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A Random Forest Model for Predicting the 

Crystallisability of Organic Molecules 

Rajni M. Bhardwaj,a Andrea Johnston, a Blair F. Johnston, a and Alastair J. Florence a * 

A Random Forest model has for the first time enabled the 

prediction of the crystallisability (crystals vs. no crystals) of 

organic molecules with ~70% accuracy. The predictive 

model is based on calculated molecular descriptors and 

published experimental crystallisation propensities for a 

library of substituted acylanilides.  

Random forests (RF) is a method for classification and regression 1-3 

and has been used in various physical and life science applications 

such as for predicting aqueous solubility4, mutagenicity5, QSAR 

studies6, for building drug likeness classification models7, as well as 

other applications in life sciences8-12. There is only one report of the 

successful application of RF in the area of crystallisation, where it was 

used to predict solvate formation of carbamazepine13. RF has been 

described elsewhere1-3 and offers various advantages over other 

statistical methods such as principal component analysis (PCA)14 and 

artificial neural networks (ANN)15, 16 that make it well suited for the 

analysis of complex transformations such as solvate formation, crystal 

packing17 and crystallisation. Major advantages include no over-

fitting of data, estimation of internal errors, measures for descriptor’s 
importance and robustness to outliers, missing data points and noise. 

A schematic diagram of an RF workflow is shown in ESI. 

Organic compounds can exhibit different crystallisation propensities: 

some may crystallise well or quickly, while others do so badly or 

slowly or not at all. Poor crystallisation behaviour can have an impact 

on processes/industry and can include a collection of outcomes 

including nano/micro crystal formation, oiling out, poor impurity 

rejection and/or agglomeration. Despite efforts towards better 

theoretical understanding of crystal nucleation and growth18, it is not 

currently to predict ab initio which molecules are likely to show 

undesirable crystallisation behaviour. Hence in most practical 

situations trial-and-error and empirical knowledge are largely relied 

upon to achieve a desirable outcome when problems are 

encountered.19 Various crystallisation propensity predictive models 

have been developed for proteins (with predictive accuracy ranging 

from ~70-80%) 20-27 which only require the protein sequence as input 

to predict crystallisability. There are no reports of crystallisability 

prediction of small molecules from solution; therefore, it was of 

interest to use the RF technique in predicting the crystallisation 

propensities for small molecules as a tool to guide experimental 

approaches to develop crystallisation processes. This communication 

reports the prediction of crystallisation propensities 

(“crystallisability”) of small organic molecules19 using a training set 

comprising their calculated 2-D and 3-D molecular descriptors and the 

published experimental crystallisation outcomes. The outcomes used 

in the model were only ‘crystal’ or ‘no crystal’. The developed model 

has also provided a list of molecular descriptors that govern the varied 

crystallisation outcomes which help to rationalise the experimental 

observations.  

The RF classification was carried out using a commercially available 

package, RandomForests® (Salford Systems). There are very few 

examples of systematic crystallisation studies on a series of related 

organic molecules that record the ease of crystallisation, Hursthouse, 

et al. have published a dataset19 comprising crystallisation outcomes 

for 382 acylanilide compounds containing different R and X groups 

(Fig. 1).19 This provides a diverse library of molecules that share a 

common molecular nucleus and displayed different crystallisation 

outcome forming an excellent basis for the development and testing 

of a predictive model. 

 

 
Fig. 1 Basic skeleton of acylanilide molecules. X includes H, CH3, C2H5, C3H7, 
C(CH3)3, CF3, OCH3, OC2H5NH2 and Cl. R includes  H, CH3, C2H5, C(CH3)3, 

OCH3, OC2H5, OCF3, F, Cl, Br, I, CF3, OH, NH2 and COOH. 

 

The training dataset comprised 151 calculated 2- and 3-D descriptors 

for each molecule (detailed in ESI) alongside the crystallisation 

outcome from the original report. The outcomes were described as: 

class 1, where a single crystal was observed and class 2, where no 

single crystal was observed. The RF classification model was trained 

using all 151 calculated descriptors and 2 crystallisation outcomes for 

the 382 molecules using the following parameters: ntree = 20000, 

mtry = 12, jclasswt = 1 (for class 1) and 1950000 (for class 2), 



COMMUNICATION Journal Name 

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 

nodesize =1, seed = 45€. During RF classification model building, the 

overall error rate converged with an increase in the number of trees 

(see ESI). The final RF model classified the molecules in two classes 

with an overall OOB error of prediction of 32.6% and prediction 

accuracy of 67.4% (see ESI). The RF model has predicted the number 

of molecules in each class with similar percentage accuracy (see ESI). 

The RF program computed the proximities between pairs of 

molecules which were then scaled down into two dimensions using 

multidimensional scaling (MDS). The MDS plot of scaling 

coordinates 1 vs. 2 (Fig. 2), obtained from the proximity matrix 

generated by RF showed two distinct zones belonging to two classes 

and an overlapped zone which comprises molecules from both classes. 

 

 
Fig. 2 The MDS plot of the scaling coordinates (1, 2) obtained from the 
Random Forests classification proximity matrix. Each of the 382 points on the 

multidimensional scaling plot represents a molecule from the dataset and is 

coloured according to crystallisation outcome: class 1 (red) and class 2 (blue). 
1 and 2 denote the two separate zones correspond to molecules from class1 and 

class 2. 3 (encircled in green) denotes the overlapped zone with molecules from 

both classes. 

 

A convex hull plot which is an alternative to the MDS plot and offers 

a useful representation of large datasets with a considerable overlap 

of points between them28 was also generated (Fig. 3). The analysis 

showed that the molecules in class 2 were confined in a limited space 

of the plot indicating a common set of calculated descriptors that are 

consistent with poor crystallisability while molecules in class 1 were 

present across a larger area (see ESI). The predictive accuracy of 

this model was tested by removing a crystallisation outcomes for 

a subset of molecules, followed by rebuilding the model and  

  

 
Fig. 3 Convex hull plot of scaling coordinates obtained from RF 

proximity matrix. Molecules in class 1 and 2 are represented by red and 

green points respectively. The cross sign is the mean of MDS1 and 
MDS2 for each group. 

subsequent prediction of their crystallisation outcome resulted in 

a similar predictive accuracy (67%). 

The mean decrease in accuracy method was used to assess the 

relative importance of molecular descriptors responsible for the 

predictive model. The top 10 most important molecular 

descriptors responsible for crystallisation behaviours of 

molecules include those that that describe the relative energies 

of the different molecules in terms of their torsion energy, van 

der Waals and steric energy terms as well as atomic connectivity, 

conformation and number of rotatable bonds (these are all listed 

with their definitions in the ESI). It is worth noting that the 

molecular descriptors identified by the mean decrease in accuracy 

method are consistent with chemical and structural expectations 

and/or knowledge leading to confidence in this method. For example, 

a number of the descriptors relate to conformational flexibility in the 

molecule which is known to play an important role in reducing the 

crystallisation tendency of molecules.29 Molecules containing long 

alkyl chains generally have multiple conformations in the crystallising 

media which may impact on their integration within the emerging 

crystal lattice.29 Similar trends were deduced for molecules in the 

original report i.e. crystallisation tendency was reduced on increasing 

the length of the alkyl chain. Propionanilide and butylanilide 

derivatives had poorer crystallisation tendencies compared to 

acetanilide and trimethylacetanilide derivatives. The method reported 

here also is also consistent with the observation from the original 

report that para-substituted derivatives were easier to crystallise than 

the ortho-substituted derivatives, which in turn were crystallised more 

easily than meta-substituted derivatives.19  

Cheminformatics approaches for the identification and selection of 

critical molecular descriptors responsible for varied crystallisation 

outcome is a potentially powerful tool in materials design, 

crystallisation and process development. Although the importance of 

specific descriptors cannot be quantified using this method the 

information provides a potential means to identify crystallisation 

issues during initial studies and can help in designing improved 

crystallisation processes and in understanding the role of specific 

molecular attributes on this important physical transformation.  

This model is based solely on 2-D and 3-D calculated molecular 

descriptors of a number of specific organic molecules in a relatively 

small range of crystallisation conditions and does not take into 

account of effects of impurities19, solvent effects and variation in the 

crystallisation conditions in individual experiments (e.g. %RH, rate of 

solvent evaporation, slight variations in temperature, or other 

disturbances). The solubility of the compound in different solvents 

can vary significantly and affects the nucleation process and 

consequent appearance of crystals. Very high solubility may lead to 

increased viscosity possibly leading to gums/oils being produced 

whilst inadequate solubility may lead to extremely dilute solutions 

which will rarely give large crystals. A limited range of solvents and 

crystallisation conditions were used for the reported crystallisation 

study on this library of molecules. As this model is trained on data 

from the molecules and conditions described, predictive application is 

only justified for similar chemical and experimental conditions. 

However there is clearly opportunity to exploit data from other 

sources and in house experimental programmes to develop the tool 

further as means of providing a means to identify where the formation 

of crystals is likely to be facile or problematic.  

This dataset is taken from the literature and given the aim of the 

original study was a structural systematics investigation; the 

systematic effort towards crystallisation may have been limited. The 

crystallisation experiments were done under similar conditions but 

may not have been tightly controlled leading to changes in 

concentration, supersaturation due to temperature or evaporation rate 

fluctuations. All these factors might have an effect on the 
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crystallisation outcome. Impurities often play a role in inhibiting 

crystal growth and phase transformation.30 The crystallisation 

behaviour may be different under different sets of conditions used for 

synthesis and crystallisation. These molecules are likely to have 

major/minor impurities which may have an effect on the 

crystallisation outcome.  

The next step towards achieving this kind of statistical modelling 

approach would be to incorporate information about crystallisation 

conditions such as solvent, rate of solvent evaporation, RH, 

temperature etc. which would certainly improve the value of the 

training data set and hence, predictive capability. The extension and 

application of this kind of statistical model to salts and co-crystal 

systems may also provide additional insights into the ease to 

crystallisation of multi-component systems.  

To make robust crystallisability predictive models, systematic studies 

are required to obtain sufficiently comprehensive datasets and 

associated crystallisation data31 which are not commonly done. 

However with advancements in instrumentation and automation, it is 

now possible to generate huge datasets of crystallisation properties.32, 

33 In addition, it is also important to store all the relevant data in 

accessible electronic database formats. These databases with suitable 

statistical modelling techniques would open the avenues for 

researchers to study relationships between solute, solvent, physical 

form and crystallisation conditions.13 

In conclusion, the RF classification model built in this work explores 

the impact of molecular structure on crystallisability and provides a 

convenient, automatic means to highlight and understand the 

molecular factors that inhibit or promote crystallisation. This is the 

first study on crystallisability prediction for small molecules using 

statistical modelling techniques and provides a reasonable opportunity 

to highlight problematic compounds (e.g. those exhibiting nano/micro 

crystal formation, agglomeration, oiling out, slow nucleation etc.) at 

early stages so that resource planning can be accommodated to obtain 

effective crystallisation processes. Although, this model does not 

provide a mechanistic understanding of the crystallisation process, it 

still represents a rational and pragmatic approach which enables 

crystallisability prediction with a reasonable degree of confidence and 

can inform further mechanistic investigation. 
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€ ‘ntree’ refers to the number of trees grown during model building and 
was increased incrementally until no further improvement was observed in 
the model (see ESI). ‘mtry’ is the number of different molecular descriptors 

tried at each split and the default value is the square root of the total number 

of input descriptors. ‘jclasswt’ allows weightings to adjust error rates 
between classes that have very different number of observations. 

‘nodesize’ refers to the minimum nodesize below which leaves are not 

further subdivided and the default value is 1. ‘Seed’ refers to any non-zero 
integer number which controls the random number generator. It was 

arbitrarily set to 45 to provide reproducibility in the random numbers 

required by the RF. OOB error of estimate was used as a guide during 
model training process.  

The RF model reports the crystallisation prediction as probabilities, which 

correspond to the percentage votes across all trees for a molecule as each 

crystallisation outcome (class 1 vs. class 2). For each molecule, RF 

prediction provides a distribution of percentage votes for each defined 
outcome, totalling 100%. 

Electronic Supplementary Information (ESI) available: Random forest 

working, List of the descriptors, See DOI: 10.1039/c000000x/ 
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