
Strathprints Institutional Repository

Pasquaretta, Cristian and Klenschi, Elizabeth and Pansanel, Jerome and 

Battesti, Marine and Mery, Frederic and Sueur, Cedric (2016) 

Understanding dynamics of information transmission in Drosophila 

melanogaster using a statistical modeling framework for longitudinal 

network data (the RSiena package). Frontiers in Psychology, 7. pp. 1-11. 

ISSN 1664-1078 , http://dx.doi.org/10.3389/fpsyg.2016.00539

This version is available at http://strathprints.strath.ac.uk/57658/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any  correspondence  concerning  this  service  should  be  sent  to  Strathprints  administrator: 

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/77033861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk


ORIGINAL RESEARCH
published: 20 April 2016

doi: 10.3389/fpsyg.2016.00539

Edited by:

Thomas Bugnyar,

Universität Wien, Austria

Reviewed by:

Mathieu Lihoreau,

Centre National de la Recherche

Scientifique – Center for Integrative

Biology in Toulouse, France

Ipek Gokce Kulahci,

University College Cork, Ireland

*Correspondence:

Cristian Pasquaretta

cristian.pasquaretta@gmail.com

†These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Comparative Psychology,

a section of the journal

Frontiers in Psychology

Received: 04 November 2015

Accepted: 31 March 2016

Published: 20 April 2016

Citation:

Pasquaretta C, Klenschi E,

Pansanel J, Battesti M, Mery F

and Sueur C (2016) Understanding

Dynamics of Information Transmission

in Drosophila melanogaster Using

a Statistical Modeling Framework

for Longitudinal Network Data (the

RSiena Package).

Front. Psychol. 7:539.

doi: 10.3389/fpsyg.2016.00539

Understanding Dynamics of
Information Transmission in
Drosophila melanogaster Using a
Statistical Modeling Framework for
Longitudinal Network Data (the
RSiena Package)
Cristian Pasquaretta1,2*†, Elizabeth Klenschi1,2†, Jérôme Pansanel1,2, Marine Battesti3,

Frederic Mery3 and Cédric Sueur1,2

1 Département Ecologie, Physiologie et Ethologie, Centre National de la Recherche Scientifique, Strasbourg, France, 2 Institut

Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France, 3 Evolution, Génomes, Comportement and

Ecologie, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Université Paris-Sud,

Université Paris-Saclay, Gif-sur-Yvette, France

Social learning – the transmission of behaviors through observation or interaction with

conspecifics – can be viewed as a decision-making process driven by interactions

among individuals. Animal group structures change over time and interactions among

individuals occur in particular orders that may be repeated following specific patterns,

change in their nature, or disappear completely. Here we used a stochastic actor-

oriented model built using the RSiena package in R to estimate individual behaviors

and their changes through time, by analyzing the dynamic of the interaction network of

the fruit fly Drosophila melanogaster during social learning experiments. In particular,

we re-analyzed an experimental dataset where uninformed flies, left free to interact

with informed ones, acquired and later used information about oviposition site choice

obtained by social interactions. We estimated the degree to which the uninformed

flies had successfully acquired the information carried by informed individuals using

the proportion of eggs laid by uninformed flies on the medium their conspecifics

had been trained to favor. Regardless of the degree of information acquisition

measured in uninformed individuals, they always received and started interactions more

frequently than informed ones did. However, information was efficiently transmitted (i.e.,

uninformed flies predominantly laid eggs on the same medium informed ones had learn

to prefer) only when the difference in contacts sent between the two fly types was small.

Interestingly, we found that the degree of reciprocation, the tendency of individuals to

form mutual connections between each other, strongly affected oviposition site choice

in uninformed flies. This work highlights the great potential of RSiena and its utility in the

studies of interaction networks among non-human animals.

Keywords: social network analysis, social learning, information transmission, actor-oriented model, social

interactions

Frontiers in Psychology | www.frontiersin.org 1 April 2016 | Volume 7 | Article 539

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://dx.doi.org/10.3389/fpsyg.2016.00539
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fpsyg.2016.00539
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2016.00539&domain=pdf&date_stamp=2016-04-20
http://journal.frontiersin.org/article/10.3389/fpsyg.2016.00539/abstract
http://loop.frontiersin.org/people/172213/overview
http://loop.frontiersin.org/people/338411/overview
http://loop.frontiersin.org/people/290948/overview
http://loop.frontiersin.org/people/52626/overview
http://loop.frontiersin.org/people/217593/overview
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Pasquaretta et al. Dynamics of Information Transmission in Drosophila

INTRODUCTION

Social learning, defined as the transmission of behaviors through
observation or interaction with conspecifics (Heyes, 1994), has
been extensively studied in many different taxa (e.g., bumblebees,
Leadbeater and Chittka, 2005; rodents, Galef and Clark, 1971;
sperm whales, Weilgart and Whitehead, 1997; primates Whiten,
2000; van de Waal et al., 2013). Because of the advantages and
drawbacks traditionally associated with social learning, it was
first described as a fitted adaptation in environments where it is
significantly less costly than individual, trial-and-error learning
(Boyd and Richerson, 1988).

Individuals should not look for information indiscriminately
within their group, as some individuals may hold a piece of
information that is irrelevant, outdated, or misleading to the
receiver (Kendal et al., 2005; Enquist et al., 2007; Rieucau
and Giraldeau, 2011). Social learning strategies thus rely on
the identification of the most successful individuals as best
potential sources of information inside the group, taking into
account the associated risk of inaccuracy (Kendal et al., 2005).
In other words, some individuals may contact, or be contacted
by, more members of the group or more often. In this regard, the
social structure that emerges from inter-individual interactions is
crucial in understanding how information is transmitted and if
this transmission is efficient (Pasquaretta et al., 2014).

A social structure can be represented as a network where
individuals are nodes connected by edges representing one or
several types of interactions or relationships occurring among
them (Wasserman and Faust, 1994). As summarized by Newman
(2003), social network analysis can be used to draw and visualize
networks, run statistical analysis of network properties, model
networks, and predict the behavior of individuals or patterns in
the networks. Connections among individuals (e.g., interactions)
are channels for the transmission of information from one
individual to another, and they are continually rearranged over
time (Blonder et al., 2012). Each individual behaves differently
during such a process, transmitting or receiving information
from different conspecifics at different times.

Recently temporal dynamic approaches have been developed
to study the structural changes occurring in a network along
discrete and/or continuous time scales. Such methods are
well suited to study social processes in animals such as
communication, disease transmission, social learning, and many
others (Pinter-Wollman et al., 2014). In particular, a temporal
network approach may help to clarify how the dynamics of
animal interactions modify network topology and relates to
information flow (Charbonneau et al., 2013) and learning
(Skyrms, 2009). Some of these methods come from human
social science and have principally been developed to predict
behaviors based on social structure (Steglich et al., 2006; Mercken
et al., 2010; Snijders et al., 2010b; Schaefer et al., 2011). In this
context, the use of the dynamic actor-oriented model developed
in the R package RSiena (Ripley et al., 2013a) provides powerful
estimations of individual behaviors and their changes through
time. These methods, developed in the RSiena package (Ripley
et al., 2013a), allow users to perform a wide range of data analysis
on the same platform used for dynamic modeling operations.

Despite having been developed for human social sciences, such
techniques can prove very useful in studying the dynamics of
interactions in animal societies as they integrate temporal analysis
into an actor-oriented modeling approach (described in Snijders
et al., 2010b). These methods assume that the dynamics of
network structure are the product of a multitude of small changes
happening continuously, of which the results are observed over
a discrete time line. Moreover, the evaluation of the dynamic
processes occurring inside a social structure is strongly dependent
on the timescale used. Blonder and Dornhaus (2011) recently
underlined the importance of using an appropriate timescale to
observe information flow, and a study on the ant Temnothorax
rugatulus had also shown a discrepancy in the results obtained
depending on the time-scale used (Charbonneau et al., 2013).
Indeed at large timescales, it was observed that information flow
within the colony was slower than expected, whereas at smaller
timescales it was faster, suggesting that the network facilitated
local rather than global information transmission.

In this work, we performed a social network analysis using
the RSiena package to evaluate the dynamic of social interactions
during social learning experiments, using the gregarious species
Drosophila melanogaster, which has already been demonstrated
to rely on social learning regarding oviposition site preferences
(Sarin and Dukas, 2009; Battesti et al., 2012). Schneider
et al. (2012) have demonstrated the existence of non-random
interaction networks in wild-type individuals in this species, and
more recently, experiments performed by Battesti et al. (2012)
provided evidence for social learning through the observation
of oviposition site preference. In their protocol, they used
uninformed flies that were left free to interact with individuals
that had been trained to favor one of two ovipositionmedia. Their
results showed that, after that interaction phase, uninformed flies
significantly favored the oviposition site the other individuals had
been trained to prefer. In another recently published work we
have also showed that uninformed flies, in addition to favoring
the oviposition site the other individuals had been trained to,
can also clearly avoid the information received by laying their
eggs on the opposite site informed flies were trained to choose
(Pasquaretta et al., 2016). The “avoid” or “follow” decision
appeared to be driven by the homogeneity of contact behaviors
among informed flies; that homogeneity was a condition sine qua
non for the information to be successfully followed.

The current study aims at evaluating individual behaviors
that could explain the varying outcome of social transmission
by studying the dynamics of interactions among flies. RSiena
was used to highlight the impact of social network dynamics
on the diffusion of information. While fruit flies use olfactory
and gustatory sensory organs to identify the sex of encountered
individuals (Fernández and Kravitz, 2013), they seem to strongly
rely on direct mechanosensory interactions as well in order
to elicit responses from flies (Ramdya et al., 2015). Since the
success of social transmission strongly relies on interactions
between informed and uninformed flies (Battesti et al., 2012)
and is affected by direct contacts among individuals (Battesti
et al., 2015; Pasquaretta et al., 2016), we expect to find a
discrepancy in the way these two fly types (i.e., informed and
uninformed) interacted in accordance with the transmission
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TABLE 1 | Sum of interactions experienced by 12 female flies (eight

informed and four uninformed) during 48 video recorded transmission

phases.

Video ID Total interaction Total binarized interaction

Follow

1 Video 7 6897 2478

2 Video 9 3434 1629

3 Video 10 3952 1703

4 Video 11 3524 1485

5 Video 13 2931 1368

6 Video 14 3564 1626

7 Video 23 3877 1622

8 Video 24 3609 1559

9 Video 28 4036 1767

10 Video 30 4287 1803

11 Video 31 5130 2017

12 Video 59 4255 1744

13 Video 65 6098 2207

14 Video 66 6411 2307

15 Video 67 5329 1862

16 Video 68 4314 1897

17 Video 69 3512 1573

18 Video 71 2721 1332

19 Video 73 4689 1813

20 Video 76 4393 1715

21 Video 77 5655 2215

22 Video 78 5468 2151

23 Video 79 6592 2371

24 Video 84 6753 2284

25 Video 89 4600 1903

26 Video 90 6626 2345

27 Video 92 2636 1260

28 Video 97 2072 1121

29 Video 103 5018 1885

Avoid

1 Video 6 5109 1912

2 Video 15 3492 1604

3 Video 21 3345 1545

4 Video 22 4480 1695

5 Video 25 4079 1593

6 Video 26 3952 1749

7 Video 64 6049 2255

8 Video 70 3267 1497

9 Video 72 3041 1463

10 Video 74 4126 1620

11 Video 80 4171 1726

12 Video 83 6146 2252

13 Video 87 4899 1971

14 Video 91 1757 976

15 Video 95 3042 1432

16 Video 96 4107 1694

17 Video 99 5222 1991

18 Video 100 4264 1774

19 Video 103 6026 2114

Both weighted and binarized matrices for follow (n = 29) and avoid (n = 19)

conditions are presented here. Video ID column, indicating the time order at which

experiment were run, is also presented.

outcome. Uninformed flies show an increase in their activity level
when facing informed individuals in the arena (Battesti et al.,
2015), which may directly affect the rate of contacts experienced.
Here, we focus on the analysis of the numbers of contacts sent
and received (also known as outdegree and indegree in social
network analysis) by both informed and uninformed flies, and
we expect to find higher outdegree and indegree measures in
uninformed flies compared to informed ones. We evaluated the
presence of homophily – the tendency of individuals to associate
with similar conspecifics – in the networks to assess the presence
of a possible bias in interaction exchanges within classes. Indeed,
significantly high levels of homophily for both classes suggest
the existence of closed subgroups where information may get
fixed (in the case of homophily in informed flies) or never
transmitted (in the case of homophily in uninformed flies).
Finally, in order to evaluate the impact of both individual and
neighboring degrees on the probability of receiving and starting
future interactions, we estimated the effect of being linked to
individuals that have received many contacts and the effect of
being linked to individuals that have sent many contacts in the
transmission arena.

MATERIALS AND METHODS

Behavioral Experiments
Using already published data on information transmission in
flies (Battesti et al., 2015), we processed recordings of the social
transmission phases of the experiments to identify interactions
between individuals and analyze the resulting social networks.
In those experiments eight female drosophilae were conditioned
by introducing them into a 120 mm × 50 mm × 90 mm
plastic cage and leaving them for 8 h with the choice between
two oviposition media (3 ml contained in 30 mm diameter
Petri dishes with 20 g/l of sucrose, 10 g/l of agar and 6 ml/l
of artificial banana or strawberry flavors, la Gazignaire SA).
Females were trained to prefer one oviposition site over the
other with the help of quinine, an alkaloid known to induce
gustatory repulsion in fruit flies (Quinn et al., 1974); 50% of the
replicates had quinine in the banana-flavored medium and 50%
had quinine in the strawberry-flavored medium. Following this
conditioning phase, the eight informed females were introduced
together with four uninformed individuals in a semi-opaque
white polyoxymethylene (Delrin) arena (diameter 100 mm;
height 3 mm) covered with transparent Plexiglas (design based
on previous work by Simon and Dickinson, 2010). After a
social transmission phase lasting 4 h, flies were gently removed
from the arena and immediately introduced into a plastic cage
containing two oviposition sites again, this time using quinine-
free banana- and strawberry-flavored media. We subsequently
calculated the proportion of eggs laid by uninformed individuals
on each medium at the end of each experiment. Two conditions
were then defined: (1) “Followed” (flies followed the information
gathered by informed individuals) when uninformed flies mostly
laid their eggs on themedium informed flies had learn to prefer in
the conditioning phase (proportion of eggs laid on the informed
medium by uninformed flies greater than 0.8, N = 29, of which
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16 on strawberry-flavored medium), and (2) “Avoided” (flies
avoided the information gathered by informed individuals) when
they laid their eggs in majority on the other medium (proportion
on informed medium lower than 0.2, N = 19, of which 8 on
strawberry-flavored medium).

Video Analysis
The social transmission phases were recorded using a camera
placed vertically above the arena. Using the Ctrax software
(Branson et al., 2009), the movements of each individual were
automatically followed and its coordinates in the arena recorded
for each frame of the video, at a rate of 10 frames per
second. Using these coordinates as our raw data, we constructed
interaction matrices for each experiment using an automated
code we specifically developed in R (code available under
request). To this end, we defined an interaction between two
individuals based on spatial and temporal constraints: proximity
between two flies had to (1) be smaller than 1.1 average body
lengths and (2) last for more than five frames of the video (i.e.,
0.5 s). These thresholds were derived from several preliminary
assumptions and observations. We calculated the average body
length of the individuals for each video based on the body
length measured by Ctrax for each individual in each frame.
Flies can interact using different angles of approach, but the
largest distance between two flies would only occur in the case
of an approach from the front or rear (for a better graphical
explanation of the interaction see Figure 2 in Pasquaretta et al.,
2016). In these types of interactions, the distance between the
centers of the two individuals will thus be equal to one body
length in the case of direct head-to-head contact. We added
a 10 percent margin to account for possible contacts between
antennae or front legs (structures which are too small for Ctrax
to be detected) even when bodies were not in direct contact.
Secondly, our temporal criteria to define interactions were based
on our observations that proximity lasting under 0.5 s usually
corresponded to individuals crossing paths without stopping to
interact. Moreover, to discriminate between the initiator and the
receiver, we estimated the mean speed of the individuals during
an interval lasting four time-frames and preceding each contact
by calculating their traveled distance during this interval; the
initiator was defined as the fastest individual between the two
involved in the contact. Each transmission phase was divided into
intervals of 5, 10, and 15 min and each set of intervals was tested.

Dynamic Analysis
A stochastic agent-based model was run using R (version 3.1.3)
(R Core Team, 2015) and the RSiena package (version 1.1-232)
(Ripley et al., 2013a) after testing for the different time-scales we
had previously defined (i.e., 5, 10, and 15 min). Indeed, changes
between two consecutive networks can be too small to rise above
the significance threshold, or too large for the model to consider
the networks as consecutive stages of the same process. In our
case, this lead to an impossibility for the models to converge on
our data based on the 5 (few individuals are connected in the
matrix) and 15-min (all individuals are connected) intervals. All
modeling was thus performed on the 10-min intervals, for which
convergence was always successful and satisfying; all t-statistics

for convergence were inferior to 0.1, suggesting a satisfying
estimation of the model (Ripley et al., 2013b).

We checked for the amount of changes between consecutive
networks using the Jaccard index, which expresses the similarity
between two sets of matrices ranging from 0 (completely
different) to 1 (exactly the same). A Jaccard index higher than
0.2 indicates that consecutive networks are similar enough to be
considered as successive states of the same network, thus allowing
for an RSiena modeling approach (Ripley et al., 2013b). Before
running the analysis, we also removed the first time interval from
the data; live observations of the flies after they were introduced
into the arena showed enhanced activity in all individuals during
the first interval of the transmission phase.

The dynamic analysis for weighted networks is not yet
implemented in RSiena; we thus performed all the following
analysis using binary matrices (Ripley et al., 2013b). The network
measures discussed in this study are thus referring to unweighted
degrees. We consider these measures just as relevant as their
weighted equivalents in our case (see Table 1). Indeed, a binary
matrix based on degree instead of strength, actually informs on
the total number of different individuals that contacted or have
been contacted by each focal fly.

Actor-Oriented Model
The actor-oriented dimension of the model allows us to
test hypotheses regarding how individuals affect the network
structure by changing their outgoing ties, i.e., who they interact
with. However, our study focuses more specifically on two
classes of individuals, informed and uninformed flies, and how
these classes interact by comparing behaviors at the class level.
Moreover, one of the assumptions of the model is that network
ties can be regarded as states, rather than events. Conceptually,
it is more intuitive to consider a network of flies interacting as a
succession of events, one event being described as one interaction
between two flies. Another major assumption of RSiena is that
the network’s probabilities of change follow a Markov process,
i.e., that the current state of a network is the only probabilistic
determinant of its dynamic. However, this does not necessarily
imply that past states are irrelevant; they can intervene through
the influence they have on the current state itself. In our case,
this will be reflected by the fact that past interactions will affect
an individual’s current behavior, as it is likely to have changed its
state along the way (i.e., acquired information) or have a different
knowledge of its social environment as it contacts other informed
and uninformed flies.

Several methods of estimation have been implemented into
Siena since its development: the Method of Moments (Snijders,
2001), the Maximum Likelihood method (Snijders et al., 2010a)
and the Bayesian method (Koskinen and Snijders, 2007). While
the two latter sets of methods usually yield smaller standard
errors for estimates, their use is strongly encouraged in situations
with small network datasets and/or very complex models.
Considering the size of our data as well as the relative simplicity
of our models, the Method of Moments was deemed sufficient
and allowed for faster computing calculations (Ripley et al.,
2013b). The principle of this procedure is to condition on the
first observation; the first observed network (i.e., the network
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built from observations in the first time interval) is used as
the starting point of the simulation, rather than estimated, and
thus used to estimate changes between the first interval and
successive ones. At each time step, the same procedure is applied
until the final interval is reached. We applied the evaluation
function to determine the probability of change for actors in the
network based on the state of the network and on actor behavioral
covariates. This function is described as the primary determinant
of the probabilities of change of a network, and it can be expressed
using the wide range of covariate effects defined in RSiena (Ripley
et al., 2013b).

RSiena allows for the combined analysis of several inde-
pendent networks and estimation based on repeated measures.
Networks are considered independent when they are composed
of different sets of actors and when it can be considered that
these networks do not influence each other. Such was the
case in our study, where new individuals were used for each
experiment. Several methods are proposed to achieve this type
of analysis. We selected the multi-group analysis for its fast
computing time and its estimation of rate parameters for each
independent network, as opposed to other methods which yield
a single rate parameter for all networks for each interval (Ripley
et al., 2013b). These rate parameters express the rate of change
between two successive networks, i.e., – the speed at which
new interactions between individuals who were not previously
interacting occur and existing interactions disappear. In such an
actor-based model, several effects can be analyzed: (1) structural
effects, describing the variation of the whole structure of the
network over time and only depending on the network itself, (2)
monadic covariate effects, which use individual characteristics as
statuses of individuals in the network, and (3) dyadic covariate
effects, typically used to analyzed the effect of more than one
actor on the individual network measures (see Ripley et al.,
2013b for a detailed description of all the available effects in
RSiena). However, because the model implemented by RSiena
was constructed with studies of human networks in mind,
not all effects are relevant for our purpose. We consequently
identified and tested the effects most relevant to our question
(Figure 1). Each effect was tested using a Wald t-test. We
followed a two-step procedure; we first tested some pertinent
effects in a preliminary global model including both structural
(i.e., density, reciprocity, square of contacts sent, and sum of
contacts received by neighbors) and monadic (actors hereafter
called ego, receivers hereafter called alter, and homophily) effects
(Figure 1 provides a detailed description of the tested effects).
Secondly, in order to better characterize the impact of individual
status on information transmission processes, we implemented
monadic effects alone (i.e., ego, alter, and homophily) on time-
based subsets of our data. Density cannot really be interpreted by
itself, as all other statistics are correlated with it; it is included
to control for the density of the network, as advised by the
RSiena developers (Ripley et al., 2013b). We modeled subsets of
increasing size, starting with the first two interaction matrices
(i.e., the second and the third time intervals from our original
data). Following subsets were generated by incrementing their
length by 10 min, or one time interval, each time. Thus, the
dynamics of the t-statistics for the ego and alter effects were

estimated using two linear models, with time intervals and
experimental condition as predictors in each model. We also
tested for the presence of a quadratic relationship of the ego
and alter effects with time, comparing linear and quadratic
regressions using the F-test. A quadratic relationship can suggest
the existence of a possible plateau in the relationship between
time and the number of contacts sent or received, above
which the transmission process stabilizes. We applied a forward
stepwise procedure to select our models. To implement the
selection we first created a model for each effect previously
described and we then aggregated the estimates and we excluded
all the non-significant effects. All the models were tested for
their goodness of fit to ensure their likelihood in explaining
original data by using the “sienaGOF” function from the RSiena
package1.

RESULTS

Jaccard indexes were superior to 0.2 in 675 out of 696 and 437 out
of 456 10-min matrices used from our “Followed” and “Avoided”
conditions respectively, ensuring a sufficient change among
consecutive networks to apply our subsequent RSiena analysis.
Indeed, mean rate parameters evolve over time as a sinusoidal
distribution for both the “Followed” and “Avoided” conditions,
meaning that the dynamics of the networks reveal similar,
comparable patterns between conditions (Figure 2). Applications
of the multi-group stochastic estimation procedure performed
by RSiena on our experimental data (conditions “Followed”
and “Avoided”) yielded models illustrating the dynamics of
network measures and the influence of oviposition experience
on behavior and network structure. The stepwise model selection
procedure yielded a parsimonious model defined by the density,
reciprocity, alter, and ego effects. For the “Followed” condition
model, the square of the number of contacts sent was also
retained. Whether information was followed or not, uninformed
individuals received interactions from the opposite fly type
(alter effect) more frequently than informed ones (Followed:
t = −3.973, P < 0.001; Avoided: t = −4.103, P < 0.001)
and they initiated interactions toward the opposite fly type (ego
effect) significantly more than informed individuals (Followed:
t = −10.036, P < 0.001; Avoided: t = −13.449, P < 0.001).

Reciprocity, the tendency of individuals to form mutual
connections between each other, was always significant both in
the “Followed” and “Avoided” conditions, but showed opposite
trends: uninformed flies followed the information carried by
informed individuals when reciprocity was significantly lower
than random (t = −12.166, P < 0.001), while they avoided
it when it was higher (t = 10.396, P < 0.001). The number
of contacts received by neighbors did not influence the
transmission process, neither in the “Followed” nor in the
“Avoided” conditions (Followed: t = −0.493, P= 0.622; Avoided:
t = −0.551, P = 0.582).

The more the square of the number of contacts sent (outdegree
activity) increased, the less likely information was to be followed

1http://www.inside-r.org/packages/cran/RSiena/docs/plot.sienaGOF
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FIGURE 1 | Interpretation of the RSiena structural effects tested on the “Followed” and “Avoided” data. Each graph delimited within a single dashed gray

box represents an observation of a directed network during a given time interval (denoted by tn). Successive states of the network and the dynamics of each effect

through time are shown by successive dashed gray boxes (denoted by tn+1 and tn+2). (1) Structural effects are effects related to network measures only, while

monadic covariate effects are related to individual characteristics defined by a binary covariate (here, informed vs. uninformed). Color keys are the same over all

figures, with blue elements describing cases where the effect in question has positive and significant dynamics, and orange elements where these are negative and

significant. Pink nodes represent uninformed flies (covariate = 0), and green nodes informed ones (covariate = 1). Structural effects are only related to the network:

(Continued)
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FIGURE 1 | Continued

(A) The density effect (density), defined by the outdegree of the actors. When significant, it expresses whether density in the network is increasing or decreasing over

time, i.e., whether relations are more often created or dissolved. A positive significant statistic (blue) indicates that density overall increases, and a negative significant

statistic (orange) that density overall decreases. (B) The reciprocity effect (recip), defined by the number of reciprocated interactions, i.e., the number of instances in

which the actor of interest also received an interaction from the actor it contacted. When positive (blue), it expresses that an actor is more likely to send an interaction

to actors that have previously sent it one and when negative (orange) it represents avoidance. Non-significant values for this effect represent cases in which the

reciprocal behavior is random. (C) The indegree related popularity effect (inPop) reflects the tendency of the neighbors of each actor to receive interactions by others

in the network. When significant it underlines the role of neighbors as bridges of information. (D) The outdegree related activity effect (outAct) reflects the probability

of the actor to be contacted by neighbors with a large number of contacts sent. Significant statistics for this measure mean that an individual is largely contacted by

highly active individuals. (2) Monadic covariate effects are related to an individual covariate, in our case the class of the actor of interest (informed or uninformed):

(E) The covariate-alter or covariate related popularity (altX ), defined by the sum of the covariates over all actors with whom the actor of interest has an interaction.

When significant, it expresses which class of actors receives interactions from others more rapidly. For a significant statistic, the interpretation will be that informed

flies are contacted by others more rapidly than uninformed flies if it is positive (blue), and vice versa if the statistic is negative (orange). (F) The covariate-ego or

covariate related activity (egoX ), defined by the actor’s outdegree weighted by its covariate value. When significant, it expresses which class of actors starts

interactions more rapidly. For a significant statistic, the interpretation will be that informed flies contact others more rapidly than uninformed ones if it is positive (blue),

and vice versa if the statistic is negative (orange). (G) The same covariate or covariate related identity (sameX ), defined by the number of interactions of the actor of

interest to all other actors who have exactly the same value of covariate (i.e., informed-informed or uninformed-uninformed). When significant, it expresses how likely

the actor of interest is to interact with others who share the same covariate value. A positive statistic (blue) will thus express homophily (i.e., actors interact more

often with others who have the same covariate value) and a negative one (orange) heterophily (i.e., actors interact more often with others who have a covariate value

different from their own).

FIGURE 2 | Rate parameters of the networks estimated from the

multi-group analysis in RSiena for each of our two experimental

conditions (“Followed” and “Avoided”). Rate parameters express the

number of opportunities for change between successive networks for one

given actor. A change is understood as the creation or the deletion of relations

among actors during two successive networks. The number of observed

changes is, however, always lower than what rate parameters imply; an

opportunity for change can be resolved by a ‘no change’ decision, and

successive changes can cancel each other out (e.g., create then dissolve a

given relation during the same interval). They do not differ between conditions;

in both cases actors always have opportunities for change from one network

to the next, and although the number of opportunities varies over time, it

evolves similarly whether information was followed or not. The success of

information transmission is thus not primarily dependent on the opportunities

actors get to change their connections to other actors. Best fitted lines for a

non-linear model are represented for “Followed” (black) and “Avoided” (grey)

conditions. Shaded areas represent the standard errors of the models.

(t = −2.185, P = 0.029), meaning that an elevated mobility of
flies inside the arena was somehow impeding the acceptance of
the information by uninformed individuals. Finally, homophily
within classes of flies had no effect on the transmission process,
neither in the “Followed” nor in the “Avoided” conditions
(Followed: t = −0.313, P = 0.751; Avoided: t = −0.413,
P = 0.682).

To better evaluate the influence of the ego and alter effects
over time we repeated the RSiena procedure over intervals of
increasing lengths, starting from the first 10-min interval and
adding successive intervals one by one. An analysis of variance
showed that both ego and alter t-statistics were better explained
as a quadratic function of time (egoquadratic_linear: F = 63.732,
P < 0.001; alterquadratic_linear: F = 17.016, P < 0.001), meaning
that informed and uninformed flies first increase their differences
in terms of numbers of contacts started and received, then reduce
these behavioral differences over time (Figure 3). The difference
in the number of contacts received by informed and uninformed
flies was larger when information was followed than when it was
not (ConditionFollowed_Avoided: t = 3.084, P < 0.001). There is also
a large discrepancy in the magnitude of the t-statistics associated
with the ego effect: the difference in the number of individuals
contacted by informed and uninformed flies is constantly
smaller in the “Followed” condition (ConditionFollowed_Avoided:
t = −19.231, P < 0.001). These results suggest that a large
heterogeneity in the number of contacts sent and received by
both fly types drove uninformed flies to choose the opposite
oviposition site informed flies were previously trained to choose.

DISCUSSION

Using data collected on fruit flies in the context of social
learning, we have investigated how the behaviors of informed
and uninformed individuals could explain the varying success of
information transmission, as reflected in the different strategies
adopted by uninformed flies after they had interacted with
informed individuals.

The RSiena multi-group analysis shows that uninformed flies
always contacted and were contacted by more individuals than
informed ones. This result is in accordance with a previous work
we have done on the same set of flies where we showed an
increase in the mean activity level for uninformed flies during
transmission phase, probably due to an increased interest in
interacting brought upon by flies bringing some novel odors
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FIGURE 3 | Wald t-test values for the alter and ego effects obtained by

the RSiena model estimation. The alter effect represents which class of

actors increases its indegree more rapidly, while the ego effect expresses

which class increases its outdegree more rapidly. These t-statistics were

estimated over time intervals of increasing length for the two transmission

conditions. Results show that uninformed individuals display both a higher

outdegree and indegree than informed individuals (negative t-statistics) and

that the difference in outdegree between the two classes is more important

than in indegree. Best fitted lines for the quadratic models are represented for

“Followed” (black) and “Avoided” (grey) conditions. Shaded areas represent

the standard errors of the models.

into the uninformed flies’ environment (Battesti et al., 2015).
Indeed, uninformed flies were always more active both as
sender and receiver. Interestingly, uninformed flies tended to
follow the information provided by informed ones when the
difference in contacts sent between the two fly types was
moderate. This phenomenon occurs either because uninformed
flies have contacted fewer individuals, or because informed
flies have contacted more. This result suggests that information
transmission may occur following an active rather than a
passive process, which can be explained both by a search of
the information performed by uninformed individuals and/or
by an active exchange performed by informed individuals. The
active participation of informed flies is not obviously expected
following Battesti et al.’s (2015) results. In Battesti et al. (2015),
we have shown that the performance of informed flies after the
transmission phase was negatively affected by the rate of previous
interactions with uninformed individuals, revealing a possible
associated cost to information transfer for informed flies. In that
study we suggested that the observed transmission process from
informed to uninformed flies, and the resulting change in the
behavior of informed flies, could be adaptive as the survival rate
of larvae might depend on a balance between optimal resource
exploitation rate and larval competition. Indeed, an increased
number of larvae will exploit the resource more efficiently
than a small aggregate, and will be more likely to prevent
the development of bacterial and fungal competitors (Rohlfs

and Hoffmeister, 2003; Rohlfs, 2005). However, an extremely
large number of larvae foraging on the same medium will also
impact the per-capita resources available for individual use, thus
increasing competition among individuals (Pulliam and Caraco,
1984).

Interesting results were found in relation to the reciprocal
behavior of flies: uninformed flies tended to avoid the
information brought by informed ones when a large number
of reciprocated interactions occur. For information to be
transmitted, non-reciprocal contacts are crucial. Network
reciprocity has been suggested to negatively affect the formation
of smoothed boundaries in clustered population. In particular,
in a recent prisoner’s dilemma game developed to study the
impact of network reciprocity and individual conformism on
cooperation, Szolnoki and Perc (2015) have demonstrated that,
starting from a clustered population made of two type of
individuals (cooperators and defectors) experiencing a relatively
high value of network reciprocity, an increase in the fraction
of conformist individuals in the population led to an increase
in cooperative behaviors among individuals by smoothing the
interaction boundaries among clusters. In accordance to this
theoretical work our results suggest that network reciprocity
may direct uninformed flies toward an “anti-conformist” site
choice underlining the regulatory role, especially as social
obstacle, played by high level of reciprocal interactions. It is
interesting to note that in a previous work describing the
genetic determinants of social structure in different Drosophila
strains, Schneider et al. (2012) found that olfactory mutant
flies (individuals with a severe loss of smell) showed a higher
percentage of reciprocated interactions and a disrupted social
interaction network compared to wild-type flies. These results
may bring additional improvements to the understanding of both
the ultimate and proximate factors influencing the efficiency of
information transmission processes in this species.

The dynamic network analysis performed over intervals of
increasing lengths shows that differences in the estimation
of the number of contacts sent and received by informed
and uninformed flies best fit a quadratic distribution, with
a positive concave curve (Figure 3). This suggests that the
interaction network stabilized with time through a reduction
of the differences between the behaviors of informed and
uninformed flies. A large variability in the number of contacts
can be caused by the abnormal activity of a few individuals in
a network (also known as the friendship paradox; Feld, 1991)
which may experience higher rate of interactions in their social
milieu. This time-leveling phenomenon is in accordance with the
synchronization of activities in fruit flies which has been shown
to be affected by social interaction between individuals (Lone and
Sharma, 2011).

To the best of our knowledge, this is the first time that an actor-
oriented model approach was used to evaluate the correlation
between network dynamics and information transmission in
animals, suggesting that RSiena might provide useful analytical
tools to answer other ecological and evolutionary questions.
RSiena allowed us to analyze the dynamics of interaction
networks during social transmission experiments and to identify
the flies’ involvement in the process of information transfer.
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The implementation of additional effects taking into account
social processes observable in more complex animal societies
would make this tool even more useful to biologists studying
other species by allowing them to construct complex models
to explain the dynamics of their observed interaction networks.
For instance, RSiena’s actor-oriented models might be used
to estimate the dynamic formation of triadic subgroups (i.e.,
transTrip effect in the RSiena manual) in species experiencing
triadic coalitions among groupmembers (e.g., primates Kappeler,
2012; Corvus corax Loretto et al., 2012). Moreover, estimation
in RSiena is based on the analysis of unweighted networks,
meaning that the data used as input for this program reflects
the interactions between individuals in the group, but not
their frequency. Being able to work directly on weighted
networks would allow for the integration of the number of
interactions occurring between a given pair of individuals.
Because biological processes involving information transmission
are likely to rely heavily on repeated interactions between
animals (Wei et al., 2015), this improvement would certainly
provide even more insight into the mechanisms regulating such
processes.

Results obtained in this work show a strong effect of network
properties on the future oviposition site choice of uninformed
flies. In this context, our results may grant more interest as
well because they were obtained from an oversimplification of
the repeated interactions occurring between flies in the arena.
However, it is possible that in our experiments, uninformed flies
may have switched from an uninformed state to an informed
state before the transmission was over. Flies may need to pass a
threshold of a minimum number of interactions before they can
make this switch. Understanding the timing of this switch, and
its integration with social interactions, is critical for information
transmission studies where a threshold processmay occur (Watts,
2002).

The information transmission process is likely to be
affected by the proportion of informed and uninformed
flies interacting. Previously unpublished experiments run
by Mery’ lab (personal communication) have revealed that
twice as many informed as uninformed individuals are
needed in the arena for the information to be transmitted.
It would be interesting in the future to analyze variable
proportions of informed and uninformed flies to better
evaluate the existence of such a threshold mechanism,
which has already been well described theoretically in social
learning literature (i.e., see social learning benefit when
copying is rare: Boyd and Richerson, 1985; Giraldeau et al.,
2002).

Finally, a well-determined subset of videos (i.e., 77% of
the total videos run) was used to understand the dynamic
effect of network measures on oviposition site choice in this
work (i.e., where the proportions of eggs laid by uninformed
flies was outside of the [0.2; 0.8] interval). RSiena’s multi-
group analysis allows for a parallel comparison of multiple
binary networks that can be merged based on clear definitions
(follow and avoid information in our case). More studies

are needed to understand which network properties affect
the remaining random choice we obtained in 23% of the
data. In particular, the random outcome obtained in such
videos might be caused by different spreading dynamics that
could have been actually produced by repeated interactions
among individuals. In this context, Relational Event Models
(REMs: Tranmer et al., 2015) might be an interesting tool to
estimate the impact of multiple repeated interactions on the
transmission process. REMs indeed evaluate the sequence of
events occurring in each network, allowing also for weighted
network analysis and thus possibly explaining the effect of
multiple interactions among individuals on future oviposition
site choice.

Using Drosophila as a model allowed us to make use of
the powerful multi-group analysis developed in RSiena while
using a substantial data set, obtained from independent repeated
experiments. Likewise, studies using different experimental
conditions, different mutant strains, or groups with different
ecological or physiological characteristics could benefit from a
similar approach. However, many studies of animal networks
focus on species and social processes for which fewer
observations are available, meaning that a multilevel network
analysis (such as the multi-group analysis we used here)
may not always be possible. However, past uses of RSiena
have yielded interesting and valid results, even when repeated
experiment cannot be performed (Ullrich et al., 2010; van
Zalk et al., 2011). It thus seems that this tool could be
used to study a wide range of animal species, varying in
group size, social complexity, and access by observers, as
recently shown in Ilany et al. (2015). We confirm here that a
network dynamic approach is a strong tool for understanding
information transmission in a mixed group of flies. This
transmission process notably involves specific social behaviors
from both informed and uninformed individuals, such as
reciprocity between individuals and number of contacts sent
or received upon which the success of information diffusion is
conditioned.
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