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Abstract:  

Resistance arteries have been implicated as major contributing factor in the sequela of disease 

conditions such as hypertension and diabetes and as such are a major focus of cardiovascular 

research. The paracrine influence of the intimal endothelial layer of resistance arteries is well 

established. Considering the growing body of evidence substantiating a functionally relevant 

vascular adventitia in this present study we have established a technique which permits 

determination of the functional influence of the adventitial layer on resistance artery tone. 

Isolating adventitial-dependent function, analogous to isolating endothelial function, has 

potentially significant implication for studying the as yet unexplored role of the 

microvascular adventitial layer in modulating acute vascular contractile function. 

 

Key words: Microcirculation; Adventitia; Vasoconstriction; Vasorelaxation; Pressure 

Autoregulation  

  



1. Introduction 

     Blood vessels comprise of three anatomically and physiologically distinct layers; the 

intimal endothelium; the medial vascular smooth muscle and the outer adventitial layer. To 

date vascular research has focused largely on the endothelium and smooth muscle dependent 

function and the interplay between both layers in the regulation of vascular tone in health and 

disease [1]. Historically the adventitial layer has been considered as a passive encapsulating 

structure containing perivascular sympathetic nerves and in large blood vessels a vasa 

vasorum. However, an increasing number of studies have demonstrated a distinct 

physiological role for the adventitia [2]. Studies have demonstrated the adventitia in large 

calibre arteries play a part in atherogenesis and more recently as a modulator of agonist-

dependent responses [3,4]. Moreover, the adventitial layer has been proposed to be 

potentially crucial in vascular remodelling phenomena and has intriguingly been reported as 

the “first responder” during early vascular disease development [4]. Many studies have 

documented structural adaptation of the medial vascular smooth muscle layer in disease 

conditions however the adventitial layer similarly undergoes structural adaptation [1,5]. 

Human subcutaneous and skeletal muscle resistance arteries underwent hypotrophic 

remodelling with the greatest structural loss observed within the adventitial layer [6]. Similar 

to large calibre arteries it is feasible that adventitial-derived signalling molecules such as 

reactive oxygen species may modulating underlying vascular smooth muscle contractile 

function [2]. Excluding trans-nerve stimulation studies there are no other studies focusing on 

specific adventitial derived cell signalling intermediaries in small resistance arteries. 

Considering the importance of small resistance artery function in health and disease and the 

growing body of evidence pointing towards a likely significant role of the adventitial layer as 

an important contributor to both acute (contractile) and chronic (structural) vascular function 

in larger calibre arteries the development of a method for isolating vascular adventitial-

dependent function analogous to endothelial removal in small resistance arteries would 

permit the advancement of focused adventitial-dependent microvascular research. Thus the 

aim of this study was to establish a reliable and reproducible method of functionally isolating 

adventitial-dependent function in small resistance arteries. 

2. Methods 

2.1. Isolation of rat middle cerebral arteries  

     All procedures were performed under the UK Animals (Scientific Procedures) Act 1986 

and were approved by the Ethical Review Committee of the University of Strathclyde. Adult 

male Sprague-Dawley rats (12 weeks, 250~300g) were killed by cervical dislocation. The 

brain was removed and the middle cerebral arteries (MCA; outer diameter 170 ± 2.8 m) 

were dissected from surrounding connective tissue under a dissection microscope (WPI, UK; 

Model SSZ 10x/22) and placed in ice-cold physiological saline solution (PSS).  

 

 



2.2. Adventitial removal following collagenase digest 

     Following isolation both ends of resistance arteries (5mm lengths) were closed by tying 

sutures around the ends to protect the luminal compartment. Arteries were placed in 

eppendorf tubes filled with Krebs solution containing collagenase type II, in a 37°C shaking 

water bath [3]. The protocol was repeated with incubation times of 5, 7.5, 10 and 15 mins and 

collagenase concentrations of 1, 1.5 and 2 mg ml
-1

. Following collagenase exposure arteries 

were immediately rinsed with ice cold PSS. The arteries were then pinned at both ends to a 

sylgard-based dissecting dish and the adventitia was carefully removed by gentle stripping 

with Dumont #5 fine forceps (WPI, UK) under a dissecting microscope.  

2.3. Adventitial ablation by paraformaldehyde exposure 

     As above both ends of the resistance artery were tied off. The adventitial layer was ablated 

by dipping the artery in 4% formaldehyde buffered saline (FBS) for 5 seconds and thereafter 

immediately rinsed in ice cold PSS. In this study arteries undergoing treatment to remove or 

ablate the adventitial layer are referred to as ADV- (experimental) and intact adventitial 

arteries (control) as ADV+. As a control measure ADV+ arteries were exposed to an identical 

processing method as ADV-, the only difference being ADV+ were dipped in PSS as 

opposed to 4% FBS.  

2.4. Functional confirmation of resistance artery function 

     Successful removal/ ablation of the adventitia were immediately measured by trans-nerve 

stimulation (TNS) of adventitial perivascular nerve-dependent modulation of vascular tone. 

Disruption of adventitial-dependent function was confirmed by loss of TNS-dependent 

contraction (1~16Hz/ 50-130v) and loss of TNS/ nicotine-dependent relaxation (in the 

presence of guanethidine).  

2.5. Resistance artery function: wire myography and transmural nerve stimulation (TNS) 

     Arterioles were bathed in PSS and gassed with 20 % O2/5 % CO2/ 75% nitrogen 

maintaining pH 7.4 at 37
0
C. MCA were mounted on a Danish MyoTech 4 channel myograph 

model 410P (Aarhus, Denmark) using the standard technique [7]. Recording of isometric 

tension/ force generated by the arteries were measured using an ADI PowerLab 4/25 bridge 

amplifier/digitizer (Chalgrove, UK) and intercept Chart Software. Two electrodes were 

placed on either side of wire myograph mounted arteries. TNS was applied using a S44D 

Grass stimulator (Grass technologies, Slough, UK) with the following parameters 40-130 V, 

0.3-0.5 msec pulse duration, increasing frequency (1, 2, 4, 8 & 16 Hz). The neurogenic nature 

of the TNS response was confirmed following 30 minute incubation with the postganglionic 

sympathetic nerve terminal blocker guanethidine (10M).  

2.6. Resistance artery function: pressure myography  

    Isolated arterioles were studied using previously described techniques (Coats et al, 2003). 

Briefly, arterioles were mounted on a Danish MyoTech (Aarhus, Denmark) P110 pressure 

myograph system and secured with two 17M nylon sutures to size-matched micro-cannulae. 



Pressure-independent responses to contractile agonists were measured at an intraluminal 

pressure of 40mmHg. Pressure-dependent myogenic responses were studied by increasing 

intraluminal pressure from 40-120mmHg in 40mmHg steps for a period of 5 minutes at each 

pressure step. Myogenic tone (%) was calculated using the formula (LD in Ca
2+

free PSS – 

LD in Ca
2+

 PSS / LD Ca
2+

free x 100. Where LD Ca
2+

 is the lumen diameter in the presence 

of Ca
2+

 and LD Ca
2+ 

free the lumen diameter in the absence of Ca
2+

. 

2.7. Chemiluminescence measurements of ROS  

    ROS produced from MCAs was measured by Superoxide production by control and 

collared carotid artery ring segments was measured using 5 μmol/L lucigenin-enhanced 

chemiluminescence. Vessel segments (dry weight 10 ± 0.5ug) were pre-incubated in PSS at 

37°C with NADH
+
 (substrate for Nox, 100 μM) and diethyldithiocarbamate (DETCA, 10 

mM) a superoxide dismutase inhibitor for 30 min. Arteries were transferred into Krebs-

HEPES buffer containing ANG II (0.1 μM), NADH
+
 (100 μM) and lucigenin in plastic 

cuvettes. Luminescence was measured in relative light unit per second (RLU/s) every 10 

seconds over a period of 200 seconds using a Sirius L luminometer (Sirius, Germany). 

2.8. Assessment of vascular mechanics  

    Circumferential stress (), force generated per unit area of the arteriole wall thickness 

(WT) as a product of intraluminal pressure (IP), was calculated using the formula: 

                                                 = (∆IPri) / (2λWT)    

ΔP being the transmural pressure difference and ri being the luminal radius at a given IP.                                                 

Circumferential strain (), fractional changes in lumen diameter (LD) as a product of 

pressure, was calculated from arteriole lumen diameter measurements using the formula: 

                     = (LD-Do)/ Do                

where Do is the original diameter, 5mmHg was used as the original diameter in the 

calculation of . To determine the passive stiffness (resistance to pressure-dependent stretch) 

of the artery under study the stress-strain data for individual arteries were fitted to an 

exponential curve (y=ae
bx

) to obtain the tangential elastic modulus: 

                                                           E= orige

                       

Where orig is the stress at the original diameter (5mmHg) and is the slope of the 

tangential elastic modulus. 

2.9. Vascular tissue viability and reactive oxygen species measurement using confocal 

microscopy  

     Tissue viability: Successful adventitial ablation and confirmation of underlying vascular 

smooth muscle and endothelial viability/ integrity following paraformaldehyde dipping were 

established by laser-scanning confocal microscopy (Leica SP-5; Leica DM6000) and x20 

(N.A. 0.75) air objective and x40 (N.A. 1.3) oil objective on pressurised (40mmHg) vessels 



[6]. Immediately following the ablation procedure viable or non-viable cells/ layers of tissue 

were identified using an inclusion/ exclusion criteria using the flurophores propidium iodide 

(non-permeable in viable cells; Sigma-Aldrich, Poole, UK) 10g ml
-1

 in PSS; excitation/ 

emission 495/640-nm) and Hoescht 33342 (Sigma-Aldrich, Poole, UK, 100nmol l
-1

; 

excitation/ emission 350/461-nm). Confocal images were processed using Volocity software 

(Lexington, MA). 

 Reactive oxygen species measurement: Intact segments of artery were incubated with 

10mol l
-1

 5-(and-6)-chloromethyl-dichlorodihydrofluorescein diacetate, acetyl ester (DCF-

DA, Invitrogen) for 30 min and ROS was observed by confocal microscopy in response to 

stimulation with angiotensin II (ANG II). The vascular smooth muscle layer were measured 

in the z-axis using the x60 water immersion objective (Nikon N.A. 1.3). A z-plane stack of 

images were collected where the step interval was set at 1M. The medial smooth muscle 

layer was determined by the first brightest to last brightest nuclei. The mean fluorescent 

intensity from each z-stack image was measured and these values averaged to give a mean 

fluorescent intensity for the whole smooth muscle layer using ImageJ.    

2.10. Drugs and reagents  

    Physiological saline solution (PSS): composition (mmol l
-1

)
 
- NaCl 119, KCl 4.5, NaHCO3 

25, KH2PO4 1.0, MgSO4 1.2, glucose 10 and CaCl2 2.5. Ca
2+

 free PSS composition was 

identical to that of PSS other than the removal of Ca
2+ 

and addition of 1 mM EGTA. Krebs-

HEPES composition (mmol l
-1

) - NaCl 118, KCl 4.5, MgSO4 1.2, CaCl2 2.5, KH2PO4 1.2, 

NaHCO3 25, HEPES 10, glucose 10. All drugs and reagents were purchased from Sigma 

(Poole, Dorset, UK) and all were prepared on the day of the experiment. Collagenase PSS: 

collagenase type III, 100 units mg
-1

 (Worthington Biochemical: UK) was made freshly before 

each experiment and diluted with PSS. 

2.11. Data and statistical analysis  

    Values are presented as mean  standard error of the mean (SEM). Contraction data to 

vasoconstrictor agonists are represented as percentage contraction relative to the maximum 

contraction evoked by 60mmol l
-1

 K
+
PSS. Relaxation data are represented as percentage 

relaxation relative to the pre-constricted diameter of the artery. Statistical analysis of the data 

was performed using Graph Pad Prism (USA). Comparisons between groups were made 

using paired or unpaired Student’s t test or ANOVA for repeated measures. Significance was 

assumed if p<0.05. 

3. Results  

3.1 Adventitial removal following collagenase exposure  

    Following the 15 minute collagenase (1.5mg ml
-1

) exposure protocol (Gonzalez et al 2001) 

functional integrity was measured. Collagenase exposure alone (with no stripping) under the 

published experimental conditions resulted in complete loss of fundamental contractile 

function. Reducing the concentration of collagenase to 0.5mg/ml and reducing the time of 



exposure from 15 minutes to 5 minutes failed to improve contractile function (Fig. 1A). 

Visual analysis of resistance arteries by confocal microscopy revealed propidium iodide 

positive staining across all layers of the vessels following collagenase exposure (Fig. 1B). In 

keeping with the original published study collagenase protocols were tested in the larger 

calibre rat aorta tissue [3]. In aorta collagenase treatment alone or collagenase treatment plus 

careful stripping of the adventitial layer had no deleterious effect on vascular contractile 

function nor did it result in any propidium iodide positive staining of the vascular smooth 

muscle or endothelial layers (data not presented). 

3.2. Adventitial ablation using 4% formaldehyde buffered saline  

     Following 5 second dipping resistance artery function was measured. In contrast to the 

collagenase exposure protocol FBS exposure had no detrimental effect on receptor-

independent contractile function (Fig. 1C). Vascular cellular integrity was confirmed by 

confocal microscopy. Fig. 1D shows no propidium iodide positive medial or intimal cells 

following FBS exposure. As expected the outer adventitial layer shows positive staining (Fig. 

1D).  

3.3. Functional confirmation of adventitial ablation  

     TNS was used to measure neurogenic-dependent contraction. Fig. 2A shows a TNS-

dependent increase in vascular contractile tone which was significantly reduced following 

incubation with guanethidine (10 M). The effect of adventitial ablation with transient 

dipping in 4% FBS almost eliminated the TNS-dependent response. Additional confirmation 

of adventitial ablation was investigated using nicotine (10M) in the presence of 

guanethidine. Fig. 2B shows significant loss of nicotine-dependent relaxation in ADV- vs. 

ADV+ (54.1 ± 3.1% vs. 12.8 ± 3.1 % respectively; p<0.05). Adventitial fibroblasts have been 

shown to liberate significant amounts of reactive oxygen species (ROS) [7]. Fig. 2C shows 

the effect of adventitial ablation on angiotensin II (0.1uM) induced ROS. Following treatment 

the capacity of MCAs to liberate ROS as measured by chemiluminescence was significantly 

reduced to ~50% in ADV- MCAs (Fig 2C.).  

3.4. Pressure-independent tone 

    In MCAs at intraluminal pressure of 40mmHg and following transient exposure to 4% FBS 

we observed no loss of underlying vascular smooth muscle receptor-independent (Fig. 3A) or 

receptor-dependent tone (Figs. 3B, 3C). Nor were endothelium-independent (Fig. 3D) or 

endothelium-dependent relaxation (Fig. 3E) affected.  

3.5. Pressure-dependent tone  

    Despite having no effect on pressure-independent mechanism of vascular tone transient 

dipping in 4% FBS significantly reduced the well documented pressure-dependent function in 

MCAs. Fig. 3G shows pressure-diameter relationship in ADV+, ADV+ in Ca
2+

 free PSS and 

ADV-. In the presence of Ca
2+

 and in response to increasing pressure from 40-80-120 mmHg 

mean vessel diameter reduced (175-165-163m respectively). In paraformaldehyde dipped 



vessels loss of pressure-dependent myogenic tone (Fig. 3G) was greatest at 120mmHg 

(ADV+ vs. ADV-; 24.8 ± 2.2% vs. 9.4 ± 3.3% respectively; p<0.05).  

3.6. Pressure-dependent passive mechanical properties following FBS exposure 

     Transient dipping in 4% FBS may have resulted in partial fixation. Therefore we 

measured the effect of 4% formaldehyde exposure on pressure-dependent deformation in an 

attempt to identify if the loss of pressure-dependent tone in ADV- was due to partial fixation 

of the outer layer of the artery. However, Fig. 3H highlights there was in fact no degree of 

partial fixation as measured by the passive pressure-dependent mechanical properties of the 

arteries. Fig. 3H exemplifies these observations showing no significant difference in the 

stress-strain relationship ADV+ vs. ADV-. Moreover no significant difference was observed 

in the tangent of the elastic modulus values () in ADV+ vs. ADV-. (- 10.4 ± 2.4 vs. 10.1 ± 

1.3 respectively).    

3.7. Vascular smooth muscle reactive oxygen species measurement 

   Figure 4 shows mean fluorescent activity within the vascular wall in response to 

angiotensin II (1 & 10uM).  Of note there is no significant difference between ROS measured 

in the muscle layer pre and post transient dipping in 4% FBS. The no loss of function as a 

consequence of transient dipping in 4% FBS is further confirmed as we clearly observe 

similar angiotensin II dose-dependent increase in ROS in both ADV+ and ADV-.  

 

4 Discussion  

Previously adventitial-dependent functional isolation has been achieved in larger conduit 

arteries using an enzymatic digest technique [3]. We have confirmed this technique in the 

present study using rat aorta however we have importantly demonstrated this technique is not 

suitable for smaller calibre resistance artery studies. In this study we have shown for the first 

time a technique for isolating adventitial-dependent functional processes in small resistance 

arteries. We are confident that the method for adventitial ablation only affects adventitial 

dependent processes. Enzymatic processing resulted in complete loss of tonic mechanisms. 

The deleterious effect of the enzymatic exposure was quantified by confocal microscopy 

where the viability of all cells across the vascular wall stained positive for PI. In complete 

contrast transient dipping in 4% FBS followed by PSS rinsing produced only PI positive 

staining of the outer adventitial layer. Functionally the loss of TNS and nicotine dependent 

tone combined with the functional preservation of the underlying smooth muscle and 

endothelium function confirms specificity of this method. Additional confirmation of the 

specificity of functional adventitial ablation using this technique was gained by the loss of 

ROS as measured by chemiluminescence. Similar to large arteries the adventitial layer of 

resistance arteries are populated with many fibroblast cells with a large potential to produce 

ROS [6]. The data presented in Figure 2C shows a significantly reduced total ROS liberated 

from the ADV- artery when compared with the ADV+ artery. Whereas figure 4 highlights the 

amount of ROS measured within the muscle layer of the artery remains unchanged 



suggesting that the reduced ROS measured in the ADV- (Figure 2C) is a consequence of 

transient 4% FBS dipping and loss of adventitial function. Thus this technique of isolating 

adventitial function in small resistance arteries is one potential focus of future research of the 

role of adventitial fibroblast-derived ROS and vascular reactivity.  

One unexpected observation was the effect of adventitial ablation on pressure-

dependent myogenic tone. To the best of our knowledge this is the first observation showing 

a potential role of the adventitia layer in modulating acute pressure-dependent myogenic 

tone. Mechanisms underlying myogenic tone have yet to be fully elucidated. However ROS 

has been implicated as a co-signalling molecule underlying the myogenic response and 

adventitial-derived ROS in addition to ROS from the underlying smooth muscle could 

conceivably be involved in modulating the actin cytoskeleton [8]. Moreover ROS is known to 

modulate Ca
2+

 signalling and potassium channel activation [9,10]. There is clear lack of 

consensus regarding the location and nature of the initiating bio-sensor underlying myogenic 

tone; it is not unconceivable that the location of the sensory apparatus may be situated within 

the adventitial-medial interface [11]. Clearly this observation requires further investigation 

however goes some way to exemplifying the potential important application of this 

technique.  

Although the data has not presented within this manuscript similar observations were 

measured in third order mesenteric arteries thus the implications of this work for resistance 

artery studies are potentially important. Parallels can be drawn when considering the vascular 

endothelium in health and disease where the early use of endothelial removal studies to 

identify endothelial-dependent function were commonly adopted. Following this present 

study we are now in a position to undertake similar work to further elucidate the role of the 

adventitial layer in modulating small resistance artery function. 
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Figure legends 

Figure 1. The effect of collagenase-dependent adventitial stripping on microvascular 

function. A. Contractile response to 60 mM K
+
PSS in ADV+ and following 3 min exposure 

to collagenase (0.2 mg ml
-1

) collagenase treated and collagenase treated plus adventitial 

stripping of mid-cerebral resistance arteries. n= 4 pairs; * p<0.05, t-test, treatment vs. ADV+. 

(B) Confocal image of a mid-cerebral resistance artery following 3 min exposure to 

collagenase (0.2 mg/ml) showing propidium iodide positive red staining in all layers of the 

artery wall (C) Contractile response of mid-cerebral resistance arteries to 60 mmol 
-1

 K
+
PSS 

before and after 5 sec dipping in 4% formalin buffered saline (n= 9 pairs) (D) Confocal image 

of propidium iodide (PI) stained mid-cerebral resistance artery following 5 sec dipping in 4% 

formalin buffered saline. Red nuclei are positive for PI; autofluorescing structures within the 

artery wall shown by the green. (Scale bar 1B and 1D = 50m) 

 

 



Figure 2. Adventitial-dependent microvascular function following paraformaldehyde 

exposure. A, TNS-dependent contraction at 16Hz before and after incubation with 

guanethidine (10M) in ADV+ arteries and 16Hz-dependent contraction in ADV- arteries; 

Contraction data are expressed as a % of the maximum contraction to 60 mmol
-1

 K
+
PSS. * 

p<0.05 ADV+ vs. Guanethidine/ ADV+, n=6, t-test; # p<0.05 ADV- vs. ADV+, n=6, t-test. 

B, Shows nicotine-dependent relaxation (in the presence of 10M guanethidine); * p<0.05, t-

test, ADV- vs. ADV+, n=6. C, Measurement of reactive oxygen species by 

chemiluminescence in angiotensin II (0.1M) challenged MCAs. * p<0.05, ADV- vs. ADV+, 

one way ANOVA for repeated measures, n=6. 

Figure 3. Highlights contractile functional analysis in resistance arteries following 

transient dipping in 4% FBS. A, receptor-independent mechanisms of contraction evoked 

by potassium supplemented PSS (4.5-100 mmol
-1

; n=6). B and C highlight receptor-

dependent contraction evoked by U46199 (n=6) and 5-hydroxytryptamine (5HT; n=6) 

respectively. D and E show the effect on endothelium-independent relaxation and 

endothelium-dependent relaxation evoked by sodium nitroprusside (SNP; n=6) and 

acetylcholine (ACh; n=6) respectively. F, pressure-diameter relationship in rat mid-cerebral 

resistance arteries. * p<0.05 ADV- vs. ADV+ (ANOVA) n=9, and pressure-diameter 

relationship following removal of Ca
2+

 # p<0.05 ADV+/ADV- vs. Ca
2+

 free (n=7). G, effect 

of paraformaldehyde dipping on pressure-dependent myogenic tone, * p<0.05 ADV- vs. 

ADV+ at 80 and 120mmHg, ANOVA for repeated measures, n=9. H, highlights no change in 

pressure-dependent mechanical properties as measured by the stress-strain relationship in 

ADV+ and ADV- arteries, n=8.  

Figure 4. Measurement of ROS in the vascular smooth muscle wall of small resistance 

arteries using laser scanning confocal microscopy. Stimulation with 1uM angiotensin II 

(Ang II) produced ~3.5 fold increase in ROS when compared with background unstimulated 

control (● p< 0.05, 1uM Ang II vs. Control, n=6).  The liberation of ROS further increased to 

~6 fold above background when stimulated with 10uM Ang II and was again significantly 

increased when compared with 1uM Ang II (* p< 0.05 10uM Ang II vs. 1uM Ang II, n=6). In 

all cases there were no differences measured when comparing ADV- vs. ADV+.  
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Figure 3. 
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Abstract:  

Resistance arteries have been implicated as major contributing factor in the sequela of disease 

conditions such as hypertension and diabetes and as such are a major focus of cardiovascular 

research. The paracrine influence of the intimal endothelial layer of resistance arteries is well 

established. Considering the growing body of evidence substantiating a functionally relevant 

vascular adventitia in this present study we have established a technique which permits 

determination of the functional influence of the adventitial layer on resistance artery tone. 

Isolating adventitial-dependent function, analogous to isolating endothelial function, has 

potentially significant implication for studying the as yet unexplored role of the 

microvascular adventitial layer in modulating acute vascular contractile function. 

 

Key words: Microcirculation; Adventitia; Vasoconstriction; Vasorelaxation; Pressure 

Autoregulation  

  



1. Introduction 

     Blood vessels comprise of three anatomically and physiologically distinct layers; the 

intimal endothelium; the medial vascular smooth muscle and the outer adventitial layer. To 

date vascular research has focused largely on the endothelium and smooth muscle dependent 

function and the interplay between both layers in the regulation of vascular tone in health and 

disease [1]. Historically the adventitial layer has been considered as a passive encapsulating 

structure containing perivascular sympathetic nerves and in large blood vessels a vasa 

vasorum. However, an increasing number of studies have demonstrated a distinct 

physiological role for the adventitia [2]. Studies have demonstrated the adventitia in large 

calibre arteries play a part in atherogenesis and more recently as a modulator of agonist-

dependent responses [3,4]. Moreover, the adventitial layer has been proposed to be 

potentially crucial in vascular remodelling phenomena and has intriguingly been reported as 

the “first responder” during early vascular disease development [4]. Many studies have 

documented structural adaptation of the medial vascular smooth muscle layer in disease 

conditions however the adventitial layer similarly undergoes structural adaptation [1,5]. 

Human subcutaneous and skeletal muscle resistance arteries underwent hypotrophic 

remodelling with the greatest structural loss observed within the adventitial layer [6]. Similar 

to large calibre arteries it is feasible that adventitial-derived signalling molecules such as 

reactive oxygen species may modulating underlying vascular smooth muscle contractile 

function [2]. Excluding trans-nerve stimulation studies there are no other studies focusing on 

specific adventitial derived cell signalling intermediaries in small resistance arteries. 

Considering the importance of small resistance artery function in health and disease and the 

growing body of evidence pointing towards a likely significant role of the adventitial layer as 

an important contributor to both acute (contractile) and chronic (structural) vascular function 

in larger calibre arteries the development of a method for isolating vascular adventitial-

dependent function analogous to endothelial removal in small resistance arteries would 

permit the advancement of focused adventitial-dependent microvascular research. Thus the 

aim of this study was to establish a reliable and reproducible method of functionally isolating 

adventitial-dependent function in small resistance arteries. 

2. Methods 

2.1. Isolation of rat middle cerebral arteries  

     All procedures were performed under the UK Animals (Scientific Procedures) Act 1986 

and were approved by the Ethical Review Committee of the University of Strathclyde. Adult 

male Sprague-Dawley rats (12 weeks, 250~300g) were killed by cervical dislocation. The 

brain was removed and the middle cerebral arteries (MCA; outer diameter 170 ± 2.8 m) 

were dissected from surrounding connective tissue under a dissection microscope (WPI, UK; 

Model SSZ 10x/22) and placed in ice-cold physiological saline solution (PSS).  

 

 



2.2. Adventitial removal following collagenase digest 

     Following isolation both ends of resistance arteries (5mm lengths) were closed by tying 

sutures around the ends to protect the luminal compartment. Arteries were placed in 

eppendorf tubes filled with Krebs solution containing collagenase type II, in a 37°C shaking 

water bath [3]. The protocol was repeated with incubation times of 5, 7.5, 10 and 15 mins and 

collagenase concentrations of 1, 1.5 and 2 mg ml
-1

. Following collagenase exposure arteries 

were immediately rinsed with ice cold PSS. The arteries were then pinned at both ends to a 

sylgard-based dissecting dish and the adventitia was carefully removed by gentle stripping 

with Dumont #5 fine forceps (WPI, UK) under a dissecting microscope.  

2.3. Adventitial ablation by paraformaldehyde exposure 

     As above both ends of the resistance artery were tied off. The adventitial layer was ablated 

by dipping the artery in 4% formaldehyde buffered saline (FBS) for 5 seconds and thereafter 

immediately rinsed in ice cold PSS. In this study arteries undergoing treatment to remove or 

ablate the adventitial layer are referred to as ADV- (experimental) and intact adventitial 

arteries (control) as ADV+. As a control measure ADV+ arteries were exposed to an identical 

processing method as ADV-, the only difference being ADV+ were dipped in PSS as 

opposed to 4% FBS.  

2.4. Functional confirmation of resistance artery function 

     Successful removal/ ablation of the adventitia were immediately measured by trans-nerve 

stimulation (TNS) of adventitial perivascular nerve-dependent modulation of vascular tone. 

Disruption of adventitial-dependent function was confirmed by loss of TNS-dependent 

contraction (1~16Hz/ 50-130v) and loss of TNS/ nicotine-dependent relaxation (in the 

presence of guanethidine).  

2.5. Resistance artery function: wire myography and transmural nerve stimulation (TNS) 

     Arterioles were bathed in PSS and gassed with 20 % O2/5 % CO2/ 75% nitrogen 

maintaining pH 7.4 at 37
0
C. MCA were mounted on a Danish MyoTech 4 channel myograph 

model 410P (Aarhus, Denmark) using the standard technique [7]. Recording of isometric 

tension/ force generated by the arteries were measured using an ADI PowerLab 4/25 bridge 

amplifier/digitizer (Chalgrove, UK) and intercept Chart Software. Two electrodes were 

placed on either side of wire myograph mounted arteries. TNS was applied using a S44D 

Grass stimulator (Grass technologies, Slough, UK) with the following parameters 40-130 V, 

0.3-0.5 msec pulse duration, increasing frequency (1, 2, 4, 8 & 16 Hz). The neurogenic nature 

of the TNS response was confirmed following 30 minute incubation with the postganglionic 

sympathetic nerve terminal blocker guanethidine (10M).  

2.6. Resistance artery function: pressure myography  

    Isolated arterioles were studied using previously described techniques (Coats et al, 2003). 

Briefly, arterioles were mounted on a Danish MyoTech (Aarhus, Denmark) P110 pressure 

myograph system and secured with two 17M nylon sutures to size-matched micro-cannulae. 



Pressure-independent responses to contractile agonists were measured at an intraluminal 

pressure of 40mmHg. Pressure-dependent myogenic responses were studied by increasing 

intraluminal pressure from 40-120mmHg in 40mmHg steps for a period of 5 minutes at each 

pressure step. Myogenic tone (%) was calculated using the formula (LD in Ca
2+

free PSS – 

LD in Ca
2+

 PSS / LD Ca
2+

free x 100. Where LD Ca
2+

 is the lumen diameter in the presence 

of Ca
2+

 and LD Ca
2+ 

free the lumen diameter in the absence of Ca
2+

. 

2.7. Chemiluminescence measurements of ROS  

    ROS produced from MCAs was measured by Superoxide production by control and 

collared carotid artery ring segments was measured using 5 μmol/L lucigenin-enhanced 

chemiluminescence. Vessel segments (dry weight 10 ± 0.5ug) were pre-incubated in PSS at 

37°C with NADH
+
 (substrate for Nox, 100 μM) and diethyldithiocarbamate (DETCA, 10 

mM) a superoxide dismutase inhibitor for 30 min. Arteries were transferred into Krebs-

HEPES buffer containing ANG II (0.1 μM), NADH
+
 (100 μM) and lucigenin in plastic 

cuvettes. Luminescence was measured in relative light unit per second (RLU/s) every 10 

seconds over a period of 200 seconds using a Sirius L luminometer (Sirius, Germany). 

2.8. Assessment of vascular mechanics  

    Circumferential stress (), force generated per unit area of the arteriole wall thickness 

(WT) as a product of intraluminal pressure (IP), was calculated using the formula: 

                                                 = (∆IPri) / (2λWT)    

ΔP being the transmural pressure difference and ri being the luminal radius at a given IP.                                                 

Circumferential strain (), fractional changes in lumen diameter (LD) as a product of 

pressure, was calculated from arteriole lumen diameter measurements using the formula: 

                     = (LD-Do)/ Do                

where Do is the original diameter, 5mmHg was used as the original diameter in the 

calculation of . To determine the passive stiffness (resistance to pressure-dependent stretch) 

of the artery under study the stress-strain data for individual arteries were fitted to an 

exponential curve (y=ae
bx

) to obtain the tangential elastic modulus: 

                                                           E= orige

                       

Where orig is the stress at the original diameter (5mmHg) and is the slope of the 

tangential elastic modulus. 

2.9. Vascular tissue viability and reactive oxygen species measurement using confocal 

microscopy  

     Tissue viability: Successful adventitial ablation and confirmation of underlying vascular 

smooth muscle and endothelial viability/ integrity following paraformaldehyde dipping were 

established by laser-scanning confocal microscopy (Leica SP-5; Leica DM6000) and x20 

(N.A. 0.75) air objective and x40 (N.A. 1.3) oil objective on pressurised (40mmHg) vessels 



[6]. Immediately following the ablation procedure viable or non-viable cells/ layers of tissue 

were identified using an inclusion/ exclusion criteria using the flurophores propidium iodide 

(non-permeable in viable cells; Sigma-Aldrich, Poole, UK) 10g ml
-1

 in PSS; excitation/ 

emission 495/640-nm) and Hoescht 33342 (Sigma-Aldrich, Poole, UK, 100nmol l
-1

; 

excitation/ emission 350/461-nm). Confocal images were processed using Volocity software 

(Lexington, MA). 

 Reactive oxygen species measurement: Intact segments of artery were incubated with 

10mol l
-1

 5-(and-6)-chloromethyl-dichlorodihydrofluorescein diacetate, acetyl ester (DCF-

DA, Invitrogen) for 30 min and ROS was observed by confocal microscopy in response to 

stimulation with angiotensin II (ANG II). The vascular smooth muscle layer were measured 

in the z-axis using the x60 water immersion objective (Nikon N.A. 1.3). A z-plane stack of 

images were collected where the step interval was set at 1M. The medial smooth muscle 

layer was determined by the first brightest to last brightest nuclei. The mean fluorescent 

intensity from each z-stack image was measured and these values averaged to give a mean 

fluorescent intensity for the whole smooth muscle layer using ImageJ.    

2.10. Drugs and reagents  

    Physiological saline solution (PSS): composition (mmol l
-1

)
 
- NaCl 119, KCl 4.5, NaHCO3 

25, KH2PO4 1.0, MgSO4 1.2, glucose 10 and CaCl2 2.5. Ca
2+

 free PSS composition was 

identical to that of PSS other than the removal of Ca
2+ 

and addition of 1 mM EGTA. Krebs-

HEPES composition (mmol l
-1

) - NaCl 118, KCl 4.5, MgSO4 1.2, CaCl2 2.5, KH2PO4 1.2, 

NaHCO3 25, HEPES 10, glucose 10. All drugs and reagents were purchased from Sigma 

(Poole, Dorset, UK) and all were prepared on the day of the experiment. Collagenase PSS: 

collagenase type III, 100 units mg
-1

 (Worthington Biochemical: UK) was made freshly before 

each experiment and diluted with PSS. 

2.11. Data and statistical analysis  

    Values are presented as mean  standard error of the mean (SEM). Contraction data to 

vasoconstrictor agonists are represented as percentage contraction relative to the maximum 

contraction evoked by 60mmol l
-1

 K
+
PSS. Relaxation data are represented as percentage 

relaxation relative to the pre-constricted diameter of the artery. Statistical analysis of the data 

was performed using Graph Pad Prism (USA). Comparisons between groups were made 

using paired or unpaired Student’s t test or ANOVA for repeated measures. Significance was 

assumed if p<0.05. 

3. Results  

3.1 Adventitial removal following collagenase exposure  

    Following the 15 minute collagenase (1.5mg ml
-1

) exposure protocol (Gonzalez et al 2001) 

functional integrity was measured. Collagenase exposure alone (with no stripping) under the 

published experimental conditions resulted in complete loss of fundamental contractile 

function. Reducing the concentration of collagenase to 0.5mg/ml and reducing the time of 



exposure from 15 minutes to 5 minutes failed to improve contractile function (Fig. 1A). 

Visual analysis of resistance arteries by confocal microscopy revealed propidium iodide 

positive staining across all layers of the vessels following collagenase exposure (Fig. 1B). In 

keeping with the original published study collagenase protocols were tested in the larger 

calibre rat aorta tissue [3]. In aorta collagenase treatment alone or collagenase treatment plus 

careful stripping of the adventitial layer had no deleterious effect on vascular contractile 

function nor did it result in any propidium iodide positive staining of the vascular smooth 

muscle or endothelial layers (data not presented). 

3.2. Adventitial ablation using 4% formaldehyde buffered saline  

     Following 5 second dipping resistance artery function was measured. In contrast to the 

collagenase exposure protocol FBS exposure had no detrimental effect on receptor-

independent contractile function (Fig. 1C). Vascular cellular integrity was confirmed by 

confocal microscopy. Fig. 1D shows no propidium iodide positive medial or intimal cells 

following FBS exposure. As expected the outer adventitial layer shows positive staining (Fig. 

1D).  

3.3. Functional confirmation of adventitial ablation  

     TNS was used to measure neurogenic-dependent contraction. Fig. 2A shows a TNS-

dependent increase in vascular contractile tone which was significantly reduced following 

incubation with guanethidine (10 M). The effect of adventitial ablation with transient 

dipping in 4% FBS almost eliminated the TNS-dependent response. Additional confirmation 

of adventitial ablation was investigated using nicotine (10M) in the presence of 

guanethidine. Fig. 2B shows significant loss of nicotine-dependent relaxation in ADV- vs. 

ADV+ (54.1 ± 3.1% vs. 12.8 ± 3.1 % respectively; p<0.05). Adventitial fibroblasts have been 

shown to liberate significant amounts of reactive oxygen species (ROS) [7]. Fig. 2C shows 

the effect of adventitial ablation on angiotensin II (0.1uM) induced ROS. Following treatment 

the capacity of MCAs to liberate ROS as measured by chemiluminescence was significantly 

reduced to ~50% in ADV- MCAs (Fig 2C.).  

3.4. Pressure-independent tone 

    In MCAs at intraluminal pressure of 40mmHg and following transient exposure to 4% FBS 

we observed no loss of underlying vascular smooth muscle receptor-independent (Fig. 3A) or 

receptor-dependent tone (Figs. 3B, 3C). Nor were endothelium-independent (Fig. 3D) or 

endothelium-dependent relaxation (Fig. 3E) affected.  

3.5. Pressure-dependent tone  

    Despite having no effect on pressure-independent mechanism of vascular tone transient 

dipping in 4% FBS significantly reduced the well documented pressure-dependent function in 

MCAs. Fig. 3G shows pressure-diameter relationship in ADV+, ADV+ in Ca
2+

 free PSS and 

ADV-. In the presence of Ca
2+

 and in response to increasing pressure from 40-80-120 mmHg 

mean vessel diameter reduced (175-165-163m respectively). In paraformaldehyde dipped 



vessels loss of pressure-dependent myogenic tone (Fig. 3G) was greatest at 120mmHg 

(ADV+ vs. ADV-; 24.8 ± 2.2% vs. 9.4 ± 3.3% respectively; p<0.05).  

3.6. Pressure-dependent passive mechanical properties following FBS exposure 

     Transient dipping in 4% FBS may have resulted in partial fixation. Therefore we 

measured the effect of 4% formaldehyde exposure on pressure-dependent deformation in an 

attempt to identify if the loss of pressure-dependent tone in ADV- was due to partial fixation 

of the outer layer of the artery. However, Fig. 3H highlights there was in fact no degree of 

partial fixation as measured by the passive pressure-dependent mechanical properties of the 

arteries. Fig. 3H exemplifies these observations showing no significant difference in the 

stress-strain relationship ADV+ vs. ADV-. Moreover no significant difference was observed 

in the tangent of the elastic modulus values () in ADV+ vs. ADV-. (- 10.4 ± 2.4 vs. 10.1 ± 

1.3 respectively).    

3.7. Vascular smooth muscle reactive oxygen species measurement 

   Figure 4 shows mean fluorescent activity within the vascular wall in response to 

angiotensin II (1 & 10uM).  Of note there is no significant difference between ROS measured 

in the muscle layer pre and post transient dipping in 4% FBS. The no loss of function as a 

consequence of transient dipping in 4% FBS is further confirmed as we clearly observe 

similar angiotensin II dose-dependent increase in ROS in both ADV+ and ADV-.  

 

4 Discussion  

Previously adventitial-dependent functional isolation has been achieved in larger conduit 

arteries using an enzymatic digest technique [3]. We have confirmed this technique in the 

present study using rat aorta however we have importantly demonstrated this technique is not 

suitable for smaller calibre resistance artery studies. In this study we have shown for the first 

time a technique for isolating adventitial-dependent functional processes in small resistance 

arteries. We are confident that the method for adventitial ablation only affects adventitial 

dependent processes. Enzymatic processing resulted in complete loss of tonic mechanisms. 

The deleterious effect of the enzymatic exposure was quantified by confocal microscopy 

where the viability of all cells across the vascular wall stained positive for PI. In complete 

contrast transient dipping in 4% FBS followed by PSS rinsing produced only PI positive 

staining of the outer adventitial layer. Functionally the loss of TNS and nicotine dependent 

tone combined with the functional preservation of the underlying smooth muscle and 

endothelium function confirms specificity of this method. Additional confirmation of the 

specificity of functional adventitial ablation using this technique was gained by the loss of 

ROS as measured by chemiluminescence. Similar to large arteries the adventitial layer of 

resistance arteries are populated with many fibroblast cells with a large potential to produce 

ROS [6]. The data presented in Figure 2C shows a significantly reduced total ROS liberated 

from the ADV- artery when compared with the ADV+ artery. Whereas figure 4 highlights the 

amount of ROS measured within the muscle layer of the artery remains unchanged 



suggesting that the reduced ROS measured in the ADV- (Figure 2C) is a consequence of 

transient 4% FBS dipping and loss of adventitial function. Thus this technique of isolating 

adventitial function in small resistance arteries is one potential focus of future research of the 

role of adventitial fibroblast-derived ROS and vascular reactivity.  

One unexpected observation was the effect of adventitial ablation on pressure-

dependent myogenic tone. To the best of our knowledge this is the first observation showing 

a potential role of the adventitia layer in modulating acute pressure-dependent myogenic 

tone. Mechanisms underlying myogenic tone have yet to be fully elucidated. However ROS 

has been implicated as a co-signalling molecule underlying the myogenic response and 

adventitial-derived ROS in addition to ROS from the underlying smooth muscle could 

conceivably be involved in modulating the actin cytoskeleton [8]. Moreover ROS is known to 

modulate Ca
2+

 signalling and potassium channel activation [9,10]. There is clear lack of 

consensus regarding the location and nature of the initiating bio-sensor underlying myogenic 

tone; it is not unconceivable that the location of the sensory apparatus may be situated within 

the adventitial-medial interface [11]. Clearly this observation requires further investigation 

however goes some way to exemplifying the potential important application of this 

technique.  

Although the data has not presented within this manuscript similar observations were 

measured in third order mesenteric arteries thus the implications of this work for resistance 

artery studies are potentially important. Parallels can be drawn when considering the vascular 

endothelium in health and disease where the early use of endothelial removal studies to 

identify endothelial-dependent function were commonly adopted. Following this present 

study we are now in a position to undertake similar work to further elucidate the role of the 

adventitial layer in modulating small resistance artery function. 
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Figure legends 

Figure 1. The effect of collagenase-dependent adventitial stripping on microvascular 

function. A. Contractile response to 60 mM K
+
PSS in ADV+ and following 3 min exposure 

to collagenase (0.2 mg ml
-1

) collagenase treated and collagenase treated plus adventitial 

stripping of mid-cerebral resistance arteries. n= 4 pairs; * p<0.05, t-test, treatment vs. ADV+. 

(B) Confocal image of a mid-cerebral resistance artery following 3 min exposure to 

collagenase (0.2 mg/ml) showing propidium iodide positive red staining in all layers of the 

artery wall (C) Contractile response of mid-cerebral resistance arteries to 60 mmol 
-1

 K
+
PSS 

before and after 5 sec dipping in 4% formalin buffered saline (n= 9 pairs) (D) Confocal image 

of propidium iodide (PI) stained mid-cerebral resistance artery following 5 sec dipping in 4% 

formalin buffered saline. Red nuclei are positive for PI; autofluorescing structures within the 

artery wall shown by the green. (Scale bar 1B and 1D = 50m) 

 

 



Figure 2. Adventitial-dependent microvascular function following paraformaldehyde 

exposure. A, TNS-dependent contraction at 16Hz before and after incubation with 

guanethidine (10M) in ADV+ arteries and 16Hz-dependent contraction in ADV- arteries; 

Contraction data are expressed as a % of the maximum contraction to 60 mmol
-1

 K
+
PSS. * 

p<0.05 ADV+ vs. Guanethidine/ ADV+, n=6, t-test; # p<0.05 ADV- vs. ADV+, n=6, t-test. 

B, Shows nicotine-dependent relaxation (in the presence of 10M guanethidine); * p<0.05, t-

test, ADV- vs. ADV+, n=6. C, Measurement of reactive oxygen species by 

chemiluminescence in angiotensin II (0.1M) challenged MCAs. * p<0.05, ADV- vs. ADV+, 

one way ANOVA for repeated measures, n=6. 

Figure 3. Highlights contractile functional analysis in resistance arteries following 

transient dipping in 4% FBS. A, receptor-independent mechanisms of contraction evoked 

by potassium supplemented PSS (4.5-100 mmol
-1

; n=6). B and C highlight receptor-

dependent contraction evoked by U46199 (n=6) and 5-hydroxytryptamine (5HT; n=6) 

respectively. D and E show the effect on endothelium-independent relaxation and 

endothelium-dependent relaxation evoked by sodium nitroprusside (SNP; n=6) and 

acetylcholine (ACh; n=6) respectively. F, pressure-diameter relationship in rat mid-cerebral 

resistance arteries. * p<0.05 ADV- vs. ADV+ (ANOVA) n=9, and pressure-diameter 

relationship following removal of Ca
2+

 # p<0.05 ADV+/ADV- vs. Ca
2+

 free (n=7). G, effect 

of paraformaldehyde dipping on pressure-dependent myogenic tone, * p<0.05 ADV- vs. 

ADV+ at 80 and 120mmHg, ANOVA for repeated measures, n=9. H, highlights no change in 

pressure-dependent mechanical properties as measured by the stress-strain relationship in 

ADV+ and ADV- arteries, n=8.  

Figure 4. Measurement of ROS in the vascular smooth muscle wall of small resistance 

arteries using laser scanning confocal microscopy. Stimulation with 1uM angiotensin II 

(Ang II) produced ~3.5 fold increase in ROS when compared with background unstimulated 

control (● p< 0.05, 1uM Ang II vs. Control, n=6).  The liberation of ROS further increased to 

~6 fold above background when stimulated with 10uM Ang II and was again significantly 

increased when compared with 1uM Ang II (* p< 0.05 10uM Ang II vs. 1uM Ang II, n=6). In 

all cases there were no differences measured when comparing ADV- vs. ADV+.  

 

 


