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Abstract—Laser cooled atomic samples have resulted in pro-
found advances in precision metrology [1], however the tech-
nology is typically complex and bulky. In recent publications
we described a micro-fabricated optical element, that greatly
facilitates miniaturisation of ultra-cold atom technology [2], [3],
[4], [5].
Portable devices should be feasible with accuracy vastly exceeding
that of equivalent room-temperature technology, with a minimal
footprint. These laser cooled samples are ideal for atomic clocks.
Here we will discuss the implementation of our micro-fabricated
diffractive optics towards building a robust, compact cold atom
clock.

I. INTRODUCTION

The continued research into atomic clocks in recent
decades has lead to a considerable rise in the achievable
accuracy and stability. This stability is most notable in the
atomic fountain and lattice clocks, measuring frequencies at
the 10−16τ−1/2 and 10

−18τ−1/2 level respectively [6], [7], [8],
[9]. This research has also lead to profound advancement of
compact metrological devices, achieving frequency stabilities
in the low 10

−10τ−1/2 in package volumes measuring only a
few tens of cubic centimetres [10], [11].
However, the majority of the current compact clocks are based
around room temperature apparatus that use buffer gasses and
cell wall coatings in order to minimise collisional spin flips,
benefiting the system with increased contrast and interrogation
times [12]. Ultimately, these coatings and buffer gasses limit
the long term performance achievable in a clock due to cell
degradation and temperature dependent pressure shifts.
To overcome this, a move towards cold atoms is favourable,
with the benefit of long interrogation times and narrow
linewidths. To date, attempts at miniaturising cold atom clocks
remain confined to thousands of cubic centimetre packages.
We begin by proposing the grating magneto-optical traps,
GMOT, as a step closer to bridging the gap between high
performance cold atom apparatus and the scale of a thermal
package. This project aims at reaching a frequency stability
better than 10

−12τ−1/2 in a package on the scale of tens of
cubic centimetres.

II. CPT INTEROGATION

Our study begins with the realisation of an atom chip
that integrates the laser cooling apparatus into a compact
device. The GMOT achieves equalised radiation pressure from
balancing the intensities of a single incident beam by the
diffracted orders from the grating surface [2], [3]. Previous
optical tools for simplifying laser cooling and trapping have

been demonstrated [13], [14], [15], [16], however, as discussed
in previous work, the GMOT out-performs these devices on
size, reproducibility, robustness and trapping capabilities [5].
These properties make the GMOT the ideal candidate for a
compact atomic clock.
To convert this device to a clock experimentally we propose to
derive the ground state frequency splitting of 87Rb by means
of coherent population trapping, CPT [17]. The experimental
set-up used is illustrated in Figure 1. We lock a home made
external cavity diode laser, ECDL, to the cooling transition of
87Rb and use an electro-optical modulator, EOM, to frequency
modulate a sideband at the re-pumping frequency. An acousto-
optical modulator, AOM, is used for switching on and off the
cooling beam, that is fibre coupled and circularly polarised
before reaching the diffraction grating. The magnetic field zero
point, created by anti-Helmholtz coils, is centred on the light
overlap volume for trapping the cold atomic sample. For an
incident intensity of ≈ 40 mW/cm2 in a 20 mm beam we
trap 10

8 atoms. When sub-Doppler cooling mechanisms are
introduced we bring 3× 10

7 atoms down to 15 µK.

Fig. 1. Simplified grating MOT schematic for the cooling and probing beams.
EOM: Electro-optical modulator. AOM: Acousto-optical modulator. ECDL:
External cavity diode laser. λ/4: Quarter wave-plate.

When the cold atoms are free from external perturbation and
in ballistic expansion, we apply a Raman probe beam to
resolve the ground state clock transition. For this probe beam,
a 795 nm laser is used to drive to the D1 states of 87Rb.
Once locked, an EOM is used to generate sidebands of equal
amplitude to the carrier to couple the two ground states to the
F = 1 excited state. With a small magnetic field is applied
parallel to the clock beam, one can lift the degeneracy of the
excited state enough to resolve CPT features of individual sub-
levels, as can be seen in Figure 2. A few tens of µW’s of laser
power is enough to resolve a full width half max, FWHM, of
the mF = 0 state to be 5 kHz.
To achieve a narrower clock feature we will convert the
CPT procedure to a Raman-Ramsey sequence. The technique
has been demonstrated to produce narrow fringes at higher
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Fig. 2. Coherent population trapping transmission peak for the mF = 0

sub-level of 87Rb. Black line: The experimental data of the peak resolved
with a Raman scan through the cold atomic medium. Red line: Lorentzian
best fit to the experimental data

contrast than the original CPT feature, benefiting the measured
frequency stability [18], [19].

III. CONCLUSION

The grating magneto-optical trap provides a compact
means to cool and trap a large number of atoms, proving
beneficial for precision measurements such as atomic clocks.
With a coherent population trapping signal optimised to 5 kHz,
the apparatus will be used to demonstrate Raman-Ramsey
interrogation for a narrow clock reference.
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