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Abstract. We study a natural generalization of the maximum weight
many-to-one matching problem. We are given an undirected bipartite
graph G = (AUP, E) with weights on the edges in E, and with lower and
upper quotas on the vertices in P. We seek a maximum weight many-to-
one matching satisfying two sets of constraints: vertices in A are incident
to at most one matching edge, while vertices in P are either unmatched
or they are incident to a number of matching edges between their lower
and upper quota. This problem, which we call mazimum weight many-to-
one matching with lower and upper quotas (WMLQ), has applications to
the assignment of students to projects within university courses, where
there are constraints on the minimum and maximum numbers of stu-
dents that must be assigned to each project.

In this paper, we provide a comprehensive analysis of the complex-
ity of WMLQ from the viewpoints of classic polynomial time algorithms,
fixed-parameter tractability, as well as approximability. We draw the
line between NP-hard and polynomially tractable instances in terms of
degree and quota constraints and provide efficient algorithms to solve
the tractable ones. We further show that the problem can be solved in
polynomial time for instances with bounded treewidth; however, the cor-
responding runtime is exponential in the treewidth with the maximum
upper quota umax as basis, and we prove that this dependence is nec-
essary unless FPT = W][1]. Finally, we also present an approximation
algorithm for the general case with performance guarantee wUmax + 1,
which is asymptotically best possible unless P = NP.
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1 Introduction

Many university courses involve some element of team-based project work.
A set of projects is available for a course and each student submits a subset
of projects as acceptable. For each acceptable student—project pair (s, p), there
is a weight w(s,p) denoting the wutility of assigning s to p. The question of
whether a given project can run is often contingent on the number of students
assigned to it. Such quota constraints also arise in various other contexts involv-
ing the centralized formation of groups, including organizing activity groups at
a leisure center, opening facilities to serve a community and coordinating rides
within car-sharing systems. In these and similar applications, the goal is to max-
imize the utility of the assigned agents under the assumption that the number
of participants for each open activity is within the activity’s prescribed limits.

We model this problem using a weighted bipartite graph G = (AU P, E),
where the vertices in A represent applicants, while the vertices in P are posts
they are applying to. So in the above student—project allocation example, A and
P represent the students and projects respectively, and E represents the set of
acceptable student—project pairs. The edge weights capture the cardinal utilities
of an assigned applicant—post pair. Each post has a lower and an upper quota
on the number of applicants to be assigned to it, while each applicant can be
assigned to at most one post. In a feasible assignment, a post is either open
or closed: the number of applicants assigned to an open post must lie between
its lower and upper quota, whilst a closed post has no assigned applicant. The
objective is to find a maximum weight many-to-one matching satisfying all lower
and upper quotas. We denote this problem by wMLQ.

In this paper, we study the computational complexity of WMLQ from var-
ious perspectives: Firstly, in Sect.2, we show that the problem can be solved
efficiently if the degree of every post is at most 2, whereas the problem becomes
hard as soon as posts with degree 3 are permitted, even when lower and upper
quotas are all equal to the degree and every applicant has a degree of 2. Further-
more, we show the tractability of the case of pair projects, i.e., when all upper
quotas are at most 2. Then, in Sect. 3, we study the fixed parameter tractability
of WMLQ. To this end, we generalize the known dynamic program for maximum
independent set with bounded treewidth to wMLQ. The running time of our
algorithm is exponential in the treewidth of the graph, with %, the maximum
upper quota of any vertex, as the basis. This yields a fixed-parameter algorithm
when parameterizing by both the treewidth and u,.x. We show that this expo-
nential dependence on the treewidth cannot be completely separated from the
remaining input by establishing a W[1]-hardness result for WMLQ parameterized
by treewidth. Finally, in Sect. 4, we discuss the approximability of the problem.
We show that a simple greedy algorithm yields an approximation guarantee of
Umax 11 for WMLQ and \/W +1 in the case of unit edge weights. We complement
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these results by showing that these approximation factors are asymptotically best
possible, unless P = NP.

Related work

Among various applications of centralized group formation, perhaps the assign-
ment of medical students to hospitals has received the most attention. In this
context, as well as others, the underlying model is a bipartite matching prob-
lem involving lower and upper quotas. The Hospitals/Residents problem with
Lower Quotas (HRLQ) [4,12] is a variant of WMLQ where applicants and posts
have ordinal preferences over one another, and we seek a stable matching of
residents to hospitals. Hamada et al. [12] considered a version of HRLQ where
hospitals cannot be closed, whereas the model of Biré et al. [4] permitted hospi-
tal closures. Strategyproof mechanisms have also been studied in instances with
ordinal preferences and no hospital closure [11].

The Student/Project Allocation problem [19, Sect. 5.6] models the assignment
of students to projects offered by lecturers subject to upper and lower quota
restrictions on projects and lecturers. Several previous papers have considered
the case of ordinal preferences involving students and lecturers [1,14,20] but
without allowing lower quotas. However two recent papers [15,21] do permit
lower quotas together with project closures, both in the absence of lecturer pref-
erences. Monte and Tumennasan [21] considered the case where each student
finds every project acceptable, and showed how to modify the classical Serial
Dictatorship mechanism to find a Pareto optimal matching. Kamiyama [15] gen-
eralized this mechanism to the case where students need not find all projects
acceptable, and where there may be additional restrictions on the sets of stu-
dents that can be matched to certain projects. This paper also permits lower
quotas and project closures, but our focus is on cardinal utilities rather than
ordinal preferences.

The unit-weight version of WMLQ is closely related to the D-matching prob-
lem [8,17,26], a variant of graph factor problems [24]. In an instance of the D-
matching problem, we are given a graph GG, and a domain of integers is assigned
to each vertex. The goal is to find a subgraph G’ of G such that every vertex
has a degree in G’ that is contained in its domain. Lovész [16] showed that the
problem of deciding whether such a subgraph exists is NP-complete, even if each
domain is either {1} or {0,3}. On the other hand, some cases are tractable.
For example, if for each domain D, the complement of D contains no consec-
utive integers, the problem is polynomially solvable [26]. As observed in [25],
D-matchings are closely related to extended global cardinality constraints and
the authors provide an analysis of the fixed-parameter tractability of a special
case of the D-matching problem; see Sect. 3 for details.

The problem that we study in this paper corresponds to an optimization
version of the D-matching problem. We consider the special case where G is
bipartite and the domain of each applicant vertex is {0, 1}, whilst the domain
of each post vertex p is {0} U {{(p),...,u(p)}, where ¢(p) and u(p) denote the
lower and upper quotas of p respectively. Since the empty matching is always
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feasible in our case, our aim is to find a domain-compatible subgraph G’ such
that the total weight of the edges in G’ is maximum.

2  Degree- and Quota-restricted Cases

First, we provide a formal definition of the maximum weight many-to-one match-
ing problem with lower quotas (WMLQ). Then, we characterize the complexity
of the problem in terms of degree constraints on the two vertex sets: applicants
and posts. At the end, we discuss the case of bounded upper quota constraints.

2.1 Problem Definition

In our problem, a set of applicants A and a set of posts P are given. A and P
constitute the two vertex sets of an undirected bipartite graph G = (V, E) with
V = AUP. For a vertex v € V we denote by d(v) = {{v,w} € E: w € V} the
set of edges incident to v and by I'(v) = {w € V : {v,w} € E} the neighborhood
of v, i.e., the set of vertices that are adjacent to v. For a subset of vertices
V'V, we define §(V') = [,y 0(v). Each edge carries a weight w : E' — Rxo,
representing the utility of the corresponding assignment. Each post is equipped
with a lower quota ¢ : P — Z>o and an upper quota uw : P — Z>( so that
£(p) < u(p) for every p € P. These functions bound the number of admissible
applicants for the post (independent of the weight of the corresponding edges).
Furthermore, every applicant can be assigned to at most one post. Thus, an
assignment is a subset M C E of the edges such that |6(a) N M| < 1 for every
applicant a € A and |0(p) N M| € {0,4(p),¢(p) + 1,...,u(p)} for every p € P.
A post is said to be open if the number of applicants assigned to it is greater
than 0, and closed otherwise. The size of an assignment M, denoted |M]|, is the
number of assigned applicants, while the weight of M, denoted w(M), is the
total weight of the edges in M, i.e., w(M) = }_ ., w(e). The goal is to find an
assignment of maximum weight.

Remark 1. Note that when not allowing closed posts, the problem immediately
becomes tractable. It is easy to see this in the unweighted case as any algorithm
for maximum flow with lower capacities can be used to determine an optimal
solution in polynomial time. This problem can be easily reduced to the classical
maximum flow problem. The method can be naturally extended to the weighted
case as the flow based linear program has integral extreme points due to its total
unimodularity property.

Problem 1. wMLQ

Input: T = (G,w, l,u); a bipartite graph G = (AU P, E) with edge weights w.
Task: Find an assignment of mazximum weight.

If w=1 for all e € E, we refer to the problem as MLQ.

Some trivial simplification of the instance can be executed right at start. If
u(p) > |I'(p)| for a post p, then u(p) can be replaced by |I'(p)|. On the other
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hand, if £(p) > |I'(p)|, then post p can immediately be deleted, since no feasible
solution can satisfy the lower quota condition. Moreover, posts with ¢(p) = 1
behave identically to posts without a lower quota. From now on we assume that
the instances have already been simplified this way.

2.2 Degree-Restricted Cases

In this subsection, we will consider WMLQ(¢, 7), a special case of WMLQ, in which
we restrict us to instances in which every applicant submits at most ¢ applications
and every post receives at most j applications. In order to establish our first
result, we reduce the maximum independent set problem (Mis) to MLQ. In Mis, a
graph with n vertices and m edges is given and the task is to find an independent
vertex set of maximum size. MIS is not approximable within a factor of n!=¢ for
any € > 0, unless P = NP [29]. The problem remains APX-complete even for
cubic (3-regular) graphs [2].

Theorem 1. MLQ(2,3) is APX-complete.

Proof. First of all, MLQ(2,3) is in APX because feasible solutions are of polyno-
mial size and the problem has a 4-approximation (see Theorem 7).

To each instance Z of MIS on cubic graphs we create an instance 7’ of MLQ
such that there is an independent vertex set of size at least K in Z if and only if 7’
admits an assignment of size at least 3K, yielding an approximation-preserving
reduction. The construction is as follows. To each of the n vertices of graph G
in Z, a post with upper and lower quota of 3 is created. The m edges of G are
represented as m applicants in Z'. For each applicant a € A, |I'(a)] = 2 and I'(a)
comprises the two posts representing the two end vertices of the corresponding
edge. Since we work on cubic graphs, |I'(p)| = 3 for every post p € P.

First we show that an independent vertex set of size K can be transformed
into an assignment of at least 3K applicants. All we need to do is to open a post
with its entire neighborhood assigned to it if and only if the vertex representing
that post is in the independent set. Since no two posts stand for adjacent vertices
in G, their neighborhoods do not intersect. Moreover, the assignment assigns
exactly three applicants to each of the K open posts.

To establish the opposite direction, let us assume that an assignment of
cardinality at least 3K is given. The posts’ upper and lower quota are both set
to 3, therefore, the assignment involves at least K open posts. No two of them
can represent adjacent vertices in G, because then the applicant standing for the
edge connecting them would be assigned to both posts at the same time.

The reduction given here is an L-reduction [23] with constants @ = 3 = 3.
Since MLQ(2,3) belongs to APX and Mis is APX-complete in cubic graphs, it
follows that MLQ(2,3) is APX-complete. O

So far we have established that if |I'(a)| < 2 for every applicant a € A and
|I"(p)| < 3 for every post p € P, then MLQ is NP-hard. In the following, we also
show that these restrictions are the tightest possible. If | I'(p)| < 2 for every post
p € P, then a maximum weight matching can be found efficiently, regardless
of |[I'(a)|. Note that the case WMLQ(1, 00) is trivially solvable.
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Theorem 2. WMLQ(00,2) is solvable in O(n?logn) time, where n = |A| + |P|.

Proof. After executing the simplification steps described after the problem def-
inition, we apply two more changes to derive our helper graph H. Firstly, if
L(p) = 0, u(p) = 2 and |I'(p)| = 2, we separate p’s two edges, splitting p into
two posts with upper quota 1. After this step, all posts with u(p) = 2 also have
£(p) = 2. All remaining vertices are of upper quota 1. Then, we substitute all
edge pairs of posts with ¢(p) = u(p) = 2 with a single edge connecting the two
applicants. This edge will carry the weight equal to the sum of the weights of
the two deleted edges.

Clearly, any matching in H translates into an assignment of the same weight
in G and vice versa. Finding a maximum weight matching in a general graph
with n vertices and m edges can be done in O(n(m + nlogn)) time [10], which
reduces to O(n?logn) in our case.

2.3 Quota-Restricted Cases

In this section, we address the problem of WMLQ with bounded upper quotas.
Note that Theorem 1 already tells us that the case of u(p) < 3 for all posts p € P
is NP-hard to solve. We will now settle the complexity of the only remaining
case, where we have instances with every post p € P having an arbitrary degree
and u(p) < 2. This setting models posts that need to be assigned to pairs of
applicants.

The problem is connected to various known problems in graph theory, one of
them being the S-path packing problem. In that problem, we are given a graph
with a set of terminal vertices S. The task is to pack the highest number of
vertex-disjoint paths so that each path starts and ends at a terminal vertex, while
all its inner vertices are non-terminal. The problem can be solved in O(n?:3%)
time [7,27] with the help of matroid matching [18]. An instance of MLQ with
£(p) = u(p) = 2 for every post p € P corresponds to an S-path packing instance
with S = A. The highest number of vertex-disjoint paths starting and ending
in A equals half of the cardinality of a maximum assignment. Thus, MLQ with
{(p) = u(p) = 2 can also be solved in O(n?3%) time. On the other hand, there
is no straightforward way to model posts with u(p) = 1 in S-path packing and
introducing weights to the instances also seems to be a challenging task. Some
progress has been made for weighted edge-disjoint paths, but to the best of our
knowledge the question is unsettled for vertex-disjoint paths [13].

In the full version of the paper [3] we present a solution for the general case
WMLQ with u(p) < 2. Our algorithm is based on f-factors of graphs [9].

Theorem 3. WMLQ with u(p) < 2 for every p € P can be solved in O(nm +
n?logn) time, where n = |V| and m = |E|.

3 Bounded treewidth graphs

In this section, we investigate WMLQ from the point of view of fixed-parameter
tractability and analyze how efficiently the problem can be solved for instances
with a bounded treewidth.
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Fized-parameter tractability. This field of complexity theory is motivated by the
fact that in many applications of optimization problems certain input parameters
stay small even for large instances. A problem, parameterized by a parameter
k, is fixed-parameter tractable (FPT) if there is an algorithm solving it in time
f(k) - ¢(n), where f: R — R is a function, ¢ is a polynomial function, and n is
the input size of the instance. Note that this definition not only requires that the
problem can be solved in polynomial time for instances where k is bounded by a
constant, but also that the dependence of the running time on k is separable from
the part depending on the input size. On the other hand, if a problem is shown
to be W[1] — hard, then the latter property can only be fulfilled if FPT = W[1],
which would imply NP € DTIME(2°("™). For more details on fixed-parameter
algorithms see, e.g., [22].

Treewidth. In case of WMLQ we focus on the parameter treewidth, which, on an
intuitive level, describes the likeness of a graph to a tree. A tree decomposition of
graph G consists of a tree whose nodes—also called bags—are subsets of V(G).
These must satisfy the following three requirements.

1. Every vertex of G belongs to at least one bag of the tree.

2. For every edge {a,p} € E(G), there is a bag containing both a and p.

3. If a vertex in V(G) occurs in two bags of the tree, then it also occurs in all
bags on the unique path connecting them.

The width of a tree decomposition with a set of bags B is maxycp |b| — 1. The
treewidth of a graph G, tw(G), is the smallest width among all tree decomposi-
tions of G. It is well known that a tree decomposition of smallest width can be
found by a fixed-parameter algorithm when parameterized by tw(G) [5].

In the following, we show that WMLQ is fixed-parameter tractable when para-
meterized simultaneously by the treewidth and wumax, whereas it remains W{1]-
hard when only parameterized by the treewidth. A similar study of the fixed-
parameter tractability of the related extended global cardinality constraint prob-
lem (EGcc) was conducted in [25]. EGCC corresponds to the special case of the
D-matching problem where the graph is bipartite and on one side of the bipar-
tition all vertices have the domain {1}. Differently from WMLQ, EGCC is a feasi-
bility problem (note that the feasibility version of WMLQ is trivial, as the empty
assignment is always feasible). The authors of [25] provide a fixed-parameter
algorithm for EGCC when parameterized simultaneously by the treewidth of the
graph and the maximum domain size, and they show that the problem is W[1]-
hard when only parameterized by the treewidth. These results mirror our results
for wMLQ, and indeed both our FPT-algorithm for wMLQ and the one in [25]
are extensions of the same classic dynamic program for the underlying maxi-
mum independent set problem. However, our hardness result uses a completely
different reduction than the one in [25]. The latter makes heavy use of the fact
that the domains can be arbitrary sets, whereas in WMLQ, we are confined to
intervals.
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Theorem 4. WMLQ can be solved in time O(T + (umayx )> ™| E|), where T is the
time needed for computing a tree decomposition of G. In particular, WMLQ can be
solved in polynomial time when restricted to instances of bounded treewidth, and
WMLQ parameterized by max{tw(Q), umax } is fired-parameter tractable.

The algorithmic proof of Theorem 4 can be found in the full version of the
paper [3]. While our algorithm runs in polynomial time for bounded treewidth,
the degree of the polynomial depends on the treewidth the algorithm only
becomes a fixed-parameter algorithm when parameterizing by treewidth and
Umax Simultaneously. We will now show by a reduction from MINIMUM MAXI-
MUM OUTDEGREE that this dependence is necessary under the assumption that
FPT £ WI[1].

Problem 2. MINIMUM MAXIMUM OUTDEGREE

Input: A graph G = (V, E), edge weights w : E — Z, encoded in unary, a
degree-bound r € 7.

Task: Find an orientation D of G such that Zeeég(u) w(e) < r forallv eV,

where 525 (v) stands for the set of edges oriented so that their tail is v.

Theorem 5 (Theorem 5 from [28]). MINIMUM MAXIMUM OUTDEGREE is
W1]-hard when parameterized by treewidth.

Theorem 6. MLQ is W[1]-hard when parameterized by treewidth, even when
restricted to instances where £(p) € {0,u(p)} for every p € P.

Proof. Given an instance (G = (V, E),w,r) of MINIMUM MAXIMUM OUTDE-
GREE, we construct an instance (G’ = (AU P, E’),¢,u) of MLQ as follows. For
every vertex v € V we introduce a post p, € P and let £(p,) = 0 and u(p,) = r.
Furthermore, for every edge e = {v,v'} € E, we introduce two posts p., and
Pe v’ with E(pe,v) = g(pe,v’) = u(pe,v) = u(pe,v’) = w(e) + 1, and 2’[0(6) +1

: 1 w(e) 1 w(e)
applicants ag ..., Qe s Qg iy s Ge g’ s

{pv,al,}, {al i pent, {pvr,al o}, and {al i peor} for i€ {1,...,w(e)} as well
as {pe,m Ze} and {Zeape,v’}~

We show that the constructed instance has a solution serving all applicants
if and only if the MINIMUM MAXIMUM OUTDEGREE instance has an orientation
respecting the bound on the outdegree.

First assume there is an orientation D of G with maximum outdegree at
most r. Then consider the assignment that assigns for every oriented edge
(v,0') € D the w(e) applicants a, , to p, and the w(e) 4 1 applicants af
and z. to pe .. As the weighted outdegree of vertex v is at most r, every post
Dy gets assigned at most r = u(p,) applicants.

Now assume M is a feasible assignment of applicants to posts serving every
applicant. In particular, for every edge e = {v,v’'} € E, applicant z. is assigned
to either p. ., or pe.s and exactly one of these two posts is open because the
lower bound of w(e) + 1 can only be met if z. is assigned to the respective post.
If pe ,, is open then all w(e) applicants ai,v/ are assigned to p,» and none of the

Ze, for which we introduce the edges

i
e,v

applicants a , is assigned to p,, and vice versa if p. . is open. Consider the
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orientation obtained by orienting every edge e from v to v’ if and only if p , is
open. By the above observations, the weighted outdegree of vertex v corresponds
to the number of applicants assigned to post p,, which is at most r.

Finally, note that G’ can be constructed in time polynomial in the input size
of the MINIMUM MAXIMUM OUTDEGREE instance as the weights are encoded
in unary there. Furthermore, the treewidth of G’ is at most max{tw(G), 3}. To
see this, start with a tree decomposition of G and identify each vertex v € V
with the corresponding post p,. For every edge e = {v,v'} € E, there is a bag
B with p,,p), € B. We add the new bag B, = {py, D}, PevsPer } a8 a child
to B. We further add the bags B, = {Pe.v;,Pe, 2}, B, = {Pv, Pe.v, aie,v} and
B,i | ={py,pewal,} forie{1,...,w(e)} as children to B,. Observe that the
tree of bags generated by this construction is a tree decomposition. Furthermore,
since we did not increase the size of any of the existing bags and added only bags
of size at most 4 the treewidth of G’ is at most max{tw(G), 3}. O

4  Approximation

Having established the hardness of WMLQ even for very restricted instances in
Theorem 1, we turn our attention towards approximability. In this section, we
give an approximation algorithm and corresponding inapproximability bounds
expressed in terms of |A|,|P| and upper quotas in the graph.

The method, which is formally listed in Algorithm 1, is a simple greedy
algorithm. We say a post p is admissible if it is not yet open and |I'(p)| > ¢(p).
The algorithm iteratively opens an admissible post maximizing the assignable
weight, i.e., it finds a post p’ € P and a set A’ of applicants in its neighborhood
I'(p") with £(p’) < |A’| < u(p’) such that ) 4, w(a,p) is maximized among all
such pairs. It then removes the assigned applicants from the graph (potentially
rendering some posts inadmissible) and re-iterates until no admissible post is left.

Algorithm 1. Greedy algorithm for wMLQ

Initialize Po = {p € P : |I'(p)| > £(p)}.

Initialize Ag = A.

while Py # () do
Find a pair p’ € Py and A’ C I'(p') with |A’| < u(p') such that >, w(a,p) is
maximized among all such pairs.
Open p’ and assign all applicants in A’ to it.
Remove p’ from Py and remove the elements of A’ from Ag.
for p € Py with £(p) > |I'(p) N Ao| do

Remove p from Py.

end for

end while

In the full version of the paper [3] we give a tight analysis of the algorithm,
establishing approximation guarantees in terms of the number of posts | P|, num-
ber of applicants |A[, and the maximum upper quota Umax := max,ep u(p) over
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all posts. We also provide two examples that show that our analysis of the greedy
algorithm is tight for each of the described approximation factors. We further
show there that the approximation ratios given above for WMLQ are almost tight
from the point of view of complexity theory.

We point out a reduction from WMLQ to the set packing problem here. The
elements in the universe of the set packing problem would be A U P. For each
post p and for each subset S C I'(p), such that I(p) < |S| < u(p), we create
a set S U {p} for the set packing instance. However, if the difference between
upper and lower quota is not bounded, this would create an exponential sized
input for the set packing problem and we could only employ an oracle based
algorithm known for set packing problem to solve WMLQ. The greedy algorithm
known for set packing problem [6] can be made to work in a fashion similar to
the algorithm presented above.

Theorem 7. Algorithm 1 is an a-approximation algorithm for WMLQ with o =
min{|P|, |Al, Umax + 1}. Furthermore, for MLQ, Algorithm 1 is a +/|A| + 1-
approximation algorithm. It can be implemented to Tun in time O(|E|log |E|).
1—
Theorem 8. MLQ is not approzimable within a factor of |P|*=¢ or \/|A]
or ul=¢ for any e > 0, unless P = NP, even when restricting to instances where

max

L(p) = u(p) for every p € P and |I'(a)| <2 for every a € A.
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