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INTRODUCTION 

Currently, Computed Tomography (CT) is the gold standard method of preoperative imaging for 
guided knee arthroplasty systems, such as the Makoplasty (Roche, O’Loughlin, Kendoff, Musahl, & 

Pearle, 2009). However, this method is costly (Fred, 2004) and applies a potentially dangerous dose of 

ionising radiation to the patient (Albert, 2013). Ultrasound imaging has the potential to provide an 

alternative to CT in this capacity by offering comparable accuracies, while reducing cost and 
eliminating the risk of ionising radiation. A system was developed which allows for imaging of the 

bony surface of the distal femur using imaging methods usually found in non-destructive testing 

(Holmes, Drinkwater, & Wilcox, 2005). This serves to establish a proof of concept for a full 3D knee 
imaging scheme.  

MATERIALS AND METHODS 

An artificial human distal femur made from fibre strengthened epoxy (Sawbones, VA, USA) and a 

bovine distal femur were submerged in a water bath and imaged using a 128 element 5MHz linear 

probe. The transducer was driven by a Diagnostic Sonar Ltd. (Livingston, Scotland) FlawInspecta 
phased array driver, which allowed for Full Matrix Capture (FMC). Following a cuboidal path, the 

probe was manoeuvred around the specimen by a Kuka KR5 Arc HW 6 axis robot. Bespoke probe 

mounts and calibration parts were manufactured to determine the probe position and orientation 

relative to the robot’s coordinate system. Measurement with a Faro (FL, USA) Quantum touch probe 
found the parts to be within 0.1mm of the desired dimensions. Using synchronised probe position and 

ultrasonic data capture, 337 ultrasonic data acquisitions were performed for the human distal femur 

and 1090 for the bovine distal femur - both using FMC. The data were post-processed using the Total 
Focussing Method (TFM) and the Synthetic Aperture Focussing Method (SAFT), which provided 2D 

images. Contour extraction was performed on each image and the resulting points were translated and 

transformed using the associated positional data, providing 3D point clouds representing the surface. 
Using Geomagic Studio 12, wrapping algorithms were applied to the point clouds, returning 3D 

surface models. Both distal femurs were laser scanned using a Faro Quantum, providing accurate 

reference models for accuracy analysis.  

RESULTS 

The ultrasound-derived models were of a relatively high level of accuracy, achieving sub-millimetre 
mean error for both specimens, as shown in Table 1. This was achieved not with TFM, but rather a 

small aperture variety of SAFT. However, both data sets returned relatively large maximum errors. In 

the human model, this was presented as a circular feature, as can be seen in Figure 1. The human 

distal femur featured a drilled hole at this point, the representation of which was present in the point 
cloud, but was lost due to the wrapping function during 3D model production. The standard deviation 

was small for the human distal femur, but over 1mm for the bovine distal femur. Large errors in the 

bovine model corresponded to incomplete regions in the reference model, caused by line of sight 
issues during laser capture. These gaps likely account for the large standard deviation.  



 

Figure 1: Result of matching resultant 3D models with the reference models. Part (a) shows the composite distal 
femur comparison, while part (b) displays the bovine distal femur.   

 Mean Error (mm) 
Maximum Error 

(mm) 

Standard Deviation 

(mm) 

Composite Human 

Distal Femur 
0.8201 7.6845 0.6401 

Bovine Distal Femur 0.8797 10.4124 1.0157 
Table 1: The results of the comparison between resultant 3D models with the reference models.  

 

DISCUSSION 

Robotically controlled ultrasound systems have been employed to image and reconstruct bony 

surfaces of the femur before, but were intended only for registration of real world position with CT 

data (Torres, Sanches, Goncalves, & Martins, 2012). Others have employed optically tracked systems 
that require prior knowledge of the geometry of the bone (Barratt et al., 2008; Krysztoforski, 

Krowicki, Swiatek-Najwer, Bedzinski, & Keppler, 2011). The presented system, on the other hand, 

requires no previous information. While a number of biomedical ultrasound research efforts have 

employed non-commercial ultrasound systems (Jensen, Nikolov, Gammelmark, & Pedersen, 2006),  
most employ conventional systems, which do not allow for wide ranging imaging strategies (Jensen et 

al., 2005). The system used herein allows for FMC capture and, as such, provides the ability to test a 

number of imaging methods post capture. One such method is TFM, which is seen as the gold 
standard in classical beamforming (Fan, Caleap, Pan, & Drinkwater, 2014). It, along with SAFT, is 

used heavily in ultrasonic NDT research, but has found little uptake in biomedical imaging. The mean 

accuracy of the system met the target of 1mm error often reported for CT (Viceconti, Zannoni, Testi, 

& Cappello, 1999). However, both surface models suffered from high maximum errors and, in the 

case of the bovine distal femur, a high standard deviation. It is believed that with a more accurate 

reference model, the standard deviation, maximum error and, to a lesser extent, mean error would be 

reduced in the bovine distal femur. Additionally, filling of the hole in the human distal femur - an 
abrupt feature not expected in vivo - would reduce the error associated with the wrapping algorithm’s 

hole filling. Finally, it is believed that improvements to the robot calibration procedure would further 

reduce errors. Despite the relative success of this study in showing the principle of functionality of the 
system, the conditions under which the data were recovered were unrealistic. As such, future work 

will look to incorporate the problem of soft tissue penetration in FMC and issues involving line of 

sight in intact knee joints.      
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