are the X, Y and Z axes.

A crystallographic plane is defined by three lattice points, or indices (hkl).  Planes parallel to 

one of the three axes X, Y or Z are defined by indices of the type (0kl), (h0l) and (hk0) 

respectively, while planes parallel to faces A, B and C of the unit cell are represented by  indices of 

the type (h00), (0k0) and (00l) respectively.  While some crystals have a centre of symmetry 

illustrated by the occurrence of similar faces of the same size and shape lying in parallel pairs on 

opposite sides of the crystal, some others do not.  Such crystals exhibit  a different type of 

arrangement, defined by reflection, translation or rotational symmetry elements, which can only 

be combined together in a restricted number of ways that are consistent  with each other.  For a 

single molecule, the total collection of all its symmetry  operations is called its point group, and 

each of these point  groups is characterised by  a number of specific properties.  Since rotation in 

crystal elements can only exhibit a maximum order of six, there are 32 possible ways in which 

symmetry factors can be combined.  In order to satisfy the criterion that the unit cell must be 

capable of repetition in space without leaving any  gaps, there is a natural limit  to the types of unit 

cell that can be used to build a crystal.  The 32 point groups give rise to only seven different unit 

cell shapes, and these form the basis of the classification of crystals into seven distinct groups or 

crystal systems [Table 1.1]. 
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Table 1.1  The seven crystal systems.

Crystal system Essential symmetry Restrictions on unit cell Bravais lattices

Cubic

Hexagonal

Trigonal 
(Rhombohedral)

Tetragonal

Orthorhombic

Monoclinic

Triclinic

Four three-fold 
rotation axes

a = b = c
α = β = γ = 90o

P, I, F

One six-fold 
rotation

a = b ≠ c
α = β = 90o ; γ = 120o

P

One three-fold 
rotation

a = b = c
α = β = γ ≠ 90o

P (R)

One four-fold 
rotation

a = b ≠ c
α = β = γ = 90o

P, I

Three two-fold 
rotations and/or 
mirror planes

a ≠ b ≠ c
α = β = γ = 90o

P, C (A), I, F

One two-fold axis 
and/or mirror plane

a ≠ b ≠ c
α = γ = 90o ≠ β

P, C (I)

None a ≠ b ≠ c
α ≠ β ≠ γ

P

For crystal structures showing more than just  translational symmetry, a unit cell containing 

more than just one lattice point is chosen by convention.  This is merely done for convenience, as 

the resultant  unit  cell geometry  would display  the symmetry more clearly.  Unit cells with one 

lattice point are referred to as primitive (P), and those with more than one lattice point  are called 

centred.  The various crystal systems can exhibit  different kinds of centering: side-centred, having 

lattice points at the centres of opposite pairs of faces (A, B, or C depending on which faces are 

centred), face-centred, having lattice points at the centres of all faces (F), and body-centred, 

having a lattice point at the centre of the cell (I) [Figure 1.4].  The different possible combinations 

of cell symmetry with primitive and centred cell geometries result in 14 lattice types, known as 

Bravais lattices.  The presence of translation coupled with the other symmetry functions, also 

gives rise to compound symmetry  elements such as glide planes  and screw axes.  A glide plane is 

the combination of a translation with a mirror reflection, while the combination of a translation 

with a rotation changes the rotational axes to a screw axis.  Combining all the possible symmetry 

operations in the solid state with Bravais lattices gives rise to 230 distinct  arrangements, known as 

space groups.  Every crystal structure can be classified under one of these space groups.
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The first part of a space group  symbol denotes the lattice type [Figure 1.4], and is denoted by  a 

capital letter P, C (B or A), I or F.  These refer to primitive, face-centred, body-centred, and all-

face-centred.  The second part  of the space group  describes the symmetry within the unit cell.  

This is irreducible representation in that only  the minimum symmetry is specified in order to 

identify the space group.

   

P I

F C

Figure 1.4  Figure illustrating the four lattice types.

In a purely translational lattice, the repeat unit of a crystal structure is either one complete unit 

cell (primitive cells) or a well-defined fraction of it (A, B, C, or I centering).  If other symmetry 

elements are present, then this would relate atoms or molecules within the unit cell to each other.  

In this case, therefore, the unique part  of the crystal structure usually  corresponds to a fraction of 

the unit  cell, and it is dependent on the amount  of symmetry present.  This portion is called the 

asymmetric unit of the structure, and by  means of translation, rotation, inversion and reflection 

symmetry elements, it  generates the entire unit cell and, consequently, the complete crystal 

structure.
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1.3  The Importance of Structure

In this context, the term “structure” refers to the relative positions of the atoms or ions making 

up  the material, i.e. it is a geometrical description of bond lengths, bond angles, torsion angles, 

non-bonded distances, etc.  This enables crystallographers to represent the structure graphically, 

satisfying the γράφιµο part of their title.  However, knowledge about the structure of crystalline 

materials goes beyond their pictorial importance.  The structure of a crystalline system may  be 

used to understand its physical and chemical properties, including any magnetic or optical 

behaviour3, and is thus of great  use.  Insight into the crystal structure of materials has applications 

in various scientific fields: the characterisation of proteins and pigments in biology; 

characterisation and development of non-linear optical materials, polymers and superconductors 

in physics4,5; the reactivity  and structure-energy  relationships of newly-synthesised compounds in 

chemistry5; and the characterisation of drugs and bioactive materials, as well as polymorph 

investigation in pharmacy6, to name a few.  In the case of pharmaceuticals, most  of which are 

administered in crystalline form, the crystal geometry  of the active ingredient and its excipients 

directly affect the drug’s bioavailability, and consequently its activity  and toxicity.  This particular 

application also raises awareness about  the impact of possible polymorphs having different 

physico-chemical properties, both on industry, but more importantly, also in the body.

Throughout the ages, the study  of the structure of crystals has made use of a wide variety of 

experimental tools, depending on their availability.  Steno’s slicing experiment, which gave rise to 

the notion of the constancy of angles between corresponding faces on a crystal, later prompted 

Rome de L’Isle (1772)7 to take a large number of measurements using a contact goniometer (a 

form of protractor attached to a bar) in an attempt to prove this.  It wasn’t until 1809 that 

Wollaston7 invented the reflecting goniometer, which enabled the measurement of interfacial 

angles more accurately.  This subsequently  led to the development of the single- and two-circle 

goniometers, the latter having been independently  invented by  Miller (1874), Fedorov (1889)  and 

Goldschmidt (1893)7.  The use of these tools in crystal structure determination was very  popular, 

until Max von Laue demonstrated the diffracting properties of X-rays in 19128.
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1.4  Diffraction

Nowadays, structure analysis relies mostly on the interaction of a material with X-rays, 

electrons, or neutrons, by measuring its emission or absorption of radiation.  If the wavelength is 

fixed (a condition known as monochromatic (single-wavelength, literally meaning single-

coloured) radiation), the variation of intensity with direction is measured, and from these 

measurements it  is possible to deduce the positions of the atoms in the sample.  The variation in 

intensity, or scattering, of monochromatic radiation, results from interference effects, more 

commonly known as diffraction.  Although the diffraction theory  applies to all types of radiation, 

only  X-ray scattering is of relevance to this project, and it will therefore be discussed in further 

detail.

1.4.1  X-ray Diffraction

X-rays can be described as electromagnetic radiation having a wavelength of the order of 

10-10m (1Å).  They were first described by  Röntgen in 18957, but  due to the limitations in the 

optical instruments available at the time, he could not perform any experiments to measure 

interference, reflection or refraction.  It  wasn’t  until several years later that Prof Arnold 

Sommerfield measured an X-ray  wavelength of about  0.4Å.  Inspired by  discussions with Paul 

Ewald, who was a PhD student  with Prof Sommerfield at  the time, Max von Laue suggested the 

use of crystals as natural lattices for diffraction.  W. Friedrich and P. Knipping, two of Röntgen’s 

students, performed the experiment on a crystal of copper sulphate, and the beams were recorded 

photographically.  Their results were published in 19129.

These findings stirred interest in William L. Bragg, then a student in Cambridge.  He noted the 

geometrical shapes in Friedrich and Knipping’s photographs, and believed that  this diffraction 

could be regarded as cooperative reflections by  the internal planes of the crystal.  Only a year 

later, in 1913, Bragg and von Laue used X-ray  diffraction patterns to determine the structures of 

KBr, KI, KCl and NaCl10.

A simple demonstration of the method by which X-rays are generated is the standard “X-ray 

tube”. This produces electrons by passing an electrical current  through a wire filament, accelerates 
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them to a high velocity, and directs them onto a cooled metal target (Mo, Cu, Fe, Cr).  As they hit 

the metal, the electrons decelerate rapidly, and this causes most of their kinetic energy  to be 

converted to heat and lost.  However, some of this energy interacts with the target metal atoms to 

produce X-rays.  If an electron in a core atomic orbital is ionised (displaced), an electron from a 

higher-energy orbital will replace it, and the subsequent  drop in energy  will result in the emission 

of an X-ray photon.  These particles of energy oscillate and can therefore be characterised by their 

wavelength (the distance between peaks), the number of peaks that  pass a point per unit time 

(frequency) or by  their energy  E.  If electrons in different orbitals are displaced, a difference in 

energy would cause the generation of a different wavelength, even though the target metal is the 

same, eg. In the case of Cu Kα (λ = 1.5418 Å) the transition of an electron from the 2p  orbital of 

the L energy  level to the 1s orbital on K emits α radiation, while with Cu Kβ (λ = 1.3922 Å) 

emission of β radiation results from the transition of a 3p electron to K11.

As an X-ray  photon impinges upon a crystalline solid, it  will either travel straight through it  or 

interact with the electric field due to the electrons in the material, and thus scatter.  The electron 

densities of all the atoms that lie in the path of an X-ray beam contribute to its scattering, causing 

interference (constructive or destructive) between the X-ray waves.  This is X-ray  interference, or 

X-ray Diffraction.

1.4.2  Bragg’s Law
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Figure 1.5  Bragg scattering of X-rays from parallel planes, with d representing interplanar spacing.
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In 1913, Bragg showed that  every  diffracted beam that  can be produced by  a crystal face at  a 

particular angle of incidence can be geometrically  considered to be a reflection from sets of 

parallel planes passing through lattice points.  This therefore requires that  the angles of incidence 

and reflection be equal, and that the incoming and outgoing beams and the normal to the 

reflecting planes must themselves be in one plane [Figure 1.5].  The Miller Indices (hkl) are three 

integers that describe the orientation of a plane with respect to the three unit cell edges.  The 

spacing dhkl between successive planes is determined by  the lattice geometry  and is therefore a 

function of the unit cell parameters where V is the unit cell volume [Equation 1.1].

 

dhkl = V[h2b2c2sin2α + k2a2c2sin2β + l2a2b2sin2γ + 2hlab2c(cosαcosγ - cosβ)

 + 2hkabc2(cosαcosβ - cosγ) + 2kla2bc(cosγcosβ - cosα)]-½

Equation 1.1

Diffraction from these planes will only give rise to constructive interference if the path 

difference between radiation scattered from adjacent  planes is equal to a whole number of 

wavelengths.  This is Bragg’s Law, and it can be expressed as

 
nλ = 2dhkl sinθhkl

Equation 1.2

where λ is the wavelength of the incident radiation, 2θhkl is the angle between the incident X-rays 

and the crystal surface and n is the order of diffraction.

The diffraction pattern of the crystal lattice is known as the reciprocal  lattice owing to its 

reciprocal relationship  with the crystal lattice: large crystal lattice spacing gives rise to small 

spacing in reciprocal space, and vice-versa.  While direct cell parameters are usually  represented 

by  a, b, c, α, β and γ, the reciprocal lattice is denoted by  a*, b*, c*, α*, β* and γ*.  The direction 

of a* is perpendicular to the directions of b and c, and its magnitude is reciprocal to the spacing of 

the lattice planes parallel to b and c [Figure 1.6].
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Figure 1.6  Direct lattice (left) and the corresponding reciprocal lattice (right).

 The reciprocal lattice has all the properties of the real space lattice and any vectors in it  

represent Bragg planes which can be shown by Equation 1.3. The integers in this equation are 

equal to the Miller indices of the hkl plane.

 
d*hkl = ha* + kb* + lc*

Equation 1.3

The position of the scattering matter in the unit  cell, which in the case of X-ray diffraction is 

electron density, determines the intensities of the diffraction pattern and is related to them by 

Fourier transformation:  the diffraction pattern is the Fourier Transform of the electron density, 

which is itself the Fourier Transform of the diffraction pattern.  Taking a scattering vector (s) as a 

point on the reciprocal lattice corresponding to a diffraction maximum defined by  hkl, the 

observed intensity  I(s) is directly related to the square of the modulus of the corresponding 

structure factor F(s).

I(s) ∝ ∣F(s)∣2                                                                Equation 1.4

For each diffraction maximum, the electron density distribution ρ(r) is related to the structure 

factor F(s) of amplitude∣F(s)∣and phase α(s) by the equation

 

F (s) = |F(s)|exp[2πiα(s)] = ∫ρ(r)exp(2πis.r)dr

Equation 1.5
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where r = xa + yb + zc is a vector in the direct  space unit  cell, (x,y,z) are fractional coordinates of 

the point r and integration is performed over the whole unit cell.

1.4.3  The Crystallographic Phase Problem

The reverse Fourier Transform of Equation 1.4 provides us with an expression for the electron 

density within the unit cell:

            1
ρ(r) = V ∑|F(s)|exp[iα(s) - (2πis.r)]

       s

Equation 1.6

where V is the unit  cell volume and the summation is performed over all scattering vectors s.  The 

intensities measured from the diffraction data enable the calculation of an absolute value for the 

structure factors.  However, these recorded intensities are proportional to the squares  of the 

amplitudes.  The square of a complex number ∣F(s)∣ is always real, therefore information 

regarding the phase angles of the diffracted beam is lost.  Thus although the structure factor is 

obtained, the absence of a phase makes structure solution unachievable. This is known as the 

crystallographic phase problem, a hurdle faced by  many during structure determination, including 

Watson and Crick in the structure solution of DNA8.  Many structure solution strategies are 

therefore based upon attempts to extract phase information from experimental data, in order to 

estimate α(s).

1.4.4  PXRD vs Single Crystal

Conventionally, a single crystal experiment involves a beam of monochromatic X-rays or 

neutrons, incident upon a suitably  mounted and oriented single crystal.  This beam is then 

scattered into a number of diffracted beams produced in certain directions in space.  The positions 

and intensities of these beams are then recorded either by  film, point or area detector methods, the 

latter being the most  common.  Data analysis ensues, and this can be broken down into four 

stages:
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 (1) Indexing to find the unit cell;

 (2) Integration of raw images to produce a list of intensities and hkl values for each 

reflection;

 (3) Structure solution (typically by direct methods or Patterson synthesis):

 (4) Structure completion and refinement.

Systematic rotation of the crystal or the incident beam ensures that reflections from all sets of 

lattice planes are made to satisfy  the diffraction condition.  One of the major problems associated 

with single crystal experiments is the difficulty in growing a crystal of adequate proportions.

In a powder experiment, a collection of randomly  oriented crystallites is exposed to the beam, 

rather than a single crystal.  Each of these gives rise to its own diffraction pattern and individual 

“spots” on a detector become spread out into rings of diffracted intensity.  There rings are the 

intersection of cones of diffracted intensity with the detector.  Ring intensities can be measured by 

film or area detectors, but are more commonly measured by  scanning a point or one-dimensional 

line detector across a narrow strip.

(a)

2θ

In
te

ns
ity

(b)

(c) (d)

Figure 1.7  Diffraction (a) from an oriented single crystal, (b) from four crystals at different 
orientations with respect to the incident beam, and (c) from powder. (d) shows the pattern plotted by 

scanning across the purple rectangle.
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The diffraction data is then represented by plotting the total diffracted intensity  against  the 

diffraction angle 2θ.  As is clearly  shown by Figure 1.7, one of the major problems with powder 

diffraction is that the three-dimensional distribution of a single crystal experiment is compressed 

onto the one dimensional 2θ space, leading to a vast  loss of information due to peak overlap.  

Extraction of accurate individual reflection positions and integrated intensities, and subsequent 

structure factor calculations are therefore non-trivial, making structure determination from powder 

diffraction a very challenging procedure.

In order to minimise the effects of peak overlap  as much as possible, experimental set-ups 

must be tailored according to the quality  of the resultant  peaks.  Sharper and well-defined peaks 

provide more accurate and conclusive information about the unit cell.

1.5  Structure Determination from Powder Diffraction

Information about a material can be found in three distinct places within its powder pattern.  

Peak positions  are determined by the size, shape and symmetry of the unit cell.  Peak intensities 

are affected by the arrangement  of scattering density (i.e. atomic coordinates) within the unit cell.  

Peak shape is the result  of a combination of instrumental parameters (source, optics and detector 

contributions) and information about the microstructure of the material (domain size and strain).

1.5.1  Indexing

The process of structure solution of an unknown material purely from powder data basically 

involves the determination of the unit cell before any structure solution technique may  be 

employed.  The positions of reflections in the diffraction pattern can be used, by  means of Bragg’s 

Law [Equation 1.2] and the expression for interplanar spacing dhkl [Equation 1.1], to determine a 

set of unit cell parameters.  This process is called indexing.

For simple systems, indexing can sometimes be performed by  hand, but in most cases it  is left 

to the efficiency  of algorithms such as DICVOL13, TREOR14, and ITO15, whose aim is to 

reproduce observed peaks by generating a set of trial structures and assigning figures of merit  to 

each set of unit  cell parameters.  A number of such “auto-indexing” programs can be accessed via 
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the interface provided by  software packages such as CRYSFIRE16.  This applies a range of 

methods which take into consideration the measured positions of the peak maxima for a number 

of selected peaks.

In the case of “non-ideal” powder data, the need for more reliable indexing procedures 

prompted the development of new techniques over the past  decade.  Of particular interest are the 

whole-profile fitting genetic algorithm approaches in which potential unit  cells are assessed 

against the whole profile17, neural network approaches18, and methods based on the traditional 

dichotomy approach (which is one of the features employed by  CRYSFIRE16, but that  have been 

designed to be less sensitive to impurity peaks and large zero point errors19, 20.

Since indexing requires accurate determination of peak positions, this step is usually  the 

stumbling block in most attempts at solving crystal structures from powders.  This is partly  due to 

peak overlap  or peak displacement, which may result in the obscuring of certain peaks crucial to 

the indexing process.  Additional problems, such as the presence of impurities or polymorphs, a 

significant zero point error, or poor definition of peak positions (either due to poor sample 

crystallinity or poor instrumentation) can further hinder this step.  Zero point errors may 

sometimes be overcome by the introduction of an internal standard into the sample, to quantify 

the correction that  is to be applied.  Known impurities may  also be accounted for.  Small 

crystallite size, lattice strain, and preferred orientation may also prove to be problematic to the 

successful indexing of a material.

1.5.2  Space Group Assignment

After determination of the unit  cell is complete, a space group must be assigned to the system, 

and this is based on its symmetry.  The symmetry within a unit  cell causes the systematic absence 

of reflections pertaining to certain hkl lattices in the diffraction pattern.  Assigning a space group 

correctly  depends on the determination of which reflections are absent, followed by examination 

of the conditions required for these absences to occur.  This process is not always straight-

forward, and sometimes factors such as peak overlap  preclude the resolution of a sufficient 

number of peaks.  Space group assignment can also be complicated if the conditions for 

systematic absences are not unique.  In this case, the next step in the process - structure solution - 

Introduction Liana Vella-Żarb

 15



may be carried out for each of the plausible space groups.  Information regarding the presence of 

crystallographic symmetry  within the molecule, as well as confirmation of the number of 

molecules present in the asymmetric unit, may, at  this stage, be obtained by experimental 

techniques such as Solid State NMR21.

1.5.3  Structure Solution Methods

Before refinement of a structure can be attempted, a structural model must first  be obtained 

which will subsequently  serve as a starting point in the final step  of structure solution.  Following 

unit  cell and space group  determination, a Pawley22 or LeBail23 fit is performed.  These are 

refinement  procedures similar to the  Rietveld method but that do not require a structural model.  

They  are peak-fitting routines with allowed peak positions defined by the unit cell size (which is 

refined), and its shape and symmetry, and they establish both the intensities of each of the 

diffraction maxima as well as the instrumental profile parameters.  In order to ensure a reliable 

comparison between the experimental data and the structural information calculated for the 

model, it  is crucial to refine unit cell parameters, zero point, peak width and peak shape.  If 

appropriately  done, this process would make the structural model a good representation of the 

experimental structure.

Structure solution from powder data can then be carried out  using either of two method 

strategies, i.e. traditional or direct space approaches.  In traditional methods, intensity 

information is extracted from the powder data and is then used in much the same way as for single 

crystal diffraction.  In contrast, direct  space methods involve the independent generation of trial 

structures by  movement of a structural model within a pre-defined unit cell.  This is solely  based 

on the molecular structure and unit cell information, and does not take experimental data into 

consideration until the final step, which involves direct comparison of the powder pattern 

generated for the trial structure with the experimental powder pattern.  Such comparison is 

necessary  in order to assess the suitability  of any given trial structure, and it is quantified by 

means of a crystallographic R factor or figure of merit (Rwp or χ2).
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Some direct  space methods do involve the comparison of extracted intensities24, but this 

information is only  used in the final comparison stage of the structure solution process, and not to 

generate the structural model itself.

The trial structure having the best fit  with the experimental data (i.e. the lowest R factor) is 

chosen as a starting point for Rietveld refinement.

1.5.4  Structure Refinement

When a suitable trial structure is selected, the structure determination process comes to its 

conclusive step, Rietveld refinement, which aims at deriving the final crystal structure from the 

approximate structural model obtained during the previous steps.  This process is generally  done 

by  least  squares refinement of the various structure parameters present.  In the Rietveld method25, 

each point  in the powder profile is considered as an individual intensity measurement, and it is 

compared to its corresponding intensity  value on the calculated pattern.  An optimal fit between 

the two patterns is obtained by  the adjustment (using a Least-Squares method) of selected 

parameters which define both the structural model and the profile itself.  The results from this 

point-by point comparison are then quantified by assigning a figure of merit or agreement factor, 

most commonly the weighted profile R factor (Rwp), to assess the degree of dissimilarity  between 

the two profile patterns.  GSAS26, FULLPROF27, TOPAS28, and RIETAN29, are among the most 

widely-used programs for Rietveld refinement.

The success of a Rietveld refinement  largely depends on how accurate a representation of the 

true structure the initial structural model is.  Factors such as preferred orientation can again play a 

role in hindering the successful completion of this stage of the structure determination process.  

However, corrections may be applied to overcome this problem.

Problems of structural instability  may often arise during refinement due to insufficient 

accuracy or poor quality  of the model.  In such cases, the use of geometric restraints (soft 

constraints) may  be necessary30.  These restraints are based on standard molecular geometries and 

they bias the refinement process towards a structurally reasonable solution, impeding excess shifts 

in atomic positions.  Generally, refinements in which soft constraints are employed allow more 

parameters to be refined than would be possible in unrestrained refinements31.
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The success of a refinement is assessed by the presence of three fundamental attributes: 

graphical representation showing a good fit, a reasonable R factor value (i.e. an Rwp or χ2 close to 

that obtained during Pawley  or LeBail fitting), and a sound final crystal structure that makes both 

visual and structural sense.

1.6  Thermal Expansion

One of the very  important properties of materials for many technological and practical 

applications is thermal  expansion.  The thermal expansion of a material can be either intrinsic or 

extrinsic.  Intrinsic expansion, which can be isotropic or anisotropic, is of interest in this study, as 

it is based on the changes of the crystallographic unit cell axes with respect to temperature.  

Isotropic materials show the same magnitude of thermal expansion in all directions of the unit 

cell, and they  are therefore either cubic or amorphous.  In contrast, anisotropic materials have a 

different magnitude of thermal expansion along the different unit cell axes.

During heat  transfer, the energy  that  is stored in the intermolecular bonds between atoms 

changes.  When the stored energy increases, so does the length of the molecular bond.  Almost all 

solids typically expand upon heating, as the interatomic distances increase.  Some substances have 

a negative expansion coefficient, and will therefore expand when cooled (eg. freezing water).  If 

the interatomic potential function is assumed to be harmonic, when temperature increases, the 

average distance between two atoms will not change.

In reality, however, the interatomic potential is anharmonic.  Therefore as temperature 

increases, the average distance between two atoms also increases, and this causes thermal 

expansion.

As the bond between two atom groups gets stronger, the potential function becomes more 

symmetric and the vibrations more harmonic.  If the bond is strong enough, thermal expansion 

may even be undetectable.  This concept  may be used in cases where the design of materials with 

low or negative thermal expansion is necessary, and therefore structures with strong bonding 

networks are preferred.
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This response to temperature change is expressed as its coefficient of thermal expansion, 

which can be used in two ways: a linear thermal expansion coefficient, and a volumetric thermal 

expansion coefficient, defined as:

  

 α  = 1 (δl/δT)p
 l  

                                        Equation 1.7

  

 αv  = 1 (δV/δT)p
 V

                                     Equation 1.8

respectively.  V is the initial volume, l is the initial length, and δV and δ l are the changes in 

volume and length of the solid due to the temperature change δT.  These are taken at a constant 

pressure p.

For isotropic materials, the linear thermal expansion coefficient  can be approximated as being 

equal to one third of the volumetric coefficient.  In the case of anisotropic materials, however, this 

is calculated as the average of the linear coefficients of thermal expansion in all axes [Equation 

1.9], where αa is the linear coefficient along a, αb is the linear coefficient  along b and αc is the 

linear coefficient along c.

  

 αave  = (αa + αb + αc)
       3

                                     Equation 1.9

The majority  of work relating to the behaviour of materials with changing temperature has 

been carried out on inorganic solids, including AM2O7 (metal IV pyrophosphates) materials32 

(where A is a metal (IV cation) and M  = P or V), the Sc2(WO4)3 family33,34, and siliceous 

zeolites35.  Few examples of low temperature organic cell determination taken from this aspect 

exist  in the literature.  One such example is the determination of the anisotropic thermal 

expansion of glipizide36, for which X-ray powder diffraction data were collected at temperatures 

between 150K and 380K, at increments of 5K.  The lattice expansion of the complex molecular 
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crystal structure was analysed in terms of intermolecular interactions: a similar approach to that 

taken during earlier work on inorganic systems.

1.7  Polymorphism

As organic molecules are being developed for new materials and pharmaceuticals, the 

characterisation of their solid state properties is shifting the concepts on which we base our 

understanding of their crystallisation.  Instead of a molecule having a unique crystal structure, it 

often appears as if the number of known solid forms, or polymorphs, is proportional to the time 

and money  spent investigating the compound.  The term ‘polymorphism’ (Greek: πολυ-many; 

µορφές-forms) is used to describe the existence of a substance in more than one crystalline form.  

Organic molecular crystals often display multiple polymorphs and pseudo-polymorphs (solvates 

and hydrates).  There is a close relationship between the unique crystal structure of a compound 

and its properties, such that  different polymorphic structures of a material often have different 

physical, chemical, biological and pharmaceutical properties.

The unexpected appearance of novel crystalline forms can be a scientific, industrial, or 

commercial disaster. The case of the protease-inhibitor ritonavir (Norvir®), Abbott Laboratories’ 

anti-HIV drug, is a high-profile example of polymorphs exhibiting different properties.  The drug 

was formulated as an encapsulated solution in ethanol and water.  However, in 1998 a new crystal 

form appeared, first at  a production plant  in North Chicago, then at a plant in Italy.  Ritonavir was 

the victim of a late-appearing polymorph with different  solubility  properties37.  In contrast, the 

controlled use of a metastable form can offer considerable benefits when it has advantageous 

physical properties such as improved solubility.  Another practical example is paracetamol; 

whereas form I is the commercially  available form, form II undergoes plastic deformation and is 

suitable for direct  compression, thus making it  potentially  advantageous to the pharmaceutical 

industry  as it would eliminate the need for binders to be added during the manufacture of tablets, 

if its production in bulk is feasible38.  Polymorphism has even captured the imagination of 

authors, in such novels as Vonnegut’s critically acclaimed “Cat’s Cradle”, in which “Ice Nine”, a 
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polymorph of ice, is found to be kinetically  more stable than normal ice crystals, and converts all 

the water on Earth to a solid at room temperature upon contact39.

Clearly, such discrepancies can wreak havoc in the design, preparation, formulation and 

marketing of new materials and in the characterisation of old ones, making polymorphism a 

phenomenon of great interest to several industries attempting to exercise control over the 

production, processing and development of organic materials in settings where a particular form is 

desirable over another.  Exploitation of specific polymorphs requires a predictive model of how 

the kinetic aspects of solvents and crystallisation conditions determine which of the 

thermodynamically  feasible crystal forms are actually  observed, and this is in turn validated by 

additional experimentation.

The appearance of different polymorphic forms can be attributed to both kinetic and 

thermodynamic parameters.  Polymorphs tend to convert from less stable to more stable forms, 

the rate of conversion depending mainly  on the required activation energy and the differences in 

free energies between the two forms.  The relative stability of these crystals as a function of 

conditions and the ability to produce a desired polymorph on demand are areas of great  current 

interest.  In some systems one polymorph is the stable form at all temperatures (monotropic) 

while in other systems the stable form varies with temperatures (enantiotropic).  In addition, 

many organic systems display multiple metastable polymorphs.

In the ideal thermodynamic case, each polymorph is stable over its own individual range of 

temperatures and pressures and, when that range is exceeded, it  changes into a new polymorph.  

These interconversions are reversible and occur at a fixed transition temperature analogous to the 

melting and freezing points, which separate the solid and liquid states.  In actual practice, 

however, several polymorphs may coexist at the same temperature and pressure, in which case 

only  one of them is thermodynamically  stable.  In this case the other polymorphs are said to be 

“kinetically  metastable”.  The Gibbs free-energy values of the various polymorphs define the 

depth of each energy minimum and determine which of the various coexisting polymorphs is the 

thermodynamically  stable form40.  Thus, knowledge of the thermodynamic stability  is important 

for the selection of the appropriate polymorph for pharmaceutical and chemical development.
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1.8  Crystal Structure Prediction

Structure prediction aims at searching for the most  thermodynamically  feasible three-

dimensional packing arrangement of a substance solely  on the basis of its molecular structure.  In 

the study  of polymorphs, a thorough experimental solvent screen would involve the isolation and 

characterisation of copious amounts of crystalline samples, thus making the exercise very time-

consuming, expensive, and in many cases futile.  A reliable technique for the prediction of 

possible polymorphs would clearly  be invaluable.  However, one often comes across the question: 

are crystal structures predictable?  In 1994, Gavezzotti gave a clear, uncompromising answer: 

No41.  There have been several debates on the matter since42-45, and thirteen years down the line, 

we can now rephrase that answer to “not  yet”, because the energetically  feasible crystal structure 

of a molecule can now be predicted for an increasing range of types of molecule, as long as their 

relative energies are calculated accurately  and an appropriate range of crystal structures is 

considered46.  Crystal structure prediction can also be of significant use in the design of new 

materials.  A range of candidate structures can be theoretically  modelled to find out which one 

would be expected to crystallise in a form which has the desired properties.

1.8.1  Methodologies

Ab initio prediction of crystal structures involves the generation of crystal structure models 

without the use of any  experimental data.  A range of software employing various theoretical 

approaches has been developed47-49, and many  of the methods that  are currently used have been 

tested in the CCDC’s international blind tests of crystal structure prediction49.

Most approaches begin with a search for the global minimum in the lattice energy.  If the 

crystallisation is under total thermodynamic control, and the appropriate energy can be 

approximated by calculating the lattice energy  from a model of the forces acting within the 

crystal, then this would result in a reliable prediction.  With molecules that are sufficiently  rigid, it 

can be assumed that  they will preferentially  adopt the same conformation in the crystals as in the 

gas phase, as modelled by  an ab initio optimisation.  The lattice energy  is then obtained simply  by 
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summing the intermolecular potential between every  pair of molecules in the crystal.  Most 

molecules are sufficiently flexible that  they  can change their conformation within the crystal in 

order to improve their intermolecular interactions and lattice energy  (Ulatt), giving an overall more 

stable crystal structure with lower total crystal lattice energy (Ecrys).

  
 Ecrys  =Ulatt + ΔEintra

                                     Equation 1.10

where ΔEintra is the energy penalty brought about by the change in molecular conformation.

Relative crystal energies can unfortunately  be very  sensitive to the exact  conformation 

especially of polar hydrogen atoms, and are therefore affected by  even small changes in hydrogen 

bond geometry.  This problem may  be overcome by specifically  optimising the change in lattice 

energy (Ecrys) with respect to the key torsion angles as well as the otherwise rigid-body  structure 

parameters.  Shuttling between the ab initio and energy minimisation programs would achieve 

such an optimisation50.

The effects of temperature and pressure on the relative energies of the crystal structure are 

totally  neglected during the comparison of total lattice energies, Ecrys.  Entropically related 

polymorphs are common40,51, and although enthalpy differences generally dominate entropy 

differences52, ranking structures based on their free energy  would place them in a different order 

from that obtained by lattice energy ranking53.  Most  entropy  estimates are currently  based on 

lattice dynamics calculations for rigid molecules54, with a few studies of organic materials carried 

out  at  normal temperatures by  molecular dynamics using DL_MULTI and DL_POLY55.  In a 

study of the polymorphic behaviour of benzene, the free energy  surface was explored by 

successful application of the metadynamics method56.  These methods are, however, very 

computationally  demanding, and although free energies at the crystallisation temperatures and 

pressures should be used, the total lattice energy  landscape is more commonly observed as a first 

approximation.

Formerly, some degree of knowledge of the crystallographic attributes of the structure was 

used in the generation of trial structures for lattice energy  minimisation in order to sample the 

range of possibilities effectively.  Searches were therefore restricted to Z’=1 (where Z’ is the 
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molecules in the asymmetric unit, compared to Z which is the number of molecules in the unit 

cell), and only  the most common space groups for organic molecules were included.  The 

possibility of performing more extensive searches has led to the inception of various types of 

simulated annealing to explore the lattice energy  surface, and complete searches in specified space 

groups and small values of Z’ became possible57. Recent methods58 are proving to be capable of 

performing complete searches of the approximate energy  surface for a wide range of specified 

space groups with Z’=1 or 2 for rigid molecules, as suggested by recent blind test studies59. These 

methods are very computationally-demanding, and the search effort  increases rapidly with the 

number of conformational degrees of freedom (usually  torsion angles), or molecules in the 

asymmetric unit, as this increases the dimensionality of the lattice energy surface.

It  is therefore difficult to establish one clearly-defined method for an independent structure 

prediction, even in the case of closely-related structures.  Even if the most theoretically  accurate 

feasible model is used, an exhaustive search method will not necessarily  predict the correct 

experimental structure, and the type of energy landscape obtained greatly depends on the specific 

molecule.  Assuming that the energy  gaps between the lattice minima relative to the plausible 

energy differences between polymorphs are qualitatively  accurate, there are three possible 

scenarios when analysing crystal energy packing landscapes [Figure 1.8].
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Figure 1.8  Examples of crystal energy landscapes. Each point represents a crystal structure at a local 
energy minimum. Different symbols denote different packing. Open symbols are the experimentally 

known structures. The red bar shows the energy difference that may occur between polymorphs.
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(a) In an ideal case, one structure is predicted to be so thermodynamically stable that  if 

the molecule crystallises in a structure covered by the search, it should be this structure.  If this 

crystal structure is obtained experimentally, such an energy  landscape would confirm that there 

are unlikely to be any polymorphs that are practically  significant60. This energy  landscape usually 

results when the molecules have strongly  preferred directional interactions in all three dimensions, 

allowing them to pack densely.

(b) In the second scenario, a structure that does not correspond to the experimental 

structure is predicted to be more stable.  This situation should prompt a thorough polymorph 

screen to find the predicted structure, as the existence of a form that is more stable could pose a 

potential hazard, economically  as well as health-related in the case of products intended for 

human consumption.  When conducting the polymorph search, prior analysis of the hydrogen 

bonding motifs present in the lower energy structures may  help direct the search by influencing 

the choice of solvents required to obtain such packing61.

(c) The third scenario that can be observed when analysing crystal energy landscapes is 

the one that  was most-commonly  encountered during this study.  Sometimes, a large number of 

structures fall within a narrow energy  range, indicating that various packing possibilities exist  that 

are energetically  competitive.  A multitude of factors can influence the appearance of one of these 

structures experimentally, and apart from kinetic factors, temperature and pressure, these may 

include controllable factors62 such as solvent, cooling rate, and initial supersaturation, as well as 

impurity  profile63.  For this reason, it is highly  unlikely that the crystal structures which will be 

observed polymorphs will be selected by  modelling of kinetic factors alone.  Comparison with the 

crystal structure of related materials can provide some valuable insight, especially when combined 

with experimental polymorph screening.
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1.9  Two-Way Relationship

Unfortunately, few molecules produce landscapes where the energy gap between the observed 

and other possible structures is large enough relative to the energy  difference that may occur 

between polymorphs, and to the uncertainties in computed energies.  Generally, much more 

accurate relative energies of the possible crystal structures are required in order to be confident of 

the relative ranking.  Therefore the first  step  towards increasing the confidence that the computed 

crystal energy packing landscape is a realistic representation of the most thermodynamically 

feasible crystal structure of the molecule is the minimisation of uncertainties in the relative 

energies of all the possible packings in the crystal structure.

Crystal structure prediction, therefore, currently  has to be treated as a complementary tool to 

experimental studies, sometimes providing structural data that  may serve as a starting point  in 

structure solution of data that cannot be indexed.  Similarly, the coupling of experimental 

techniques with crystal structure prediction can serve as confirmation of the stability  and/or 

existence of a crystal structure found during a computational search.

As discussed in Section 1.5.1, structure solution from powder diffraction is dependent on the 

successful indexing of the data, and failure to index powder data is not uncommon, for a 

multitude of reasons.  The crystal structure determination of organic molecules is increasingly 

being tackled by the use of theoretical structure prediction coupled with experimental methods 

such as PXRD64. If neither the predicted structure nor the PXRD profile contain enough 

information for the characterisation of the crystal structure, structure determination may be greatly 

facilitated by combining the two methods.

The comparison of experimental data with that simulated from the theoretical structures is 

often done visually or purely on a fingerprinting basis65,66, and there are only  a few molecular 

cases in which the predicted structures have been used as a starting point  for Rietveld refinement 

64,67 both in terms of lattice parameters and crystal structure.  One possible reason for the limited 

application of this approach is that even though the difference in lattice parameters between the 

experimental and calculated structures is relatively  small, the variation in peak positions in the 
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respective patterns often makes automated quantitative comparison difficult and attempts at 

refinement unstable and unsuccessful.

This is partly  due to the temperature differences between the two techniques: whereas routine 

powder data is collected at room temperature, prediction calculations search for the most 

energetically feasible packing at  0K, by assumption that  temperature effects and zero-point 

energies can be neglected60. A reduction in temperature can significantly  affect the lattice 

parameters and unit cell volume, although these effects are often anisotropic and hard to predict60. 

Therefore the possibility that  collection of powder data at low temperatures would enable a more 

meaningful comparison of the simulated and calculated profiles was taken into consideration, with 

the added ambition of it  also providing an alternative agreement factor for automatic ranking 

other than Rwp.

1.10  Project Aims

The aim of this project  was primarily to evaluate a number of methods to compare X ray 

powder diffraction sets obtained experimentally and simulated from theoretical trial structures.  

Identification of a reliable comparative approach would provide an automatic numerical method 

to identify the “correct” predicted structure from hundreds of others.

Success in this aim could then lead to

(i) subsequent use of the “correct” predicted structure in the structure determination of crystal 

structures whose powder data alone was not sufficient for this purpose, and

(ii) a reliable method for screening structure prediction results and relating these results to 

experimental data.

With potential problems between the comparison of room temperature experimental data and low 

temperature prediction calculations, the suitability and effect of using data over a range of 

temperatures for this comparison would also be assessed.
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2.  METHODOLOGY

In the case of previously  published structures, the relevant CIF (Crystallographic Information 

File1) was downloaded from the Cambridge Structural Database, and the diffraction pattern 

profile simulated using the Crystallographica2 software package.  These simulated patterns were 

then compared to the powder patterns obtained experimentally  to confirm the identity and phase 

purity  of the samples.  These materials were subsequently treated as “unknowns”, and were 

subjected to the same procedures as the previously unsolved structures.

2.1  Automated Comparison

All computational searches were conducted by  collaborators at  UCL, and the resulting 

structure files (.res) were passed on to us.  .res files contain information such as lattice parameters 

and atomic coordinates for the predicted structure.  Prior to the comparison of the predicted 

structure files with the data obtained experimentally, standardisation of the .res  files had to be 

ensured.  Due to the assorted nature of the materials under study, and the continuing evolution of 

novel search techniques, each set  of predictions was obtained using a different search method, 

thus making standardisation of the structure files a more intricate and time-consuming process 

than was envisaged at  the beginning of this project.  Once the .res files were standardised, the 

experimental data were compared with the simulated data from the predicted structures using Rwp 

(GSAS) and correlation analysis (POLYSNAP and Compare.x).

2.1.1  Rwp Calculation

A conventional method for the comparison of calculated and experimental powder diffraction 

patterns involves calculating the difference plot between the two, and quantifying this 

dissimilarity  as the sum of the differences (Rp) or the sum of the squared and weighted differences 
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(Rwp).  The calculation is based on a pointwise comparison between the two powder patterns, and 

it is a very sensitive method. 

A good agreement would, in theory, give a very low Rwp.  Values above 20% are not 

considered ideal.  However, Rwp values can often be unduly  inflated by factors that do not 

necessarily arise from a poor structural model3.  For two identical structures, even small 

discrepancies in unit  cell parameters (arising, for example, from a temperature difference) would 

result in slight  shifts in peak positions, thus increasing the dissimilarity  plot between the two 

patterns, despite their being identical [Figure 2.1].

       

             

Figure 2.1  Diagram showing observed peak (red), calculated peak (green) and difference plot (pink), 
calculated by Rwp(obs) - Rwp(calc)3. Two perfectly identical peaks at exactly the same position give a 

straight dissimilarity line (i.e. difference = 0).

Code has been written in Fortran 77 for the automated calculation of Rwp, using the structural 

information from individual .res files to calculate the powder pattern that is to be compared with 

the experimental data [Appendix A1].  After the number of atoms present  in the asymmetric unit 

and the number of predicted structures to be compared have been specified, the routine uses the 

General Structure Analysis System (GSAS4) software package to perform the comparison.  A list 

of Rwp values in percent is then printed to an output file. To ensure that a reliable comparison was 

obtained between the experimental and simulated data, a LeBail fit was carried out  on the 

experimental data (in the case of previously know structures) so that  zero point, background and peak 

shape parameters could be modelled in the calculated data.
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Optionally, the percentage expansion or contraction to be applied to the unit  cell prior to Rwp 

calculation may  also be specified.  In this case, Rwp values are calculated at increments of 0.5% in 

unit cell length, up to the specified percentage.

2.1.2  PolySNAP

While most  search-match programs available commercially use extracted d-spacing and 

intensity  for each identified peak, PolySNAP5-8 uses each data point, thus making use of all the 

information available within the whole profile.  Data can either be imported in CIF format1, 

Bruker Raw format, or xy format (2θ, intensity).  Owing to the unavailability of CIFs in the case 

of previously unsolved structures, and the nature of our comparison involving theoretical structure 

files as well as experimental data, the format chosen for all our analyses was xy.  Therefore all .res 

files were first used to simulate powder patterns of each theoretical structure (in the wavelength 

corresponding to the geometry  used experimentally), before being saved as xy structure files. 

Although various formats can be read into PolySNAP, only  one format may be used during any 

one session.  After all structure files have been imported successfully, the data are then normalised 

to give a maximum peak intensity  of 1.  If necessary, the pattern is then interpolated using high-

order polynomials via Neville’s algorithm9 to give increments of 0.02o in 2θ.  Optional 

background removal then follows.  This is achieved via the fitting of local nth-order polynomials 

to the data which are then subtracted to produce a pattern with a flat baseline (the value of n is 

selected by the algorithm).  The data are then smoothed using wavelets10,11 via the SURE (Stein’s 

Unbiased Risk Estimate) thresholding procedure12,13.

Savitsky-Golay  filtering14 is employed to locate the peak positions, after which smoothing (via 

a digital filter) replaces each data point  xi with a linear combination of itself and a number of 

nearest neighbours [Equation 2.1].  This type of smoothing is distinct  from the wavelet-SURE 

procedure, and is only used to determine peak positions.

    

       nr
gi = ∑ cnxi+n     n = -nl                                            Equation 2.1

Methodology Liana Vella-Żarb

 33



where gi is any  point given by the linear combination of its immediate neighbours, n is the order,  

nl and nr are the number of points taken to the left or to the right of a data point respectively, and 

Cn is a coefficient determined by  the least-squares fit of a polynomial of degree M in i to the 

values x-nl….xnr [Equation 2.2].

    
a0 + a1i + a2i2 + …….aMiM 

                                      Equation 2.2

The first order derivative a1 is required for peak location, and maxima and minima are 

determined by  observing the gradient change.  Factors such as peak width, noise and peak shape 

do not affect this process.

Statistical distributions are generally well-approximated in crystallography.  However, the 

statistical methods employed by  PolySNAP are non-parametric, and are based on ranks.  

Therefore no assumptions about the underlying data distribution are made.  With non-parametric 

tests, the diffraction pattern must first be converted from actual data values to ranks representing 

those values.  For a set of n data points in the pattern, the smallest intensity is assigned a rank of 1 

[R(x) = 1], the largest a rank of n [R(x) = n], and the ith largest intensity  a rank of I, denoted by 

R(xi) = I.  If tied ranks exist (from data points of equal value), they are assigned a rank 

corresponding to the average value of the ranks they  would have taken had they not been the 

same.  The data ranks are then sorted in descending order, and this order is used, rather than the 

data value itself.  The process of correlation therefore becomes dependent on the relationship 

between ranks.  These statistical methods are resistant to outliers and unplanned defects15, and in 

the case of powders, they  overcome some problems associated with preferred orientation and peak 

asymmetry.

Following this pre-processing, pattern-matching is performed, optionally  masking (excluding) 

any  previously-defined regions.  Noise is eliminated by setting a user-definable minimum 

intensity, 0.1 Imax by default, below which ranks are set to zero.

If a database of known phases is available, each structure file is matched with this database.  

In the case of a good match between an individual structure and the database, the next step is 

bypassed.  If the resulting match is not good, indicated by pattern correlation based on all the 
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measured data points and using the Pearson and Spearman5,16 correlation coefficients, quantitative 

analysis is carried out  using singular value decomposition for matrix inversion to ensure 

computational stability.  This is done using all the measured data points, and it results in the 

determination of percentage composition of the sample.

The Pearson correlation coefficient  is a measure of the strength of the linear dependence, or 

correlation, between two variables X and Y, giving a value between +1 and −1 inclusive. It is defined 

as the sum of the products of the standard scores of the two measures divided by the degrees of 

freedom.  Based on a sample of paired data (Xi, Yi), the sample Pearson correlation coefficient can be 

calculated as

Equation 2.3

where  , X and SX are the standard score, sample mean, and sample standard deviation 

(calculated using n − 1 in the denominator).

Spearman's rank correlation coefficient ρ is a non-parametric measure of correlation.  In principle, 

ρ is a special case of the Pearson coefficient in which two sets of data Xi and Yi are converted to 

rankings xi and yi before the coefficient is calclated. In practice, the raw scores are converted to ranks, 

and the differences di between the ranks of each observation on the two variables are calculated.

If there are no tied ranks, then ρ is given by:

Equation 2.4

where di = xi − yi = the difference between the ranks of corresponding values Xi and Yi, and n is the 

number of values in each data set (same for both sets).  If tied ranks exist, Pearson's correlation 

coefficient  has to be used instead of equation 2.4.  The same rank is assigned to each of the equal 

values, and this is an average of their positions in the ascending order of the values.
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If no database is present  or quantitative analysis is not necessary, a crystallinity check then 

follows.  This involves the estimation of the total background for each sample, followed by  the 

integration of its intensity; the estimation of non-background intensity; the location of any 

diffraction peaks; and the determination of non-background to background intensity.  If this ratio 

falls below a user-definable limit (at a default  value of 3%) and if there are fewer than the default 

number of three peaks (which is also user-definable), then the sample is considered amorphous 

and treated separately during the rest of the process.

Each pattern is then matched with every  other pattern including itself using a combination of 

Spearman16, Pearson5, Kolmogorov-Smirnov17 and peak correlation coefficients.  The weighted 

mean of these coefficients is used as an overall measure of correlation, and the user-definable 

weights, by  default, are 0.5, 0.5, 0 and 0 respectively.  This means that only  non-peak-specific 

tests are used.  A symmetric (n x n) correlation matrix ρ with a unit diagonal is generated, and 

this in turn gives rise to two more symmetric matrices d and s, given by the equations

    
dij = 0.5(1.0 - ρij) 

                                      Equation 2.5

   
sij = 1.0-dij/ (dij)max 

                                      Equation 2.6

where d is the distance matrix with a value 0.0 ≼ dij ≼ 1.0, and s is the similarity matrix, of value 

0.0 ≼ sij ≼ 1.0.  Therefore for high correlations a short distance is obtained, and consequently, the 

shorter the distance, the greater the similarity.  Any  amorphous samples may, at  this point, be 

either discarded or given a dissimilarity and distance of 1 from every  other sample, and a 

correlation coefficient of 0.  This limits the effect  of the amorphous sample on the data clustering 

process.
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Equipment settings and data collection protocols often result in shifts in 2θ between patterns, 

sometimes due to a change in sample height.  This shift can be corrected by the following 

equations:

    
Δ(2θ) = a0 + a1 cosθ

                                      Equation 2.7

    
Δ(2θ) = a0 + a1 sinθ

                                      Equation 2.8

    
Δ(2θ) = a0 + a1 sin2θ

                                      Equation 2.9

where a0 and a1 are constants whose maximum values are user-definable.  They  are refined to 

maximise pattern correlation using the downhill simplex method.  Equation 2.7 corrects for 

varying sample heights in reflection mode, equation 2.8 corrects for transparency errors or for 

transmission geometry with constant sample-detector distance, and equation 2.9 provides 

transparency  and thick-specimen error corrections.  Singular value decomposition of the resulting 

correlation matrix then gives an indication on its stability  for subsequent eigenanalysis and cluster 

analysis calculations.

PolySNAP results are usually  viewed via a dendrogram [Figure 2.2], which is a two-

dimensional graphical representation of the hierarchal clustering performed during data analysis.  

Starting from the bottom of the diagram and moving upwards, clustering follows an 

agglomerative methodology.  Initially, each structure forms its own individual cluster (denoted by 

different colours), and pairs of clusters are merged as one moves up the hierarchy.  Each step of 

the clustering process is represented by the fusion of two branches via a horizontal tie-bar.  The 

similarity of the clustered structures depends on the position of the tie-bar on the similarity scale, 

which ranges from 1 at the bottom denoting 100% similarity, to 0 similarity on top.  In Figure 2.2 

a case of 100% similarity is shown by the red cluster to the far left of the dendrogram.

Varying degrees of similarity  are shown by a cascade of tie-bars.  This is illustrated by the 

bright blue cluster in figure 2.2, where all the experimental structures at various temperatures 

were clustered together with one trial structure 16.  Within this cluster, there are several horizontal 

tie-bars denoting a degree of sub-clustering.  This demonstrates the range of percentage similarity 
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that can exist between structures within a cluster.  As the tie-bar joining the 100K and 150K cells 

is furthest down the cluster, these structures bear the greatest  similarity (circa 75%) within the 

blue group.  The top  tie-bar in the blue cluster corresponds with the 0.5 similarity mark, showing 

that members of the blue cluster are at least 50% similar to eachother.

Figure 2.2  Example of a dendrogram.  Different colours denote different structure clusters

2.1.3  Compare

Compare.x is an algorithm developed at UCL based on De Gelder’s work19-21.  As with some 

previously  documented work22,23, this algorithm does not only  compare powder patterns 

pointwise, but  it also compares a point  on one pattern with the corresponding point  and its 

neighbourhood on the other pattern and vice-versa.  Text files in the same format used for 

PolySNAP (2θ, intensity) are used.  However, these must be generated with the same 2θ range and 

stepsize as the experimental data, because, unlike PolySNAP, this algorithm does not perform any 
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interpolation of the data.  Using each experimental data pattern as a reference in turn, the patterns 

of each computational structure are then matched with the experimental data, and their resulting 

correlation coefficients are printed on the screen.

Powder patterns are on an arbitrary scale, therefore the first step  before assessing the 

similarity of patterns is to scale them.  Previously22 this was done by  equalising the total number 

of counts (the equivalent of normalising the area under the patterns).  With auto- and cross-

correlation integrals, however, patterns should be scaled according to self-similarity.  Although 

this generally  leads to a similar scaling to that  obtained by  normalising the area, a different 

number of counts may be obtained for individual patterns by using this method.  The correlation 

function describes the similarity  or overlap  between two patterns, and is expressed as two 

continuous functions f(x) and g(x) as a function of the relative shift r between the patterns.  The  

interval for which patterns f(x) and g(x) are calculated determines the maximum and minimum 

value of r.  For a reference pattern f(x), the autocorrelation function cff(r) is expressed as

    
cff (r) = ∫  f(x) f (x + r) dx

                               Equation 2.10

Integrating the autocorrelation function cff(r) [Equation 2.11] shows that  the area under the 

autocorrelation function is equal to the square of the area under the reference pattern f(x).

 
∫ cff (r) dr = ( ∫  f(x) dx)2

                             Equation 2.11

Similarly, equations for the autocorrelation function cgg(r) of the sample pattern g(x) can be 

derived

   
cgg (r) = ∫  g(x) g(x + r) dx

                               Equation 2.12

 
∫ cgg (r) dr = ( ∫  g(x) dx)2

                             Equation 2.13
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Equations 2.11 and 2.13 thus show that setting the total number of counts of the reference and 

sample patterns to the same number of counts results in setting the autocorrelation integrals 

(which express the self-similarities of the patterns) to the same value.  It is therefore possible to 

put  the autocorrelation functions for f(x) and g(x) on an absolute scale and compare them with the 

crosscorrelation function cfg(r), defined by

   
cfg (r) = ∫  f(x) g(x + r) dx

                               Equation 2.14

 
∫ cfg (r) dr = ∫  f(x) dx ∫  g(x) dx

                        Equation 2.15

This means that the crosscorrelation integral, i.e. the area under the crosscorrelation function 

[Equation 2.15], is equal to the product of the areas under the patterns that  are being compared, 

f(x) and g(x).  Normalisation of cfg(r) can be obtained by  dividing it  by  the root of the product of 

the areas under f(x) and g(x).

Comparison of two patterns in a pointwise manner synonymous to the method described in 

section 2.1.1 results in a difference criterion dfg that can be defined as

   
dfg  = ∫ ( f (x) - g (x))2 dx

                               Equation 2.16

Since this comparison does not  take into account  any  relative shift  between patterns (i.e. r  = 

0), in terms of auto- and crosscorrelation  dfg can be expressed as

   
dfg  = cff (0) + cgg (0) - 2cfg(0)

                       Equation 2.17

Compare.x, however, extends the pointwise approach to a neighbourhood comparison, 

redefining the difference criterion dfg in terms of shift [Equations 2.18 and 2.19].
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dfg   = ∫ ( f (x) - g (x + r))2 dx

 = cff (0) + cgg (0) - 2cfg(r)
                Equation 2.18

 ∫ dfg (r) dr = cff (0) + cgg (0) - 2 ∫  cfg(r) dr
                Equation 2.19

Using a weighting function w that describes the neighbourhood to be adopted, the similarity 

sfg between the two patterns may  be expressed either as shown in equation 2.20, or as a function 

of dissimilarity [Equation 2.21].

  

sfg   =    ∫ wfg (r) cfg (r) dr

  ( ∫ wff (r) cff (r) dr ∫ wgg (r) cgg (r) dr)½ 

              Equation 2.20

   
dfg  = sff + sgg - 2sfg             Equation 2.21

In order to include a neighbourhood in the calculation of similarity or dissimilarity, weighting 

functions must be defined for r ≠ 0, and, if they  are to be measured on an absolute scale, then wgg 

(r), wff (r)  and wfg (r) must be equal.  The choice of the weighting function wfg (r) depends on the 

systems under comparison.  For this study, a simple triangle shaped weighting function  was used 

[Equation 2.22].

   

wfg (r) = 1-  |r| / l  if |r| ≺ l
wfg (r) = 0    if |r| ≽ l

            Equation 2.22

where l defines the width (degrees 2θ) of the neighbourhood taken into account.  For this study, a 

range of triangle widths (varying from 0.5 to 4 degrees in 2θ, at increments of 0.5) was studied, 

with a default  value of 2 being decided upon as it  was found to give the most consistent results.  
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A very narrow triangle window was found to be too sensitive to peak shifts, in much a similar way 

as the pointwise approach.  In contrast, wide triangle windows gave false high similarity  values, 

matching peaks that bore no crystallographic relationship to each other.

Combining the functions described above, the weighted crosscorrelation function may be 

expressed as

  

  wscfg   =       ∑ cfg (r) w (r)

  √ ∑ cff (r) w (r)     √ ∑ cgg (r) w (r)

              Equation 2.23

         
ws

For identical patterns, cfg is equal to one, and the more dissimilar the patterns are, the closer 

its value is to zero.

2.2  Low Temperature Data

After data collection and selection of the appropriate predicted structure, LeBail fits were 

carried out on each data set  in order to investigate the behaviour of the materials over a range of 

temperatures.
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3.  EXPERIMENTAL

3.1  Instrumentation

 
 The following instruments were used for X-ray powder diffraction data collection:

(i)  Bruker AXS D5000 high-resolution powder diffractometer.

 For each material, the sample was ground using a mortar and pestle and mounted on a flat 

disc between two layers of transparent  tape, creating a circular area of approximately 1 cm in 

diameter.  The powder X-Ray diffraction pattern was then recorded in transmission mode using a 

position-sensitive detector covering 8o in 2θ, using CuKα1, λ = 1.54056 Å radiation (Ge 

monochromated). Data were collected over the range of 5o<2θ<60o, measured in steps of 

0.020343o over a total collection time of one hour.   Longer runs were carried out  using the same 

step size over the range of 5o<2θ<60o collected over a period of approximately 14 hours. 

(ii)  Bruker AXS D5005 high-resolution powder diffractometer.

 Samples were ground using a mortar and pestle and placed in the low-temperature sample 

holder which consists of a square-shaped recess in a brass container. These data were initially 

collected only for 5-azauracil, chlorothalonil and imidazole.  The D5005 diffractometer runs in 

reflection mode using CuKα1,2 radiation (λ = 1.541838 Å), and is equipped with a Gobel mirror 

and a position-sensitive detector covering 8o in 2θ.  Data were collected over the range of 

5o<2θ<55o, measured in steps of 0.014102o over a total collection time of three hours.  Longer 

runs were carried out using the same step  size over the range of 5o<2θ<55o collected over a period 

of approximately 14 hours.  The low temperature stage was an Oxford Instruments CCC1101T 

stage, protected by three vacuum-sealed shields.  Data sets were initially  collected over a range of 

temperatures (75K, 100K, 125K, 150K, 175K, 200K, 225K, 250K and 293K). However, problems 

with transparency prompted the introduction of NaCl into the sample holder.  Readings were 

repeated at a later date, using a thin layer of the pure material attached to the inverted sample 

holder by  means of double-sided tape [Figure 3.3].  Data were subsequently collected over a range 

of temperatures (10K, 50K, 100K, 150K, 200K, 250K and 293K). 
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(iii)  Bruker AXS D8 high-resolution powder diffractometer.

 Low temperature capillary  data were collected on this diffractometer in the Department  of 

Chemistry at the University of Glasgow following observation of preferred orientation in the 

diffraction patterns obtained with the D5005.  The samples were ground using a mortar and pestle 

and packed into 0.5mm glass capillary tubes to a depth of approximately 3cm.  All tubes had their 

ends sealed before being mounted onto the capillary stage, which was then set to rotate.  The 

powder X-ray diffraction patterns were recorded in transmission mode using a position sensitive 

detector covering 8o in 2θ, using Ge monochromated CuKα1 radiation (λ = 1.54056 Å).  Data were 

collected over the range of 5o<2θ<55o, measured in steps of 0.014102o over a total collection time 

of three hours, at  various temperatures (70K, 100K, 150K, 200K, 250K and 293K) using a 

cryostream.  Liquid nitrogen is drawn up  by the action of the diaphragm pump from an 

unpressurised supply  vessel  into the cryostream coldhead, where it then passes through a heater 

so that most of the liquid is turned into vapour at the boiling point of liquid nitrogen. This vapour 

is then dried with a line drier unit  to ensure there is no moisture in the gas.  The flow rate of the 

gas from the pump  is regulated by  a variable flow controller as the gas flows back into the 

cryostream coldhead where it is recooled.  A heater and a sensor regulate the temperature of the 

vapour before it  enters the nozzle of the cryostream. The gas then flows along the isothermal 

nozzle and out over the sample.

3.2  Sample Effects

  Powder data for all samples were collected on the D5000 at room temperature.  Low 

temperature data collection was initially  carried out on the D5005 with its original sample cell set-

up.  Transparency and sample contraction issues then prompted the use of an internal inorganic 

standard, NaCl, introduced into the sample in the ratio 1:2.  However, analysis of the resulting 

powder patterns and problems with Rietveld refinement revealed a substantial degree of preferred 

orientation in some of the samples, thus inspiring the use of a capillary set-up rather than a flat 

sample holder in cases where preferred orientation was observed.
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 The analysis of the NaCl mixture to correct for transparency  caused unstable and 

unsatisfactory  refinements.  Consequently, further attempts at overcoming transparency issues 

were made using the D5005 instrument in Birmingham.   After several discussions, a decision was 

made to mount the sample on the reverse side of the sample holder by  means of double-sided 

tape.  This set-up, whilst eliminating the problems linked with transparency, gave rise to the issue 

of sample displacement.  However, this was addressed by  applying a significant  zero point error 

to the data obtained with this method.  The sample effects mentioned above will now be discussed 

in further detail.

3.2.1  Transparency and Sample Contraction

 Transparency errors are encountered when X-ray  photons penetrate into the specimen, thus 

lowering the effective diffraction surface and causing a discrepancy  in peak positions [Figure 3.1].  

This error bears a direct  relationship with the absorption of the X-ray beam by the material, i.e. 

the linear attenuation coefficient, and may be quantified by:

    

Δ2θ = sin2θ

          2µR
  Equation 3.1

where µ is the linear attenuation coefficient  for the specimen at a particular wavelength, R is the 

radius of the focusing circle, and 2θ is expressed in radians1.  The greater the absorption (i.e. high 

values of µ), the smaller the error (Δ2θ).
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Figure 3.1  Diagram showing the effect of specimen transparency or specimen displacement on the 
radius of the focusing circle.  r = radius of focusing circle, r’ = effective radius,  d = diffraction sur-

face and d’ = displaced diffraction surface1.  Red lines denote displacement scenario.

 In the case of organic and other low-absorbing materials, the attenuation coefficients are 

very  small, therefore transparency is not an uncommon problem, especially with the systems 

under consideration in this project.

 Another sample effect  having similar consequences to those described above is sample 

contraction.  As the environment of the crystallites gets colder, the unit  cell volume of the sample 

decreases and the material contracts within the holder, lowering the diffraction surface and 

altering the zero point.  In such cases, the error may again be calculated using Equation 3.1 since 

the direct consequence of sample contraction is displacement of the effective diffraction surface 

[Figure 3.2 (c)].

 The low temperature set-up  on the D5005, which operates in reflection mode, is such that 

the surface of the sample holder is at the position from which it is assumed X-rays are diffracted.  

Figure 3.2 illustrates the effects of transparency and sample contraction on this arrangement.
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(a)  Sample exhibiting no transparency or contraction

diffraction surface

(b)  Sample transparency

diffraction surface

(c)  Sample displacement (or sample contraction)

Figure 3.2  Diagram showing the effect of specimen transparency and specimen displacement on 
diffraction surface.
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 To monitor the effects of sample transparency, an inorganic material not prone to 

transparency  effects was added to the sample.  NaCl was selected as its lattice parameters and 

behaviour over a range of low temperatures are well-documented2, and it is unreactive with the 

materials of relevance to this project.  For more accurate LeBail analysis, the cell parameters for 

NaCl must take thermal contraction into account.  A thermal expansion coefficient  was therefore 

applied to the NaCl structure, and peak positions calculated for the salt peaks over the range of 

temperatures studied [Table 3.1].

Table 3.1.  Calculated peaks for NaCl with a change in temperature at different wavelengths 
(*Coefficient of thermal expansion for NaCl = -40.5 × 10-6 Å/K)2

Temperature Corrected a Cu-Kα Cu-Kα1

(K) (Å) Peak 
1

Peak 
2

Peak 
3

Peak 
1

Peak 
2

Peak 
3

250 5.6385 27.397 31.739 45.500 27.374 31.712 45.461

225 5.6375 27.402 31.745 45.509 27.379 31.718 45.469

200 5.6365 27.407 31.751 45.517 27.384 31.724 45.478

175 5.6355 27.412 31.756 45.526 27.389 31.730 45.486

150 5.6345 27.417 31.762 45.535 27.394 31.735 45.495

125 5.6335 27.422 31.768 45.543 27.399 31.741 45.503

100 5.6324 27.427 31.774 45.552 27.404 31.747 45.513

75 5.6314 27.432 31.780 45.561 27.409 31.753 45.521

3.2.2  Sample Displacement

 A more efficient method of data collection which avoids sample transparency  and reduces 

contraction errors involves mounting a fine layer of the sample on the reverse side of the sample 

holder using double-sided tape.  By  this method, the sample height is slightly  displaced from its 

original position, thus causing a zero point error [Figure 3.3].  This error is constant and can 

therefore be calculated prior to the refinement stage [Equation 3.1].
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(a)  Traditional technique

     

displaced diffracting surface

sample

double-sided tape

(a)  Modified technique

Figure 3.3  Diagram showing the techniques used to mount the sample onto the sample holder for 
collection of low-temperature data on the D5005.

3.2.3  Preferred Orientation

 In an ideal powder sample, the crystallites are oriented completely randomly and 

independently from the direction of the beam.  This gives each crystal orientation the same 

probability  of reaching the diffraction condition.  Preferred orientation is a property  arising when 

the crystallites in a sample have a stronger tendency to be oriented in one way rather than another.

 For sample identification and fingerprinting purposes, preferred orientation is often not 

critical as it does not affect  the positions of the peaks observed.  It does, however, affect the 

relative peak intensities within a pattern, thus hindering reliable intensity extraction and 

consequently  structure solution and refinement.  The type and extent of preferred orientation is 

often dependent on the crystal habit  of the material.  Anisotropic crystallites, eg. long  needles or 

flat platelets, tend to exhibit preferred orientation and pack preferentially in certain directions 

rather that others.

 When a material is packed into a flat sample holder (and sometimes backed with a glass 

slide), as in the case of the D5005 low temperature original set-up, preferred orientation of the 

crystallites can sometimes be encouraged.  The cleavage (or growth faces) of the material, which 

are all of the same crystallographic type, align themselves mostly  parallel to the direction of the 

packing, with only  a small proportion perpendicular to the surface.  The direction that  lies 
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perpendicular to the flat sides of the surfaces is the preferred orientation axis, and the intensities 

of reflections from planes perpendicular to this axis will be enhanced, while those from the 

parallel planes will be suppressed.

 Since preferred orientation produces systematic distortions of the reflection intensities, 

mathematical models can be used to correct for this effect during refinement.  However, this is not  

so reliable in cases of structure solution.  It  is believed that few powder patterns are completely 

free from this phenomenon3, and it has consequently become routine practice to incorporate 

corrections for preferred orientation in Rietveld refinement processes.

 Attempts at forcing a material to take up  random orientation may often prove futile, as 

preferred orientation is a problem that, if present, can generally  be reduced but not eliminated 

completely by experimental measures.  Care when preparing and mounting the sample is 

important  in avoiding this bias, as excess compression or sliding the backing glass can encourage 

the alignment of anisotropic crystallites.  Consequently, the use of capillaries rather than flat 

sample holders may  sometimes address this issue.  Other experimental techniques which may be 

employed to mimic the random orientation of more isotropic materials include mixing the sample 

with an amorphous material, spray-drying and grinding.

3.2.4  Sample Loss

 Additional problems were encountered through sample loss during initial data collection on 

the D5005.  The design of the low-temperature apparatus is such that a high vacuum is created 

around the specimen chamber, to allow such extreme temperatures to be reached.  Any  gaps 

arising between these chambers cause a pressure difference that may lead to a change in 

orientation of the powder particles, or (as in the case of imidazole) to some of the more volatile 

samples being vacuumed out of the sample holder.  The consequences are similar to those 

observed with transparency  and sample displacement.  In the case of the D5005, use of the reverse 

side of the sample holder avoided this problem.  
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3.3  Materials

 With the exception of the data collected on the D5005 using the internal standard,  all 

samples were used in their original form, as received from the supplier or originator.   The 

following table illustrates the materials used and the data sets collected at various settings.

Table 3.2  List of data sets collected for each material studied.

D5000 D5005
(original)

D5005
(mixed with 

salt)

D8
(capillary)

D5005
(thin film on 
reverse side)

Adenine

5-Azauracil

Chlorothalonil

Guanine

Imidazole

✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓

✓ ✓ ✓ ✓ ✓
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4.  IMIDAZOLE

4.1  Background

The simplest member of the imidazole family  is imidazole itself: a colourless to pale yellow 

crystalline solid with a weak amine-like odour.  Whilst  being generally  poorly  soluble in water, its 

derivatives dissolve in organic solvents such as chloroform, propylene glycol and polyethoxylated 

castor oil.  They  are antimetabolites and inhibitors of histamine, and are commonly  used as 

insecticides.

The imidazole molecule has a high propensity for side-chain substitution, and the composition 

of such chains is accountable for the activity  of the material, as well as its degree of toxicity.  

Thus, imidazole compounds have various commercial uses, ranging from topical antimycotics 

(e.g. clotrimazole, miconazole and ketoconazole)1 to industrial fungicides (e.g. imazalil).  Some 

also exhibit antibacterial, antiprotozoal and antihelmintic activity  (e.g. metronidazole, tinidazole 

and mebendazole respectively)1.  Imidazole and its derivatives are also widely used as 

intermediates in the synthesis of organic compounds including pharmaceuticals, agrochemicals, 

dyes, photographic chemicals, corrosion inhibitors, epoxy curing agents, adhesives and plastic 

modifiers.

Imidazole Liana Vella-Żarb

 53

Figure 4.1.  Imidazole (1,3-diaza-2,4-cyclopentadiene)
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4.1.1  Crystal Structure

 The crystal structure of imidazole was determined by single crystal neutron diffraction at 

103K, with additional studies carried out at 108K, 113K, 123K and 293K 2 [Table 4.1].   

Imidazole has a monoclinic (P21/c) lattice, with Z = 4, and has not yet  been shown to exhibit 

polymorphic behaviour.  It has polar hydrogen atoms that form hydrogen bonds to the lone pairs 

on the nitrogen atom.  These form twisted chains that  run parallel to the c axis [Figures 4.2 and 

4.3].  

Figure 4.2.  Imidazole molecules forming chains parallel to the c axis.  Dotted lines denote  
NH...N hydrogen bonds

Adjacent molecules in the chains are twisted by  about 60o with respect to each other, and these 

chains are joined by  short N-H….N contacts (H......Acceptor distance of 1.8085Å).  The hydrogen 

bonds, forming a network through the crystal, result in dominant  electrostatic interactions, giving 

an estimated electrostatic contribution of about 60% of the total lattice energy3.
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Figure 4.3.  A view down the c axis

4.1.2  Crystal Structure Prediction

Imidazole represents an “ideal” system for structure prediction studies4, given that it  is a rigid 

structure. This means that the frequencies of the low energy k=0 (where k is the kinetic energy) 

intermolecular lattice vibrations obtained by  lattice energy  minimisation are a close representation 

of the experimental system4.  At a temperature of 0 K, the system is thermodynamically  most 

stable.  The computational search resulted in a total of 65 theoretical structures for imidazole, 

many  of which vary  only  slightly in density, and lie within  7 kJ mol-1 of the global minimum4 

[Figure 4.4].
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Figure 4.4  The distribution of low energy structures found in the search for minima in the lattice 
energy of imidazole.  The minimum corresponding to the known crystal structure (ExpMinOpt) is 

denoted by the open red diamond4. [Permission for reproduction granted by the author of reference 4.]

Variations from the known crystal structure are observed on comparison of the low energy 

structures, and although the structures are very  similar, comparison of the powder patterns reveals 

their differences.  Although the global minimum corresponds to the known crystal structure, there 

are structures within 2 kJ mol-1 in which the hydrogen-bonded molecules are coplanar, and others 

lying within 3.5 kJ mol-1 which differ in the arrangement of the hydrogen-bonded chains. 

However, all the low energy crystal structures are based on the same hydrogen bonding network 

and they favour the anti-parallel stacking of chains4.

The experimental and ab initio optimised molecular structures exhibit only  minor differences, 

and the most thermodynamically  stable predicted structure at  0K corresponds with the known 

crystal structure4.  Although other structures are thermodynamically  feasible, the same hydrogen 

bonding motif is dominant, thus making manipulation of crystallisation conditions unlikely  to 

give a kinetic advantage in the nucleation and growth of a long-lived polymorph.
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4.2  Results

4.2.1  Low Temperature Data

When compared to the published data [Table 4.1], the unit cell parameters of the lowest 

energy predicted structure were similar to those of the published single crystal structure obtained 

at 108K.  Hence the unit  cell parameters from this predicted structure were used as a starting point 

for a LeBail fit on the 150K data.  The unit cell parameters from this initial fit were then used as a 

starting point for a LeBail fit on the 50K and 200K data.  Subsequent LeBail fits on the remaining 

temperature data sets followed the same “stepwise” methodology.
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 Figure 4.5  Section of superimposed powder diffraction data at all temperatures (D5005) showing 
the selected peaks (012) shifting towards the right with decreasing temperature.

The powder diffraction pattern indicates a clear contraction in the unit  cell with decreasing 

temperature, as indicated by the clear shift in peak position (012) towards the right  [Figure 4.5].  

At lower temperatures, additional peaks are resolved indicating peak overlap  at  higher 
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temperatures.  This overlap is reduced as the structure contracts anisotropically, thus exhibiting a 

difference in shift  between peaks representing distinct reflections.  The effect of changing 

temperature over the entire diffraction pattern from 10 to 45 degrees along 2θ is shown in 

Appendix A2.1.

The percentage differences in a, b, c, β and volume with varying temperature were calculated 

and, as expected, the volume increases as higher temperatures are reached, while a, b, c and β 

change accordingly to accomodate this expansion [Table 4.1 and Figure 4.6].

Table 4.1  Unit cell parameters of lowest energy predicted structure and determined from experimental 
data, and published unit cell dimensions for imidazole with changing temperature.  The numbers in 
brackets denote the percentage change with respect to those values obtained from the 10K data.

Temperature (K) a (Å) b (Å) c (Å) β(o) Volume (Å3)

Single Crystal Values2

103 7.569 (1) 5.366 (1) 9.785 (2) 119.08 (1) 347.32

108 7.572 (2) 5.368 (1) 9.782 (2) 119.03 (1) 347.65

113 7.577 (2) 5.373 (1) 9.777 (3) 118.93 (2) 348.36

123 7.583 (1) 5.375 (1) 9.779 (2) 118.92 (1) 348.87

Predicted values4 (0K) 7.57 5.37 9.78 119.1 347.3

10 7.537 (1)
(0.00)

5.078 (2)
(0.00)

9.410 (1)
(0.00)

120.83 (2)
(0.00)

309.26
(0.00)

50
(% change)

7.476 (1)
(-0.81)

5.238 (3)
(+3.14)

9.571 (2)
(+1.72)

119.55 (3)
(-1.06)

326.06
(+5.43)

150
(% change)

7.561 (2)
(+0.31)

5.335 (2)
(+5.06)

9.762 (1)
(+3.74)

120.09 (1)
(-0.61)

340.71
(+10.17)

200
(% change)

7.612 (1)
(+0.99)

5.349 (3)
(+5.34)

9.823 (1)
(+4.39)

118.60 (1)
(-1.85)

351.17
(+13.55)

250
(% change)

7.749 (3)
(+2.82)

5.358 (2)
(+5.51)

9.712 (2)
(+3.22)

119.15 (3)
(-1.39)

352.22
(+13.89)

293
(% change)

7.742 (2)
(+2.73)

5.382 (3)
(+5.97)

9.646 (1)
(+2.51)

117.76 (1)
(-2.54)

355.67
(+15.01)

293 (D5000) 7.569 (1)
(+0.43)

5.366 (1)
(+5.66)

9.779 (2)
(+3.93)

119.10 (1)
(-1.43)

347.04
(+12.23)
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Figure 4.6  Graph showing the percentage change in unit cell dimensions with temperature.

 Over the range of temperatures, the unit cell volume would be expected to increase as a 

result of thermal expansion.  In the case of imidazole, a and b were found to increase overall with 

temperature, while c and β showed irregular behaviour.  Although atypical, these changes in the 

lattice parameters still resulted in an overall expansion of the unit cell, as indicated by  the increase 

in volume.  This anisotropic behaviour will be due to relative hydrogen bond strengths and sterics 

in each direction.  However, the LeBail fits used here may  show a significant correlation of lattice 

parameters during fitting, making these results unreliable.  Hence these results will not be 

interpreted further in this work.
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4.2.2 Automated Comparison

4.2.2.1  Rwp

The 65 predicted structures were each compared, using Rwp, with the experimental data 

collected at each temperature.  The outcome of these comparisons was non-discriminatory, with 

none of the 65 structures singled out  as being significantly  similar to any  of the experimental data.  

Rwp values ranging from  51.83% to 79.94% were obtained, although in most  cases, no significant 

discrimination was found [Table 4.2, Figures 4.7 and 4.8].  In addition, only one of the predictions 

(ai35) was ranked as the best fit to data recorded at two different temperatures. The correct 

predicted structure (ak34) was not identified by Rwp as having a similar powder pattern to the data 

collected at any of the temperatures.  The simulated patterns for all predicted structures shown in 

the table and the corresponding experimental patterns are found in Appendix A2.2.

Table 4.2.  Structures with lowest Rwp identified at each temperature.  The difference is that between 
the Rwp for the top ranked structure [Rwp(x)] and the correct prediction [Rwp(ak34)] at each 
temperature.  Black numbers denote the correct structure being ranked top, while red numbers denote 
incorrect structures ranked as the best. 

Temperature (K) Top 
ranked 

structure

Rwp (x) (%) Rwp (ak34) (%) Difference (%)
[Rwp(x) - Rwp(ak34)]

10

50

150

200

250

293

293 (D5000)

ca61 66.5 71.5 -5.0

ca34 66.5 68.5 -2.0

ai35 52.9 67.6 -14.7

de38 51.8 72.2 -20.4

ai35 59.3 65.0 -5.7

am36 56.5 59.9 -3.4

am44 70.7 71.7 -1.0
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Figure 4.7  Rwp values for each predicted structure at each temperature. The arrow indicates 
structure ak34.
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Figure X.7  Rwp values for each predicted structure at each temperature. The arrow indicates structure 
ak34.
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Figure 4.8  Rwp values for each predicted structure against the D5000 data at room temperature.  The 
arrow indicates the correct structure ak34.
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4.2.2.2  PolySNAP

Figure 4.9.  Dendrogram showing similarity clusters for imidazole predicted and experimental powder 
patterns

For PolySNAP analysis, the data collected on the different  diffractometers were analysed 

separately  due to the difference in wavelength between the two setups.  In the dendrogram 

comparing all 65 predicted structures with the D5005 data [Figure 4.9], structure ak34, which 

corresponds to the published structure, was grouped with the entire set of experimental data at all 

temperatures (cluster marked in red).  Although all experimental data were grouped together, it 

was interesting to note that within this cluster were paired subsets, with the lower temperature 

data pair being ranked as more similar to each other than the next pair up.  Taking each 

temperature separately  and looking at the structure with the highest correlation in each case, 

structure ak34 was the top ranking structure at all temperatures above 150K [Table 4.3].
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Table 4.3.  Structures with highest correlation coefficient [P(x)]  at each temperature, and the 
difference to the value obtained for the correct structure [P(ak34)].  If P(ak34) = P(x), then the 
difference between P(ak34) and the next best stucture is taken. Black numbers denote cases where the 
correct structure was identified, the difference was positive. An incorrect match gave a negative 
difference, as shown by the values in red.

Temperature 
(K)

Top 
ranked 

structure

Correlation 
coefficient of top 
ranked structure

Correlation 
coefficient

Difference
[P(ak34) - P(x)]

10

50

150

200

250

293

293 (D5000)

am32 0.356 0.330 (ak34) -0.026

am32 0.358 0.321 (ak34) -0.037

ak34 0.412 0.368 (ak61) +0.044

ak34 0.419 0.382 (ak61) +0.037

ak34 0.539 0.378 (fc72) +0.161

ak34 0.722 0.491 (dd71) +0.231

ai35 0.299 0.151 (ak34) -0.148

On analysis of the corresponding correlation coefficients at the higher temperatures, two other 

structures (dd71, with a correlation value of 0.4912, and de102, with 0.4236 both at 293K) could 

be considered to be placed significantly  higher than the rest, though not as high as structure ak34 

[Figures 4.10 and 4.11].  However, on visual comparison of the respective powder diffraction 

patterns it was clear that neither of these two patterns bear a great similarity to the experimental 

data or ak34 [Figure 4.12].  The structures having the highest correlation coefficients when 

compared with the experimental data at the lower temperatures 10K and 50K, and with the D5000 

data, (am32 and ai35 respectively), were also assessed visually  and their powder patterns found to 

differ significantly from the respective experimental data [Appendix A2.3].

It  is evident from the correlation plot  [Figure 4.10 and Table 4.3] that the degree of similarity 

between the predicted structure ak34 and the experimental data increases with temperature. 

Although the overall trend is retained as temperature varies, the discrimination between the 

highest ranking structure and the structure with the second highest  correlation coefficient also 

increases with temperature, as indicated clearly by the values in the table.
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Figure 4.10  Correlation coefficients of all 65 structures at each temperature. The arrow indicates 
structure ak34
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Figure 4.11  Correlation coefficients of all 65 structures against the D5000 data. The arrow indicates 
structure ak34
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Figure 4.12  Powder diffraction patterns for five selected predicted structures and the experimental 
structure at room temperature (D5005).
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4.2.2.3  Compare.x

Using the default triangle window value of 2, Compare.x identified the correct  structure ak34 

at the three intermediate temperatures 150K, 200K and 250K. As with PolySNAP, at lower 

temperatures, Compare.x selected structure am32, while structure ai35 had the highest correlation 

ranking at  room temperature [Table 4.4, Figures 4.13 and 4.14]. On visual comparison their 

powder patterns differed significantly from the corresponding experimental data [Appendix A2.4].

Table 4.4.  Structures with highest correlation coefficient [C(x)] at each temperature, and the 
difference to the value obtained for the correct structure [C(ak34)].  Black numbers denote cases 
where the correct structure was identified, the difference was positive. An incorrect match gave a 
negative difference, as shown by the values in red and blue.  Blue denotes ak34 being ranked second, 
while values in red correspond to ak34 being ranked third or lower.

Temperature 
(K)

Top 
ranked 

structure

Correlation 
coefficient of top 
ranked structure

Correlation 
coefficient

Difference
[C(ak34) - C(x)]

10

50

150

200

250

293

293 (D5000)

am32 0.869 0.818 (ak34) -0.051

am32 0.880 0.833 (ak34) -0.047

ak34 0.895 0.887 (ak61) +0.008

ak34 0.895 0.881 (ak61) +0.014

ak34 0.910 0.890 (ak66) +0.020

ai35 0.894 0.862 (ak34) -0.032

ai35 0.893 0.859 (ak34) -0.034

Although the default triangle window value of 2 was selected for this work, a variety  of 

triangle windows ranging from 0.5 to 4.0 in increments of 0.5 were tested using this data 

[Appendix A2.4-tables A2.4.1-A24..8].  As expected, narrow windows did not allow enough 

flexibility, thus resembling a more pointwise approach. When wider triangle windows were used, 

higher correlation values resulted due to too much flexibility  within the comparison parameters.  

A wider window gives a higher probability of finding peaks within the 2θ range stipulated by that 

window.  For a window at any given point, multiple peaks found within the stipulated 2θ range 

give an erroneous cumulative correlation.  Thus, falsely high correlations resulted from using too 

wide a window.
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Figure 4.13  Correlation coefficients of all 65 structures at each temperature (D5005).  The arrow 
indicates structure ak34.
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Figure 4.14  Correlation coefficients of all 65 structures against the D5000 data.  The arrow indicates 
structure ak34.
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4.3  Discussion

Table 4.5.  Comparison of the ability of the three methods in the automated identification of the correct 
predicted structure. Values in red denote the modulus of the difference between the correct structure 
and the structure ranked first.  If the correct structure is ranked first, values denote the difference be-
tween the correct structure and the next best (shown in black).

Temperature Rwp PolySNAP Compare

10 5.0 0.026 0.051

50 2.0 0.037 0.047

150 14.7 0.044 0.008

200 20.4 0.037 0.014

250 5.7 0.188 0.020

293 3.4 0.231 0.032

293 (D5000) 1.0 0.148 0.034

With all three methods, higher temperatures generally  demonstrated a greater degree of 

similarity with the correct predicted structure.  The reason behind this could possibly  be brought 

down to zero point error.  This would also explain why, in all three scenarios, the room 

temperature data obtained by transmission geometry  did not exhibit the same degree of similarity 

with the theoretical structure as its reflection geometry counterpart.

Despite the fact that  predictions are carried out  at low temperatures, with both PolySNAP and 

Compare, the experimental data that best  matched the predicted structure were at room 

temperature and 250K respectively.  This implies that  a zero point error correction may  be needed 

in future work.  It  is interesting to note that both methods picked the same three structures, albeit 

at different  temperatures.  Due to time restrictions, this has not been investigated further.  

However, with the understanding gained through this project, a zero-point error that can be 

measured reliably  can be pre-defined in PolySNAP prior to running a comparison.  This would 

possibly  result in the correct  structure being identified at temperatures close to the predictions’ 

temperature, and ideally  also at all other temperatures making for a more direct and meaningful 

comparison.  Compare, having shown to be more stable over a range of temperatures, would be 

the method of choice in the case of a non-defineable zero-point error.  In comparison with 
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PolySNAP, Compare gave higher overall correlation coefficients.  However, although the 

discrimination between the highest  ranking structure and the structure with the second highest 

correlation coefficient increased with temperature there was less discrimination between the data 

when compared with the values obtained from the PolySNAP analysis [Figure 4.15].  This could 

suggest that the PolySNAP correlation is more sensitive to changes in temperature (and the 

resulting shifts in 2θ) as opposed to Compare.
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Figure 4.15  Difference in correlation coefficients between ak34 and the structure with the next 
highest correlation.  In cases where ak34 was not ranked first, the difference between ak34 and the 
structure with the highest correlation is shown.
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5.  CHLOROTHALONIL

  

C

C

C

C

CCN N

Figure 5.1.  Chlorothalonil (2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile)

5.1  Background

Chlorothalonil is an aromatic halogen compound which forms part of the chloronitrile family.   It is 

a non-corrosive gray  to colourless crystalline material, commonly known as a general-use pesticide 

under the trade names Bravo® or Daconil 2787®.  Chlorothalonil is also used as a broad-spectrum 

fungicide, particularly on horticultural crops1 as well as in home gardens, and it may also be 

encountered in paints and wood preservatives where it acts as a biocide.  

Chlorothalonil acts by  inhibiting enzyme systems in fungi and it persists on the surface of plant 

foliage, thus helping to prevent fungal disease in plants.  A significant  application of this material is in 

the control of fungal diseases in nurseries, seed orchards, Christmas plantations and greenhouses, 

targeting fungal blights, needlecasts and cankers on conifer trees. Peanuts, tomatoes, potatoes, onions 

and celery are frequently treated with this fungicide.

There are three known polymorphs of chlorothalonil reported to date2, all of which have been 

predicted successfully  within the constraints of prediction techniques.  Form I is the polymorph that is 

commercially available and is the form under primary consideration in this study.  It  remains stable over 

long time-periods.

Chlorothalonil Liana Vella-Żarb

 73



5.1.1  Crystal Structure of Form I

The single crystal structure of chlorothalonil Form I has been determined by  Britton3 at  room 

temperature, while Forms II and III were first characterised by Tremayne et al2 during a simultaneous 

experimental and computational search for polymorphs [Table 5.1].  Form I has a monoclinic (P21/a) 

lattice, with Z = 4. The structure consists of infinite molecular chains linked into antiparallel ribbons 

[Figures 5.2 and 5.3].

Figure 5.2.  A  view of the crystal structure of Form I of chlorothalonil in projection down the a axis.

Figure 5.3.  Packing diagram showing the herringbone structure
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5.1.2  Crystal Structure Prediction

In contrast with imidazole, chlorothalonil is a more challenging molecule with respect to crystal 

structure prediction.  This is due to its dominant  Cl----N interactions being directional4.  Although not 

widely  discussed, these short cyanohalide interactions are commonly  found where X is Cl or Br, and 

they arise due to halogen polarizability5.  The computer modelling was based on a rigid chlorothalonil 

molecule, using a molecular geometry obtained by  ab initio optimisation of the SCF (Self-Consistent 

Field, now better known as Hartree-Fock) wave function.

Initially, the computational search generated dense packings of the ab initio  molecular structure of 

chlorothalonil in 29 different crystal geometries.  This resulted in a total of 1304 starting structures, 

which were then used as starting points in the lattice energy minimization calculations, carried out using 

the FIT potential6 [Figure 5.4].

The 27 structures found within 5 kJ mol-1 of the global minimum, i.e. the most energetically 

favourable structures, were then reminimised using the ANI potential6.  Some reordering of the relative 

lattice energies was observed with the change in potential, and the number of distinct structures was 

reduced to 22.  This is due to the fact that  some structures that were distinct minima with FIT converged 

to the same minima for the ANI potential surface, lowering the symmetry in some of the cases.  For both 

potentials, however, the global minimum in the search corresponded with Form I. 

 Out of the 22 theoretical structures, 18 were found to have a Z’=1, and the remaining 4 structures 

had Z’=2.  The unit cell parameters of the 5 lowest  energy structures are shown in [Table 5.1].  Most  of 

the theoretical structures were also found to have plate-like morphologies, with the largest dimension up 

to ten times the thickness.   When structures with such anisotropic behaviour are predicted, this may 

indicate a possibility  of preferred orientation being encountered during subsequent analysis by  powder 

diffraction.  In such cases, this warning could suggest the adoption of capillary  geometry during powder 

diffraction data collection.
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Table 5.1.  The unit cell parameters of the five lowest energy structures for Chlorothalonil minimised 
using the ANI potential2.

Space
Group

Elatt 
(kJmol-1)

Cell Vol
(Å3)

a
(Å)

b
(Å)

c
(Å)

α 
(deg)

β 
(deg)

γ 
(deg)

exp

mina

FC45

AB15

AI44

AF18

AB3

P21/a -98.79 243.180 24.753 6.226 6.340 90.00 95.41 90.00

P21/a -99.40 243.246 24.840 6.272 6.288 90.00 96.65 90.00

Structures in search Reduced cell parameters

P21/c -99.40 243.243 24.839 6.288 6.272 90.00 96.65 90.00

P-1 -99.39 238.424 6.482 7.774 10.166 91.31 106.80 102.50

P21/c -99.31 243.379 12.750 12.309 6.228 90.00 95.12 90.00

P21 -99.02 243.922 12.486 6.302 6.235 90.00 95.31 90.00

P-1 -98.16 243.514 6.077 6.350 12.727 94.53 94.72 92.96
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Figure 5.4  The distribution of some of the lower energy structures found in the search for minima in the 
lattice energy of chlorothalonil.  The minimum corresponding to the known crystal structure of Form I 

(Min from Expt) is denoted by the open red triangle7. [Permission for reproduction granted by the 
author of reference 7.]
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5.2  Results

5.2.1  Low Temperature Data

The unit  cell parameters of the predicted structure are similar to those of the published single crystal 

structure obtained at  room temperature.  For this reason, the unit  cell parameters from the published 

single crystal structure were used as a starting point  for a LeBail fit  on the 293K data.  The unit  cell 

parameters obtained from this initial fit  were then used as a starting point for a LeBail fit  on the 250K 

data.  Subsequent LeBail fits on the lower temperature data sets followed the same “stepwise” 

methodology.

The powder diffraction pattern again illustrates a contraction in the unit cell with decreasing 

temperature, as indicated by  the clear shift  in peak position (112) along 2θ [Figure 5.5] and across the 

diffraction pattern from 5 to 45 along 2θ [Appendix A3.1].

Figure 5.5  Section of superimposed powder diffraction data at all temperatures showing peak 
(112) shifting towards the right with decreasing temperature.
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The percentage differences in a, b, c, β and volume with varying temperature were calculated and, as 

expected, the volume increases as higher temperatures are reached, while a, b, c and β change 

accordingly to accomodate this expansion [Table 5.2 and Figure 5.6].

Table 5.2  Unit cell parameters of the lowest energy predicted structure, those determined from 
experimental data, and published unit cell dimensions for chlorothalonil with changing temperature.  
The numbers in brackets denote the percentage change with respect to those values obtained from the 
100K data.

Temperature (K) a (Å) b (Å) c (Å) β(o) Volume (Å3)

Single Crystal Values3 24.753(1) 6.226(1) 6.340(2) 95.41(3) 972.719

Predicted values2 (0K) 6.272(2) 6.288(1) 24.839(1) 96.65(1) 975.247

100
(% change)

24.552 (1)
(0.00)

6.183(2)
(0.00)

6.351(3)
(0.00)

96.18(2)
(0.00)

958.589
(0.00)

150
(% change)

24.623(1)
(+0.29)

6.175(2)
(-0.13)

6.351(3)
(-0.01)

95.89(2)
(-0.29)

960.534
(+0.20)

200
(% change)

24.705(1)
(+0.62)

6.225(1)
(+0.67)

6.325(4)
(-0.39)

95.85(3)
(-0.34)

967.743
(+0.95)

250
(% change)

24.687(1)
(+0.55)

6.231(1)
(+0.77)

6.328(2)
(-0.36)

95.62(2)
(-0.58)

968.687
(+1.05)

293
(% change)

24.739(2)
(+0.76)

6.233(3)
(+0.80)

6.328(3)
(-0.36)

95.34(1)
(-0.87)

971.612
(+1.36)

293 (D5000)
(% change)

24.749(3)
(+0.80)

6.228(2)
(+0.72)

6.337(1)
(-0.23)

95.40(2)
(-0.81)

972.363
(+1.44)
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 Over the range of temperatures, a and b increase overall while c generally shortens, perhaps to 

accomodate the reduction of β.  These changes in the lattice parameters result in an overall expansion of 

the unit cell, as indicated by  the increase in volume.  As the material is anisotropic, overall cell volume 

expansion is not necessarily  a direct consequence of an increase in length in all directions.  Again, as in 

the case of imidazole, these change fluctuations could be due to the relative difference in intermolecular 

interactions in each direction.
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Figure 5.6  Graph showing the percentage change in unit cell dimensions with temperature.
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5.2.2 Automated Comparison

5.2.2.1  Rwp

The 22 minimised predicted structures were each compared, using Rwp, with the experimental data 

collected at  each temperature.  The outcome of these comparisons was, as in the case of imidazole, non-

discriminatory, with none of the 22 structures identified as being significantly  similar to any  of the 

experimental data sets.  Rwp values ranging from 68.08% to 78.68% were obtained, with the lower 

values resulting from comparison with the data collected at  200K [Table 5.3, Figure 5.7 and 5.8].  

Identification of the correct predicted structure (fc45) would have been impossible based purely  on these 

Rwp values.  A comparison of these predicted structure data sets with the experimental data is given in 

Appendix A3.2.

Table 5.3.  Structures with lowest Rwp identified at each temperature.  The difference is that between the Rwp 
for the top ranked structure [Rwp(x)] and the correct prediction [Rwp(fc45)].  Red numbers denote incorrect 
structures ranked as the best. 

Temperature (K) Top 
ranked 

structure

Rwp (x) (%) Rwp (fc45) (%) Difference (%)
[Rwp(x) - Rwp(fc45)]

100

150

200

250

293

D5000

az19 72.3 74.1 -1.8

bd13 68.9 69.2 -0.3

fc47 68.1 68.4 -0.3

fc48 72.5 73.0 -0.5

az19 73.9 76.1 -2.2

ab37 72.9 77.4 -4.5
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Figure 5.7  Rwp values for each structure at each temperature. The arrow indicates structure fc45.
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Figure 5.8  Rwp values for each structure against the D5000 data at room temperature. The arrow 
indicates structure fc45.



5.2.2.2  PolySNAP

Figure 5.9.  Dendrogram showing similarity clusters for chlorothalonil predicted and D5005 
experimental powder patterns

For PolySNAP analysis, the data collected on the different diffractometers were analysed separately 

due to the difference in wavelength between the two setups.  In the dendrogram comparing all 22 

structures with the D5005 data [Figure 5.9], structure fc45, which corresponds to the published 

structure, was grouped with the entire set of experimental data collected at all temperatures (cluster 

shown in red in Figure 5.9).  Also grouped in the same set, albeit at a higher tie-bar level, were 

structures af18, ai44 and fc47.  Although these powder patterns show similarities to the experimental 

data, it  is clear that the powder pattern from structure fc45, bears a more significant  resemblance  

[Figure 5.10 and Appendix A3.3].  As in the case of imidazole, the experimental data are all grouped 

together, and within this cluster were paired subsets, with the data from lower temperatures ranked as 

more similar to each other than the higher temperatures.  Considering each temperature separately, and 
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looking at the structure with the highest  correlation in each case, structure fc45 was the top-ranked 

structure at all temperatures below 250K [Table 5.4].

Table 5.4. Structures with highest correlation coefficient [P(x)] at each temperature, and the difference to the 
value obtained for the correct structure [P(fc45)].  If P(fc45) = P(x), then the difference between P(fc45)  
and the next best structure is taken.  Black numbers denote cases where the correct structure was identified, 
and the difference was positive. An incorrect match gave a negative difference, as shown by the values in red.

Temperature (K) Top 
ranked 

structure

Correlation coefficient 
of top ranked structure

Correlation 
coefficient

Difference
[P(fc45) - P(x)]

100

150

200

250

293

293 (D5000)

fc45 0.4639 0.4534 (fc4) 0.0105

fc45 0.5697 0.4292 (ai44) 0.1405

fc45 0.6167 0.3966 (ai44) 0.2201

ai44 0.4347 0.4046 (fc45) -0.0301

ai44 0.5583 0.2377 (fc45) -0.3206

af18 0.0675 -0.0564 (fc45) -0.1239

Although at higher temperatures an incorrect structure was ranked first, taking the values obtained 

for the lower temperatures up  to 200K the general trend observed with imidazole was retained.  The 

correlation plot [Figures 5.11 and 5.12 and Table 5.4] clearly illustrates that up  to 200K, the degree of 

similarity between the predicted structure fc45 and the experimental data increases with a rise in 

temperature; the higher temperatures (up  to 200K) also show better discriminating ability denoted by a 

greater difference [P(fc45) - P(x)] between the correlation value obtained for the correct structure (fc45) 

and the next  best ranking structure. Visually, correlation plots at each temperature show a clear trend 

which is retained as temperature varies.  At higher temperatures an incorrect structure was identified as 

being most  similar.  This mismatch could be attributed to the fact that predictions were carried out at 

0K, and therefore lower temperature powder data would naturally  bear higher correlation with the 

simulated powder pattern than higher temperature data would.
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Figure 5.10  Powder diffraction patterns for five selected predicted structures and the experimental structure 
at room temperature (D5005).
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Figure 5.11  Correlation coefficients of all 22 structures at each temperature (D5005). The arrow indicates 
structure fc45.

Chlorothalonil Liana Vella-Żarb

 86



Correlation

ab3

ab11

ab15

ab25

ab27

ab36

ab37

af18

ai44

ak17

am12

am14

az19

bf4

fc4

fc45

fc47

fc48

bd13

dc35

dd42

de17

St
ru

ct
ur

e

Figure 5.12  Correlation coefficients of all 22 structures against the D5000 data at room temperature. The 
arrow indicates structure fc45.
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5.2.2.3  Compare.x

Using the default triangle window value of 2, Compare.x identified the correct structure fc45 at the 

three intermediate temperatures 150K, 200K and 250K (in a similar way to the results obtained for 

imidazole) [Table 5.5, Figures 5.13 and 5.14].  In contrast to the PolySNAP analysis, the structures 

ranked first at the lowest and highest temperatures were fc4 and fc47.  The respective powder patterns 

from both these structures exhibit similarities with the experimental data, but neither are as close a 

match as structure fc45 [Figure 5.10 and Appendix A3.4].  In addition, fc4 and fc47 were not identified 

by PolySNAP as  potential “first” matches at any temperature.

Table 5.5.  Structures with highest correlation coefficient [C(x)]  at each temperature, and the difference to 
the value obtained for the correct structure [C(fc45)].  Black numbers denote cases where the correct 
structure was identified, the difference was positive. An incorrect match gave a negative difference, as shown 
by the values in blue.  In all cases where an incorrect match was made, the correct structure fc45 was ranked 
second.

Temperature (K) Top ranked 
structure

Correlation coefficient 
of top ranked structure

Correlation 
coefficient

Difference
[C(fc45) - C(x)]

100

150

200

250

293

293 (D5000)

fc4 0.9409 0.9300 (fc45) -0.0109

fc45 0.9279 0.9240 (fc4) +0.0039

fc45 0.9319 0.9216 (fc4) +0.0103

fc45 0.9200 0.9173 (fc47) +0.0027

fc47 0.9195 0.9068 (fc45) -0.0127

fc47 0.7471 0.6436 (fc45) -0.1035

Although the default  triangle window value of 2 was selected for this work, a range of triangle 

windows ranging from 0.5 to 4.0 in increments of 0.5 were also tested [Appendix A3.4-tables A3.4.1-

A3.4.8].  As in the case of imidazole, the narrower the window, the closer to a pointwise comparison the 

method became.  Large triangle windows, conversely, produced false high correlations due to too much 

flexibility. This resulted in incorrect identification of structures at either end of the window spectrum.
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Figure 5.13  Correlation coefficients of all 22 structures at each temperature.  The arrow indicates structure 
fc45.
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Figure 5.14. Correlation coefficients of all 22 structures against the D5000 data at room temperature.  The 
arrow indicates structure fc45.

Chlorothalonil Liana Vella-Żarb

 90



5.3  Discussion

Table 5.6.  Comparison of the ability of the three methods in automated identification of the correct predicted 
structure. Values in red denote the difference (modulus of the difference for Rwp) between the correct 
structure and the structure ranked first.  If the correct structure ranked first, then the values denote the 
difference between the correct structure and the next best one (shown in black).

Temperature (K) Rwp PolySNAP Compare.x

100 1.8 0.0105 0.0109

150 0.3 0.1405 0.0039

200 0.3 0.2201 0.0103

250 0.5 0.0301 0.0027

293 2.2 0.3206 0.0127

293 (D5000) 4.5 0.1239 0.1035

Rwp again failed to identify  the correct structure and instead selected top-ranked structures with 

powder diffraction data bearing little resemblance to that from the correct structure [Appendix A3.2].  

With the more temperature-sensitive methods, only lower temperatures were found to correlate well 

with the predicted structure [Table 5.6]. The reason behind this could possibly  be zero point  error, and 

this would also explain why the room temperature data collected from the two different diffractometers 

gave differing correlation values.  As in the case of imidazole, Compare.x matched the correct 

theoretical structure with the three intermediate temperatures.

In comparison with PolySNAP, Compare again gave higher overall correlation coefficients, and 

although the discrimination between the highest ranking structure and the structure with the second 

highest correlation coefficient  increased with temperature there was less discrimination between the data 

when compared with the values obtained from the PolySNAP analysis [Figure 5.15].  Notwithstanding 

the fact that the incorrect structures were identified at higher temperatures, PolySNAP correlation values 

increased with temperature.  This further confirms the notion that PolySNAP comparative studies are 

more sensitive to changes in temperature (and the resulting shifts in 2θ) as opposed to Compare.x.
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Figure 5.15  Difference in correlation coefficients between fc45 and the structure with the next highest 
correlation.  In cases where fc45 was not ranked first, the difference between fc45 and the structure with the 

highest correlation is shown.

While Compare.x maintained a fairly consistent degree of discrimination over the range of 

temperatures, PolySNAP’s discriminating ability  showed a marked sensitivity  to temperature up to 

200K.

Despite the fact  that  predictions were carried out  at  low temperatures, both PolySNAP and 

Compare.x analysis resulted in the highest  correlation between the correct predicted structure and the 

experimental data being found at 200K.  As in the case of imidazole, this could imply that  a zero point 

error, resulting in a considerable shift in 2θ, may be distorting the results away from the better matches 

at the expected temperatures.  Again, predefining a reliably measurable zero point error before a 

PolySNAP comparison is run would minimise this discrepancy.  This can only be done with a 

reasonably consistent zero point error.
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6.  5-AZAURACIL

Figure 6.1.  5-Azauracil (1,3,5-triazine-2,4(1H,3H)-dione)
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6.1  Background

5-Azauracil, a white crystalline colourless solid, is the aza analogue of the pyrimidine uracil, 

one of the bases found in ribonucleic acid (RNA).  Azapyrimidines (for example 5-azauracil and 

its isomer 6-azauracil) differ from the nucleic acid bases in that  they have a nitrogen instead of a 

carbon atom at some position on the heterocyclic ring.  When introduced at a strategic location on 

the ring, this apparently  minor change causes major electronic perturbation in the vicinity of the 

substitution thus changing the structural, physico-chemical, and subsequently  biological 

properties of the base.

Purine and pyrimidine analogues (especially  aza analogues of uracil1,2) are of particular 

interest  due to their potential uses as antineoplastic agents3,4 and enzyme inhibitors5.  They also 

exhibit  bacteriostatic and fungicidal6,7 properties, and can be used in molecular biology  protocols8 

and as reagents for mutagenicity testing in microbial systems9.

5-Azauracil is of significant  biological importance as it  is a specific inhibitor of orotate 

phosphoribosyl transferase, an enzyme involved in nucleic acid synthesis in vivo.  Its biological 

effects differ significantly  from those of other closely-related azapyrimidines, such as 6-

azauracil10.
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6.1.1  Crystal Structure

Figure 6.2.  5-Azauracil molecules forming chains along the b axis.

The crystal structure of 5-azauracil was determined from X-ray  diffraction data at room 

temperature10.  It has the orthorhombic spacegroup  Pbca, with 8 molecules in the unit  cell.  Both 

the heterocyclic nitrogen and its neighbouring carbonyl group  can accept hydrogen bonds giving 

the material a propensity  to form sheets.  The crystal structure [Figure 6.2] consists of crinkled 

layers held together by strong NH----O and NH----N hydrogen bonds and several weaker 

intermolecular interactions.  These sheets are approximately  perpendicular to the a axis and are 

stacked so that there is very minimal overlap of the molecules between the layers [Figure 6.3].  

Unit cell parameters for 5-azauracil are given in Table 6.2.

6.1.2  Crystal Structure Prediction

If a crystal structure is predictable to a useful extent11, then any  structurally-related molecule 

should, in theory, also be “predictable”.  5-Azauracil is an isomer of 6-azauracil, a molecule that 

had already  been investigated computationally12.  This situation prompted a blind test to assess the 

methodology  employed in finding probable packings of rigid molecules with a choice of hydrogen 

donors and acceptors.
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Figure 6.3.  A view of 5-azauracil down the a axis.  
(Hydrogen bonds NH...N are shown by the dotted lines in violet.)

The prediction of the structure of 5-azauracil was carried out given that the computational 

search for 6-azauracil resulted in numerous distinct  structures12, including some with different 

atoms involved in the hydrogen bonding, and lying within 1 kJmol-1 of the global minimum.  The 

search for 5-azauracil was therefore expected to result in a lattice energy  plot  with the known 

structure among a group of thermodynamically plausible structures.

The first search carried out  in 1999 yielded 42 structures10, and a more recent and extensive 

search (carried out  by  Price et al in 2004)13 resulted in 49 theoretical structures, with the lower 

energy structures corresponding to those obtained in the earlier search [Figure 6.4 and Table 6.1].  

5-Azauracil Liana Vella-Żarb

 96



Figure 6.4  The distribution of the lowest energy structures found in a search for minima in the 
lattice energy of 5-azauracil.  The minimum corresponding to the known crystal structure  is 
denoted by the red open rhombus. Reproduced from the CPOSS database.

 

Table 6.1.  Unit cell parameters of the seven lowest energy predicted structures for 5-Azauracil.

Space
Group

Elatt 
(kJ mol -1)

a
(Å)

b
(Å)

c
(Å)

β 
(°)

da92

cb2

au87

au58

am8

ai37

cb7

Cc -109.28 3.731 13.405 9.730 112.55

Pbca -109.25 6.824 13.897 9.269 90.00

Pna21 -109.00 13.964 3.602 8.988 90.00

Pna21 -108.06 12.400 3.791 9.523 90.00

P21/n -107.97 5.031 9.638 9.893 98.66

P21/c -107.93 9.565 7.351 9.790 39.58

Pbca -107.71 7.333 9.812 12.246 90.00

All seven low energy structures of 5-azauracil are variations on the same hydrogen bonded 

sheet, with some appearing flatter than others and exhibiting different stacking.  The presence of 

the same hydrogen bonding motif implies that the structures could have many  macroscopic 

properties in common.  Once thermal motion was included in the prediction calculation it  would 

be probable that some of the low-energy structures would transform into others.  Consequently, 
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this predicts that  it is unlikely  that polymorphs of 5-azauracil having very different physical 

properties would be readily found. Predicted structure da92, which has almost the same energy  as 

the experimentally known form, is polar.  The crystal dipole correction term is likely to destabilise 

this structure, leaving the known structure as the most stable.  Cb2 is the correct predicted 

structure, and it corresponds with the experimentally known form.

6.2  Results

6.2.1  Low Temperature Data

On visual comparison, the powder pattern collected at  room temperature is similar to the 

simulated patterns from both the published structure and the correct predicted structure cb2 

[Figure 6.5 and Table 6.2]. Initially, a LeBail fit was carried out  on the room temperature data 

using the unit cell parameters from the published structure as a starting point.  Subsequent  LeBail 

fits were carried out on the remainder of the data obtained using the same methodology.  Although 

the unit cell volume decreased with temperature, there was a marked difference between the 

volume of the published structure which was collected at room temperature, and the volume of the 

structure obtained experimentally at  the same temperature.  For this reason, all the data obtained 

over the range of temperatures were indexed, and LeBail fits were subsequently carried out on the 

indexed data. The volume of the unit cell obtained from the data at  room temperature after 

indexing was very close to the volume of the published structure.  Consequently the indexed data 

were used for the rest of this study.
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Figure 6.5  Simulated powder patterns for the published single crystal (SX) structure, the correct 
predicted structure cb2, predicted structure aq62, and the D5000 experimental data recorded at room 

temperature (RT).
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Temperature (K) a (Å) b (Å) c (Å) Volume (Å3)

Published values (298K)10 6.514 (3) 13.522 (4) 9.582 (4) 843.96 (6)

Predicted values (0K) 6.824 13.897 9.269 879.01

10 6.385 (1)
(0.00)

13.513 (3)
(0.00)

9.547 (1)
(0.00)

823.78 (1)
(0.00)

100
(% change)

6.398 (1)
(+0.21)

13.523 (2)
(+0.07)

9.560 (1)
(+0.13)

827.12 (4)
(+0.40)

150
(% change)

6.425 (1)
(+0.63)

13.487 (1)
(-0.20)

9.549 (3)
(+0.02)

827.48 (1)
(+0.45)

200
(% change)

6.433 (1)
(+0.75)

13.491 (3)
(-0.16)

9.575 (1)
(+0.02)

828.76 (2)
(+0.60)

250
(% change)

6.490 (1)
(+1.65)

13.526 (1)
(+0.09)

9.579 (2)
(+0.29)

840.57 (1)
(+2.04)

293
(% change)

6.514 (3)
(+2.02)

13.513 (1)
(-0.01)

9.646 (1)
(+0.33)

843.09 (2)
(+2.34)

293 (D5000) 6.513 (3)
(+2.00)

13.512 (2)
(-0.01)

9.575 (2)
(+0.29)

842.65 (3)
(+2.29)

The powder diffraction patterns indicate a clear contraction in the unit  cell with decreasing 

temperature, as shown by  the clear shift  in peak position (200) towards the right [Figure 6.6].   

This change can be observed over the range of 5 to 45 degrees along 2θ for the full set of 

experimental data in Appendix A4.1.  The percentage differences in a, b, c and volume with 

varying temperature were calculated and as expected, the volume decreased with lower 

temperatures.  Values for a also decreased uniformly  while b and c fluctuated to accomodate this 

contraction.  Over the temperature range studied, the unit cell volume would be expected to 

increase as a result of thermal expansion.   Although b and c exhibited atypical fluctuations, these 

changes in the lattice parameters still resulted in an overall expansion of the unit  cell with 

temperature, as indicated by the increase in volume [Figure 6.7]. 

Table 6.2  Unit cell parameters of the published crystal structure, correct predicted structure and those 
extracted from the experimental data over a range of temperatures.  The numbers in brackets denote 
the percentage change with respect to those values obtained from the 10K data.
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Figure 6.6  Section of superimposed powder diffraction data at all temperatures showing 
peak (200) shifting towards the right with decreasing temperature.  The predicted 

structure (cb2) is indicated by the red dotted line.
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Figure 6.7  Graph showing the percentage change in unit cell dimensions with temperature.
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6.2.2 Automated Comparison

6.2.2.1  Rwp

The 49 predicted structures were each compared, using Rwp, with the experimental data 

collected at each temperature.  The outcome of these comparisons was again non-discriminatory, 

with none of the structures singled out as being significantly similar to any  of the experimental 

data.  Rwp values ranging from  59.5% to 78.6% were obtained, although in most cases, no 

significant discrimination was found [Table 6.3, Figure 6.8].  None of the predictions were ranked 

as the best fit to data recorded at two different  temperatures. The correct predicted structure (cb2) 

was not identified by  Rwp as having a similar powder pattern to the data collected at  any  of the 

temperatures.  The simulated pattern for structure aq62, which ranked first at  room temperature, 

does not match the corresponding experimental powder pattern [Figure 6.5].  The simulated 

patterns for all predicted structures shown in the table and the corresponding experimental 

patterns are found in Appendix A4.2.

Table 6.3.  The structure with lowest Rwp identified at each temperature.  The difference is that between 
the Rwp for the top ranked structure [Rwp(x)] and the correct prediction [Rwp(cb2)].  Red numbers de-
note incorrect structures ranked as the best. 

Temperature (K) Top 
ranked 

structure

Rwp (x) (%) Rwp (cb2) (%) Difference (%)
[Rwp(x) - Rwp(cb2)]

10

100

150

200

250

293

D5000 (293K)

ad62 75.1 77.1 -2

au87 72.1 73.2 -1.1

ak85 70.6 71.7 -1.1

ay98 66.7 69.4 -2.7

bh51 66.1 67.7 -1.6

aq62 59.5 61.8 -2.3

cb117 57.3 59.2 -1.9
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Figure 6.8  Rwp values for each predicted structure at each temperature (D5005). The arrow indicates 
structure cb2.
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6.2.2.2  PolySNAP

Figure 6.9.  Dendrogram showing similarity clusters for 5-azauracil predicted and experimental 
powder patterns

For PolySNAP analysis, the data collected on the different  diffractometers were analysed 

separately  due to the difference in wavelength between the two machines.  In the dendrogram 

above, all 49 predicted structures are compared with the D5005 data [Figure 6.9].  Structures cb2 

and aq85 were grouped as most similar to the experimental data collected at all temperatures, and 

slightly  lower on the similarity scale is structure aq62.  Once again, although all experimental data 

sets were grouped together, there is clear clustering into paired subsets with the lower temperature 

data pair (10K and 100K) being ranked as more similar to each other than the next highest.  On 

analysis of each temperature separately and consideration of the structure with the highest 

correlation in each case, structure aq85 was ranked as the most  similar to the experimental data at 

10K and 100K, while structure cb2 was identified as a match at temperatures of 150K and above 

[Table 6.4].
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Table 6.4.  Structures with highest correlation coefficient [P(x)]  at each temperature, and the 
difference to the value obtained for the correct structure [P(cb2)].  If P(cb2) = P(x), then the 
difference between P(cb2) and the next best structure is taken.  An incorrect match gave a negative 
difference, as shown by the values in red.

Temperature 
(K)

Top 
ranked 

structure

Correlation 
coefficient of top 
ranked structure

Correlation 
coefficient

Difference
[P(cb2) - P(x)]

10

100

150

200

250

293

D5000 (293K)

aq85 0.616 0.220 (cb2) -0.396

aq85 0.576 0.222 (cb2) -0.354

cb2 0.509 0.367 (fa22) +0.142

cb2 0.477 0.336 (aq85) +0.141

cb2 0.389 0.367 (fa22) +0.022

cb2 0.377 0.372 (fc54) +0.005

cb117 0.279 0.146 (cb2) -0.133

On analysis of the corresponding correlation coefficients at the higher temperatures, two other 

structures (fc54, with a correlation value of 0.372 at  293K, and fa22 with a correlation value of 

0.367 at 250K) could be considered to be placed significantly  higher than the rest, with fc54 only 

differing by  a correlation value of 0.005 from structure cb2 [Figure 6.10].  However, on visual 

comparison of the respective powder diffraction patterns it was clear that neither of these two 

patterns bear a great  similarity to the experimental data or cb2 [Figure 6.12].  The powder pattern 

of the structure having the highest correlation coefficients when compared with the experimental 

data at the lower temperatures 10K and 100K was found to differ significantly  from these data, on 

visual comparison [Appendix A4.3].

The degree of similarity between the predicted structure cb2 and the experimental data 

decreased with increasing temperature, as did the difference between the correlation value of the 

correct  structure (ranked first) and the next  best structure [Figures 6.10 and 6.11 and Table 6.4]. 

Hence discriminatory  ability in this case decreased with increasing temperature.  This was not the 

case in any of the other examples, where the best fit was obtained at  low temperatures. One 

possible reason is that the predictions were carried out taking thermal expansion into 

consideration. Possible over-compensation would then justify  the larger volume of the predicted 

structure when compared with the experimental volume at room temperature.
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Figure 6.10  Correlation coefficients of all 49 structures at each temperature (D5005). The arrow 
indicates structure cb2.
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Figure 6.11  Correlation coefficients of all 49 structures against the D5000 data. The arrow indicates 
structure cb2.
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Figure 6.12 Powder diffraction patterns for four selected predicted structures and the experimental 
structure at room temperature (D5005).

5-Azauracil Liana Vella-Żarb

 108



6.2.2.3  Compare.x

Using a default  triangle window value of 2, Compare identified the correct structure cb2 at 

intermediate temperatures of 150K, 200K and 250K.  While at lower temperatures structure fa41 

ranked highest, the room temperature data collected on the D5005 had the greater correlation with 

structure cb117, while that obtained with the D5000 was matched with structure fa53. The correct 

structure cb2 did not rank second in any  of the cases.  On visual comparison with the respective 

experimental data, there are some areas of similarity  with the structures selected at  either end of 

the temperature spectrum, however they are clearly not  the same structure [Table 6.5, Figures 6.13 

- 6.17, Appendix A4.4].

Table 6.5.  Structures with highest correlation coefficient [C(x)] at each temperature, and the 
difference to the value obtained for the correct structure [C(cb2)].  Black numbers denote cases when 
the correct structure was identified, and the difference was positive.  An incorrect match gave a 
negative difference, as shown by the values in red.

Temperature 
(K)

Top 
ranked 

structure

Correlation coefficient 
of top ranked structure

Correlation 
coefficient

Difference
[C(cb2) - C(x)]

10

100

150

200

250

293

D5000

fa41 0.855 0.827 (cb2) -0.028

fa41 0.856 0.838 (cb2) -0.018

cb2 0.861 0.857 (ar68) 0.004

cb2 0.866 0.857 (au58) 0.009

cb2 0.875 0.860 (au58) 0.015

cb117 0.889 0.872 (cb2) -0.017

fa53 0.748 0.687 (cb2) -0.061

Although the default triangle window value of 2 was selected for this work, a variety  of 

triangle windows ranging from 0.5 to 4.0 in increments of 0.5 were tested using this data  

[Appendix A4.4, Tables A4.4.1 - A4.4.8].  As expected, the narrower the window, the more 

dissimilar the structures were considered to be, whereas when wider windows were used, higher 

correlation values resulted from too much flexibility within the comparison parameters.
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Figure 6.13 Correlation coefficients of all 49 structures at each temperature.  The arrow indicates 
structure cb2.
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Figure 6.14 Correlation coefficients of all 49 structures against the D5000 data.  The arrow 
indicates structure cb2.
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Figure 6.15  Powder diffraction patterns for fa41 and the experimental structure at 10K and 100K.
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Figure 6.16  Powder diffraction patterns for cb117 and the experimental structure at room 
temperature.
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Figure 6.17  Powder diffraction patterns for fa53 and the D5000 experimental structure.
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6.3  Discussion

Table 6.6.  Comparison of the ability of the three methods in automated identification of the correct 
predicted structure. Values in red denote the difference (modulus of the difference for Rwp) between the 
correct structure and the structure ranked first.  If the correct structure ranked first, the values denote 
the difference between the correct structure and the next best one (shown in black).

Temperature (K) Rwp PolySNAP Compare

10 2 0.396 0.028

100 1.1 0.354 0.018

150 1.1 0.142 0.004

200 2.7 0.141 0.009

250 1.6 0.022 0.015

293 2.3 0.005 0.017

D5000 (293K) 1.9 0.133 0.061

The Rwp method once again yielded negative results, further proving its unreliability  in 

selecting correct predictions in relation to experimental powder data.  Although Compare.x did 

not  identify  cb2 as the correct structure at room temperature, the difference in correlation value 

between cb2 and the next-ranking structure up to that temperature increased overall.  Past  250K, a 

different structure was selected, possibly  implying a shift in 2θ that was  large enough to enable 

different peaks to fall within the confines of the triangle window. 

In the cases where PolySNAP identified the correct  structure, both correlation values and 

discriminatory ability  decreased markedly  with temperature, the highest correlation between 

experimental data and cb2 being observed at 150K.  This corresponds with the temperature at 

which there was the greatest  discrimination between the correct structure (ranked first) and the 

structure with the next best correlation.
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Figure 6.18  Difference in correlation coefficients between cb2 and the structure with the next 
highest correlation.  In cases where cb2 was not ranked first, the difference between cb2 and the 

structure with the highest correlation was plotted.

In comparison with PolySNAP, Compare.x once again gave higher overall correlation 

coefficients and a greater discrimination with increasing temperature.  Although the PolySNAP 

comparison gave positive results at intermediate and higher temperatures suggesting an overall 

sensitivity  to the peak shift  arising from expansion of the unit cell, the discrimination between the 

correct  structure and the structure with the second highest correlation coefficient did not show any 

particular sensitivity to temperature [ Figure 6.18].
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7.  DNA BASES

Adenine and guanine are two of the nitrogen bases found in nucleic acids, along with the 

pyrimidines cytosine (found in both DNA and RNA), uracil (found only in RNA) and thymine 

(normally  found in DNA, although sometimes tRNA will contain some thymine as well a uracil).  The 

hydrogen bonding interactions between purines and pyrimidines are among the core factors determining 

the structure (and consequently also the function) of DNA.  These hydrogen bonds formed by the base 

pairs of adenine and thymine, and guanine and cytosine, constitute the “rungs” that  are responsible for 

the double helical nature of DNA.  In this chapter, the structure solution and structure prediction 

calculations of the two DNA purines will be discussed.

7.1  Adenine

Figure 7.1.1  Adenine (6-aminopurine)
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7.1.1  Background

Besides DNA and RNA, adenine is also an important  constituent of adenosine triphosphate (ATP).  

It  is essential due to its ability  to phosphorylize, or add a phosphate group  to other molecules.  The 

transfer of a phosphate group  allows energy  to be released, and it  is  this energy that is used by  cells in 

living organisms.

Although it is quite a high-profile molecule, the structure of adenine had not been previously 

determined, and no evidence of polymorphism has been reported.  However, structures with adenine 

existing as a complex with riboflavin1, phthalic acid2, hydrogen peroxide3, and N-methyl-2-pyrrolidone4 

can be found on the CSD.  Other published structures include adenine in trihydrate form5 and in 

adeninium tetrafluoroborate dihydrate6.

7.1.1.1 Experimental Polymorph Search7

An extensive polymorph search was carried out using 42 solvents7, and crystallisations were mainly 

carried out  by  slow evaporation.  The majority  of solvents gave either no solid for analysis, or small 

particles of solid that  were unsuitable for characterisation purposes.  Crystallisation from 2,2,2-

trifluoroethanol, acetic acid, dimethylamine in water and 2-methoxyethylamine yielded adenine as a 

polycrystalline solid with a powder diffraction pattern that matched the stock sample.  Adeninium 

chloride hemihydrate and adeninium dichloride structures were also found in the search [Appendix A5.1 

Table A5.1.1].

7.1.1.2  Computational Polymorph Searches7

In the computational polymorph search based on the ab initio molecular structure, 2900 structures 

were generated, with 11 unique structures lying within 7 kJ mol-1 of the global lattice energy minimum.  

A further search using the planar molecular structure resulted in 14 unique structures in the same energy 

range7 [Table 7.1.1 and Figure 7.1.2], and 8 of which had Z’=2.  The ab initio search found the structure 
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am62 at the global lattice energy minimum, ～2 kJ mol-1 more stable than the next  structure and with 

about the same estimated energy difference at room temperature.  Three hypothetical structures were 

found within 4.5 kJ mol-1 of the global lattice energy minimum (this difference decreases to 2.5 kJ mol-1 

at room temperature). 
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Figure 7.1.2  The results of both computational searches (ab initio and planar) showing the predicted 
structure corresponding to the experimental form denoted by the red open diamond. [Figure reproduced with 

permission from the CPOSS database]

The computational search based on the planar molecular structure gave five unique hypothetical 

structures with a range of densities, and lying within 1.2 kJ mol-1 of the global lattice energy  minimum.  

In both computational searches, all but one of the low energy structures consisted of hydrogen bonded 

sheets.  Three main types of sheet structure were identified, exhibiting only minor rearrangement of the 

molecules in the sheets, attributed to the use of various combinations of donors and acceptors [Figure 

7.1.3].  There were also slight changes in the orientation of the sheets relative to each other.
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Table 7.1.1.  The low energy crystal structures found within 7 kJ mol-1 of the global lattice energy minimum 
for adenine, using the ab initio and planar molecular structures.  All the structures consist of molecules that 
use N1, N2, and N3 as hydrogen bond acceptors, and all contain hydrogen bonded sheets, except for de56 
which contains a three-dimensional hydrogen bonding network.

STRUCTURE SPACE 
GROUP

LATTICE 
ENERGY
(kJ/mol)

FREE 
ENERGY
(kJ/mol)

DENSITY
(g/cm3)

REDUCED CELL

a(Å) b(Å) c(Å) α(°) β(°) γ(°)

Ab initio molecular structures

am62 P 21 /c -143.06 -152.26 1.6266 6.637 12.181 9.530 90.00 45.74 90.00

fc84 P 21 /c -141.43 -150.42 1.6019 4.696 8.167 14.846 90.00 79.73 90.00

cb24 P b c a -138.54 -149.74 1.5916 14.371 12.186 6.440 90.00 90.00 90.00

fc4 P 21 /c -138.41 -148.39 1.5498 4.718 8.164 21.824 90.00 43.55 90.00

ab102 P -1 -138.03 -147.06 1.6247 8.514 5.315 7.970 106.25 70.32 125.06

dc46 C 2/c -137.91 -146.97 1.5958 10.028 8.352 13.750 90.00 77.63 90.00

ab16 P -1 -137.43 -147.02 1.5636 8.541 4.596 8.136 98.65 114.38 89.73

dd101 C 2/c -136.97 -145.48 1.5459 6.884 12.223 23.829 90.00 35.39 90.00

am21 P 21 /c -136.68 -147.11 1.54 5.234 14.969 7.480 90.00 96.04 90.00

cd110 Pna21 -136.49 -148.03 1.5472 6.398 14.913 12.161 90.00 90.00 90.00

cb89 P -1 -136.38 -147.14 1.5877 7.027 13.230 12.161 90.00 90.00 90.25

Planar molecular structures

fc33 P 21 /c -142.87 -151.5 1.5973 4.851 8.092 14.600 90.00 101.36 90.00

am9 P 21 /c -142.46 -151.95 1.6048 6.458 12.170 7.121 90.00 88.14 90.00

ak71 P 21 /c -141.9 -150.93 1.562 6.650 7.862 12.390 90.00 62.49 90.00

cc71 P 21 /c -141.82 -152.81 1.5855 8.330 7.496 21.831 90.00 90.00 56.16

fc1 P 21 /c -141.69 -150.91 1.5519 4.879 7.871 21.999 90.00 43.21 90.00

aj80 P -1 -140.85 -150.03 1.5604 8.089 4.725 22.654 47.76 74.76 94.92

ce73 Pca21 -140.12 -150.42 1.5575 21.958 8.007 6.555 90.00 90.00 90.00

am43 P 21 /c -139.92 -150.47 1.5473 5.301 14.952 8.576 90.00 58.58 90.00

cb108 P 21 /c -139.84 -151.13 1.5407 12.221 14.943 6.736 90.00 71.28 90.00

ab72 P -1 -139.08 -148.09 1.617 8.492 4.926 8.426 103.83 73.81 124.48

bf37 P -1 -138.53 -148.59 1.5871 8.356 21.789 5.429 125.88 55.08 89.87

ai116 P 21 /c -138.49 -147.8 1.5827 8.832 8.112 8.382 90.00 70.79 90.00

ca73 P -1 -138.09 -147.51 1.5516 9.810 4.770 7.994 100.13 116.62 60.05

de56 C 2/c -136.98 -147.91 1.572 19.452 3.779 23.120 90.00 137.78 90.00
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I                                           II                                      III

Figure 7.1.3  The three different hydrogen bonded sheet structures present in the low energy structures in 
both computational polymorph searches on adenine

The majority  of the elastic constants of the low energy  structures were relatively low (<1 GPa), 

possibly  indicating a tendency for the hydrogen bonded sheets to slip over each other7.  This would 

decrease the mechanical stability, suggesting that  the energetically favourable crystal packings of 

adenine give relatively soft crystals, and could hence indicate problematic crystal growth.

7.1.2  Results

 As an unknown crystal structure, attempts were made to index the experimental data and proceed 

with a traditional structure solution.  However, the data could not be indexed reliably, i.e. a suitable cell 

could not be identified amongst  the others in the indexing results.  Therefore, the structure prediction  

results were examined to establish whether these could be used to aid determination of this elusive 

crystal structure.

7.1.2.1  PolySNAP

PolySNAP was used to identify any  similarities between the experimental powder data and that 

simulated for all the predicted structures.  As low temperature data had not yet been recorded at  this 

early stage of the adenine study, the room temperature transmission data (D5000) was used for 

comparison.  The computational crystal structure cc71 (Z’ = 2) from the planar molecular structure 
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search (1 kJ mol-1 above the global lattice energy minimum), was selected as having the highest 

correlation with the experimental data [Figures 7.1.4 and 7.1.5].  This identified the similarity  between 

the two powder data sets, as subsequently confirmed by visual inspection [Figure 7.1.6].

Figure 7.1.4.  Dendrogram showing similarity correlation clusters for predicted adenine and experimental 
adenine powder diffraction patterns.  Experimental data is denoted as powder.
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Figure 7.1.5  Correlation coefficients of all 33 predicted structures with room temperature (D5000) data. The 
arrow indicates structure cc71.
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Figure 7.1.6  Powder diffraction patterns for two selected predicted structures and the experimental data 
(D5000) at room temperature.
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In order to complete the study of this structure and complete investigation of the effectiveness of 

automated structure prediction comparison, the PolySNAP analysis was repeated using low temperature 

data when this became available.  Structure cc71 was identified as having the highest correlation to the 

experimental data at each temperature [Table 7.1.2, Figure 7.1.8].

 As observed in our other studies, the predicted structure (cc71) was found to have higher 

correlation coefficients with experimental data collected at low temperatures than with data collected at 

higher temperatures.  The discrimination between structures ranked best and second did not  vary widely 

at the lower temperatures, though a slightly  greater discrimination was observed with the 150K data.  At 

higher temperatures however, there was a reduction in discriminating ability, with the best  two 

structures exhibiting only  marginal differences in correlation coefficients.  Figure 7.1.7 shows the 

simulated patterns of the best two structures and the experimental data at all temperatures.

Table 7.1.2.  Correlation coefficient of the correct structure [P(cc71)] at each temperature, and the difference 
to the value obtained for the structure ranked second [P(x)].  In all cases, the correct structure (cc71) was 
identified.

Temperature (K) Top 
ranked 

structure

Correlation coefficient 
of top ranked structure

Correlation 
coefficient

Difference
[P(cc71) - P(x)]

10

50

100

150

200

250

293

293 (D5000)

cc71 0.5072 0.3622 (bf37) 0.1450

cc71 0.5356 0.4149 (bf37) 0.1207

cc71 0.5211 0.3817 (bf37) 0.1394

cc71 0.4875 0.3185 (bf37) 0.1690

cc71 0.3973 0.2448 (bf37) 0.1525

cc71 0.2997 0.2013 (fc84) 0.0984

cc71 0.2292 0.2240 (dd101) 0.0052

cc71 0.3581 0.2345 (cb108) 0.1236
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Figure 7.1.7  Powder diffraction patterns for two selected predicted structures and the experimental data 
(D5005) at all temperatures.
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7.1.2.2  Compare.x

Using the default triangle window value of 2, Compare.x also identified the correct  structure, cc71, 

as having the highest correlation with the experimental data at all temperatures but 293K.  The room 

temperature data showed highest correlation with structure dd101, while cc71 was ranked second with a 

difference of 0.02411 with the D5005 data, but even lower down the list when compared to the D5000 

data [Table 7.1.3 and Figures 7.1.9 and 7.1.10].

Table 7.1.3.  Structures with highest correlation coefficient [C(x)] at each temperature, and the difference to 
the value obtained for the correct structure [C(cc71)].  Black numbers denote cases where the correct 
structure was identified, and the difference was positive. An incorrect match gave a negative difference, as 
shown by the values in red and blue.  Blue denotes cc71 being ranked second, while values in red correspond 
to cc71 being ranked third or lower.

Temperature (K) Top ranked 
structure

Correlation coefficient 
of top ranked structure

Correlation 
coefficient

Difference
[C(cc71) - C(x)]

10

50

100

150

200

250

293

293 (D5000)

cc71 0.87413 0.81431 (ab21) 0.05982

cc71 0.87812 0.81961 (ab21) 0.05851

cc71 0.87276 0.81489 (ab21) 0.05787

cc71 0.86874 0.81522 (dd101) 0.05352

cc71 0.85485 0.81826 (dd101) 0.03659

cc71 0.83472 0.82841 (dd101) 0.00631

dd101 0.83534 0.81123 (cc71) -0.02411

dd101 0.72463 0.70376 (cc71) -0.02087

As the temperature increases, the unit  cell expands and this translates as a shift  in peak position along 2θ.  

As the cc71 structure is predicted at 0K and Compare.x uses a triangular window approach to define the 

correlation range, comparison with data recorded at 293K results in some of the peaks in the simulated cc71 

powder pattern to fall outside the defined range.  The powder diffraction pattern of structure dd101 has more 

peaks than cc71 [Figure 7.1.6] and was identified as having the best correlation with the experimental data 

purely on the basis of more peaks falling within the pre-defined triangle window.  This “apparent” similarity 

can be discounted upon visual comparison of the respective powder diffraction patterns.
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As in other chapters, although the default  triangle window value of 2 was selected for this work, a 

range of triangle windows from 0.5 to 4.0 in increments of 0.5 was also tested using this data [Appendix 

A5.1.4 - Tables A5.1.4.1-A5.1.4.8].   The narrower the window, the more dissimilar the structures were 

considered to be, while wider windows resulted in higher correlation values, as explained in  Chapter 4, 

Section 4.2.2.3.

7.1.2.3  Rwp

The 33 predicted structures were each compared, using Rwp, with the experimental data collected at each 

temperature.  As in previous chapters, the outcome of these comparisons was non-discriminatory, and none 

of the 33 structures were singled out  as being significantly similar to any of the experimental data.  Rwp 

values ranging from  44.93% to 60.57% were obtained, although in most  cases, no significant discrimination 

was found [Table 7.1.4, and Figures 7.1.11 and 7.1.12].  In addition, only one of the predictions (cb89) was 

ranked as the best fit  to data recorded at two different  temperatures. The correct  predicted structure (cc71) 

was not identified by Rwp as having a similar powder pattern to the data collected at any of the temperatures.  

The simulated patterns for all predicted structures shown in the table and the corresponding 

experimental patterns are found in Appendix A5.1.3.

Table 7.1.4.  Structures with lowest Rwp identified at each temperature.  The difference is that between the 
Rwp for the top ranked structure [Rwp(x)] and the correct prediction [Rwp(cc71)].

Temperature (K) Top 
ranked 

structure

Rwp (x) (%) Rwp (cc71) (%) Difference (%)
[Rwp(x) - Rwp(cc71)]

10

50

100

150

200

250

293

293 (D5000)

fc33 57.41 58.46 -1.05

fc56 54.98 57.23 -2.25

cb89 51.29 53.25 -1.96

ai116 50.58 51.61 -1.03

cb89 48.01 50.95 -2.94

fc33 48.05 49.99 -1.94

dd101 45.26 47.39 -2.13

ab16 44.93 45.98 -1.05

DNA Bases - Adenine Liana Vella-Żarb

 132



Figure 7.1.11  Rwp values for each predicted structure at each temperature with the D5005 data. The arrow 
indicates structure cc71.
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Figure 7.1.12  Rwp values for each predicted structure with the D5000 data. The arrow indicates structure 
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7.1.3  Structure Determination

Once a theoretical predicted structure with a high correlation to the experimental data was identified, 

this structure was used as the basis for crystal structure determination.  Initial LeBail profile analysis 

was carried out  using the unit  cell parameters from cc71 as a starting point.  This gave a good profile fit 

against the transmission geometry  data (over the range 10o≼2θ≼60o) with an Rwp equal to 8.2%.  

Subsequent Rietveld refinement using cc71 as the initial structure was successful, giving an Rwp of 

12.3% [Tables 7.1.5 - 7.1.9 and Figures 7.1.13 - 7.1.14].

Refinements were carried out using the GSAS program package8.  The positions of all atoms were 

refined subject  to soft  constraints (weighting factor of 0.001 for bond distances and 0.005 for geminal 

non-bonded distances) on standard geometry.  The amine hydrogen atoms were placed in positions 

calculated from the coordinates of hydrogen bond donors and acceptors.  Refinement also required 

variation of a preferred orientation parameter in the [121] direction using the March-Dollase correction9.

Figure 7.1.13  Atomic positions of the 2 molecules in the asymmetric unit relative to each other
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Table 7.1.5  Final refined atomic positions for adenine.

Atom x y z Atom x y z
N1 0.518 (2) 0.275 (1)0.274 (2) N16 0.034 (1) 0.039 (2) 0.266 (2)
N2 0.594 (1) 0.178 (1)0.347 (1) N17 0.088 (2) -0.060 (1) 0.323 (1)
H1 0.579 (1) 0.143 (1)0.352 (2) H16 0.075 (1) -0.100 (1) 0.305 (1)
N3 0.899 (1) 0.191 (2)0.623 (2) N18 0.359 (3) -0.053 (2) 0.597 (2)
N4 0.969 (3) 0.297 (2)0.692 (1) N19 0.452 (2) 0.048 (1) 0.729 (1)
N5 0.782 (2) 0.375 (2)0.513 (1) N20 0.282 (1) 0.131 (2) 0.552 (2)
H2 0.862 (2) 0.406 (1)0.585 (1) H17 0.364 (1) 0.157 (1) 0.640 (1)
H3 0.673 (2) 0.389 (2)0.425 (1) H18 0.181 (1) 0.149 (2) 0.445 (1)
C1 0.471 (1) 0.218 (1) 0.22 (1) C16 -0.018 (1) -0.017 (2) 0.200 (1)
H5 0.363 (1) 0.207 (2)0.128 (1) H20 -0.119 (1) -0.026 (2) 0.094 (2)
C2 0.742 (1) 0.211 (3)0.476 (1) C17 0.234 (1) -0.032 (2) 0.467 (1)
C3 0.692 (1) 0.271 (2)0.424 (2) C18 0.195 (1) 0.029 (3) 0.428 (2)
C4 1.005 (1) 0.237 (1)0.717 (2) C19 0.477 (2) -0.013 (2) 0.739 (2)
H4 1.113 (1) 0.236 (2)0.814 (2) H19 0.576 (1) -0.026 (2) 0.841 (1)
C5 0.812 (2) 0.315 (3)0.543 (1) C20 0.309 (2) 0.070 (1) 0.569 (2)

Table 7.1.6  Intramolecular bond lengths (Å).

Bond Length Bond Length
N1-C1 1.3255 N2-C1 1.3724
N1-C3 1.3789 N17-C16 1.3715
N16-C18 1.3808 N2-C2 1.3853
N16-C16 1.3269 N5-C5 1.3511
C2-C3 1.3977 N20-C20 1.3661
C3-C5 1.4092 C1-H5 0.8998
C17-C18 1.3969 C4-H4 0.8704
C18-C20 1.4093 C16-H20 0.8996
N3-C2 1.3601 C19-H19 0.9001
N3-C4 1.3395 N2-H1 0.7827
N4-C4 1.3469 N5-H2 0.9505
N5-C5 1.3575 N5-H3 0.8991
N18-C17 1.1783 N17-H16 0.9010
N18-C19 1.4225 N20-H17 0.9276
N19-C19 1.3620 N20-H18 0.9595
N19-C20 1.3749 N17-C17 1.3834
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Table 7.1.7  Hydrogen bond lengths (Å).

D—H···A Symmetry code of A H···A / Å D···A / Å D—H···A / °

N2H1---N18 1-x, -y, 1-z 2.07(1) 2.56 (1) 160 (1)

N5H2---N16 1+x, 0.5-y, 0.5+z 1.93(1) 2.87 (1) 171 (3)

N5H3---N19 x, 0.5-y, 0.5+z 2.26(1) 3.12 (2) 161 (2)

N17H16---N3 1-x, -y, 1-z 2.07(1) 2.92 (1) 157 (1)

N20H17---N1 x, 0.5-y, 0.5+z 1.94(1) 2.85 (1) 166 (1)

N20H18---N4 1+x, 0.5-y, 0.5+z 2.32(1) 3.28 (1) 171 (2)

Table 7.1.8  Bond angles (o).

Atoms Angle Atoms Angle
C3-N1-C1 104.09 (2) N1-C3-C2 111.87 (1)
C1-N2-H1 126.66 (1) N1-C3-C5 131.59 (1)
C2-N2-H1 125.40 (1) C5-C3-C2 115.99 (1)
C1-N2-C2 107.65 (1) N3-C4-H4 127.03 (2)
C2-N3-C4 109.87 (1) N3-C4-N4 103.39 (2)
C4-N5-C5 118.33 (1) N5-C4-H4 129.53 (1)
H2-N5-H3 112.43 (2) N5-C5-N5 118.17 (2)
C5-N5-H3 120.85 (3) N5-C5-C3 118.51 (1)
C5-N5-H2 126.42 (2) C3-C5-N5 123.25 (2)

C16-N16-C18 103.85 (1) N16-C16-H20 125.03 (1)
C16-N17-H16 126.24 (2) H20-C16-N17 122.27 (2)
C17-N17-H16 125.66 (1) N16-C16-N17 112.42 (2)
C16-N17-C17 107.49 (3) N18-C17-C18 127.40 (1)
C17-N18-C19 116.98 (2) N17-C17-C18 103.75 (1)

C19-N19-C20 116.23 (2) N17-C17-N18 128.79 (1)
H17-N20-H18 117.18 (2) C17-C18-C20 111.94 (2)
C20-N20-H18 121.87 (1) N16-C18-C20 131.56 (2)
C20-N20-H17 120.91 (2) N16-C18-C17 115.93 (2)

H5-C1-N1 124.56 (1) N19-C19-H19 121.95 (1)
H5-C1-N2 122.72 (2) N18-C19-N19 114.72 (1)
N1-C1-N2 112.21 (2) N18-C19-H19 123.31 (2)
N3-C2-C3 127.47 (2) N20-C20-C18 118.08 (1)
N2-C2-C3 103.64 (1) N20-C20-N19 119.89 (2)
N2-C2-N3 128.88 (2) N19-C20-C18 122.03 (2)
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Table 7.1.9  Crystal data, lattice parameters for theoretical structure, LeBail and Rietveld agreement factors 
and final refined unit cell parameters for adenine.

Crystal data

Chemical formula C5H5N5

Space group P21/c

Theoretical Structure (cc71)

a (Å) 7.4956

b (Å) 21.8311

c (Å) 7.4854

β (o) 112.43

Volume (Å3) 1132.2

Z’ 2

LeBail

Rwp (%) 8.17

Rp (%) 6.12

χ2 1.05

Refinement

Rwp (%) 12.29

Rp (%) 10.03

χ2 1.77

RF2 (%) 27.41

Preferred orientation ratio [direction] 1.1356 [121]

No. of observations 2992

No. of parameters 100

No. of restraints 80

No. of reflections 358

Final a (Å) 7.6685 (9)

Final b (Å) 22.2006 (3)

Final c (Å) 7.6240 (9)

Final β (o) 112.892 (6)

Final volume (Å3) 1195.7 (4)
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Figure 7.1.14  Rietveld refinement of adenine against the D5000 room temperature data.  The green line 
denotes the calculated powder pattern, the red dots the experimental data, and the pink line the difference 

between them.  Reflection positions are shown by the black dots 
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7.1.4  Crystal Structure

The crystal structure of adenine contains hydrogen bonded sheets with an interlayer spacing of 3.75 

Å.  It  contains the sheet motif (II) shown in Figure 7.1.3, in which each molecule is linked via  NH---N 

hydrogen bonds to three others using all strong donors and acceptors.  Each molecule is bonded through 

6 hydrogen bonds, donating 3 and accepting 3, and forming R (8) and R (9) motifs.  Each ring of six 

molecules is surrounded by six other rings, forming a honeycomb pattern [Figure 7.1.15].

(a)

(b)
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(c)

Figure 7.1.15  (a)  Crystal packing of adenine, (b) sheet made of hydrogen-bonded rings forming a 
honeycomb pattern and (c) R    (8) and R   (9) motifs shown in green and violet respectively.

7.1.4.1  Single-Crystal Structure Determination

 Following our work on the crystal structure determination of adenine by structure prediction and 

Rietveld refinement, we were alerted by  personal communication of the concurrent work being done by 

Dr Andrew Bond from the University  of Southern Denmark, on the single crystal structure 

determination of adenine.  

 His studies10 using recrystallisation by  slow cooling of a saturated solution in N,N-

dimethylformamide, identified adenine as having a disordered Fddd structure (a = 8.470Å, b = 12.536Å, 

c = 22.297Å).  The two components of disorder are related by a 2-fold rotation axis that  passes through 

N2 and the midpoint of C4 [Figure 7.1.16].
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Figure 7.1.16  Two components of the adenine molecule disordered about a 2-fold rotation axis passing 
through N1 and the midpoint of C4 and C4i.  Displacement ellipsoids are shown at 50% probability for 

non-H atoms.  
 

 The resulting crystal packing is a two-dimensional hydrogen-bonded layer in which the same 

honeycomb pattern is formed within the layer if the disorder components are removed [Figure 7.1.17].  

Close analysis of this disordered structure and our predicted/powder structure show that the ordered 

structure presented earlier in this chapter can be considered as an ordered approximation of the 

disordered structure, in which the structure within each layer is illustrated by  our strong hydrogen-

bonded honeycomb pattern, but  that there is disorder between these layers.  This is demonstrated by 

projection down multiple layers of the structure in which a 4-layer repeat of the ordered P21/c model 

gives the same electron density as a 2-layer repeat of the disordered Fddd model.

Figure 7.1.17  A single two-dimensional hydrogen-bonded layer in the ac plane, showing all disorder 
components.
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Figure 7.1.18  Powder diffraction patterns simulated from the single-crystal structure (SX) and the 
D5000 experimental data at room temperature (RT).
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 The close relationship  between these two structural models is shown by the similarity  between 

the experimental powder diffraction pattern used in Rietveld refinement and that  simulated from the 

single-crystal structure [Figure 7.1.18].  As crystal structure prediction calculations cannot  generate 

disordered structures, the difference between these structures is not unprecedented [Chapter 5], and is 

seen as a valuable insight into the possible nature of the disorder that is observed, although further work 

is needed on this aspect.

7.1.5  Low Temperature Data

Table 7.1.10  Unit cell parameters of predicted structure cc71 and from experimental data.  The numbers in 
brackets denote the percentage change with respect to those values obtained from the 10K data.

Temperature (K) a (Å) b (Å) c (Å) β(o) Volume (Å3)

Predicted values (0K) 7.495 (1) 21.831 (1) 7.485 (2) 112.43 1132.20

10
(% change)

7.539 (1)
(0.00)

22.166 (2)
(0.00)

7.456 (3)
(0.00)

112.23
(0.00)

1153.35
(0.00)

50
(% change)

7.533 (2)
(-0.08)

22.175 (1)
(+0.04)

7.537 (1)
(+1.09)

111.98
(-0.22)

1167.48
(+1.23)

100
(% change)

7.525 (1)
(-0.19)

22.183 (2)
(+0.08)

7.589 (2)
(+1.79)

111.94
(-0.26)

1175.09
(+1.88)

150
(% change)

7.513 (1)
(-0.34)

22.235 (1)
(+0.31)

0.599 (1)
(+1.91)

112.14
(-0.08)

1175.80
(+1.95)

200
(% change)

7.621 (2)
(+1.09)

22.252 (2)
(+0.39)

7.675 (1)
(+2.94)

113.19
(+0.86)

1196.27
(+3.72)

250
(% change)

7.628 (1)
(+1.17)

22.322 (1)
(+0.70)

7.714 (1)
(+3.47)

113.16
(+0.83)

1207.63
(+4.71)

293
(% change)

7.703 (1)
(+2.17)

22.477 (1)
(+1.40)

7.790 (2)
(+4.48)

113.17
(+0.84)

1239.99
(+7.51)

DNA Bases - Adenine Liana Vella-Żarb

 144



Since the theoretical predictions for adenine were carried out at 0K, the unit cell parameters of the 

lowest energy predicted structure were used as a starting point for a LeBail fit on the 10K data.  The unit 

cell parameters obtained from this fit were used as a starting point for a LeBail fit  on the 50K data.  

Subsequent LeBail fits on the remaining temperature data sets followed the same “stepwise” 

methodology  [Table 7.1.10].  The powder diffraction pattern indicates a clear contraction in the unit  cell 

with decreasing temperature, as indicated by  the shift  in position of peak (112) to an increase in 2θ  

[Figure 7.1.19].    The effect of changing temperature over the entire diffraction pattern from 10 to 40 

degrees along 2θ is shown in  Appendix A5.1.2.

2 θ / degrees

In
te

ns
ity

 
Figure 7.1.19  Section of superimposed powder diffraction data at all temperatures showing selected 

peak (112) shifting towards the right with decreasing temperature.  The predicted structure (cc71) is 
indicated by the red dotted line.
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The relatively  poor crystallinity  of this material (compared to other compounds studied in this 

thesis) is illustrated by the broader peaks in the experimental data shown in figure 7.1.19.  This can 

often also be an indication of disordered components in the structure.

%
 c

ha
ng

e

Temperature (K)

Figure 7.1.20  Graph showing the percentage change in unit cell dimensions with temperature.

The percentage differences in a, b, c, β  and volume with varying temperature were calculated and 

show an overall increase in volume with temperature [Table 7.1.10].  Although generally, a, b, c and β 

also increased, there were minor fluctuations over the temperature range studied [Figure 7.1.20].

7.1.6  Discussion

 The crystal structure of adenine was successfully solved using a combination of experimental data 

and computational predictions.  Rwp was yet  again too sensitive to the inherent shift in 2θ that  arises due 

to the very  nature of the comparison, and was therefore unsuccessful in identifying the correct structure.  

This was verified by  visual comparison of the powder patterns obtained experimentally against the 

respective simulated patterns of the structures ranked first for each temperature [Appendix A5.1.3].

 Although PolySNAP selected structure cc71 at all temperatures, the simulated powder pattern was 

visually  compared to the experimental patterns to verify the similarity.  Simulated patterns of the 
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structures ranked second at each temperature were also visually  compared with the respective 

experimental patterns to substantiate the initial results.  Successful refinement confirmed this further.  

Although Compare.x selected the wrong structure at room temperature, the correct structure was 

identified at all other temperatures, providing sufficient evidence in support of structure cc71.  Analysis 

of the correlation results obtained with Compare.x over the range of triangle windows [Appendix 

A5.1.4] shows a predominance of structure cc71 for temperatures between 10K and 250K.

 Following the visual and numerical verification of the correct  structure, subsequent refinement, 

and discussions with Dr. Bond, adenine was found to be disordered.  This is a feature that  cannot be 

factored into computational predictions, and it remains to be deduced experimentally.  It  is also what 

possibly  contributed to the broadening of peaks in the experimental powder patterns - and what  made 

initial indexing impossible.  Therefore in such cases, the combination of computational predictions with 

experimentally obtained powder data provides a means to overcoming these problems.
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7.2  Guanine

Figure 7.2.1  Guanine (2-amino-1,7-dihydro-6H-purin-6-one); 2-amino-6-oxypurine                           

7.2.1  Background

Guanine is another organic base belonging to the purine family, and it is one of the major 

constituents of nucleic acids.  When combined with the sugar ribose in a glycosidic linkage, guanine 

forms a derivative called guanosine (a nucleoside) which in turn can be phosphorylated with from one to 

three phosphoric acid groups, yielding the three nucleotides GMP (guanosine monophosphate), GDP 

(guanosine diphosphate), and GTP (guanosine triphosphate).  Analogous nucleosides and nucleotides 

are formed from guanine and the sugar deoxyribose.

The nucleotide derivatives of guanine perform important  functions in cellular metabolism.  GTP acts 

as a coenzyme in carbohydrate metabolism and in the biosynthesis of proteins; it  can readily donate one 

of its phosphate groups to adenosine diphosphate (ADP) to form adenosine triphosphate (ATP), an 

extremely important  derivative of adenine that acts as an intermediate in the transfer of chemical energy 

in living systems.  GTP is the source of guanosine found in RNA and deoxyguanosine triphosphate 

(dGTP) is the source of deoxyguanosine in DNA.  Thus guanine is intimately  involved in the 

preservation and transfer of genetic information

Prior to the commencement  of this study, the crystal structure of guanine had not yet been 

characterised, but related structures such as the monohydrate11 have been published.
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7.2.1.1 Experimental Polymorph Search7

An extensive polymorph search was carried out  using a range of solvents, and crystallisations were 

mainly carried out by slow evaporation.  The majority of solvents gave either guanine derivatives, or 

small particles of solid that were unsuitable for characterisation purposes.

7.2.1.2  Computational Polymorph Searches

Guanine contains both a six and a five-membered ring, along with an amine and a carbonyl group.  

At the time that the initial computational predictions were carried out, there was no crystal structure 

published for guanine.  The most  closely-related structure available was guanine monohydrate11, in 

which the amino group  is approximately  coplanar with the ring (H-N-C-N 171.27o).  For this reason, the 

initial searches were carried out using a planar molecular model.  These calculations resulted in 22 

unique structures lying within 7 kJ mol-1 of the global lattice energy minimum.  The lowest energy 

hypothetical structures all consisted of three-dimensional hydrogen bond networks in which the 

carbonyl oxygen acts as a hydrogen bond acceptor.

The publication of the low temperature single crystal structure of guanine (120K) by Guille and 

Clegg12 in 2006 led to the decision to carry  out additional computational searches, in which three 

possible tautomers were considered.  The original tautomer that was used in the initial search was 

derived from the monohydrate structure and corresponds to tautomer 39.  The published single crystal 

structure was found to contain tautomer 17, while a search on another possible tautomer (tautomer 19) 

was also carried out for completion.  [Figure 7.2.2]

TAUTOMER 39      TAUTOMER 17     TAUTOMER 19
 (initial search)          (published single crystal)     (hypothetical)

Figure 7.2.2  The three tautomers for guanine.
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The searches resulted in 45 low-energy  structures for tautomer 17 (with 9 structures within 7 kJ 

mol-1 of the lattice energy minimum), 40 structures for tautomer 19, and 23 structures for tautomer 39 

[Figures 7.2.3 - 7.2.5 and Table 7.2.1].  In each of the latter two searches four structures were clearly 

lower in lattice energy when compared to the rest.   These were found within 4-5 kJ mol-1 of the global 

minimum. The lattice energy  minimum in the search for tautomer 17 was structure am8; this structure 

corresponded to the published experimental structure12 [Table 7.2.2]. In the search for tautomer 19, the 

lattice energy minimum was structure ai48; this structure was later chosen as the starting point for 

LeBail fitting. In terms of the lowest energy minimum overall, this was identified as structure de43 in 

the tautomer 39 search.  Structure am18 was ranked lowest overall (also in the tautomer 39 search) 

according to free energy.

Figure 7.2.3  The results of the computational search for tautomer 17.  The predicted structure 
corresponding to the published structure is shown by the red square. [This graph was reproduced from the 

CPOSS database with permission.]
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Figure 7.2.4  The results of the computational search for tautomer 19. [This graph was reproduced from the 
CPOSS database with permission.]

Figure 7.2.5  The results of the computational search for tautomer 39. [This graph was reproduced from the 
CPOSS database with permission.]
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STRUCTURE SPACE 
GROUP

LATTICE 
ENERGY
(kJ/mol)

FREE 
ENERGY
(kJ/mol)

DENSITY
(g/cm3)

REDUCED CELL

a(Å) b(Å) c(Å) α(°) β(°) γ(°)

Tautomer 17

am8 P 21 /n -173.03 -184.5 1.7719 3.541 9.808 16.431 90 83.166 90

am72 P 21 /n -169.75 -180.16 1.7411 8.787 9.798 10.796 90 38.336 90

aq10 P 212121 -169.19 -169.19 1.7504 17.23 9.865 3.3734 90 90 90

cd44* P c a 21 -168.48 -180.123 1.738 9.788 6.502 18.151 90 90 90

am1 P 21 /n -168.14 -180.655 1.7549 3.767 18.25 8.4544 90 79.84 90

cd25* P 21 /n -167.22 -179.3 1.7527 18.58 6.261 9.8485 90 90 89.99

am12 P 21 /c -167.11 -179.4 1.7404 3.474 9.639 19.101 90 115.599 90

dd94 C 2/c -166.37 -176.22 1.7094 9.77 9.839 12.97 90 70.388 90

cd49* P c -166.07 -166.07 1.7441 18.58 9.845 6.4459 90 77.559 90

Tautomer 19

ai48 P 21 /c -169.22 -181.566 1.7366 3.466 9.63 17.332 90 92.269 90

am101 P 21 /n -166.33 -176.809 1.7498 4.292 16.18 8.4036 90 79.362 90

ai83 P 21 /c -166.31 -166.31 1.7324 3.565 16.59 10.112 90 75.709 90

cb24* P c a 21 -166.2 -176.787 1.7296 16.18 10.07 7.1285 90 90 90

am63 P 21 /c -163.86 -176.044 1.7087 3.586 9.542 17.245 90 84.519 90

Tautomer 39

de43 C 2/c -179.32 -188.424 1.7375 12.43 7.465 19.408 90 39.922 90

ai79 P 21 /c -177.64 -188.241 1.7015 7.061 7.391 12.7 90 117.105 90

de87 C 2/c -176.36 -186.641 1.6168 13.3 6.786 14.162 90 76.31 90

am18 P 21 /n -175.86 -189.538 1.674 3.693 11.27 15.949 90 64.602 90

aq91 P 212121 -172.35 -185.481 1.6639 13.92 11.46 3.7833 90 90 90

Table 7.2.1  The low energy crystal structures (found within a maximum  of 7 kJ mol-1) of the global 
lattice energy minimum in the computational searches for the three tautomers.  Structures marked * 
have Z=8 (Z'=2), while all the rest have Z=4 (Z'=1).
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Table 7.2.2  Unit cell parameters of the published single crystal structure and the corresponding predicted 
structure for tautomer 17.

Structure a (Å) b (Å) c (Å) β (o) Volume (Å3) Space 
Group

Published Values12 (120K) 3.553(16) 9.693(4) 16.345(7) 95.148(6) 560.1(4) P21/c

am8 (0K) 3.541 9.808 16.431 83.17 566.6 P21/n

7.2.2  Results

 When powder data were collected for guanine, the single crystal structure had not been published 

yet.  As it  was an unknown crystal structure, the room temperature data were indexed by the DICVOL13 

program on the basis of the first nineteen lines [Appendix A5.2.2].  A monoclinic cell resulted, and this 

was found to be closely-related to structure ai48, the lowest  energy  structure from the search for 

tautomer 19.  The powder pattern of ai48 was simulated for visual comparison with the experimental 

powder pattern [Figure 7.2.6], and a LeBail fit was done on the indexed data. [Figure 7.2.7, Table 7.2.3] 

Table 7.2.3  Unit cell parameters of the predicted structure ai48, those obtained from  the Le Bail fit and the 
index results.

Structure a (Å) b (Å) c (Å) β (o) Volume (Å3) Space Group

ai48 (0K) 3.466 9.630 17.332 92.27 578.03 P 21 /c

LeBail 3.449 8.652 18.644 99.67 548.37 P 21 /c

Index Results 3.442 8.660 18.687 99.59 549.31 P 21 /c

Additional powder data were obtained from Toni Llinas (Department of Chemistry, University  of 

Cambridge) and these were included in subsequent comparisons, both visual and automated.  Subtle 

differences were observed between these data, the single crystal simulated pattern, and the experimental 

pattern [Figure 7.2.8].  In the experimental pattern, the range of peaks at  positions 20-22o and the peak 

at 29.5o along 2θ appear in Llinas’ data, but  do not  have single crystal counterparts.  In addition, the peak at 

43.5o on the experimental pattern does not  appear in either of the other two patterns.  This suggests that 

although the three structures are clearly related, Llinas’ data appears to be a mixture of the other two.
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Figure 7.2.6  Powder diffraction pattern of predicted structure ai48 and the experimental data at room 
temperature (D5000).
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Figure 7.2.7  Le Bail fit of the experimental data at room temperature (D5000) using parameters from 
structure ai48 as a starting point.
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Figure 7.2.8 (a) Powder diffraction patterns of the single crystal structure, Toni Llinas’ structure and the 
experimental data at room temperature (full range in 2θ).
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Figure 7.2.8 (b) Powder diffraction patterns of the single crystal structure, Toni Llinas’ structure and the 
experimental data at room temperature (section in 2θ).
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7.2.2.1  PolySNAP

PolySNAP analysis was carried out  using all seven experimental data sets (from 10K to 293K), Toni 

Llinas’ data and that  simulated from the single crystal structure, against all the structures predicted for 

the three tautomers [Figures 7.2.9-7.2.14].  The powder diffraction pattern simulated from the single 

crystal structure gave the highest  correlation with that  simulated from structure am8; the lowest energy 

structure in the computational search for tautomer 17.  Toni Llinas’ structure was ranked as being most 

similar to aq10 (tautomer 17), while our experimental data was grouped with structures dd94 and am92, 

from the searches for tautomers 17 and 19 respectively.  Upon visual comparison of the simulated 

patterns for these structures and structure ai48 with the D5005 room temperature powder pattern, some 

similarities were found between the experimental data and both dd94 and ai48 [Figure 7.2.15].

Figure 7.2.9.  Dendrogram showing similarity correlation clusters for predicted tautomer 17 structures, the  
published structure (shown as SX), Toni Llinas’ data (shown as Toni) and experimental guanine powder 

diffraction patterns over a range of temperatures.
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Figure 7.2.10.  Dendrogram showing similarity correlation clusters for predicted tautomer 19 structures, the  
published structure (shown as SX), Toni Llinas’ data (shown as Toni) and experimental guanine powder 

diffraction patterns over a range of temperatures.

Figure 7.2.11.  Dendrogram showing similarity correlation clusters for predicted tautomer 39 structures, the  
published structure (shown as SX), Toni Llinas’ data (shown as Toni) and experimental guanine powder 

diffraction patterns over a range of temperatures.
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Figure 7.2.12  Correlation coefficients of all predicted structures for tautomer 17 at each experimental 
temperature and against the published structure (SX) and Toni Llinas’ data (Toni)
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fa55
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Figure 7.2.13  Correlation coefficients of all predicted structures for tautomer 19 at each experimental 
temperature and against the published structure (SX) and Toni Llinas’ data (Toni)
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Figure 7.2.14  Correlation coefficients of all predicted structures for tautomer 39 at each experimental 
temperature and against the published structure (SX) and Toni Llinas’ structure (Toni)
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Figure 7.2.15  Powder diffraction patterns of predicted structures dd94, am92 and ai48 and the D5000 
experimental structure at room temperature.
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In all cases, low temperature data were once again classed together (denoted in red in the 

dendrograms).  Within this cluster, the three lower temperature data sets (10K, 50K and 100K) bore the 

highest correlation to one another.  In the comparison for tautomer 17 [Figure 7.2.9], the three 

experimental data sets were placed in separate clusters (ours in red, the published data in orange and 

Llinas’ in green), though raising the cut-off point from its arbitrary position of 0.47 would see Llinas’ 

data being grouped with the published structure.  The tautomer 19 comparison [Figure 7.2.10] grouped 

the published structure and Llinas’ data in the same cluster (denoted in purple), while in the comparison 

for tautomer 39, our data was grouped with Llinas’ (red), and the published data was grouped separately 

(in green) [Figure 7.2.11].  Raising the cut-off point for the latter would lead to all three data sets being 

grouped together.  The fact  that PolySNAP comparisons employ  PCA for classification of structure 

patterns [Chapter 2.1.2] justifies the experimental structures being classified differently for each 

tautomer comparison.  This is primarily  because clustering of experimental patterns by this method 

depends greatly on the structure patterns with which they are being compared.  

7.2.3  Low Temperature Data

Using the unit  cell parameters from the Le Bail fit  on the D5000 data, a Le Bail fit was done on the 

room temperature reflection geometry  data.  The unit cell parameters obtained from this fit were then 

used as a starting point for fitting the data obtained at 250K.  Subsequent Le Bail fits were carried out 

on the remaining data collected over a range of temperatures, using the same methodology [Table 7.2.4].

As expected, there is a clear contraction  of the unit cell with decreasing temperature.  This is shown by 

the marked decrease in volume, and the steady decrease in a and b with temperature.  In order to accomodate 

this change in volume, c and β fluctuate accordingly.  The percentage differences in a, b, c, β and volume 

with varying temperature with respect  to the 10K data were calculated [Figure 7.2.16]. The contraction in the 

unit cell with decreasing temperature can also be observed in the powder diffraction patterns, as indicated by 

the shift  in position of peak (111) to a higher 2θ value as lower temperatures are reached [Figure 7.2.17].   

The effect of changing temperature over the entire diffraction pattern from 10 to 50 degrees along 2θ is 

shown in Appendix A5.2.1. 
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Structure a (Å) b (Å) c (Å) β (o) Volume (Å3)

Published values (120K) 3.553 9.693 16.345 95.148 560.1

D5000 (after index) 3.469 8.652 18.644 99.67 548.37

10
(% change)

3.2001
(0.00)

8.2581
(0.00)

18.2816
(0.00)

96.86
(0.00)

479.67
(0.00)

50
(% change)

3.3500
(+4.68)

8.2405
(-0.21)

18.2365
(-0.25)

96.22
(-0.66)

500.48
(+4.34)

100
(% change)

3.3743
(+5.44)

8.3385
(+0.97)

18.4346
(+0.84)

96.33
(-0.55)

515.52
(+7.47)

150
(% change)

3.3926
(+6.02)

8.5169
(+3.13)

18.3957
(+0.62)

97.37
(+0.53)

527.14
(+9.90)

200
(% change)

3.4097
(+6.55)

8.5319
(+3.32)

18.5333
(+1.38)

97.04
(+0.19)

535.08
(+11.55)

250
(% change)

3.4380
(+7.43)

8.5546
(+3.59)

18.5477
(+1.46)

97.36
(+0.52)

540.99
(+12.78)

293
(% change)

3.4531
(+7.91)

8.6123
(+4.29)

18.5236
(+1.32)

97.27
(+0.42)

546.46
(+13.92)

293 (D5000) 3.4486
(+7.77)

8.6517
(+4.77)

18.6439
(+1.98)

99.66
(+2.89)

548.37
(+14.32)

Table 7.2.4  Unit cell parameters of published structure and those obtained from the LeBail fit on the 
D5000 and D5005 experimental data over a range of temperatures.  The numbers in brackets denote 

the percentage change with respect to those values obtained from the 10K data.
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Figure 7.2.16  Graph showing the percentage change in unit cell dimensions with temperature.

Figure 7.2.17  Section of superimposed powder diffraction data at all temperatures showing selected peak 
(111) shifting towards a higher 2θ with decreasing temperature.
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7.2.4  Discussion

Figure 7.2.18  DNA monomer showing guanine as tautomer 19. [Figure reproduced from D. J. Taylor, N. P 
O. Green and G. W. Stout, “Biological Science 1 & 2”, Cambridge University Press, 3rd Edition, 1997]

Although the crystal structure of tautomer 19 has not  been previously documented, its existence in nature 

is certain.  A detailed examination of the structure of DNA reveals that  in order for guanine to form hydrogen 

bonds with cytosine, thus enabling the formation of the double-helical structure characteristic of this nucleic 

acid, the purine must  exist  as tautomer 19, with hydrogen atoms attached to N1 and N9.  The possible 

existence of polymorphs of this structure is not  to be excluded.  However, the lowest  energy structures 

resulting from the computational search for this tautomer all exhibited the same hydrogen bonding motif.  

This implies that, although possible, the chances of the occurrence of a thermodynamically stable structure 

having a different arrangement are rather remote.
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7.3  Adenine vs Guanine

 

Figure 7.3.1  Crystal structure of guanine12.  Hydrogen bonds are shown by the green dotted lines.

 The crystal structure of guanine12 contains hydrogen bonded sheets which are comparable to 

those found in adenine [Section 7.1].  However, the presence of a carbonyl group  in guanine is 

responsible for differences in the hydrogen bonding networks of the two purines.  As opposed to having 

only  NH----N hydrogen bonds, each molecule in guanine is linked via four NH---N and four NH---O 

hydrogen bonds to three others using all strong donors and acceptors.  Every  molecule is bonded 

through 8 hydrogen bonds, donating 4 and accepting 4, and forming R  (8) and R  (10) motifs.  Each 

ring of six molecules is again surrounded by six other rings, forming a honeycomb pattern in much the 

same way as adenine does [Figures 7.3.1 and 7.3.2]. 
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Figure 7.3.2  Crystal structure of adenine.  Hydrogen bonds are shown by the purple dotted lines.

 Although the crystal structures of adenine and guanine are comparable, there are some 

fundamental differences between them.  While adenine has two molecules in the asymmetric unit, 

guanine has only one.  Their graph sets, both made up of two rings each having a pair of donors and a 

pair of acceptors, follow R  (8) and R  (9) motifs in adenine, and R  (8) and R  (10) motifs in guanine.  

Additionally, adenine is a disordered structure, while guanine is not.
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8.  CONCLUSIONS AND FURTHER WORK

If various polymorphic forms of an active pharmaceutical ingredient exhibit different physico-

chemical properties, characteristics such as bioavailability  and toxicity may  be affected.  It  is 

primarily  for this reason that during the pre-formulation stage of drug development, polymorph 

screening is a time and resource-consuming, but  essential process.  Before a drug is launched on 

the market, pharmaceutical companies apply for patents on various aspects of the drug product to 

prevent others from marketing the same product.  Patenting all solid forms of a drug substance 

does not only protect the company  that has invested money on researching that drug, but it  also 

serves as an assurance to patients that the relevant polymorph screens have been carried out.  This 

reduces the likelihood of drug substances changing form (to a potentially lethal or ineffective 

form) on the shelf - a phenomenon that has proven fatal to some patients in the past.  The 

development of a high-throughput combinatorial strategy  by which new polymorphs may be 

predicted and confirmed experimentally  may  therefore eventually  lead to the controlled 

production of desired polymorphs, thus saving time and money, and reducing the risk of 

Ritonavir® repetitions.

For combined techniques such as the one adopted in this project to be effective, an agreement 

factor which is more reliable than Rwp is necessary for the comparison of theoretical and 

experimental structures.  From the study  of the three known structures imidazole, chlorothalonil 

and 5-azauracil described in this report, the respective Rwp values showed no agreement between 

predicted and experimental structures, neither at  0K or the temperatures at which potentials were 

derived, nor at  temperatures corresponding to the experimental single crystal structures used for 

reference.  In all three cases, however, the predicted structures are correct.

The nature of the comparison made in this study  imposes inevitable discrepancies between the 

two powder patterns being compared.  Factors which result  in peak shifts along 2θ, such as 

temperature difference and experimental error among others, make a pointwise comparison such 

as Rwp futile, even in the case of two matching structures.  More contemporary  comparison 

techniques such as those employed by PolySNAP and Compare allow more flexibility.  Although 

in the study  of the three known structures neither PolySNAP nor Compare.x identified the correct 
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structure at all temperatures, there was reasonable overlap in all three cases.  Compare.x generally 

gave higher correlation values, possibly  due to triangular windows encompassing more than one 

peak on the corresponding powder pattern.

The inclusion of neighbourhood weighting factors (such as those used in Compare.x) leads to 

a more discriminatory comparison between powder patterns, when compared with conventional 

pointwise approaches.  In the case of experimentally-obtained powder data, factors such as zero 

point errors, preferred orientation, peak broadening, and noise may influence the outcome of the 

comparison.  PolySNAP comparisons, based on a principal component analysis system, search for 

distinct  patterns within the structures, thus overcoming some of the problems associated with 

comparing experimental and theoretical data.  The degree of discrimination between structures 

ranked first and the next best ones was greater than that obtained during Compare.x analysis.  

Again, this is probably due to the presence of more than one peak in the stipulated search window.  

PolySNAP showed a greater sensitivity to temperature as opposed to Compare.x, which 

demonstrated more stability  across the temperature range.  This could lead to a slight difference in 

application of the two methods.  Although there is generally an appreciable overlap  of the results 

obtained with both approaches, Compare.x would be the method of choice if there is a 

considerable but non-definable zero-point error.  If the error can be measured, then this could be 

defined in PolySNAP prior to comparison.  On the other hand, the presence of experimental 

factors such as noise, broad peaks or preferred orientation would make PolySNAP the method of 

choice.

It  is clear from this study  that automated comparisons are useful in enabling both the solution 

of crystal structures from non-ideal powder data as well as the identification of the most  likely 

predicted structure out of a group  of low-energy structures.  Human input, however, still remains 

crucial to the successful outcome of such comparisons, because while automated comparisons 

reduce analysis time drastically, no two structure solution stories are identical.  Numerical criteria 

provided by  the automated comparisons are important for the assessment of the fit in quantitative 

detail.  These must always, however, be complemented by graphical criteria which are essential 

for visual comparison of the structures which, numerically, have resulted as best-fitting.  This step 
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still remains crucial in any success story, because it is usually  by  looking at  the global picture that 

early noting of errors or omissions may be made.

In future, a closer look at  thermal expansion and its implications could possibly  be translated 

into numerical form in order to be incorporated into automated comparison calculations.  This 

would be done in view to standardise the methods, thus making them more reproducible and 

applicable to most small molecules.
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9.  APPENDICES

A1.  Rwp

c Rwp code 

program im 

implicit double precision (a-h/o-z) 
integer natom 
character*10 line1 
character*70 line2 
character*4 line3 
character*6 atom_label 
character*12 line4 
character*68 line5 
character*60 res 
character*18 resnam 
real aa,bb,cc,alpha,beta,gamma 
real atom_type,xx,yy,zz 
dimension atom_label(100),atom_type(100),xx(100),yy(100),zz(100) 

OPEN (UNIT=15,STATUS='unknown',FILE='2IMIDB.EXP') 
OPEN (UNIT=l,STATUS='unknown',FILE='MIXU.EXP') 
OPEN (UNIT=21,STATUS = 'unknown',FILE='rwpval.txt') 
OPEN (UNIT=12,STATUS = 'unknown',FILE='rwp.txt') 

c This section asks how many atoms are included in the molecule 

30 WRITE (*,*) 'How many atoms are present?' 
READ (*,*) natom

c This part askes which res file to use 

40 WRITE (*,*) 'Enter res file to use' 
READ (*,*) res 

41 OPEN (UNIT=16,FILE=res,FORM='formatted' ,STATUS='old') 

c This section reads in a,b,c,alpha,beta,gamma from the res file 

98 READ (16,400,END=103) LINE3 
if (line3.eq. 'TITL') GOTO 99 
GOTO 98 

103 continue 

99 READ (16,300) AA,BB,CC,ALPHA,BETA,GAMMA 
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c This section replaces the no of atoms in the exp file with natom 

56 READ (15,100,END=58) LINE1,LINE2 
if (line1.eq. 'CRS1 NAT') GOTO 58 
WRITE (1,100) LINE1,LINE2 
GOTO 56 

57 continue 

58 WRITE (1,550) 'CRS1 NATOM',natom 

c This section copies the GSAS exp file onto another file and 
c enters the new values of a,b, and c from the res file 

101 READ (15,100,END=102) LINE1,LINE2 
if (line1.eq. 'CRS1 ABC ') GOTO 90 
WRITE (1,100) LINE1,LINE2 
GO TO 101 

102 continue 

90 WRITE (1,500) 'CRS1 ABC ',AA,BB,CC

c This section continues to copy the GSAS exp file and enters 
c the new values of alpha, beta, and gamma from the res file 

104 READ (15,100,END=105) LINE1,LINE2
if (line1.eq. 'CRS1 ANGL') GO TO 96 
WRITE (1,100) LINE1,LINE2 
GOTO 104 

105 continue 

96 WRITE (1,800) 'CRS1 ANGLES',ALPHA,BETA,GAMMA 

c This section continues to copy the GSAS exp file and enters 
c the new values of x,y, and z from the res file 

109 READ (15,600,END=205) LINE4,LINE2 
if (line4.eq. 'CRS1 AT 1A') GOTO 50 
WRITE (1,600) LINE4,LINE2 
GOTO 109 

205 continue 

50 READ (16,440,END=55) LINE3 
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if (line3.eq. 'SFAC') GO TO 60
GO TO 50 

55 continue 

c This is a loop which copies the info from the res file for as 
c many atoms as stated earlier in the answer to the question asked 

60 DO 70 i=l,natom 

READ (16,330) atom_label(i),atom_type(i),xx(i),yy(i),zz(i) 

80 WRITE (1,220) 'CRS1 AT ',(i),'A','N',xx(i),yy(i),zz(i), 
    1  'l.000000',atom_label(i),'4 000' 
WRITE (1,110) 'CRS1 AT ',(i),'B','0.02500','I' 

70 continue 

c This section continues to copy the GSAS exp file to the end 

107 READ (15,100,END=108) LINE1,LINE2 
if (line1.eq. 'CRS1 AT') GOTO 107
if (line1.eq. 'CRS1 CELV') GOTO 118 

118 WRITE (1,100) LINE1,LINE2 

108 continue 

129 READ (15,100,END=119) LINE1,LINE2
WRITE (1,100) LINE1,LINE2 

40 GOTO 129

119continue

CThis section will call gsas to convert new exp file to correct 
cformat then it will call gsas, run genles and generate a LST file 

18 call system('/home/gsas/exe/cnvfile MIXU.EXP') 

31 continue 

32 call system('/home/gsas/exe/powpref MIXU') 
call system('/home/gsas/exe/genles MIXU >gsas.out')
call system('rm MIXU.LST') 
call system('grep totals gsas.out > rwp.txt') 

continue 
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c This will read the rwp values and write them and res name to 
c rwpval.out 

33 READ (12,880,end=35)rwp
GOTO 33 

35 rwp=rwp*100 

39 continue 

36 WRITE (21,900)res,rwp 
close (12) 
return 
continue 

100 format (A10,A70) 
200 format (A10,3f9.6) 
300 format (8x,6f10.4) 
400 format (A4,A4,A60) 
500 format (A12,3f10.6) 
600 format (A12,A68) 
700 format (A12,A5) 
800 format (A12,3f10.5) 
900 format (A18,f7.4) 
110format (A10,I1,A1,2x,A7,A54) 
220 format (A10,I1,A1,A3,7x,3f10.6,A10,A6,A10) 
330 format (A6,A2,3f13.8) 
440 format (A4,A4,A60) 
550 format (A12,3x,I2,A63) 
880 format (36x,f6.4) 

510 stop 

end
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A2.  IMIDAZOLE

A2.1  Low Temperature Data

Figure A2.1  Powder diffraction data at all temperatures (D5005)
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A2.2  Rwp
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Figure A2.2.1  Powder pattern of top ranked predicted structure at 10K (D5005) and experimental 
pattern at that temperature
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Figure A2.2.2  Powder pattern of top ranked predicted structure at 50K (D5005) and experimental 
pattern at that temperature
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Figure A2.2.3  Powder pattern of top ranked predicted structure at 150K and 250K (D5005) and 
experimental patterns at these temperatures
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Figure A2.2.4  Powder pattern of top ranked predicted structure at 200K (D5005) and experimental 
pattern at that temperature
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Figure A2.2.5  Powder pattern of top ranked predicted structure at room temperature (D5005) and 
experimental pattern at that temperature
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Figure A2.2.6  Powder pattern of top ranked predicted structure at room temperature (D5000) and 
experimental pattern at that temperature
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A2.3  PolySNAP
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Figure A2.3.1  Powder pattern of top ranked predicted structure at 10K and 50K (D5005), and 
experimental patterns at those temperatures
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Figure A2.3.2  Powder patterns of top ranked predicted structure at 150K, 200K, 250K and room 
temperature (D5005) and experimental patterns at those temperatures
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Figure A2.3.3  Powder patterns of top ranked predicted structure at room temperature (D5000) and 
experimental patterns at those temperatures

Appendix A2 Liana Vella-Żarb

187



A2.4  Compare.x
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Figure A2.4.1  Powder pattern of top ranked predicted structure at 10K and 50K (D5005) and 
experimental patterns at those temperatures
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Figure A2.4.2  Powder pattern of top ranked predicted structure at 150K, 200K and 250K (D5005) and 
experimental patterns at those temperatures
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Figure A2.4.3  Powder pattern of top ranked predicted structure at room temperature (D5000 and 
D5005) and experimental patterns at those temperatures
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Results obtained using Compare.x with various values of triangle windows.  In each case, the tables 

show the structure with the highest  correlation coefficient  [C(x)] at each temperature, and the difference 

to the value obtained for the correct structure [C(ak34)].  In cases where the correct  structure was 

identified, the difference was positive. An incorrect match gave a negative difference, as shown by the 

values in red and blue.  Blue denotes ak34 being ranked second, while values in red correspond to ak34 

being ranked third or lower.

Table A2.4.1.  Triangle window 0.5.

Temperature (K) Structure Correlation Coefficient Difference
[C(ak34) - C(x)]

10

50

150

200

250

293

293 (D5000)

am32 0.66294 -0.19810

am32 0.67067 -0.17771

ak66 0.73371 -0.07523

ak66 0.76105 -0.06888

ak34 0.76115 0.01505

ai35 0.71675 -0.12950

ai35 0.65683 -0.19758

Table A2.4.2.  Triangle window 1.0.

Temperature (K) Structure Correlation Coefficient Difference
[C(ak34) - C(x)]

10

50

150

200

250

293

293 (D5000)

am32 0.76926 -0.12467

am32 0.78164 -0.11389

ak66 0.83363 -0.02332

ak66 0.83856 -0.00668

ak34 0.87510 0.03544

ai35 0.81807 -0.06026

ai35 0.77485 -0.10092
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Table A2.4.3.  Triangle window 1.5.

Temperature (K) Structure Correlation Coefficient Difference
[C(ak34) - C(x)]

10

50

150

200

250

293

293 (D5000)

am32 0.83533 -0.08420

am32 0.84838 -0.07779

ak66 0.86600 -0.00920

ak66 0.86577 -0.00446

ak34 0.88965 0.00686

ai35 0.86348 -0.03613

ai35 0.85226 -0.07900

Table A2.4.4.  Triangle window 2.0.

Temperature (K) Structure Correlation Coefficient Difference
[C(ak34) - C(x)]

10

50

150

200

250

293

293 (D5000)

am32 0.86910 -0.05156

am32 0.87991 -0.04717

ak34 0.89473 0.00721

ak34 0.89512 0.01275

ak34 0.90977 0.01048

ai35 0.89375 -0.03221

ai35 0.89247 -0.03365

Appendix A2 Liana Vella-Żarb

192



Table A2.4.5.  Triangle window 2.5.

Temperature (K) Structure Correlation Coefficient Difference
[C(ak34) - C(x)]

10

50

150

200

250

293

293 (D5000)

am32 0.89112 -0.03553

am32 0.89888 -0.03205

ak34 0.91226 0.01338

ak34 0.91038 0.01386

ak34 0.92212 0.00551

ai35 0.90818 -0.01885

ak66 0.91188 -0.03377

Table A2.4.6.  Triangle window 3.0.

Temperature (K) Structure Correlation Coefficient Difference
[C(ak34) - C(x)]

10

50

150

200

250

293

293 (D5000)

am32 0.90808 -0.02822

am32 0.91413 -0.02636

ak34 0.92523 0.01318

ak34 0.92322 0.01238

ak34 0.93366 0.00190

ak66 0.92260 -0.01650

ak66 0.92525 -0.02571
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Table A2.4.7.  Triangle window 3.5.

Temperature (K) Structure Correlation Coefficient Difference
[C(ak34) - C(x)]

10

50

150

200

250

293

293 (D5000)

am32 0.92110 -0.02490

am32 0.92577 -0.02319

ak34 0.93457 0.00755

ak34 0.93216 0.00494

ak66 0.94071 -0.00933

fc72 0.93305 -0.01911

ai35 0.92540 -0.01989

Table A2.4.8.  Triangle window 4.0.

Temperature (K) Structure Correlation Coefficient Difference
[C(ak34) - C(x)]

10

50

150

200

250

293

293 (D5000)

am32 0.93231 -0.02221

am32 0.93623 -0.02051

ak34 0.94255 0.00220

ak34 0.93948 0.00132

ak66 0.94588 -0.00222

fc72 0.94320 -0.02327

ai35 0.92926 -0.01748
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A3.  CHLOROTHALONIL

A3.1  Low Temperature Data

Figure A3.1  Powder diffraction data at all temperatures (D5005)
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A3.2  Rwp
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Figure A3.2.1  Powder pattern of top ranked predicted structure at 100K and room temperature 
(D5005) and experimental patterns at these temperatures
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Figure A3.2.2  Powder pattern of top ranked predicted structure at 150K (D5005) and experimental 
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Figure A3.2.3  Powder pattern of top ranked predicted structure at 200K (D5005) and experimental 
pattern at that temperature
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Figure A3.2.4  Powder pattern of top ranked predicted structure at 250K (D5005) and experimental 
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Figure A3.2.5  Powder pattern of top ranked predicted structure at room temperature (D5000) and 
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A3.3  PolySNAP
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Figure A3.3.1  Powder pattern of top ranked predicted structure at 100K, 150K and 200K (D5005) and 
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Figure A3.3.2  Powder pattern of top ranked predicted structure at 250K and room temperature 
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Figure A3.3.3  Powder pattern of top ranked predicted structure at room temperature (D5000) and 
experimental pattern at that temperature
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A3.4  Compare.x
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Figure A3.4.1  Powder pattern of top ranked predicted structure at 100K (D5005) and experimental 
pattern at that temperature
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Figure A3.4.2  Powder pattern of top ranked predicted structure at 150K, 200K and 250K (D5005) and 
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Figure A3.4.3  Powder pattern of top ranked predicted structure at room temperature (D5000 and 
D5005) and experimental pattern at that temperature
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Results obtained using Compare.x with various values of triangle windows.  In each case, the tables 

show the structure with the highest  correlation coefficient  [C(x)] at each temperature, and the difference 

to the value obtained for the correct  structure [C(fc45)].  In cases where the correct structure was 

identified, the difference was positive. An incorrect match gave a negative difference, as shown by the 

values in red and blue.  Blue denotes fc45 being ranked second, while values in red correspond to fc45 

being ranked third or lower.

Table A3.4.1.  Triangle window 0.5.

Temperature (K) Structure Correlation Coefficient Difference
[C(fc45) - C(x)]

100

150

200

250

293

293 (D5000)

fc45 0.82539 0.03170

fc45 0.85025 0.08551

fc45 0.85246 0.09692

fc45 0.81109 0.01029

ai44 0.83041 -0.07613

fc47 0.50190 -0.05690

Table A3.4.2.  Triangle window 1.0.

Temperature (K) Structure Correlation Coefficient Difference
[C(fc45) - C(x)]

100

150

200

250

293

293 (D5000)

fc4 0.88291 -0.00194

fc45 0.88761 0.01623

fc45 0.88579 0.03166

fc45 0.87166 0.00510

fc47 0.87741 -0.02883

fc47 0.61438 -0.07702
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Table A3.4.3.  Triangle window 1.5.

Temperature (K) Structure Correlation Coefficient Difference
[C(fc45) - C(x)]

100

150

200

250

293

293 (D5000)

fc4 0.92652 -0.01652

fc45 0.91086 0.00351

fc45 0.91717 0.01243

fc45 0.90225 0.00372

fc47 0.90523 -0.02114

fc47 0.69772 -0.09278

Table A3.4.4.  Triangle window 2.0.

Temperature (K) Structure Correlation Coefficient Difference
[C(fc45) - C(x)]

100

150

200

250

293

293 (D5000)

fc4 0.94087 -0.01095

fc45 0.92792 0.00393

fc45 0.93188 0.01031

fc45 0.92003 0.00273

fc47 0.91949 -0.01272

fc47 0.74710 -0.10348

Table A3.4.5.  Triangle window 2.5.

Temperature (K) Structure Correlation Coefficient Difference
[C(fc45) - C(x)]

100

150

200

250

293

293 (D5000)

fc4 0.94672 -0.00218

fc45 0.94020 0.00057

fc45 0.93726 0.00164

fc47 0.93504 -0.00414

fc47 0.93098 -0.00783

fc47 0.76497 -0.10461
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Table A3.4.6.  Triangle window 3.0.

Temperature (K) Structure Correlation Coefficient Difference
[C(fc45) - C(x)]

100

150

200

250

293

293 (D5000)

fc4 0.95481 -0.00317

fc45 0.94662 0.00024

fc45 0.94161 0.00242

fc47 0.93676 -0.00025

fc47 0.93356 -0.00475

fc47 0.77165 -0.08863

Table A3.4.7.  Triangle window 3.5.

Temperature (K) Structure Correlation Coefficient Difference
[C(fc45) - C(x)]

100

150

200

250

293

293 (D5000)

fc4 0.96368 -0.00686

fc4 0.95494 -0.00385

fc4 0.94846 -0.00232

fc47 0.94264 -0.00045

fc47 0.93894 -0.00442

fc47 0.78153 -0.10575

Table A3.4.8.  Triangle window 4.0.

Temperature (K) Structure Correlation Coefficient Difference
[C(fc45) - C(x)]

100

150

200

250

293

293 (D5000)

fc4 0.96980 -0.00759

fc4 0.96079 -0.00474

fc4 0.95493 -0.00387

fc4 0.94900 -0.00282

fc4 0.94372 -0.00349

fc4 0.79224 -0.11128
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A4.  5-AZAURACIL

A4.1  Low Temperature Data
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Figure A4.1  Powder diffraction data at all temperatures (D5005)
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Figure A4.2.1  Powder pattern of top ranked predicted structure at 10K (D5005) and experimental 
pattern at that temperature
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Figure A4.2.2  Powder pattern of top ranked predicted structure at 100K (D5005) and experimental 
pattern at that temperature
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Figure A4.2.3  Powder pattern of top ranked predicted structure at 150K (D5005) and experimental 
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Figure A4.2.4  Powder pattern of top ranked predicted structure at 200K (D5005) and experimental 
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Figure A4.2.5  Powder pattern of top ranked predicted structure at 250K (D5005) and experimental 
pattern at that temperature

Appendix A4 Liana Vella-Żarb

215



Intensity

2 
θ 

/ d
eg

re
es

!
"

#
!
!
!
!
"

$
!
!
!
!
"

%
!
!
!
!
"

&
!
!
!
!
"

'
!
!
!
!
"

(
!
!
!
!
"

#
!
"

#
'
"

$
!
"

$
'
"

%
!
"

%
'
"

&
!
"

)
*
"

+
,
(
$
"

Figure A4.2.6  Powder pattern of top ranked predicted structure at room temperature (D5005) and 
experimental pattern at that temperature
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Figure A4.2.7  Powder pattern of top ranked predicted structure at room temperature (D5000) and 
experimental pattern at that temperature

Appendix A4 Liana Vella-Żarb

217



A4.3  PolySNAP
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Figure A4.3.1  Powder pattern of top ranked predicted structure at 10K and 100K (D5005) and 
experimental patterns at these temperatures
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Figure A4.3.2  Powder pattern of top ranked predicted structure at 150K, 200K, 250K and room 
temperature (D5005) and experimental patterns at these temperatures
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Figure A4.3.3  Powder pattern of top ranked predicted structure at room temperature (D5000) and 
experimental pattern at that temperature
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A4.4  Compare.x
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Figure A4.4.1  Powder pattern of top ranked predicted structure at 10K and 100K (D5005) and 
experimental patterns at these temperatures
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Figure A4.4.2  Powder pattern of top ranked predicted structure at 150K, 200K and 250K (D5005) and 
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Figure A4.4.3  Powder pattern of top ranked predicted structure at room temperature (D5005) and 
experimental pattern at that temperature
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Figure A4.4.4  Powder pattern of top ranked predicted structure at room temperature (D5000) and 
experimental pattern at that temperature
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Results obtained using Compare.x with various values of triangle windows.  In each case, the tables 

show the structure with the highest  correlation coefficient  [C(x)] at each temperature, and the difference 

to the value obtained for the correct structure [C(cb2)].  In cases where the correct structure was 

identified, the difference was positive. An incorrect match gave a negative difference, as shown by the 

values in red and blue.  Blue denotes cb2 being ranked second, while values in red correspond to cb2 

being ranked third or lower.

Table A4.4.1.  Triangle window 0.5.

Temperature (K) Structure Correlation Coefficient Difference
[C(cb2) - C(x)]

10

100

150

200

250

293

293 (D5000)

aq85 0.78135 -0.34852

aq85 0.76313 -0.27214

aq62 0.68007 -0.05562

fa22 0.70322 -0.04605

cb2 0.69752 0.00385

fc54 0.70654 -0.10698

cb117 0.57229 -0.17499

Table A4.4.2.  Triangle window 1.0.

Temperature (K) Structure Correlation Coefficient Difference
[C(cb2) - C(x)]

10

100

150

200

250

293

293 (D5000)

aq85 0.79499 -0.11708

aq85 0.79274 -0.08851

fa22 0.76337 -0.00333

fa22 0.77458 -0.00205

cb2 0.78864 0.00949

cb117 0.80960 -0.05846

cb117 0.63186 -0.08100
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Table A4.4.3.  Triangle window 1.5.

Temperature (K) Structure Correlation Coefficient Difference
[C(cb2) - C(x)]

10

100

150

200

250

293

293 (D5000)

fa41 0.82743 -0.05424

fa41 0.82878 -0.03887

cb2 0.82461 0.00694

cb2 0.83168 0.00784

cb2 0.84306 0.01560

cb117 0.85475 -0.02721

fa53 0.67861 -0.04626

Table A4.4.4.  Triangle window 2.0.

Temperature (K) Structure Correlation Coefficient Difference
[C(cb2) - C(x)]

10

100

150

200

250

293

293 (D5000)

aq62 0.85495 -0.02748

fa41 0.85603 -0.01776

cb2 0.86128 0.00390

cb2 0.86557 0.00882

cb2 0.87492 0.01531

cb117 0.88866 -0.01638

fa53 0.74789 -0.06058

Appendix A4 Liana Vella-Żarb

226



Table A4.4.5.  Triangle window 2.5.

Temperature (K) Structure Correlation Coefficient Difference
[C(cb2) - C(x)]

10

100

150

200

250

293

293 (D5000)

fa41 0.87017 -0.01149

aq62 0.87444 -0.00779

cb2 0.88649 0.00438

cb2 0.89075 0.00958

cb2 0.90463 0.01662

cb2 0.91051 0.00481

fa53 0.79366 -0.06947

Table A4.4.6.  Triangle window 3.0.

Temperature (K) Structure Correlation Coefficient Difference
[C(cb2) - C(x)]

10

100

150

200

250

293

293 (D5000)

aq62 0.88611 -0.00688

aq62 0.89214 -0.00606

cb2 0.90135 0.00310

cb2 0.90400 0.00332

cb2 0.91328 0.00682

fc54 0.92535 -0.00629

fa53 0.81837 -0.07854
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Table A4.4.7.  Triangle window 3.5.

Temperature (K) Structure Correlation Coefficient Difference
[C(cb2) - C(x)]

10

100

150

200

250

293

293 (D5000)

aq62 0.90390 -0.00850

aq62 0.90938 -0.00872

aq62 0.91456 -0.00124

fa22 0.91631 -0.00087

cb2 0.92382 0.00008

fc54 0.93173 -0.00252

fa53 0.82780 -0.07212

Table A4.4.8.  Triangle window 4.0.

Temperature (K) Structure Correlation Coefficient Difference
[C(cb2) - C(x)]

10

100

150

200

250

293

293 (D5000)

aq62 0.92447 -0.00966

aq62 0.92817 -0.0095

fa22 0.93216 -0.00408

fa22 0.93389 -0.00456

fa22 0.94056 -0.00483

fa22 0.94664 -0.00548

fa53 0.83455 -0.06168
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A5.  DNA BASES

A5.1  Adenine

A5.1.1  Background

Method Solvents Results

Slow evaporation Methanol, propan-2-ol, 
tertbutylmethylether, THF, 
butan-1-ol, propan-1-ol

Small particles of solid - not enough for 
characterisation analysis

Slow evaporation 2,2,2-trifluoroethanol, acetic 
acid, dimethylamine in H2O, 
2-methoxyetylamine

Microcrystalline solid - powder pattern 
matched stock sample

Slow evaporation 2-chloroethanol Adeninium chloride hemihydrate

Slow evaporation Equimolar amounts of 
thymine/adenine and 
cytosine/adenine in dilute 
hydrochloric acid, dilute 
h y d r o c h l o r i c a c i d , 
concentrated hydrochloric 
acid

Adeninium dichloride

Slow evaporation H2O Microcrystalline solid - poor powder pattern 
which could not be indexed, did not match 
stock sample or known trihydrate structure

Sublimation - Microcrystalline solid - powder pattern 
matched stock sample

Table A5.1.1  The results of the crystallisation experiments on adenine.  Other crystallisation 
experiments did not give any products for analysis7 [Referenced on page 116].
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A5.1.1  Low Temperature Data

0
 

1
0

0
0

0
 

2
0

0
0

0
 

3
0

0
0

0
 

4
0

0
0

0
 

5
0

0
0

0
 

6
0

0
0

0
 1

0
 

1
5

 
2

0
 

2
5

 
3

0
 

3
5

 
4

0
 

1
0

K
 

5
0

K
 

1
0

0
K

 

1
5

0
K

 

2
0

0
K

 

2
5

0
K

 

R
T

 

2 
θ 

/ d
eg

re
es

Intensity

Figure A5.1.1  Powder diffraction data at all temperatures (D5005)
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A5.1.3  Rwp
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Figure A5.1.1  Powder pattern of top ranked predicted structure at 10K and 250K (D5005) and 
experimental patterns at these temperatures
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Figure A5.1.2  Powder pattern of top ranked predicted structure at 50K (D5005) and experimental 
pattern at this temperature
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Figure A5.1.3  Powder pattern of top ranked predicted structure at 100K and 200K (D5005) and 
experimental patterns at these temperatures
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Figure A5.1.4  Powder pattern of top ranked predicted structure at 150K (D5005) and experimental 
pattern at this temperature
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Figure A5.1.5  Powder pattern of top ranked predicted structure at room temperature (D5005) and 
experimental pattern at this temperature
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Figure A5.1.6  Powder pattern of top ranked predicted structure at room temperature (D5000) and 
experimental pattern at this temperature
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A5.1.4  Compare.x

Results obtained using Compare.x with various values of triangle windows.  In each case, the tables 

show the structure with the highest  correlation coefficient  [C(x)] at each temperature, and the difference 

to the value obtained for the correct structure [C(cc71)].  In cases where the correct structure was 

identified, the difference was positive. An incorrect match gave a negative difference, as shown by the 

values in red and blue.  Blue denotes cc71 being ranked second, while values in red correspond to cc71 

being ranked third or lower.

Table A5.1.4.1.  Triangle window 0.5.

Temperature (K) Structure Correlation Coefficient Difference
[C(cc71) - C(x)]

10

50

100

150

200

250

293

293 (D5000)

fc4 0.79532 -0.32973

fc4 0.80933 -0.33646

fc4 0.7996 -0.32923

fc4 0.78255 -0.32015

fc4 0.73332 -0.2863

fc4 0.6329 -0.21183

am43 0.61454 -0.2076

am43 0.60252 -0.27965
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Table A5.1.4.2.  Triangle window 1.0.

Temperature (K) Structure Correlation Coefficient Difference
[C(cc71) - C(x)]

10

50

100

150

200

250

293

293 (D5000)

fc4 0.84304 -0.22984

fc4 0.85032 -0.23712

fc4 0.84302 -0.22966

fc4 0.83462 -0.22113

fc4 0.80994 -0.20158

fc4 0.76287 -0.16559

am43 0.74622 -0.16182

am43 0.6563 -0.22563

Table A5.1.4.3.  Triangle window 1.5.

Temperature (K) Structure Correlation Coefficient Difference
[C(cc71) - C(x)]

10

50

100

150

200

250

293

293 (D5000)

cc71 0.86323 0.10665

cc71 0.86793 0.1147

cc71 0.86202 0.11012

cc71 0.85685 0.09648

cc71 0.83976 0.07151

cc71 0.81179 0.02576

cc71 0.80019 0.02112

cc71 0.69074 0.02096
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Table A5.1.4.4.  Triangle window 2.0.

Temperature (K) Structure Correlation Coefficient Difference
[C(cc71) - C(x)]

10

50

100

150

200

250

293

293 (D5000)

cc71 0.87413 0.05952

cc71 0.87812 0.05851

cc71 0.87276 0.05787

cc71 0.86874 0.05352

cc71 0.85485 0.03659

cc71 0.83472 0.00631

dd101 0.83534 0.02411

dd101 0.72463 0.00017

Table A5.1.4.5.  Triangle window 2.5.

Temperature (K) Structure Correlation Coefficient Difference
[C(cc71) - C(x)]

10

50

100

150

200

250

293

293 (D5000)

cc71 0.88077 0.04065

cc71 0.88442 0.04004

cc71 0.87948 0.03955

cc71 0.87594 0.03829

cc71 0.86347 0.02815

cc71 0.84648 0.00374

dd101 0.84769 0.02057

cd53 0.75726 0.00124
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Table A5.1.4.6.  Triangle window 3.0.

Temperature (K) Structure Correlation Coefficient Difference
[C(cc71) - C(x)]

10

50

100

150

200

250

293

293 (D5000)

cc71 0.89341 0.03835

cc71 0.89651 0.03771

cc71 0.89221 0.03773

cc71 0.88901 0.03611

cc71 0.87819 0.02628

cc71 0.86445 0.00767

dd101 0.85934 -0.01084

cd53 0.77648 -0.00118

Table A5.1.4.7.  Triangle window 3.5.

Temperature (K) Structure Correlation Coefficient Difference
[C(cc71) - C(x)]

10

50

100

150

200

250

293

293 (D5000)

cc71 0.90172 0.02793

cc71 0.90453 0.02682

cc71 0.90068 0.02676

cc71 0.89778 0.02777

cc71 0.88817 0.021

cc71 0.87658 0.00667

dd101 0.87026 -0.00722

cd53 0.79197 -0.00298
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Table A5.1.4.8.  Triangle window 4.0.

Temperature (K) Structure Correlation Coefficient Difference
[C(cc71) - C(x)]

10

50

100

150

200

250

293

293 (D5000)

cc71 0.90983 0.01494

cc71 0.91243 0.01424

cc71 0.90887 0.01445

cc71 0.90626 0.01462

cc71 0.89769 0.01341

cc71 0.88819 0.00376

dd101 0.88282 -0.00495

cd53 0.81021 -0.00463
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A5.2  Guanine
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A5.2.1  Low Temperature Data
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A5.2.2  Guanine Indexing Output

Running summary of all solutions logged so far for this dataset name,
sorted in descending order of I20 then Merit (as defined by each program)

I20  Merit    Volume   V/V1 BL IndexProg    Date     Time    Pedig     a        
b        c     alpha    beta   gamma     Q(A)      Q(B)      Q(C)      Q(D)      
Q(E)      Q(F)   Description (up to 80-chars, from Run-Title line)
19   17.6     584.475  1.00 P DICVOL91/log 20Mar07 11:57:30 Mon_16  20.1396   
8.6592   3.6633  90.000 113.811  90.000   29.456   133.366   890.276      
.000   130.755      .000  GUANINE = guanine
19   17.6     584.475  1.00 P DICVOL91/log 20Mar07 11:56:51 Mon_16  20.1396   
8.6592   3.6633  90.000 113.811  90.000   29.456   133.366   890.276      
.000   130.755      .000  GUANINE = guanine
19   17.5     584.306  1.00 P DICVOL91/log 20Mar07 11:57:30 Mon_27  23.0636   
8.6590   3.6623  90.000 126.975  90.000   29.455   133.372  1168.179      
.000   223.140      .000  GUANINE = guanine
19   17.5     584.306  1.00 P DICVOL91/log 20Mar07 11:56:51 Mon_27  23.0636   
8.6590   3.6623  90.000 126.975  90.000   29.455   133.372  1168.179      
.000   223.140      .000  GUANINE = guanine
19   17.2     584.308  1.00 P DICVOL91/log 20Mar07 11:57:30 Mon_11  19.5542   
8.6590   3.6623  90.000 109.562  90.000   29.455   133.372   839.716      
.000   105.316      .000  GUANINE = guanine
19   17.2     584.308  1.00 P DICVOL91/log 20Mar07 11:56:51 Mon_11  19.5542   
8.6590   3.6623  90.000 109.562  90.000   29.455   133.372   839.716      
.000   105.316      .000  GUANINE = guanine
19   16.1     586.087  1.00 P DICVOL91/log 20Mar07 11:57:30 Mon_22  21.8221   
8.6579   3.6739  90.000 122.397  90.000   29.455   133.406  1039.188      
.000   187.475      .000  GUANINE = guanine
19   16.1     586.087  1.00 P DICVOL91/log 20Mar07 11:56:51 Mon_22  21.8221   
8.6579   3.6739  90.000 122.397  90.000   29.455   133.406  1039.188      
.000   187.475      .000  GUANINE = guanine
19   16.0     586.188  1.00 P DICVOL91/log 20Mar07 11:57:30 Mon_14  19.5976   
8.6579   3.6746  90.000 109.918  90.000   29.456   133.406   837.832      
.000   107.037      .000  GUANINE = guanine
19   16.0     586.188  1.00 P DICVOL91/log 20Mar07 11:56:51 Mon_14  19.5976   
8.6579   3.6746  90.000 109.918  90.000   29.456   133.406   837.832      
.000   107.037      .000  GUANINE = guanine
19   15.7     598.235  1.02 P DICVOL91/log 20Mar07 11:57:30 Mon__6  18.7431   
8.6598   3.7490  90.000 100.542  90.000   29.451   133.347   736.131      
.000    53.877      .000  GUANINE = guanine
19   15.7     598.235  1.02 P DICVOL91/log 20Mar07 11:56:51 Mon__6  18.7431   
8.6598   3.7490  90.000 100.542  90.000   29.451   133.347   736.131      
.000    53.877      .000  GUANINE = guanine
19   15.7     598.234  1.02 P DICVOL91/log 20Mar07 11:57:30 Mon_23  21.4230   
8.6598   3.7490  90.000 120.668  90.000   29.451   133.347   961.687      
.000   171.681      .000  GUANINE = guanine
19   15.7     598.234  1.02 P DICVOL91/log 20Mar07 11:56:51 Mon_23  21.4230   
8.6598   3.7490  90.000 120.668  90.000   29.451   133.347   961.687      
.000   171.681      .000  GUANINE = guanine
19   15.7     598.233  1.02 P DICVOL91/log 20Mar07 11:57:30 Mon__7  18.8705   
8.6598   3.7490  90.000 102.451  90.000   29.451   133.347   746.177      
.000    63.924      .000  GUANINE = guanine
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19   15.7     598.233  1.02 P DICVOL91/log 20Mar07 11:57:30 Mon_15  19.7755   
8.6598   3.7490  90.000 111.284  90.000   29.451   133.347   819.465      
.000   112.783      .000  GUANINE = guanine
19   15.7     598.233  1.02 P DICVOL91/log 20Mar07 11:56:51 Mon__7  18.8705   
8.6598   3.7490  90.000 102.451  90.000   29.451   133.347   746.177      
.000    63.924      .000  GUANINE = guanine
19   15.7     598.233  1.02 P DICVOL91/log 20Mar07 11:56:51 Mon_15  19.7755   
8.6598   3.7490  90.000 111.284  90.000   29.451   133.347   819.465      
.000   112.783      .000  GUANINE = guanine
19   14.4     584.677  1.00 P DICVOL91/log 20Mar07 11:57:30 Mon_26  24.0562   
8.6575   3.6635  90.000 129.977  90.000   29.427   133.418  1268.841      
.000   248.294      .000  GUANINE = guanine
19   14.4     584.677  1.00 P DICVOL91/log 20Mar07 11:56:51 Mon_26  24.0562   
8.6575   3.6635  90.000 129.977  90.000   29.427   133.418  1268.841      
.000   248.294      .000  GUANINE = guanine
19   14.1     598.419  1.02 P DICVOL91/log 20Mar07 11:57:30 Mon_17  20.0158   
8.6637   3.7487  90.000 112.993  90.000   29.455   133.227   839.734      
.000   122.866      .000  GUANINE = guanine
19   14.1     598.419  1.02 P DICVOL91/log 20Mar07 11:56:51 Mon_17  20.0158   
8.6637   3.7487  90.000 112.993  90.000   29.455   133.227   839.734      
.000   122.866      .000  GUANINE = guanine
19   13.9     584.677  1.00 P DICVOL91/log 20Mar07 11:57:30 Mon__5  18.9674   
8.6575   3.6635  90.000 103.616  90.000   29.427   133.418   788.803      
.000    71.733      .000  GUANINE = guanine
19   13.9     584.677  1.00 P DICVOL91/log 20Mar07 11:56:51 Mon__5  18.9674   
8.6575   3.6635  90.000 103.616  90.000   29.427   133.418   788.803      
.000    71.733      .000  GUANINE = guanine
19   13.9     547.453   .94 P DICVOL91/log 20Mar07 11:57:30 Mon__9   9.1369  
18.4244   3.4299  90.000 108.533  90.000  133.247    29.459   945.565      
.000   225.646      .000  GUANINE = guanine
19   13.9     547.453   .94 P DICVOL91/log 20Mar07 11:56:51 Mon__9   9.1369  
18.4244   3.4299  90.000 108.533  90.000  133.247    29.459   945.565      
.000   225.646      .000  GUANINE = guanine
19   13.9     547.452   .94 P DICVOL91/log 20Mar07 11:57:30 Mon__1   8.6790  
18.4244   3.4299  90.000  93.473  90.000  133.247    29.459   853.167      
.000    40.850      .000  GUANINE = guanine
19   13.9     547.452   .94 P DICVOL91/log 20Mar07 11:56:51 Mon__1   8.6790  
18.4244   3.4299  90.000  93.473  90.000  133.247    29.459   853.167      
.000    40.850      .000  GUANINE = guanine
19   13.9     547.450   .94 P DICVOL91/log 20Mar07 11:57:30 Mon_12   9.5234  
18.4244   3.4299  90.000 114.542  90.000  133.248    29.459  1027.263      
.000   307.345      .000  GUANINE = guanine
19   13.9     547.450   .94 P DICVOL91/log 20Mar07 11:56:51 Mon_12   9.5234  
18.4244   3.4299  90.000 114.542  90.000  133.248    29.459  1027.263      
.000   307.345      .000  GUANINE = guanine
19   13.5     549.308   .94 P DICVOL91/log 20Mar07 11:57:30 Mon_25  22.8078   
8.6603   3.4423  90.000 126.110  90.000   29.453   133.332  1293.008      
.000   230.017      .000  GUANINE = guanine
19   13.5     549.308   .94 P DICVOL91/log 20Mar07 11:56:51 Mon_25  22.8078   
8.6603   3.4423  90.000 126.110  90.000   29.453   133.332  1293.008      
.000   230.017      .000  GUANINE = guanine
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19   13.3     549.308   .94 P DICVOL91/log 20Mar07 11:57:30 Mon_20  20.9644   
8.6603   3.4423  90.000 118.487  90.000   29.453   133.332  1092.442      
.000   171.110      .000  GUANINE = guanine
19   13.3     549.308   .94 P DICVOL91/log 20Mar07 11:56:51 Mon_20  20.9644   
8.6603   3.4423  90.000 118.487  90.000   29.453   133.332  1092.442      
.000   171.110      .000  GUANINE = guanine
19   13.3     549.305   .94 P DICVOL91/log 20Mar07 11:57:30 Mon__3  18.6874   
8.6603   3.4423  90.000  99.594  90.000   29.453   133.332   868.034      
.000    53.298      .000  GUANINE = guanine
19   13.3     549.305   .94 P DICVOL91/log 20Mar07 11:57:30 Mon_10  19.5579   
8.6603   3.4423  90.000 109.588  90.000   29.453   133.332   950.787      
.000   112.205      .000  GUANINE = guanine
19   13.3     549.305   .94 P DICVOL91/log 20Mar07 11:56:51 Mon__3  18.6874   
8.6603   3.4423  90.000  99.594  90.000   29.453   133.332   868.034      
.000    53.298      .000  GUANINE = guanine
19   13.3     549.305   .94 P DICVOL91/log 20Mar07 11:56:51 Mon_10  19.5579   
8.6603   3.4423  90.000 109.588  90.000   29.453   133.332   950.787      
.000   112.205      .000  GUANINE = guanine
19   12.3     580.673   .99 P DICVOL91/log 20Mar07 11:57:30 Mon__8   9.0564  
18.4383   3.6383  90.000 107.103  90.000  133.467    29.414   826.969      
.000   195.408      .000  GUANINE = guanine
19   12.3     580.673   .99 P DICVOL91/log 20Mar07 11:56:51 Mon__8   9.0564  
18.4383   3.6383  90.000 107.103  90.000  133.467    29.414   826.969      
.000   195.408      .000  GUANINE = guanine
19   12.3     580.672   .99 P DICVOL91/log 20Mar07 11:57:30 Mon_18   9.8085  
18.4383   3.6383  90.000 118.056  90.000  133.468    29.414   970.030      
.000   338.468      .000  GUANINE = guanine
19   12.3     580.672   .99 P DICVOL91/log 20Mar07 11:56:51 Mon_18   9.8085  
18.4383   3.6383  90.000 118.056  90.000  133.468    29.414   970.030      
.000   338.468      .000  GUANINE = guanine
19   12.3     549.543   .94 P DICVOL91/log 20Mar07 11:57:30 Mon_13  19.7862   
8.6645   3.4423  90.000 111.376  90.000   29.457   133.203   973.215      
.000   123.426      .000  GUANINE = guanine
19   12.3     549.543   .94 P DICVOL91/log 20Mar07 11:56:51 Mon_13  19.7862   
8.6645   3.4423  90.000 111.376  90.000   29.457   133.203   973.215      
.000   123.426      .000  GUANINE = guanine
19   12.3     549.541   .94 P DICVOL91/log 20Mar07 11:57:30 Mon__4  18.8067   
8.6645   3.4423  90.000 101.563  90.000   29.457   133.203   879.249      
.000    64.517      .000  GUANINE = guanine
19   12.3     549.541   .94 P DICVOL91/log 20Mar07 11:56:51 Mon__4  18.8067   
8.6645   3.4423  90.000 101.563  90.000   29.457   133.203   879.249      
.000    64.517      .000  GUANINE = guanine
19   12.3     549.540   .94 P DICVOL91/log 20Mar07 11:57:30 Mon__2  18.4279   
8.6645   3.4423  90.000  91.018  90.000   29.457   133.203   844.189      
.000     5.603      .000  GUANINE = guanine
19   12.3     549.540   .94 P DICVOL91/log 20Mar07 11:56:51 Mon__2  18.4279   
8.6645   3.4423  90.000  91.018  90.000   29.457   133.203   844.189      
.000     5.603      .000  GUANINE = guanine
19   12.3     549.537   .94 P DICVOL91/log 20Mar07 11:57:30 Mon_21  21.2836   
8.6645   3.4423  90.000 120.039  90.000   29.457   133.203  1126.115      
.000   182.347      .000  GUANINE = guanine
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19   12.3     549.537   .94 P DICVOL91/log 20Mar07 11:56:51 Mon_21  21.2836   
8.6645   3.4423  90.000 120.039  90.000   29.457   133.203  1126.115      
.000   182.347      .000  GUANINE = guanine
19   11.8     580.719   .99 P DICVOL91/log 20Mar07 11:57:30 Mon_24  10.7076  
18.4381   3.6382  90.000 126.052  90.000  133.436    29.415  1155.806      
.000   462.243      .000  GUANINE = guanine
19   11.8     580.719   .99 P DICVOL91/log 20Mar07 11:56:51 Mon_24  10.7076  
18.4381   3.6382  90.000 126.052  90.000  133.436    29.415  1155.806      
.000   462.243      .000  GUANINE = guanine
19   11.3     616.414  1.05 P DICVOL91/log 20Mar07 11:57:30 Mon_28  22.6272   
8.6589   3.8632  90.000 125.473  90.000   29.449   133.375  1010.280      
.000   200.196      .000  GUANINE = guanine
19   11.3     616.414  1.05 P DICVOL91/log 20Mar07 11:56:51 Mon_28  22.6272   
8.6589   3.8632  90.000 125.473  90.000   29.449   133.375  1010.280      
.000   200.196      .000  GUANINE = guanine
19   11.3     549.280   .94 P DICVOL91/log 20Mar07 11:57:30 Mon_19  21.2878   
8.6646   3.4407  90.000 120.060  90.000   29.458   133.200  1127.641      
.000   182.589      .000  GUANINE = guanine
19   11.3     549.280   .94 P DICVOL91/log 20Mar07 11:56:51 Mon_19  21.2878   
8.6646   3.4407  90.000 120.060  90.000   29.458   133.200  1127.641      
.000   182.589      .000  GUANINE = guanine
19   10.69    897.414  1.54 P TAUPv3.3a    20Mar07 11:54:37 Ort__1   5.6268   
8.6551  18.4272  90.000  90.000  90.000  315.8481  133.4916   29.4498     
.0000     .0000     .0000 GUANINE = guanine
19    9.6     616.494  1.05 P DICVOL91/log 20Mar07 11:57:30 Mon_29  23.0976   
8.6569   3.8627  90.000 127.042  90.000   29.420   133.437  1051.964      
.000   211.953      .000  GUANINE = guanine
19    9.6     616.494  1.05 P DICVOL91/log 20Mar07 11:56:51 Mon_29  23.0976   
8.6569   3.8627  90.000 127.042  90.000   29.420   133.437  1051.964      
.000   211.953      .000  GUANINE = guanine
19    9      2092.246  3.58 P TREOR90/log  20Mar07 11:56:20 Ort__3  18.4187  
17.3919   6.5314  90.000  90.000  90.000   29.4770   33.0604  234.4140     
.0000     .0000     .0000 GUANINE = guanine
19    7.1    1579.847  2.70 P DICVOL91/log 20Mar07 11:57:30 Ort__1  36.8566   
8.6592   4.9502  90.000  90.000  90.000    7.362   133.365   408.090      
.000      .000      .000  GUANINE = guanine
19    7.1    1579.847  2.70 P DICVOL91/log 20Mar07 11:56:51 Ort__1  36.8566   
8.6592   4.9502  90.000  90.000  90.000    7.362   133.365   408.090      
.000      .000      .000  GUANINE = guanine
18    6      1666.431  2.85 P TREOR90/log  20Mar07 11:56:20 Ort__1  18.4411  
10.4490   8.6482  90.000  90.000  90.000   29.4053   91.5905  133.7055     
.0000     .0000     .0000 GUANINE = guanine
17    6      1916.376  3.28 P TREOR90/log  20Mar07 11:56:20 Ort__2  18.5137  
11.9366   8.6717  90.000  90.000  90.000   29.1753   70.1837  132.9802     
.0000     .0000     .0000 GUANINE = guanine
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