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Abstract

Well-known tools developed for satellite and debris re-entry perform break-
up and trajectory simulations in a deterministic sense and do not perform
any uncertainty treatment. The treatment of uncertainties associated with
the re-entry of a space object requires a probabilistic approach. A Monte
Carlo campaign is the intuitive approach to performing a probabilistic anal-
ysis, however, it is computationally very expensive. In this work, we use
a recently developed approach based on a new derivation of the high di-
mensional model representation method for implementing a computationally
efficient probabilistic analysis approach for re-entry. Both aleatoric and epis-
temic uncertainties that affect aerodynamic trajectory and ground impact
location are considered. The method is applicable to both controlled and
un-controlled re-entry scenarios. The resulting ground impact distributions
are far from the typically used Gaussian or ellipsoid distributions.
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1. Introduction

Space Situational Awareness (SSA) is quickly becoming imperative for
nations around the world, especially those with space capabilities and assets.
As the low Earth orbit (LEO) debris and spacecraft population that have
exceeded their operational lifetime rises each year, the rate at which objects
re-enter the Earth’s atmosphere will also steadily rise. Most of these objects
will probably not reach the ground for impact; however, parts of large objects
like rocket bodies and satellites or resident space objects (RSOs) with mass
greater than a ton have a high probability of surviving the harsh re-entry
environment. The surviving parts can be hazardous (e.g. fuel tanks with
unused hydrazine or radioactive components) and can cause damage and
casualties within a populated area.

The National Aeronautics and Space Administration [NASA-STD-8719.14.
(2012)] and European Space Agency [ESA (2008)] guidelines require that any
RSO re-entering the atmosphere (1) fully demise in the atmosphere, or (2)
impact with an energy of no more than 15 Joules with an associated casu-
alty risk of less than 1 in 10000. Complying with these guidelines require
an end-of-life analysis for all future planned missions. The impact location
of an object re-entering the atmosphere is affected by uncertainties in ini-
tial conditions, atmospheric characteristics, and object properties, as well as
break-up/fragmentation events. Therefore, it is important to have an ac-
curate estimate of not just the deterministic impact location but also the
statistical distribution due to the uncertainties involved. Existing re-entry
modeling tools used by space agencies are either deterministic, proprietary,
non-open source, and/or are not freely available to the research community
[Rogchelle et al. (1999), Koppenwallner et al. (2005), Martin et al. (2005)].

All the existing tools have five basic building blocks: i) Aerodynamics,
ii) Aerothermodynamics, iii) Flight Dynamics, iv) Structural analysis, and
v) Thermal analysis, and can be classified as either spacecraft- or object-
oriented. Spacecraft-oriented tools perform the analysis with higher fidelity
compared to object-oriented tools (for e.g. 6DoF vs 3DoF dynamics or de-
tailed thermal analysis vs lumped mass approach), however they are harder
to use and computationally expensive because spacecraft-oriented tools con-
stantly share data between the building blocks whereas object-oriented tools
use the blocks independently. Therefore, a logical approach would ideally



involve using an object-oriented tool for the preliminary analysis, followed
by a more concentrated campaign with a spacecraft-oriented tool based on
the preliminary results from the object-oriented tool. The only spacecraft-
oriented tool known to exist is SCARAB (Spacecraft Atmospheric Re-entry
and Aero-thermal Break-up) developed by HTG under a contract from ESA
[Koppenwallner et al. (2005)].

The object-oriented approach uses a simplified representation of the re-
entering object made up of primitive shapes such as sphere, ¢ylinder, cone,
etc. The approach assumes or calculates a demise altitude following which
the object is assumed to break-up into multiple objects; represented by the
individual primitive geometries [Rochelle et al. (1999); Martin et al. (2005),
and Parigini et al. (2015)]. Figure 1 shows the idea behind an object-oriented
tool.

As previously mentioned, an accurate end-of-life analysis involves a prob-
abilistic approach due to the uncertainties involved. A Monte Carlo (MC)
campaign is the most intuitive approach available for uncertainty quantifi-
cation and propagation. Figure 2 shows an example of a MC campaign
run using Deimos’ proprietary object-oriented tool DEBRIS [Parigini et al.
(2015)]. The trajectories in blue show a limiting case representative of shallow
un-controlled re-entry, cyan represents a ‘normal’ controlled re-entry while
the orange color represents a limiting case of controlled re-entry at a highly
steep flight path angle (not realistic). DEBRIS is one of a very few, if not
the only, new-age re-entry tool that performs uncertainty-treatment albeit
expensively.

The MC approach can provide a realistic distribution for the output of
interest (F(x)) due to the uncertainties in the input parameters, however,
it does so with a very high computational cost. Moreover, a sensitivity
study that can provide qualitative and quantitative insights into the effects
of uncertainties in input parameters on the output and influence engineering
design decisions is typically not feasible. Even though MC based methods
are among the most popular used for sensitivity studies, they require a large
amount of sampling of the stochastic input domains and expensive function
evaluations to estimate the statistical properties of the given model. The
model code is typically assumed to be a black-box and will henceforth be
refereed to as the black-box model (BBM) in this paper.

The well known Sobol sensitivity method [Saltelli et al. (2004), Saltelli et
al. (2008)] is also based on the MC approach and decomposes the variance
of F(x) for the given BBM into parts attributable to input variables. Let’s
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assume we have n uncertain input parameters; a sensitivity study accounting
for only first order effects would require n+1 MC campaigns, each coming
at a very high cost. The outcome of the method is the quantification of the
influence of each variable in the given BBM. Scatter plots can be used to gain
insights into the BBM, visualize the influence of a variable, and estimate the
behavior of F'(x) in a given domain [Kleijnen and Helton (1999a), Kleijnen
and Helton (1999b), Saltelli et al. (2004), Saltelli et al. (2008)], however, they
require a significant amount of experience in sensitivity analysis.

The computational cost of performing a sensitivity analysis can be signif-
icantly reduced by building a cheap surrogate model for the BBM. Several
different methods exist for surrogate development such as the Stochastic
Collocation (SC) method [Eldred and Burkardt (2009a), Eldred (2009b)],
the Polynomial Chaos (PC) method [Wiener (1938), Hosder et al. (2006),
Eldred et al. (2008), Eldred and Burkardt (2009a), Eldred (2009b), Cheng
et al. (2010), Togawa et al. (2011), Branicki and Majda (2013)], the Kriging
surrogate model method [Fang et al. (2006), Lee and Kwon (2008), Forrester
et al. (2008)], and the Pade-Legendre approximation method. These meth-
ods are non-intrusive by nature, i:e. as previously mentioned, they consider
the model code of interest as a black box. In the work of Sudret [Sudret
(2008)], the non-intrusive PC'is coupled with the Sobol method for directly
computing the Sobol Indices from the PC expansion.

In the case of other mon-intrusive methods, the sensitivity indices are
obtained by sampling the cheap surrogate models via the MC approach. Un-
fortunately, one of the biggest limitations of surrogate modeling approach is
the so called Curse of Dimensionality (CoD), introduced by Richard Bell-
man [Bellman (1961)], which limits the use of surrogate based approaches
to functions with a small number of independent parameters, and the use of
non-intrusive methods to problems with a small number of stochastic input
dimensions. Various sampling techniques have been proposed to mitigate the
CoD problem. The Latin Hyper-cube sampling (LHS) [Fang et al. (2006)]
has been successfully used for certain problems [Mehta et al. (2014)] with
other approaches such as LaPSO [Chen et al. (2013)], Uniform Design (UD)
[Fang et al. (2006)] or Hammersley Sampling [Walters et al. (2007), Cheng
et al. (2010)] also available. In the framework of Uncertainty Quantification
(UQ) problems, Smolyak Sparse grid [Gerstner and Gribel (1998), Barthel-
mann et al. (2000), pflueger (2010)] and its different variations have become
popular techniques, which combined with Non-intrusive Polynomial Chaos
(NIPC) gives very accurate results for a low number of samples. Unfortu-
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nately, even this approach is not affordable because of high cardinality [Gaoa
and Hesthavenb (2010)].

In this work, uncertainty treatment is performed using a novel high-
dimensional derivative based uncertainty quantification and propagation (UQ&P)
approach with an inherent sensitivity analysis study developed recently at the
University of Strathclyde [Kubicek et al. (2015)]. The approach is based on
cut-HDMR (High Dimensional Model Representation) and multi-surrogate
adaptive sampling where the surrogate model development is followed by a
sensitivity analysis in an iterative sense addressing all the problems previ-
ously discussed. The approach is able to highlight some important aspects of
a given problem (atmospheric re-entry in this instance) by decomposing the
stochastic space into sub-domains, which are then interpolated separately.
Each sub-domain is independent and provides insight into the influence of
each stochastic input variable on F(x), where the outcome on each sub-
domain can be visualized with histograms. The histograms represent the
output from direct sampling of the surrogates for each sub-domain.

The F(x)’s in the current study ‘are the longitude and latitude of the
ground impact location, while the ineertain input parameters considered are
atmospheric properties (density, temperature, composition, and free-stream
air heat capacity), initial conditions (re-entry flight path angle, speed, and
direction angle) as well as the mass of the object. The study is performed
with a spherical object undergoing a planar re-entry. Initial conditions rep-
resentative of a re-entry from a circular orbit are used under only the ef-
fects of gravity and drag. The HDMR UQ&P method is applicable to both
controlled and un-controlled re-entry scenarios and is validated using three
different simulations representative of : i) un-controlled ‘shallow’ re-entry
(flight path-angle - v &~ 0 degrees), ii) controlled ‘normal’ re-entry (y &~ -1.25
degrees), and iii) controlled ‘steep’ re-entry (v ~ -5 degrees). The ‘shallow’
and ‘mormal’ 7’s are derived from the Automated Transfer Vehicle (ATV)
missions whereas y for the ‘steep’ re-entry is an assumed realistic limiting
value. The results are validated by comparison with MC simulations directly
using the BBM.

The work is part of a development effort for a Free Open Source Tool for
Re-entry of Asteroids and Space Debris (FOSTRAD) to overcome the non-
freely available, non-open source, and/or proprietary state of the existing
tools. The goal with FOSTRAD is to have higher fidelity than object-oriented
tools while avoiding the complexity of a spacecraft-oriented approach. The
framework for FOSTRAD is modular in nature where work on modules for



atmospheric entry of asteroids or near Earth objects [Mehta et al., (2015a),
Mehta et al. (2016a)], and improved aerodynamic and aerothermodynamic
models for simple primitive and complex geometries [Mehta et al. (2015b),
Mehta et al. (2016b)] has been recently performed. The current work feeds
into the UQ&P module of FOSTRAD.

The paper is organized in the following format: the next section discusses
the methodology including trajectory dynamics and aerodynamics, and the
high-dimensional UQ&P approach, followed by a section that describes the
simulation cases with presentation and discussion of the results. The last
section provides a summary and draws conclusion on the present work and
provides recommendations for future work and direction.

2. Methodology

2.1. Trajectory Dynamics

The trajectory dynamics and aerodynamic models make up the BBM for
the current study. The atmospheric entry simulation is set to begin at an
altitude of 120 km. A simple spherical object re-entering the Earth’s atmo-
sphere is modeled as a point mass and tracked through the atmosphere down
to ground. The dynamics of the object is governed by the following system
of differential equations:

h = Vysiny (1)
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where h is the altitude, V., is the speed of the object, 7 is the flight path
angle, D is the drag force, g is the gravitational acceleration; wg is the
Earth’s rotational speed, Rg is the radius of the Earth, y is path direction
angle, and ¢ and A are latitude and longitude, respectively.The gravitational
acceleration is modeled as a function of the altitude given as:

o) =a () @)

where the value of gy is 9.81 ms—2.

2.2. Aerodynamics

The re-entering object is-modeled with a mesh comprising of triangular
facets. The pressure and shear contribution of each facet (visible to the flow)
to aerodynamics is computed independently as a function of the local flow
inclination angle, .+ The axial and normal force coefficients are computed
with integrals of the pressure and shear distributions over the surface.

2.2.1. Continuum Flow Regime

The aerodynamic contribution in the continuum flow regime is computed
using the Modified Newtonian Theory (MNT) given as [Newton (1946)]:

Cy = Cpmansin’d (8)

where C), is the local pressure coefficient and C), .4, is the maximum or stag-
nation point pressure coefficient. The shear contribution in the continuum
regime is assumed to be zero.



2.2.2. Free Molecular Flow Regime
The aerodynamic contribution of each facet in the free molecular (FM)
regime is computed using Schaaf and Chambre’s closed-form analytic model

given in Egs. 9 and 10 that accounts for both pressure and shear [Schaaf and
Chambre (1958)].

C, = 3_12 (2_%5 sin 6 + %V\/%) g (esn0)®
+ {(2 —on) ((581119)2 + %) + %V\/@ssinﬁ} (1+ erf(ssin@))]
(9)
_UTCOSH

C; = [ef(ssmw + /7TssinO(1 + er f(ssin 9)}

v/
(10)

where C), and C are the pressure and shear coefficients, respectively, on and
or are the normal and tangential momentum accommodation coefficients,
respectively, T, is the surface or body wall temperature, T, is the free stream
translational temperature, Vi is the object or free stream velocity, erf() is
the error function, and s'is the speed ratio given as:

Voo

_ 11
NGy (1)

where R s the universal gas constant.

2.2.8. Transition Flow Regime

Aerodynamic computations in the transition regime are performed us-
ing the recently developed sigmoid bridging functions [Mehta et al. (2015¢),
Mehta et al. (2015b)]. The developed function uses the sigmoid (base 10)
as the basis function. Optimized accuracy and complexity is achieved using
two sigmoid functions as given in Eq.(12)

CXtrans = CXc + (CXfm - CXC) [a’SlSZglo (bszloglo (Kn) + CS?,) +

12
+dsisigio (esilogio (Kn) + fsi) + gsil (12)



where (a — g)g; are fitting constants and

1

Stg10 = 1 + 10(7/+)1.

(13)
where the sign of the exponent depends on the trend of the coefficient across
the transition region.

2.8. Uncertainty Treatment

2.3.1. High Dimensional Model Representation

This work uses the recently developed high dimensional uncertainty prop-
agator based on a cut-HDMR decomposition approach. If F(x) is a derivable
and integrable function defined on a n-dimensional (n being the number of
random input variables) unit hypercube - [0, 1]" and x € [0, 1], the ANOVA
representation of F(x) can be given as:

x)=Fo+ Y Fiz)+ Y Fy@z)+..+F ol .z, (14)
i=1

1<i<j<n

where Fj is the constant term and represents the mean value of F(x), F;(x;)
represents the contribution of the variable z; to F(x), F; j(x;, z;) represents
the pair correlated contribution to F'(x) of the input variables x; and z;,
1 <i < j<n,etc. Each term in the Eq. (14) is independent and represents
the contribution to the final function. The last term £y, (x,...,2,) con-
tains the correlated contribution of all input variables and the total number
of summands for Eq. (14) is 2".

Each independently differentiable and integrable term in Eq. (14) is differen-
tiated according to its generic variables to obtain the infinitesimal increment
in F(x), leading to the following equation:

OF (x) OF (x)
Z awz i+ Z 3 da?¢d:vj+...+—dx1 dz, (15)

1<icj<n O L 011,y Ty

Equation (15) relates an infinitesimal change in F(x) due to an infinites-
imal change in the stochastic input variables. Eq. (15) may resemble the
Taylor series expansion, but it is fundamentally different. The Taylor ex-
pansion considers the coefficients of each derivative and also higher order

derivatives along one direction (e.g. ;ig;)l aii(a);)n)v whereas the ANOVA




representation in Eq. (15) does not consider derivative coefficients and only
one derivative in each direction. The differential equation as represented in
Eq. (15) is impractical, therefore, an integral form of Eq. (15) is introduced
as

o= Z/ e X [ gg,ad&d@*

“xi 1<i<j<n

/ / 851,..., nd&---dgn

(16)

where °x represents the central position in the stochastic space called the
central point and, generally, considered to be the statistical mean of a given
stochastic input variable. The terms in Eq. 16 representing the integral
of the derivative of each independent function are defined as an increment
function. Each increment function provides an independent contribution
to the final solution and therefore can be modeled using an independent
surrogate. This use of multiple independent surrogates represents the major
difference between the method used in this work and the currently used
uncertainty propagation methods. The current method is described in detail
in the work of [Kubicek et al. (2015)].

The non-important stochastic spaces/interactions are neglected in order
to decrease the number of expensive BBM calls. The stochastic space reduc-
tion is done in two steps: the first evaluates the importance of the increment
functions, and the second neglects the zeroth increment functions. The eval-
uation of the importance is based on fundamental aspects of the integral
form and inverse logic. The importance of each interaction is evaluated and
its contribution is added to the final model. The process is stopped when
the desired accuracy is achieved. The neglect step, as the name suggests,
neglects all zeroth order increment functions that are passed through the
evaluation phase. After selecting the important increment functions, the
method switches to an automatic sampling approach and interpolates each
increment function separately leading to an optimal number of BBM calls.

The multi-dimensional Lagrange surrogate model is used in this work;
however, different techniques can be used due to the modular nature of the
method. The adaptive sampling process takes into account the behavior of
the increment function and the probability distribution of the stochastic in-
put variable. The behavior is captured using the Error Comparison (EC)
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function that is later modified to take into account the probability distribu-
tion of the stochastic input variable. The convergence criterion is based on
the observation of the standard deviation and the expected value. The sta-
tistical properties are obtained using MC sampling on the surrogate model
for each increment function. This allows the visualization of each increment
function separately (i.e. the probability distribution function (PDF)for each
stochastic input variable.) as well as the final PDF.

2.3.2. Sensitivity Analysis

The sensitivity of each increment function represents the influence of
the corresponding stochastic input variable (or combination of variables) on
F(x). The orthogonal property of the increment functions allows for each
function to be handled separately i.e. each increment function statistics is
calculated independently. This allows to define the statistical properties of
the first order increment function as follows:

/ / 5 ) de ps(:) da (17)

<[ [TOF ?
1'2: /_OO </x 8§(f)d€i —Mi) Pz‘(xz')d%‘ (18)

which can be extended to higher order increment increment function, i.e.
interaction terms, in the following way

= /_Z /_Z (dFy — 1)’ pr(x)da;...dz; (20)

where dF}, represents the increment function defined in Eq. 16, i.e.

dF}, = / / 5 5jdgi...dgj (21)

and py, with & = n+1, ..., 2" — 1 represents the partial mean and o7 represents
the partial variance. The mean and variance sensitivity indices for each
increment function are defined as:

2
o

o _ ik 22

ik T 52 ( )
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where 7 represents the first order increment functions, k represents the higher
order increment functions, and where 02 and u are computed as follows:

02:/_Z(F(X) —,u)2p(x)dX:/oo .../OO(( +Z/:l ag{z de+

e
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1<i<j<n

/ // / agl,.,. 7e, . G deprn(@r, o Ta)dor.. Ay

(25)

where p; (%, ..., z;) are the PDFs for the considered set of stochastic vari-
ables. It should be noted that the higher order moments cannot be computed
as the superposition of the independent partial moments of the increment
functions, i.e.

2m—1

£ o (26)
k=1

The HDMR method and the associated sensitivity analysis theory and deriva-
tion are detailed in Kubicek et al. (2015).
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2.3.3. HDMR Toy Problem

For a practical insight into the theoretical basis presented thus far, a simple
case problem is presented and discussed here. The properties of the method
and the visualization of higher-order increment functions are demonstrated
by using the following function:

F(x1, 9, 23) = 0.52% + 0.522 — ™17 27
1 2

where z; is a random variable with a uniform distribution and defined on the
interval [0, 2]. In this case, °x = [1,1,1]7 and F(°x) = 1 =e = —1.7183, and
the general form of the Eq. 16 would be:

F(x) — F(°x) = / 1agéf)d§1+ / 23§§)d@+ / 38§§5>d53+

/ / ; el §2d£1d€2+ / / N o €3d£1d§3+ / / N gg S i

z3 )
/ / agl, 061,65, & o1 de2dts
(28)

or, more concisely
F(X)—F(CX) = chcl+de2+de3+de1,z2+dFa:1,x3+de2,ar3+dFJ:1,x2,z3 (29)

The first order increment functions are established using samples on the
given abscissas followed by addition of samples through adaptive sampling
until convergence of the mean and standard deviation. The statistical proper-
ties for each increment function are established using a MC campaign on the
corresponding surrogate, allowing to visualize the influence of the increment
function on the final distribution. The evaluate and neglect approach cor-
rectly neglects all the higher order increment functions except the increment
function dF; 3. Eq. 29 then becomes:

F(X) — F(CX) - dFa:l + deQ + dFa:S + dFa:l,a:B (30)

The samples and surrogate models for the first order and non-neglected
higher order increments functions are shown in Figure 3. The surrogate
model functions fit through the samples for each increment function are
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picked from a database of model functions. The model function used for all
increments functions in the toy problem is the multidimensional Lagrange
interpolation. The partial histograms for the contributing increment func-
tions are shown in Figures 4a - 4d. The final overall distribution is computed
as a sum of all the non negligible partial distributions and is shown in Fig-
ure 4e. It can be seen that the body of the final distribution is dominated by
contributions from the increment functions dF,; and dF,3. An interesting
contribution comes from the second order interaction dF,; ;3 that is mainly
responsible for the heavy left tail on the final distribution. Note that the
second order interaction (dF,;.3) is only active (is not 0) if both the first
order increment functions (dF,; and dF,3) are active.

2.3.4. Random Input Parameter Sampling

Figure 5 summarizes the methodology with a flowchart representation.
For this particular re-entry application we have two different F'(x)’s, namely
the time-integrated longitude and latitude at ground impact. For each case,
the F(x)’s are decomposed into increment functions dF,,(x) as described in
the previous section, where n is the number of considered stochastic input
parameters given in Table 1 along with the associated distribution types used
for this work. For Gaussian distributions, the table provides the values for
mean, standard deviation and the nominal values. For uniform distributions,
the minimum, maximum, and nominal values are provided.

The surrogate models for each independent increment function are devel-
oped using an adaptive sampling strategy and sensitivity analysis to within
predefined convergence residuals. The sensitivity analysis of the indepen-
dent increment functions provide insight into the relevance of the higher
order inecrement functions. Higher order increment functions with insensi-
tive independent increment functions are deemed to have minor contribution
and are neglected, contributing to the reduction of expensive BBM calls and,
therefore, the computational cost. Additional test sampling of the stochas-
tic input space is performed to determine the increment functions that can
be further neglected, again saving expensive BBM calls towards surrogate
model development. The developed surrogate models are sampled using MC
to compute the statistical properties of each increment function. This al-
lows to visualize through histograms the importance of each stochastic input
variable and higher order interactions. The histograms of the independent
increment functions will henceforth be also referred to as partial histograms.

Interpolation routines were developed for atmospheric temperature and
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density based on the temperature and density distributions given in Table 1.
The distribution data up to an altitude of 90 km is derived from the US Stan-
dard Atmosphere (1976). The mean value at 120 km was read off the US
standard atmosphere table and the variation was assumed to be the same as
at 90 km. Figures 6 and 7 show 1000 samples drawn from the temperature
and density interpolation routines, constrained to the data points; respec-
tively. Each function call uses one such sample. Also shown in Figures 6 and
7 are the visual representations of temperature and density distributions,
respectively, for the different altitudes [US Standard Atmosphere (1976)].

The atmosphere is assumed to be composed of Ny and Oy and the mole
fraction of Ny is assumed to be uncertain. The heat capacity (c,) of the free-
stream air that has an effect on the computation of drag coefficient through
the pressure behind the shock is also assumed to be uncertain. The flight
path angle (v) of a re-entering object is considered uncertain with different
distributions used for the ‘shallow’, ‘normal’, and ‘steep’ simulation cases.
The re-entry speed (V. ), mass of object (m) and direction angle (y) at 120
km are also considered uncertain. The central value of these parameters are
based on the expected orbital and object characteristics with all uncertain
variables considered to be statistically independent.

3. Results and Discussion

The longitudinal and lateral distributions of the impact location are com-
puted using the following relation:

y = F(x)Re (31)

where y represents two separate distributions in the longitudinal and lateral
directions. These distributions correspond to two separate outputs of interest
F(x), namely the longitude and latitude angle difference between the entry
point-and the impact location, respectively. Re is the radius of the Earth.
The relation in Eq. 31 is used to compute the contributions of each incre-
ment function to the longitudinal and lateral distributions, where the final
distributions are computed as the sum of the contributions of the increment
functions.

3.1. Controlled ‘Normal’ Re-entry

Table 2 and Table 3 give the sensitivity indices associated with the in-
dependent and higher order increment functions, respectively. Increment
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functions that have a sensitivity of less than 1% are neglected. The partial
means represent the offset from the nominal value computed using the central
value of the stochastic input distributions. The partial standard deviations
are the contribution of the given increment function to the standard devia-
tion of the overall distribution. The mean and variance sensitivity represent
the normalized influence of the given stochastic input variable.

Table 2 highlights the parameters that strongly affect the distribution.
The flight path angle () has the strongest effect on the longitudinal impact
location distribution causing more than 75% of the total variation in the final
distribution and a mean offset of more than 130 km. The direction angle (x)
has the strongest effect on the lateral distribution with all other independent
variables providing essentially no contribution. Table 3 gives the sensitivity
indices associated with the higher order increment functions. In the longi-
tudinal direction, an important contributionto the final distribution comes
from the interaction dF, y,_ . In the lateral direction, important contributions
come from the interactions dF, ,, dFy_ ,, and dF, y,_, with x contributing
to all interaction effects.

Figure 8 shows the partial histograms of the increment functions for the
longitudinal impact distance. Figures 8a and 8b show that the dF, and dFy,_
increment functions have parabolic shapes (i.e x?) resulting in an output that
is always positive. This suggests that the same error in measuring higher
velocities will lead to a'larger uncertainty. Also, the size of the contribution
suggests that these two variables are responsible for the overall shape of the
final distribution. Figure 8c shows the partial histogram for the increment
function dF, y._.

Figure 9a shows the final distribution in the longitudinal direction derived
as the sum of the distributions shown in Figure 8. The final distribution has
a sharp peak that smoothly transitions into a long tail. The peak is a result
of the second order functions for surrogate models of dF., and dFy,__ shown
in Figures 8a and 8b, respectively. The long tail in the final distribution is
a result of the surrogate model for the interaction function dF, vy,  shown in
Figure 8c. The tail is caused by a steep ascent in the underling function in
one of the corners of the given stochastic domain, i.e. to avoid such a strong
tail, the input distributions need to be shortened from one side. The smooth
decrease on the left side of the distribution dF, y,_ is responsible for smooth
decrease on the left side in the final distribution (Figure 9a).

Results obtained with the HDMR approach are validated against MC
analysis directly applied on the BBM using 1le5 samples. Figures 9b and 9c
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show the longitudinal distribution obtained using MC and the overlay of the
HDMR and MC distributions, respectively. The histogram of the errors in
the final PDF derived using HDMR in comparison with the MC solution for
the longitudinal direction is given in Figure 9d. The small errors in Figure 9d
and the statistics of the two distributions given in Table 4 suggest that the
distributions are simply identical.

Figure 10 shows the partial histograms of the increment functions for the
lateral impact distance. Figure 10a shows that the surrogate model for dF,, is
a linear function with translation of the uniform input to output distribution.
Important contributions are made by the interaction effects of dF, ,, dFy_ ,,
and dF, v, ,. Both dF,, and dFy,_, have a sharp peak around zero and
smooth transitions to the tail on both sides. dF, vy , exhibits a very sharp
peak around zero with the distribution quickly converting to very thin but
long tails on either side. The influence of the higher order interactions on
the final distribution is well explained in the work of Kubicek et al. (2015).

For the final lateral distribution as shown in Figure 11a, the main con-
tribution is from the direction angle as given in Table 2. The distribution
exhibits a smooth Gaussian like transition from the tails to the peak where a
plateau feature is quiet clearly visible. The smooth transition is contributed
by dF., , and dFy,_ ,, whereas the plateau is derived from the uniform distri-
bution of dF.. The very long tails are derived from dF, y__ ,. The MC lateral
distribution is shown in Figure 11b. The statistics in Table 4 combined with
the overlay shown in Figure 11c, and the final PDF error histogram shown
in Figure 11d validate the HDMR methodology. Figure 12 shows that com-
parison of the 2-Dimensional distribution used in the calculation of the total
impact area. The comparison again confirms identical distributions with the
interaction effects providing the 2-D spread.

In addition to the case with 16 random variables, three additional cases
were simulated: 1) a case with 12 random variables accounting for uncertainty
in atmospheric conditions only, 2) a case with 13 random variables accounting
for uncertainty in atmospheric conditions + v, and 3) a case with 15 random
variables accounting for uncertainty in atmospheric conditions + v + Vi
+ m. These cases provide an insight into the effect of missing important
stochastic variables. It is obvious and expected that not considering the
direction angle as uncertain and not modeling for fragmentation will collapse
the lateral distribution down to the deterministic solution in that direction.
Therefore, we examine the other cases on the basis of the final distribution
in the longitudinal direction.
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Tables 2 and 3 are still representative of the sensitivities for all the cases
with small differences arising as a result of additional uncertain variables into
the problem. The convergence of the method is connected to the final statis-
tical characteristics, which changes with the additional uncertain variables.
Therefore, the relative sensitivity remains the same while the independent
sensitivities are scaled based on the number of uncertain variables, Table 5
gives the number of expensive BBM calls required to develop the surrogate
models for the different cases. As expected, the number of function calls
increases with addition of uncertain input parameters, however, in all the
different cases the HDMR methodology reduces the number of expensive
BBM calls by close to 3 orders of magnitude. It should be noted that the
learning process, requiring just a few seconds, has a computational cost that
is negligible with respect to the cost of obtaining samples from the BBM.
This allows the simulations to be run on a regular desktop machine and does
not require expensive time on supercomputers.

Figure 13 shows the distributions for the impact distance from the entry
point for the three additional cases.  Figure 13a shows that accounting for
only the atmospheric uncertainties results in (close to) the coveted Gaus-
sian distribution spread over a little more than 100 km. Figure 13b shows
that when also taking into account uncertainty in ~, the distribution departs
significantly from the Gaussian with the spread growing to near 2400 km.
Figure 13c shows that accounting for the uncertainty in V,, can further influ-
ence the ground impact distribution with the spread now rising to over 4500
km. The second.order velocity effects through drag and velocity interaction
effects, as derived from the sensitivity data in Tables 2 and 3, results in a
slender but elongated tail. Unlike a Gaussian distribution, the mean values
of the distributions for the 13D an 15D cases are significantly offset from the
peak of the distributions. For reference, the deterministic impact location in
the longitudinal direction corresponding to the central values of the distri-
butions for stochastic input variables lies at approximately 2400 km. As can
be seen, the peaks of the distributions for all the cases are significantly offset
from the deterministic solution.

3.2. Uncontrolled ‘Shallow’ and Controlled ‘Steep’ Re-entry

Figures 14a and 14b show the comparison of distributions derived from
HDMR and MC for the un-controlled ‘shallow’ re-entry case in the longitu-
dinal and lateral directions, respectively. Figures 14c and 14d show the PDF
error histograms for the case of uncontrolled shallow re-entry case in the
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longitudinal and lateral directions, respectively. The distribution in the lon-
gitudinal direction again is driven mainly by v and V,,. The HDMR method
captures well the shape of the distribution except for the small, sharp peak
towards the tail end of the distribution. The peak is a result of a small
oscillation in the MC distribution that is not captured by the increment
function of V,, as seen in Figure 14e. Unfortunately, such problems (cap-
turing small deviations from the interpolation function) cannot be solved in
general and are inherent to numerical integration and interpolation methods
and form as such a limitation of the HDMR method. Nevertheless, there is
very good agreement between the distributions both in the longitudinal and
lateral directions (as evident from the small errors in Figures 14c and 14d
and the statistics in Table 4) with the HDMR requiring only 127 samples,
i.e. expensive BBM calls.

Figures 15a and 15b show the comparison of distributions derived from
HDMR and MC for the controlled ‘steep’ re-entry case in the longitudinal
and lateral directions, respectively. Figures 15¢ and 15d show the PDF error
histograms for the case of controlled steep re-entry case in the longitudinal
and lateral directions, respectively. Just like in the case of the un-controlled
‘shallow’ case, the HDMR distributions in both the longitudinal and lateral
direction match very well with those derived with MC, with the HDMR
requiring only 145 expensive BBM calls.

Several interesting observations can be made on comparing the longitu-
dinal and lateral distributions for the different cases (un-controlled ‘shallow’
and controlled ‘normal’” and ‘steep’ cases): 1) the longitudinal distribution
seems to approach a Gaussian with steeper v, which is expected because as
the re-entry occurs at steeper angles, the amount of time the object spends
traversing the atmosphere is drastically reduced and so is the chance for the
other uncertainties (especially atmospheric) to have an effect. 2) The lon-
gitudinal impact distribution for the ‘shallow’ case is not as wide as that
for the ‘normal’ case because of a smaller input distribution of 7. Both dis-
tributions have the same larger boundary because the input v distributions
for both cases have a common boundary at zero degrees that corresponds to
the largest impact distance from the entry point. The longitudinal distribu-
tion for the controlled ‘steep’ case has a very small spread with large impact
probabilities close to the mean value of the distribution and has no overlap
with the other two cases because the object falls well short of the impact
locations for the other cases due to the high ~ values. 3) The lateral im-
pact distributions for the ‘shallow’” and ‘normal’ cases have the same spread
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(boundary values) corresponding to the common boundary value of zero de-
grees in the input distributions for v while the distribution is much narrower
for the ‘steep’ case. Increasing ~ results in large impact probabilities close
to the mean value of the distribution.

4. Conclusion

The objective of this study was to gain an understanding for the effects
of uncertainties on the re-entry trajectory and impact location and to in-
troduce a novel and efficient methodology for probabilistic modeling of the
atmospheric re-entry. Current re-entry modeling tools perform the analysis
in a deterministic sense and do not include any uncertainty treatment. This
work presents progress towards incorporating uncertainty treatment into the
modeling of atmospheric re-entry of space debris-using a recently developed
novel high-dimensional derivative based uncertainty quantification approach.
Validation of the results obtained from the High Dimensional Model Repre-
sentation methodology with a Monte Carlo analysis is also presented.

Re-entry simulations with initial conditions corresponding to a circular
orbit are performed for a spherical object accounting for both aleatoric and
epistemic uncertainties. Uncertainties affecting atmospheric properties - such
as temperature, density, composition, and heat capacity - initial conditions
- such as speed, flight path angle, and direction angle - as well as object
mass are considered. Three different re-entry cases are simulated to test
and validate the applicability of the developed method to both controlled
and un-controlled re-entry scenarios: 1) un-controlled ‘shallow’ re-entry, 2)
controlled ‘normal’ re-entry, and 3) controlled ‘steep’ re-entry. The results
show that the High Dimensional Model Representation based approach is
applicable to all re-entry scenarios.

Multiple sub-cases are also run for the controlled ‘normal’ re-entry to de-
velop an understanding of the effects of the uncertain parameters on the
final ground impact distribution. A total of four cases are simulated for the
controlled ‘normal’ re-entry: 1) a case with 12 random variables accounting
for uncertainty in atmospheric conditions only, 2) a case with 13 random
variables accounting for uncertainty in atmospheric conditions + flight path
angle 3) a case with 15 random variables accounting for uncertainty in at-
mospheric conditions + flight path angle + re-entry speed + object mass,
and 4) a case with all 16 random variables that also includes, in addition to
those in the 15D case, the direction angle.
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Accounting for only the atmospheric uncertainties results in (close to) the
coveted Gaussian distribution for the impact distance in the longitudinal
direction spread over a little more than 100 km. However, accounting for
uncertainties in the object properties results in distributions that are signif-
icantly different from a Gaussian. Taking into account the flight path angle
(case 2), the distribution spread increases to near 2400 km which further
increases to over 4500 km accounting for uncertainties in the re-entry speed
at 120 km (case 3 and 4). For reference, the deterministic impact location
in the longitudinal direction corresponding to the central values of the dis-
tributions for the stochastic input variables lies at 2376 km. As observed,
the peaks of the distributions for all the cases are significantly offset from
the deterministic solution. The lateral distribution when taking into account
the direction angle (case 4) has a Gaussian-like smooth transition from the
tail towards the peak where a plateau feature is'observed and is spread over
close to 40 km.

The novelty of the high-dimensional technique implemented is that through
the formulation of the problem, it allows to visualize through partial his-
tograms and sensitivity indices the effect and importance of each indepen-
dent random variable and their combinations on the output parameter of
interest. Results show that the uncertainty in the longitudinal direction is
dominated by the flight path angle causing more than 75% of the variance
followed by the re-entry speed as well as the interaction effects between the
two. The two parameters independently and through interactions make up
for more than 99.5% of the variance. Uncertainty in the lateral distribution
is dominated by the direction angle with close to 90% variance contribution
and the rest caused by the interactions between the direction angle, flight
path angle, and re-entry speed.

The next step in this research stream will be the integration of the devel-
oped and tested uncertainty treatment approach into the Free Open Source
Tool for Re-entry of Asteroids and Space Debris, FOSTRAD, and its appli-
cation to demise analysis and design for demise processes.

5. Acknowledgement

Funding for Piyush Mehta is provided by the European Commission through
the Marie Curie Initial Training Network (ITN) STARDUST under grant
number 317185. Partial support for Martin Kubicek is provided by "OPTI-
MAD Engineering Srl’. The authors would like to acknowledge the use of the

21



EPSRC funded ARCHIE-WeSt High Performance Computer (www.archie-
west.ac.uk), EPSRC grant no. EP/K000586/1.

6. References

NASA-STD-8719.14. Process for Limiting Orbital Debris, May 2012, Revi-
sion A Change 1.

Requirements on Space Debris Mitigation for ESA Projects, European Space
Agency, April 2008.

Rochelle, W. C., Kirk, B. S., and Ting B. C., User’s Guide for Object Reentry
Analysis Tool (ORSAT), JSC-28742, Version 5.0, Vol. 1., NASA Lyndon
B. Johnson Space Center, 1999.

Koppenwallner, G., Fritsche, B., Lips, T., and Klinkrad, H., SCARAB A
multi-disciplinary code for destruction analysis of spacecraft during re-
entry, Proceeding of the 5th European Symposium on Aerothermodynam-
ics of Space Vehicles, Cologne, Germany, Nov 2005.

Martin, C., Brandmueller, C.; Bunte, K., et al., A Debris Risk Assessment
Tool Supporting Mitigation Guidelines, Proceeding of the 4th European
Conference on Space Debris, ESA SP-587, ESA/ESOC, Darmstadt, Ger-
many, April 2005.

Parigini C., Fuentes I. P., Ramos R. H., et al., Debris tool and its use in mis-
sion analysis activities, Proceeding of the 8th ESA symposium on aerother-
modynamies of space vehicles, Lisbon, Portugal, March 2015.

Lips T. and Fritsche B., A comparison of commonly used re-entry analysis
tools; Acta Astronautica, Vol. 57, 2005, pp. 312 — 323.

Saltelli, A., Tarantola, S., Campolongo, F., et al., Sensitivity Analysis in
Practice: A Guide to Assessing Scientific Models, John Wiley and sons,
2004.

Saltelli, A., Ratto, M., Andres, et al. Global Sensitivity Analysis: The
Primer, John Wiley and sons, January 2008.

22



Kleijnen, J. P. C., and Helton, J. C., Statistical analyses of scatter-plots
to identify important factors in large-scale simulations, 1: Review and
comparison of techniques, Reliability Engineering and System Safety, Vol.
65, No. 2, 1999, pp. 147-185.

Kleijnen, J. P. C.; and Helton, J. C., Statistical analyses of scatter-plots
to identify important factors in large-scale simulations, 2: robustness of
techniques, Reliability Engineering and System Safety, Vol. 65, No. 2, 1999,
pp- 187197.

Eldred, M. and Burkardt, J., Comparison of non-intrusive polynomial chaos
and stochastic collocation methods for uncertainty quantification, 47th
ATAA Aerospace Sciences Meeting including The New Horizons Forum
and Aerospace Exposition, Orlando, Florida, January 2009.

Eldred, M., Recent advances in non-intrusive polynomial chaos and stochas-
tic collocation methods for uncertainty analysis and design, 50th ATAA
JASME /ASCE /AHS /ASC Structures, Structural Dynamics, and Mate-
rials Conference, Palm Springs, California, May 2009.

Wiener, N., The homogeneous chaos, America Journal of Mathematics, Vol.
60, NO. 4, October 1938, pp. 897-936.

Hosder, S., Walters, R.; and Perez, R., A non-intrusive polynomial chaos
method for uncertainty propagation in cfd simulations, 44th AIAA
Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 2006.

Eldred, M. S., Webster, C. G., and Constantine, P. G., Evaluation of non-
intrusive approaches for wiener-askey generalized polynomial chaos, 49th
ATAA JASME /ASCE /AHS /ASC Structures, Structural Dynamics, and
Materials Conference, 2008.

Cheng, H. and Sandu, A., Collocation least-squares polynomial chaos
method, Proceedings of the 2010 Spring Simulation Multi-conference, San
Diego, CA, 2010.

Togawa, K., Benigni, A., and Monti, A., Advantages and challenges of non
intrusive polynomial chaos theory, In: Crosbie, R. (Ed.), Proceedings of
the 2011 Grand Challenges on Modeling and Simulation Conference, Vista,
CA, June 2011, pp. 30-35.

23



Branicki, M. and Majda, A., Fundamental limitations of polynomial chaos
for uncertainty quantification in systems with intermittent instabilities,
Communications in Mathematical Sciences, Vol. 11, 2013.

Fang, K. T., Li, R., and Sudjianto, A., Design and Modeling for Computer
Experiments, Chapman and Hall/CRC press, New York, 2006.

Lee, J. and Kwon, J. H., On the use of kriging in the interpolation of fluid-
structure interaction analysis, Japan society of computational fluid dy-
namics, Vol. 16, 2008.

Forrester, A. 1. J., Sobester, A., and Keane, A. J., Engineering Design via
Surrogate Modelling, A John Wiley and Sons, Ltd., 2008.

Sudret, B., Global sensitivity analysis using polynomial chaos expansions,
Reliability Engineering and system safety, 2008.

Bellman, R. E., Adaptive Control Processes: A Guided Tour, Princeton
University Press, New Jersey, NJ, 1961.

Mehta, P. M., Walker, A., Lawrence, E., et al., Modeling satellite drag coef-
ficients with response surfaces, Advances in Space Research, Vol. 54, No.
8, 15 October 2014, pp.1590-1607.

Chen, R. B., Hsieh, D. N.; Hung, Y., and Wang, W., Optimizing latin-
hypercube designs by particle swarm, Statistics and Computing, Vol. 23,
September 2013, pp. 663-676.

Hosder, S., Walters, R. W., and Balch, M., Efficient sampling for non-
intrusive polynomial chaos applications with multiple uncertain input vari-
ables, 48th ATAA /ASME /ASCE /AHS /ASC Structures, Structural Dy-
namies, and Materials Conference, Honolulu, HI, April 2007.

Gerstner, T. and Griebel, M., Numerical integration using sparse grids, Nu-
merical Algorithms, Vol. 18, 1998, pp. 209-232.

Barthelmann, V., Novak, E., and Ritter, K., High dimensional polynomial
interpolation on sparse grids, Advances in Computational Mathematics,
Vol. 12, 2000, pp. 273-288.

Pfluger, D., Spatially Adaptive Sparse Grids for High-Dimensional problem,
Verlag Dr. Hut, Munchen, 2010.

24



Kubicek, M., Minisci, E., and Cisternino, M., High dimensional sensitivity
analysis using surrogate modeling and High Dimensional Model Repre-
sentation, International Journal for Uncertainty Quantification, Vol. 5(5),
2015.

Mehta, P. M., Minisci, E.; and Vasile, M., Break-up Modeling and Trajectory
Simulation under Uncertainty for Asteroids, Proceeding of the 4th TAA
Planetary Defense Conference, Frascati, Roma, 13-17, April 2015.

Mehta, P. M., Kubicek, M., Minisci, E., et al., Surrogate - Model for Prob-
abilistic modeling of Atmospheric Entry for small NEO’s, Proceedings of
the 26th AAS/ATAA Spaceflight Mechanics, Napa, CA, AAS 16-245, 14-18
February 2016.

Mehta, P. M., Minisci, E., Vasile, M., et al:, Sensitivity Analysis towards
Probabilistic Re-Entry Modeling of Spacecraft and Space Debris, Proceed-
ing of the ATAA Modeling and Simulation Technologies Conference, ATAA
2015-3098, Dallas, TX, June 2015.

Mehta, P. M., Arnao G. B., Bonetti, D., et al., Computer Graphics for Space
Debris, Proceedings of the 6th International Conference on Astrodynamics
Tools and Techniques, Darmstadt, Germany, 14-17 March 2016.

Newton, I., Principia-= Mote’s Translation Revised, University of California
Press, 1946.

Schaaf, S. A., and Chambre, P. L., High Speed Aerodynamics and Jet Propul-
sion, ch. Flow of Rarefied Gases, Princeton Univ. Press, Princeton, NJ:
1958, pps1.— 55.

Mehta, P. M., Minisci, E., Vasile, M., et al., An Open Source Hypersonic
Aerodynamic and Aerothermo-dynamic Modeling Tool, Proceeding of the
8th European Symposium on Aerothermodynamics of Space Vehicles, Lis-
bon, Portugal, March 2015.

U.S. Standard Atmosphere, 1976, Tech. Rep. NOAA-S/T 76-1562, National
Oceanic and Atmospheric Administration, Washington, DC: U.S. Govern-
ment Printing Office, 1976.

25



ACCEPTED MANUSCRIPT

choosing the anchor point, Applied Mathematics and Computation, Vol.

217(7), 2010. Q

Gaoa, Z., and Hesthavenb, J. S., On ANOVA expansions and strategies for ;

26



Appendix: Tables and Figures

Table 1: Distribution properties of the stochastic input variables

Variable Description [Units] ‘ Type 1 o Central Value
To Temperature at 0 km [K] Gumbell 280.0 16.667 280.0
Tso Temperature at 20 km [K] Gumbell 218.0 7.333 218.0
Tso Temperature at 50 km [K] Landau 252.0 16.667 252.0
Tro Temperature at 70 km [K] Landau 187.0 24.0 187.0
Too Temperature at 90 km [K] | Gaussian 185.0 25.0 185.0
Ti20 Temperature at 120 km [K] | Gaussian 360.0 24.0 360.0
0o Density at 0 km [kg-m ™3] Gaussian 1.225 8.167e-2 1.225
P40 Density at 40 km [kg-m™3] | Gaussian | 4.0e-3 5.330e-4 4.0e-3
P90 Density at 90 km [kg-m ] | Gaussian | 3.416e-6"| 5.693e-7 3.416e-6
120 Density at 120 km [kg-m ™3] | Gaussian | 2.222e-8 | 3.703e-9 2.222e-8

‘ ‘L Min ‘ Maz
XN,y Percentage of N2 [%)] Uniform 0.784 0.816 0.8
cp Heat Capacity [J-K™'] Uniform | 1304.35 | 1441.65 1373
v Flight Path Angle [deg]

Un-controlled ‘Shallow’ Uniform 0.0 -0.1 -0.05

Controlled ‘Normal’ Uniform 0.0 -2.5 -1.25

Controlled ‘Steep’ Uniform -4.5 -5.5 -5.0
Voo Re-entry Speed [m=s™!] Uniform 7410.0 7790.0 7600.0

Mass of Debris [kg] Uniform 243.75 256.25 250

X Direction Angle [deg] Uniform 87.5 92.5 90.0
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Table 2: Sensitivity Characteristics of the Independent Increment Functions for the 16D

case

Variable | Partial i [km] ‘ Partial o [km] ‘ u Sensitivity | o* Sensitivity

Longitudinal

To 1.611e-05 6.066E-05 8.127e-08 7.663e-15
T2 -6.744e-08 1.165E-03 3.404e-10 2:828e-12
Tso0 -5.634e-05 1.909E-02 2.843e-07 7.588e-10
Tro -2.684e-04 5.627E-03 1.354e-06 6.596e-11
Too -6.870e-05 1.827E-03 3.467e-07 6.956e-12
Ti20 1.887e-06 7.256E-04 9.522e-09 1.097e-12
Po 1.006e-08 2.449E-07 5.077e-11 1.249e-19
P40 9.910e-01 1.214E4-01 5.001e-03 3.067e-04
P90 1.029e-+00 1.338E4-01 5.194e-03 3.731e-04
P120 5.036e-02 1.129E4-00 2.541e-04 2.653e-06
XNy -1.281e-06 8.730E-04 6.465e-09 1.588e-12
Cp -4.215e-03 2.208E-01 2.127e-05 1.015e-07
vy 1.316e+02 6.057E+02 6.644e-01 7.642e-01
Voo 2.811e+401 2.002E+02 1.419e-01 8.348e-02
-2.443e-02 2.876E+00 1.233e-04 1.723e-05

X -6.745e-01 6.047E-01 3.404e-03 7.616e-07

Lateral
X -6.083e-03 5.464e+4-01 9.292¢-02 8.968e-01

Table 3:/Sensitivity Characteristics of the higher order increment Functions for the 16D

case.

Variable ‘ Partial i [km] ‘ Partial o [km] ‘ w Sensitivity ‘ o Sensitivity

Longitudinal
¥V | 3.562e+01 2.698¢+02 | 1.798¢-01 1.516e-01
Lateral
~.X 4.680e-02 1.776e+01 6.564e-01 9.248¢-02
Vie,X 1.127e-02 5.516e+00 1.581e-01 8.924e-03
v, VoorX 5.460e-03 8.842¢+00 7.657e-02 2.293¢-02
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Table 4: Validation statistics for the HDMR, compared with Monte Carlo.

Longitudinal Lateral
Mean [km] Std. Deviation [km] Mean [km] =~ Std. Deviation [km]
HDMR 2.330e+-03 7.785e4-02 5.664e-02 6.495e+4-01
Monte Carlo 2.328e+03 7.733e+02 5.085e-02 6.418e+01

Table 5: Number of expensive BBM calls for model development with HDMR.

Case 12D 13D 15D 16D
# of function Calls 57 65 84 174
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data points represent the mean and boundaries for 99% of all samples, respectively. US
Standard Atmosphere (1976)
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Figure 7: 1000 samples from the density interpolation routine along with the distribution
histograms of the density stochastic input variables. The yellow and red data points

represent the mean and boundaries for 99% of all samples, respectively. US Standard
Atmosphere (1976)
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Figure 8: Partial histograms of the increment functions for the longitudinal impact dis-
tance of the 16D controlled ‘normal’ case.
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Figure 9: Probabilistic distribution for the 16D controlled ‘normal’ case in the longitudinal
direction using (a) HDMR, and (b) Monte Carlo. (c) Overlay of the HDMR and MC

histograms. (d) PDF error histogram.
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Figure 11: Probabilistic distribution for the 16D controlled ‘normal’ case in the lateral
direction using (a) HDMR, and (b) Monte Carlo. (c¢) Overlay of the HDMR and MC

histograms. (d) PDF error histogram.
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Figure 12: 2D histogram of the impact location for the 16D controlled ‘normal’ case using

(a) HDMRy and (b) Monte Carlo.
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Figure 13: Probabilistic distribution of the longitudinal impact distance for controlled
‘normal’ (a) the 12D case, (b) the 13D case, and (c¢) the 15D case.
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Figure 14: Overlay of the HDMR and MC histograms for un-controlled ‘shallow’ re-entry
in the (a) longitudinal and (b) lateral directions. Error histograms in (c¢) longitudinal and
(d) lateral directions. (e) The cause of the peak at the tail of the longitudinal HDMR pdf.
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Figure 15: Overlay of the HDMR and MC histograms for controlled ‘steep’ re-entry. Error
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