
Pillai, Ajit C. and Chick, John and Johanning, Lars and Khorasanchi, 

Mahdi and Barbouchi, Sami (2016) Comparison of offshore wind farm 

layout optimization using a genetic algorithm and a particle swarm 

optimizer. In: 35th International Conference on Ocean, Offshore and 

Arctic Engineering, 2016-06-19 - 2016-06-24. , 

This version is available at https://strathprints.strath.ac.uk/57640/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any correspondence concerning this service should be sent to the Strathprints administrator: 

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research 

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the 

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/77033843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


COMPARISON OF OFFSHORE WIND FARM LAYOUT OPTIMIZATION USING A
GENETIC ALGORITHM AND A PARTICLE SWARM OPTIMIZER

Ajit C. Pillai∗

Industrial Doctorate Centre for

Offshore Renewable Energy

The University of Edinburgh

Edinburgh, United Kingdom

Email: a.pillai@ed.ac.uk

Dr. John Chick

Institute for Energy Systems

The University of Edinburgh

Edinburgh, United Kingdom

Prof. Lars Johanning

College of Engineering,

Mathematics, and Physical Sciences

University of Exeter

Penryn, United Kingdom

Dr. Mahdi Khorasanchi

Department of Naval Architecture,

Ocean and Marine Engineering

University of Strathclyde

Glasgow, United Kingdom

Dr. Sami Barbouchi

EDF Energy R&D UK Centre

London, United Kingdom

ABSTRACT

This article explores the application of a binary genetic al-

gorithm and a binary particle swarm optimizer to the optimiza-

tion of an offshore wind farm layout. The framework developed

as part of this work makes use of a modular design to include a

detailed assessment of a wind farm’s layout including validated

analytic wake modeling, cost assessment, and the design of the

necessary electrical infrastructure considering constraints. This

study has found that both algorithms are capable of optimizing

wind farm layouts with respect to levelized cost of energy when

using a detailed, complex evaluation function. Both are also ca-

pable of identifying layouts with lower levelized costs of energy

than similar studies that have been published in the past and

are therefore both applicable to this problem. The performance

of both algorithms has highlighted that both should be further

tuned and benchmarked in order to better characterize their per-

formance.

∗Address all correspondence to this author.

INTRODUCTION

With the development of large offshore wind farms it has

become increasingly important to ensure that wind farms are de-

signed such that they use the available space as efficiently as pos-

sible.

Wind farm layout optimization tools have grown signifi-

cantly in recent years from the original tools such as those de-

veloped by Mosetti et al. [1] or Grady et al. [2] to include not

only the impact the turbine positions have on the energy extracted

from the wind, but also to include the impact on the project costs

as a result of changes in the layout [3–6]. In recent years, many

studies have explored the performance and applicability of differ-

ent optimization strategies to the wind farm layout optimization

problem [7–16]. With the aim of advancing this field further, a

layout optimization framework has been developed, including a

more detailed approach for assessing wind farm layouts and in-

cluding as many real world constraints as possible, enabling this

framework to be applied to real sites by a project developer.

The levelized cost of energy (LCOE) acts as a single metric

which encompasses the annual energy production (AEP) of the

wind farm over its lifetime as well as the lifetime project costs.
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By using such a metric to evaluate the layouts, it takes into ac-

count both the lifetime energy generated by the wind farm and

the lifetime costs, allowing a project developer to easily com-

pare the layouts on an economic basis which relates both the en-

ergy outputs of the project and the cost inputs. This optimization

framework therefore minimizes the LCOE of the wind farm by

adjusting the turbine positions, substation positions, and cable

routes, ensuring that the effect this has on the AEP and project

costs are accurately accounted for.

The LCOE expressed in £/MWh is mathematically given

by:

LCOE =

n
∑

t=1

Ct

(1+ r)t

n
∑

t=1

AEPt

(1+ r)t

(1)

where Ct is the total costs incurred in year t, n is the project

lifetime, AEPt is the annual energy production in year t, and r is

the discount rate of the project.

The present framework has been developed with future UK

wind farm sites in mind and therefore includes the consideration

of constraints and costs that a future UK offshore wind farm will

face. Initial results of this framework previously presented by the

authors have shown that it is capable of satisfying real world con-

straints while at the same time including a validated evaluation

function in a manner in which existing work does not [17].

This article deploys this modular framework using two sep-

arate optimization algorithms in order to both simultaneously

benchmark the framework against existing work, and to iden-

tify the differences in performance between the genetic algorithm

(GA) and the particle swarm optimization (PSO) algorithm. By

deploying these two different optimization algorithms using the

same framework, the results can be directly compared advising

future work in this field.

APPROACH

The framework deployed for this study is made up of sep-

arate modules for the the design of the electrical infrastructure,

assessment of the AEP, estimation of the project costs, and for the

overall optimization. This approach has allowed alternate wake

models, cost functions, and optimization algorithms to be imple-

mented and tested as part of the development. As part of the de-

velopment, each individual module has been validated indepen-

dently prior to integrating them into the larger optimization tool.

This work, looks specifically at the comparison of two optimiza-

tion modules for the same case study keeping all other modules

in the framework constant. In order to compute the LCOE and

thereby get an assessment of each layout, it is necessary for the
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FIGURE 1: MODULAR APPROACH TO WIND FARM LAY-

OUT OPTIMIZATION

approach to design the necessary electrical infrastructure, assess

the AEP, and estimate the cost in sequence as shown in fig. 1.

In the case of both optimization algorithms, the assessed

LCOE for each layout is an important contributor to how new

candidate solutions are generated in subsequent iterations. The

LCOE is therefore needed for each layout in order for the opti-

mization algorithms to successfully navigate the search space.

Evaluation of LCOE

As indicated in fig. 1, the assessment of the LCOE is subdi-

vided into three distinct steps. In the first, the electrical infras-

tructure required for a given turbine layout is determined, then

the energy production of the wind farm is assessed, and finally

this information is used to estimate the project costs and establish

an LCOE for the given layout. The overall approach for the eval-

uation function is described in greater detail in previous work by

the authors [17, 18].

Electrical Infrastructure Optimization. Existing off-

shore wind farm layout optimization tools generally do not con-

sider any impact on the project cost as a result of changes in

the substation positions or intra-array cables [1–5, 7–16]. By in-

cluding this in the present framework, the accuracy of the cost

function is increased and it is easier to differentiate accurately

between different layouts. Given that the cost of cables can ex-

ceed £500,000 per kilometer installed, it is important that this

length be computed accurately [18].

The developed electrical infrastructure optimization tool is

unique in its ability to consider not only the electrical constraints

of the turbines, substations, and cables, but also the bathymetry,

seabed features which define constraint regions, and the physi-

cal constraints of the turbines. This therefore, allows the elec-

trical infrastructure optimization tool to propose realistic layouts

which satisfy the real constraints of an offshore wind farm de-

veloper. It should be noted that as a heuristic approach is used

2 Copyright © 2016 by ASME



to define the possible cable paths, the electrical infrastructure is

therefore not guaranteed to reach proven optimality, but will find

a good feasible solution.

The overall approach further divides the optimization of this

infrastructure into three separate stages:

1. Determination of substation positions

2. Determination of possible intra-array cable paths

3. Selection of intra-array cable paths to use

The substation positions and the assignment of turbines to a

specific substation are found based on applying a modified ver-

sion of the kmeans++ clustering algorithm [19]. It has previously

been shown that by placing the substation as close as possible to

the center of a wind farm, the intra-array cable costs will be re-

duced [18,20]. Using the cluster center as the substation position

therefore minimizes the distance between the substation and all

the turbines assigned to that substation. In this tool, the standard

kmeans++ algorithm is modified to account for the capacity con-

straints on substations, and the fact that within the wind farm area

there may be regions where substations cannot be placed [18].

Once the substation positions are determined and the tur-

bines have been assigned to a specific substation, a pathfinding

algorithm is used to identify the possible cable paths and the ac-

curate distance that a cable must cover in order to connect any

two turbines, or any of the turbines and the substation. The

use of the pathfinding algorithm accounts for the fact that there

are regions where cables cannot be placed and must therefore

navigate around. From this, a capacitated minimum spanning

tree (CMST) is constructed based on the cable costs identified

through the use of the pathfinding algorithm. In this case, the

CMST represents the optimal intra-array cable network given the

possible paths under consideration. The CMST is solved using a

standard mixed-integer linear programming (MILP) formulation

using the commercial solver Gurobi [21]. As cables in offshore

wind farms cannot cross one another, a check is done after solv-

ing the MILP problem. If any crossings are found, these indi-

vidual constraints are introduced to the MILP problem and the

problem is resolved. This process has been found to solve the

MILP problem more quickly than including all the crossing con-

straints from the beginning [18].

The electrical infrastructure optimization is run first as part

of the evaluation function in order to account for the electrical

cable losses in the AEP calculation, and the cable costs in the

project cost module.

AEP Estimation. The assessment of the AEP includes

considering the local wind conditions, modeling the wakes that

develop within the wind farm, as well as modeling any other

sources of energy loss that are affected by the wind farm layout.

Any device extracting energy from a natural flux such as

winds, is known to directly impact that flux. In the case of wind

turbines, the region directly behind an operating wind turbine,

known as the wake, is characterized by reduced wind speeds

and higher levels of turbulence [22–25]. Wakes of multiple tur-

bines are also known to interact with one another, such that

when estimating the AEP for an entire wind farm it is impor-

tant to account for the impact that the wakes have on one an-

other [26,27]. Though a number of kinematic wake models have

been implemented into the framework, the present study uses the

G.C. Larsen wake model [28, 29]. This model was selected as

previous studies have shown this to be a good balance between

accuracy and computational intensity [30, 31].

The AEP is assessed by stepping through each wind speed

and direction combination and modeling, using a kinematic wake

model, the impact that each turbine has on the free wind speed.

Each turbine, therefore, experiences conditions based on how the

wakes of the upstream turbines impact the free wind speed. The

turbine power curve is then used to assess the energy produc-

tion from each individual wind turbine using the respective wind

speed that they experience. From this, the electrical cable losses

for that specific set of conditions is then assessed given the intra-

array cable layout previously designed. The total generation for

this free wind condition is then scaled by the number of hours

during the year that this condition would be expected, and the

sum of each of these scaled outputs for all the wind conditions

under consideration gives the AEP [17].

AEP = 8766×
∑

di

∑

vi

P(di,vi)× [E(di,vi)−L(di,vi)] (2)

where di is the wind direction; vi is the wind speed; P(di,vi)

is the probability of the combination of di and vi; E(di,vi) is the

energy production for the wind farm for that combination of free

wind speed and direction; and L(di,vi) is the electrical losses as-

sociated with that wind speed and direction.

Cost Assessment. The final step in the assessment of

a layout is the determination of the costs incurred by the wind

farm. For an offshore wind farm, eight principle cost elements

have been identified which all have varying degrees of sensitivity

to the layout (table 1). Each of the cost elements outlined in ta-

ble 1 are estimated using a validated cost model which considers

not only the positions of the turbines, but also the water depth.

The implemented cost model has been validated where possi-

ble using available published data and data supplied by active

projects currently under development [17]. By including costs

which are relative to the turbines’ absolute position and their rel-

ative position to one another, more accurate project costs can be

computed compared to existing optimization frameworks [7–16].

Though some costs such as the foundation costs, and the ca-

ble installation costs would be expected to be impacted by the

3 Copyright © 2016 by ASME



TABLE 1: COST ELEMENT CONTRIBUTION TO CAPEX

Cost Element CAPEX OPEX Sensitivity

to Layout

Turbine Supply X - Low

Turbine Installation X - Medium

Foundation Supply X - Medium

Foundation Installation X - Medium

Intra-Array Cables X - High

Decommissioning X - Medium

Operations and Maintenance - X Medium

Offshore Transmission Assets X X Low

soil conditions at the site, previous work has found that even if

very detailed geotechnical data is available, a bottom-up cost

model tends to validate poorly [3]. Considering this and the

fact that the tool would likely be applied at an early stage when

geotechnical data would not be available, the present cost rela-

tions ignore the geotechnical and soil conditions. Having said

that, the modular approach developed would make it straight for-

ward for the optimization process to consider this if the data was

available and the cost relationships established.

Genetic Algorithm

The final step of the procedure is to use an optimization al-

gorithm to alter the wind turbine layouts given the LCOE val-

ues of already assessed layouts. GAs represent a family of bio-

inspired population based heuristic optimization algorithms that

borrow ideas from natural evolution as observed in biological

systems [32]. GAs are commonly deployed as they represent

a family of generic algorithms which can be applied to a wide

range of problems of varying degrees of complexity [33]. As

such, GAs have commonly been applied to the offshore wind

farm layout optimization problem with good quality solutions

being found [1–3, 5, 34, 35].

In a GA, the candidate solutions within the population are

formulated such that the encoding can be considered a genome

which defines the individual solutions. The evaluation function

is used to determine the fitness of each solution. In this case, the

fitness of each layout is the LCOE, with small LCOE values con-

sidered to be superior in fitness. Under these terms, the GA then

tries to use solutions with favorable fitness values to generate new

candidate solutions. Solutions with higher fitness values (in this

case, layouts with lower LCOE values) have a higher probability

of contributing genetic material towards new candidate solutions.

The flowchart in fig. 2 shows the principle steps of a GA. After
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Selection

Crossover

Mutation

Replacement

Start
Evaluate 
Population

Termination 
Criteria Met?

End
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FIGURE 2: FLOWCHART OF THE GENETIC ALGORITHM

selecting pairs of individuals among the population to reproduce

(i.e. to generate new candidate solutions), the pair undergoes

what is referred to as crossover. During crossover, the two parent

solutions are combined in such a way that two new solutions are

generated, each with 50% of their genome being defined by each

parent. In this way, the two candidate child solutions represent

a combination of the two parents, hopefully exploiting the good

elements of the two parents to create a solution with a superior

fitness value. In order to ensure that the GA does not get stuck

at a local solution, a mutation operator is used to randomly alter

the child solutions. This process is repeated until the solutions

converge, or there is insufficient diversity within the remaining

population for the process to continue effectively. An elitism fac-

tor is used to define what proportion of the population must be

replaced with new solutions in each generation.

In this case, as the wind farm region has been discretized, the

problem can be solved using a binary genetic algorithm. A bi-

nary genetic algorithm is one in which the genome is represented

as a binary string. In this case, each bit of the genome repre-

sents the presence of a turbine in a specific cell of the discretized

wind farm area. Given the binary GA approach, crossover is im-

plemented using a uniform crossover mask. This is a method

in which if crossover occurs, a second binary string the same

length as the genome is generated. This string, however, repre-

sents which parent the children should inherit each individual bit

from (i.e. each bit in the crossover mask represents which parent

contributes to that specific bit in the child solution). To generate

two complementary children, the crossover mask has every bit

flipped to generate a second child. The mutation operator also

works on a bitwise basis, cycling through each bit in the child

solutions with a low probability that each bit gets flipped.

The key parameters that define a GA are therefore the size

of the population; the probabilities associated with mutation and

crossover; and the elitism factor. In the present implementa-

4 Copyright © 2016 by ASME



tion, adaptive parameters are used for the mutation and crossover

rates as this has been shown to improve convergence and foster

diversity within the population [36]. The crossover and muta-

tion probabilities are therefore a function of the solution’s fitness

value ( f ) compared to both the population’s mean fitness
(

f̄
)

, and

the population’s best fitness ( fmax).

pc =
k1 ( fmax − f ′)

fmax − f̄
for f ′ ≥ f̄ (3)

pc = k3 for f ′ < f̄ (4)

pm =
k2 ( fmax − f )

fmax − f̄
for f ≥ f̄ (5)

pm = k4 for f < f̄ (6)

where pc and pm are respectively the probabilities of

crossover and mutation. The population size was kept at 50 indi-

viduals, and an elitism factor of 25% was used.

Particle Swarm Optimization

The GA is often thought of as a competitive population

based optimization algorithm, as a solution’s ability to contribute

to the improvement among its peers is based on its own fitness.

The PSO on the other hand is considered to be a cooperative

population based optimization algorithm in which the candidate

solutions (now thought of as particles) explore the search space

while aware of their neighbors [33]. Like the GA, this algorithm

is also analogous to a biological system, though unlike the GA

rather than based on an evolutionary process, it is based on how

birds flock or fish school [37]. The general approach is shown in

fig. 3.

In a PSO, the particles are randomly seeded in a manner

similar to that of a GA, however, from here the two algorithms

Particle 
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Update Global 
Best

Start
Evaluate 
Population

Termination 
Criteria Met?

End

NO
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Update Particle 
Velocities

Update 
Personal Best

Move Particles

FIGURE 3: FLOWCHART OF THE PARTICLE SWARM OPTI-

MIZATION ALGORITHM

differ quite significantly. A PSO treats the candidate solutions

and particles exploring the search space. In this analogy, the

change from generation to generation is encapsulated in what

is thought of as the particle’s velocity through the search space.

This velocity is partially random to avoid local minima, partially

based on the particle’s historical best position within the search

space, and partially on the population’s best position. In this way,

by including the particle’s previous best position, and the global

best positions, the particle tries to exploit the knowledge of the

swarm, while the random element helps the particle explore the

search space. A major difference between the PSO and the GA is

that the PSO allows particles to decline in fitness from generation

to generation, recognizing that it may lead to better future posi-

tions. In the PSO, each particle’s position at any given iteration

is related to its past position by:

xi = xi−1+ vi; (7)

where the velocity vi is given by:

vi =C1vi+1+C2(p− xi−1)+C3(g− xi−1)+C4× rand (8)

where C1, C2, C3, and C4 are coefficients representing the

weighting of the different contributors determined by tuning the

PSO to the problem at hand; p is the best historical position of

the particle in question, g is the best historical position of the

swarm, and rand is a random number between 0 and 1.

Like the GA, the PSO was implemented with a binary en-

coding. This complicates matters slightly because the position

for each bit must be either 0 or 1. The continuous velocity, must

therefore be adjusted such that it corresponds to the bit in ques-

tion changing to either a 0 or a 1. To solve this, a sigmoid transfer

function is commonly used to convert the velocity for a given bit

to a probability of the bit being a 1 [38–40].

Using this standard transfer function, however, introduces a

challenge in satisfying the number of turbines constraint. In or-

der to easily check and satisfy this constraint, the transfer func-

tion was redefined such that it represented the probability that

a bit is flipped. This then allowed the algorithm to ensure that

equal numbers of 1’s and 0’s were flipped thereby preserving the

number of turbines within the wind farm. This, however, re-

quired a change in the transfer function as both highly negative

and highly positive velocities should correspond to a high proba-

bility of the bit flipping. This was done by replacing the s-shaped

sigmoid function with a v-shaped function [40]. Figure 4 shows

typical s-shaped (sigmoid) and v-shaped transfer functions.

In general, PSO has been found to be suitable for solving

similar problems as the GA. However, the PSO tends to require

a smaller population to reach similar quality solutions, and as

5 Copyright © 2016 by ASME
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the number of function evaluation calls is related to the size of

the population, a smaller population will result in a quicker exe-

cution time. PSOs, however, can suffer from premature conver-

gence and sensitivity to local solutions when the population is

insufficiently large. For these simulations a population size of 30

was used.

RESULTS

Case Definition

For this comparison of the GA and the PSO it was desir-

able to use a case which had previously been addressed in other

layout optimization projects in order to simultaneously highlight

the advantages of including a comprehensive layout evaluation

function as well as allowing the optimization algorithms to be

benchmarked.

In one of the first works to explore the optimization of wind

farm layouts, Mosetti et al. [1] laid out case studies which have

been commonly used since. Each of these cases considers a

square shaped wind farm area (2 km by 2 km) discretized into

100 possible turbine positions. Given the discretization of the

wind farm area, the optimization problem can be implemented

as a binary decision problem.

One of these cases, which is under consideration in this

study, considers a “case of multiple wind direction with constant

intensity” [1]. This wind regime is defined as having a constant

wind speed of 12 ms−1 with an equal probability that the wind

will blow from any direction. For the computation, the wind di-

rection is defined as being discretized into 36 sectors each of 10◦

width.

The original definition of the cases omitted the water depth,

the location of ports to be used relative to the wind farm, or any

regions that must be avoided as these were not seen as impacting

the layouts. However, all are used by by the present evaluation

function in the determination of a layout’s LCOE. In order to

keep the case as close as possible to the original definition while

using the more detailed evaluation function developed here, a

constant water depth was assumed, the port was assumed to be

very far away relative to the size of the wind farm, and it was

assumed that no constraint regions existed within the wind farm

area.

As the case study does not define the number of turbines un-

der consideration, the case study was executed for two different

wind farm sizes (19 and 39 turbines) corresponding to the results

shown in two layout optimization studies using these cases [1,2].

In order to compare fairly, the published optimal layouts for this

case study have been re-evaluated using our evaluation function

in order to ensure that a direct layout-to-layout comparison can

be done for both wind farm sizes.

Though more recent work has explored the same case study,

these have on the whole explored the application of more ad-

vanced optimization algorithms than the original, making use of

the same evaluation function. These studies have also either not

used the same number of turbines or the same discretized grid

making it difficult to make a fair comparison [7–16]. The work

by Mosetti et al. [1] and Grady et al. [2] remain the reference

cases which new work is compared against. The present work

has focused on the improvement of the evaluation function by

adding the detail necessary for the tool to be applied to real sites

by a project developer. The results presented here are meant to

highlight that even with the increased detail in the evaluation

function, these optimization techniques are of interest and can

highlight improvements over the original work in the field [1, 2].

TABLE 2: ASSESSMENT OF LAYOUTS

Number of

Turbines

AEP

[GWh]

Cost [£] LCOE

[£/MWh]

Mosetti

et al. [1]

19 81.71 3.770×108 540.25

GA-19 19 81.77 3.771×108 539.88

PSO-19 19 82.11 3.769×108 537.49

Grady et

al. [2]

39 156.99 5.620×108 419.00

GA-39 39 159.23 5.613×108 412.60

PSO-39 39 159.00 5.616×108 413.50

6 Copyright © 2016 by ASME
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Genetic Algorithm

Figures 5 and 6 show the layouts produced by the GA. As

can be seen, the proposed layouts differ significantly from one

another as a result of the additional 20 turbines in the larger wind

farm. The plots shown in figs. 7 and 8 show that in both cases the

solution converged and the diversity within the population fell

below the required threshold terminating the optimization run.

Table 2 shows the results attained in this study compared to the

layouts proposed by the benchmark studies [1, 2].
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Particle Swarm Optimization

Similar to the results of the GA, the PSO was run for both

wind farm sizes in order to compare the layouts to both those

generated by the adaptive GA and those produced by the previous

studies [1, 2]. The layouts produced by the PSO are shown in

figs. 9 and 10.

Like the GA, the results in table 2 indicates that the PSO

produces layouts for both wind farm sizes that have lower LCOE

values than the past studies [1,2]. Interestingly, the PSO does not

create the same solutions as the GA.

7 Copyright © 2016 by ASME



0 500 1000 1500 2000

Easting [m]

0

500

1000

1500

2000

N
o

rt
h

in
g

 [
m

]

Turbines

Substation

Cables
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FIGURE 10: LAYOUT PRODUCED BY PSO WITH 39 TUR-
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DISCUSSION AND CONCLUSIONS

From the four solutions presented here, it can be seen that

the new framework shows that given a more accurate evaluation

function, both the GA and the PSO are capable of finding better

solutions than those found by previous studies [1, 2]. This is an

important result as it indicates that even given the increased com-

plexity of the evaluation function, these optimization algorithms

are relevant choices.

In general as can be seen in the convergence plots (figs. 7, 8,

11 and 12), all four solutions represent the best solutions found

by the solvers prior to convergence. The performance of the GA
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FIGURE 11: CONVERGENCE PLOT FOR PSO WITH 19 TUR-

BINES

0 10 20 30 40 50 60 70 80

Generation

412

414

416

418

420

422

424

426

428
L

C
O

E
 [

£
/M

W
h

]
Best

Mean

FIGURE 12: CONVERGENCE PLOT FOR PSO WITH 39 TUR-

BINES

with the small wind farm, however, showed very quick conver-

gence indicating that the population may have prematurely con-

verged. This suggests that though the solution found is good and

in fact better than that found by the literature for the same sized

wind farm, it could be further improved by further tuning or ex-

ecuting multiple runs. In fact, comparing it to the PSO results

for the same conditions, one can see that the PSO finds a much

better solution than both the implemented GA and the results of

past studies used as a benchmark [1,2]. In fact, as heuristic algo-

rithms are deployed, there is no guarantee that proven optimality

has been reached and both optimizers could be further tuned to

8 Copyright © 2016 by ASME
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FIGURE 13: WAKE EFFICIENCY BY WIND DIRECTION
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FIGURE 14: WAKE EFFICIENCY BY WIND DIRECTION

FOR 39 TURBINE WIND FARM

ensure that they have not prematurely converged.

Both the layouts proposed by this framework for the 39 tur-

bine wind farm (figs. 6 and 10) appear to exploit the symmetry of

the wind resource by the majority of the turbines along the edge

of the wind farm with the GA slightly outperforming the PSO in

this case. For both the proposed layouts, this leads to significant

wakes along the four wind direction sectors that are aligned with

these edges, however, it also leads to relatively high wake effi-

ciency for the remaining 32 directions (figs. 13 and 14). Taking

this idea to the extreme, a case was executed using the GA where

three turbines were to be placed in the 64 central cells, and the
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FIGURE 15: LAYOUT PRODUCED BY GA WITH 36 TUR-

BINES FIXED TO EDGE

remaining 36 turbines were locked to the 36 cells along the edges

(results shown in fig. 15). For this restricted case, the GA was,

however, unable to find a solution that was superior to the layout

presented in fig. 6 with the best solution in this restricted case

having an LCOE of £412.77/MWh. Though this is very similar

to the GA result shown in fig. 6 (LCOE of £412.60/MWh), it is

marginally higher, indicating that the optimal solution is likely

not symmetrical. It is important to note that though the resource

may be symmetrical, the cost functions are not, and we would

not therefore expect the optimal layout to be symmetrical.

The wake efficiency plots (figs. 13 and 14) indicate the rel-

ative efficiency of the different wind sectors across the differ-

ent layouts. As can be seen, there is a variation in performance

across all sectors, including the inline directions which result in

significant reductions in AEP across all the layouts. Interest-

ingly, for the small wind farm it appears to be the slight increase

in wake efficiency along these inline wind directions which re-

sults in the marginal increase in AEP. For the larger wind farm,

however, there are significant increases along the 40◦, 50◦, 220◦,

and 230◦ directions in addition to the North and South inline

cases. For both the GA and PSO, however, the East and West

wind directions are less efficient than the reference layout.

Given the simplicity of the case at hand, the inclusion of the

electrical infrastructure optimization does not significantly affect

the layouts produced as it has a very minimal impact on both the

AEP and cost. Given the small size of the turbines considered

in this case study (659 kW), all the turbines considered could be

connected on a single string reducing the sensitivity of the ca-

ble cost to the layout. Furthermore, as the site was assumed to

be a constant water depth, the cost variation across this site does

not represent a realistic case and the very slight improvements

9 Copyright © 2016 by ASME



in cost observed come principally from reductions in the instal-

lation processes. A real wind farm will be expected to observe

a more significant reduction in cost as a result of improvements

made to the layout. Given this, the present case is dominated by

the AEP term with the electrical infrastructure and cost modules

yielding small impacts to the LCOE. However, it can be expected

that for large offshore wind farms with real constraints impacting

where substations, turbines, and cables can be placed the inclu-

sion of these modules will be necessary in order to ensure that

the layouts produced are feasible and to ensure that the LCOE is

accurately estimated for the layout.

As the PSO does not require particles to improve in fitness

from generation to generation, each iteration of the PSO requires

the same number of evaluation calls. The GA, however, looks to

replace a specific proportion of the population each generation

with superior individuals. The number of layouts that need to

be generated and therefore the total number of evaluation calls

varies from generation to generation. For the same size pop-

ulation, the PSO would therefore be expected to be faster, as in

general fewer evaluation calls will be needed, especially after the

results begin to converge. Having said that, PSOs are generally

run with a smaller population than their equivalent GA further

reducing the total number of evaluation calls required and there-

fore the execution time.

The initial results shown here have indicated that both the

GA and PSO implemented here are capable of finding superior

layouts to those that have been identified in previous published

studies [1, 2]. At the same time, both the GA and PSO have

found solutions of similar quality and as neither optimizer out-

performs the other consistently, it has indicated that both are ap-

plicable to this problem, though for the reasons stated earlier,

the PSO may offer significant time savings when compared to

the GA. Future work can explore the application of this frame-

work to additional test cases in order to further benchmark the

framework as well as aid in the tuning of both optimization al-

gorithms. A principle output of this work is that though the ob-

jective function has increased complexity due to the inclusion of

a more detailed cost function and the optimization of the electri-

cal infrastructure, these optimization algorithms are still effective

for addressing this problem. While previous studies [7–16] have

addressed the problem using a simple evaluation function, this

study has advanced the field by including instead a detailed eval-

uation function representative of what a project developer would

use to assess future projects. This demonstrates that the present

framework would be of use to a wind farm developer. Future

work should also explore the importance of including the elec-

trical infrastructure optimization through the application of the

framework to large real offshore wind farms. An important point

to note is that the results presented represent only single runs of

the optimization algorithm. Given the stochastic nature of the

optimization algorithms, future work should explore performing

multiple runs and looking at the average results of these ensem-

bles of runs.
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