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Abstract

Realizing the potential of the diverse chemistries of natural products in biotechnology and medicine
has been limited by manual analysis of experimental data through mining mass spectrometry
knowledge solely captured in literature. While mass spectrometry techniques have proven well-
suited for high-throughput analyses of natural products, there is no infrastructure for researchers to
systematically share knowledge or analyze data. We present Global Natural Products Social
molecular networking (GNPS,_http://gnps.ucsd.edu), an open-access knowledge base for sharing,
analysis, and community curation of raw, processed, and identified tandem mass (MS/MS)
spectrometry data. GNPS further organizes, curates, and freely redistributes community-wide
reference MS libraries, as well as provides a data-driven social networking infrastructure. Finally,
GNPS introduces the concept of living data through crowdsourced curation of reference libraries
and continuous reanalysis of public data.

Introduction

Natural products (NPs) from marine and terrestrial environments, including their inhabiting
microorganisms, plants, animals, and humans, are routinely analyzed using mass spectrometry.
However a single mass spectrometry experiment can collect thousands of MS/MS spectra in
minutes’ and individual projects can acquire millions of spectra. These datasets are too large for
manual analysis. Further, comprehensive software and proper computational infrastructure are not
readily available and only low-throughput sharing of either raw or annotated spectra is feasible,
even among members of the same lab. The potentially useful information in MS/MS datasets can
thus remain buried in papers, laboratory notebooks, and private databases, hindering retrieval,
mining, and sharing of data and knowledge. Although there are several NP databases —
Dictionary of Natural Products?, AntiBase® and MarinLit' — that assist in dereplication
(identification of known compounds), these resources are not freely available and do not process
mass spectrometry data. Conversely, mass spectrometry databases including Massbank®, Metlin®,
mzCloud’, and ReSpect® host MS/MS spectra but limit data analyses to several individual spectra
or a few LC-MS files. While Metlin and mzCloud provide a spectrum search function, unfortunately,
their libraries are not freely available.
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Global genomics and proteomics research has been facilitated by the development of
integral resources such as the National Center for Biotechnology Information (NCBI) and UniProt
KnowledgeBase (UniProtKB), which provide robust platforms for data sharing and knowledge
dissemination®'°. Recognizing the need for an analogous community platform to effectively share
and analyze natural products MS data, we present the Global Natural Products Social Molecular
Networking (GNPS, available at gnps.ucsd.edu). GNPS is a data-driven platform for the storage,
analysis, and knowledge dissemination of MS/MS spectra that enables community sharing of raw
spectra, continuous annotation of deposited data, and collaborative curation of reference spectra
(referred to as spectral libraries) and experimental data (organized as datasets).

GNPS provides the ability to analyze a dataset and to compare it to all publically available
data. By building on the large scale computational infrastructure of the University of California San
Diego (UCSD) Center for Computational Mass Spectrometry (CCMS), GNPS provides public
dataset deposition/retrieval through the Mass Spectrometry Interactive Virtual Environment
(MasslVE) data repository. The GNPS analysis infrastructure further enables online
dereplication®'"™"*, automated molecular networking analysis'?', and crowdsourced MS/MS
spectrum curation. Each dataset added to the GNPS repository is automatically reanalyzed in the
next monthly cycle of continuous identification (see Living Data by Continuous Analysis below).
Each of these tens of millions of spectra in GNPS datasets is matched to reference spectral
libraries to annotate molecules and discover putative analogs (Fig. 1a). From January 2014 to
November 2015, GNPS has grown to serve 9,267 users from 100 countries (Fig. 1b), with 42,486
analysis sessions that have processed more than 93 million spectra as molecular networks from a
quarter million LC-MS runs. Searches against a combined catalog of over 221,000 MS/MS
reference library spectra from 18,163 compounds (Supplementary Table 1) are possible, and
GNPS has matched almost one hundred million MS/MS spectra in all public and private search
jobs using an estimated 84,000 compute hours.

GNPS Spectral Libraries

GNPS spectral libraries enable dereplication, variable dereplication (approximate matches
to spectra of related molecules), and identification of spectra in molecular networks. GNPS has
collected available MS/MS spectral libraries relevant to NPs (which also include other metabolites
and molecules), including MassBank®, ReSpect® and NIST# (Table 1, Fig. 2a, and
Supplementary Table 1). Altogether, these third party libraries total 212,230 MS/MS spectra
representing 12,694 unique compounds (Fig. 2b). While this combined collection of reference
spectra, provides a starting point for dereplication, only 1.01% of all spectra public GNPS datasets
has been matched to this collection, indicating insufficient chemical space coverage.

Although the NP community is working to populate this “missing” chemical space, there is no way
to report discoveries of new chemistries in an easily verifiable and reusable format. To begin
addressing this pressing need, GNPS offers both newly-acquired reference spectra (GNPS-
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Collections) as well as a crowdsourced library of community-contributed reference spectra (GNPS-
Community). GNPS-Collections includes NPs and pharmacologically active compounds totaling
6,629 MS/MS spectra of 4,243 compounds (Fig 2b, Supplementary Table 1, Supplementary
Note 1,2, and Supplementary Table 2). The GNPS-Community library has grown to include 2,224
MS/MS spectra of 1,325 compounds from 55 worldwide contributors. While the total number of
MS/MS spectra in GNPS libraries is only 4% of the MS/MS spectra in third party libraries, GNPS
libraries contribute matches of MS/MS spectra at a scale disproportionate to their size (Fig. 2c).
The GNPS libraries account for 29% of the unique compound matches and 59% of the MS/MS
matches in public (88% of publict+private) data. This indicates that the GNPS libraries contain
compounds that are complementary to the chemical space represented in other libraries (Fig.
2c,d). Moreover, in difference from third party libraries, spectra submitted to GNPS-Community
libraries become immediately searchable by the whole community, so such submissions
seamlessly transfer knowledge between laboratories (Fig. 1a) — a process that is akin to the
addition of genome annotations contributed to GenBank”®.

In order to create a robust library, it is important for submissions to be peer-reviewed and, if
necessary, annotations corrected or updated as appropriate. Reference spectra submitted to the
GNPS-Community library are categorized by the estimated reliability of the proposed submissions.
Gold reference spectra must be derived from structurally characterized synthetic or purified
compounds and can only be submitted by approved users. Approval is given to contributors who
have undergone training. Training is initiated by contacting the corresponding authors or CCMS
administrators. Silver reference spectra need to be supported by an associated publication, while
Bronze reference spectra are all remaining putative annotations (Supplementary Table 3). This
type of division of spectra is reminiscent of RefSeq/TPA/GenBank®?® (genomics) and Swiss-
Prot/TrEMBL/UniProt***® (proteomics), allowing for varying tradeoffs between comprehensiveness
and reliability of annotations defined as Gold, Silver, and Bronze (Fig 2e).

To enable refinements or corrections of annotations, GNPS allows for community-driven, iterative
re-annotation of reference MS/MS spectra in a wiki-like fashion, to progressively improve the
library and converge towards consensus annotation of all MS/MS spectra of interest. This is a
process similar to the iterative annotation of the human genome (e.g., see series of papers on
NCBI GenBank®). To date, 563 annotation revisions have been made (Supplementary Table 4),
most of which added metadata to library spectra or refined compound names. The history of each
annotation is retained so that users can discuss the proper annotation and address disagreements
via comment threads.

Dereplication using GNPS

High throughput dereplication of NP MS/MS data is implemented in GNPS by querying newly
acquired MS/MS spectra against all the accumulated reference spectra in GNPS spectral libraries
(Fig. 3a). To date, more than 93 million MS/MS spectra from various instruments (including
Orbitrap, lon Trap, qTof, and FT-ICR) have been searched at GNPS, yielding putative dereplication
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matches of 7.7 million spectra to 15,477 compounds. In the second stage of dereplication, GNPS
goes beyond re-identification by utilizing variable dereplication - a modification-tolerant spectral
library search that is mediated by a spectral alignment algorithm. Variable dereplication enables
the detection of significant matches to either putative analogs of known compounds (e.g., differing
by one modification or substitution of a chemical group) or compounds belonging to the same
general class of molecules (Fig. 3b).Variable dereplication is not available through any other
computational platform. For example, GNPS variable dereplication has detected compounds with
different levels of glycosylation on various substrates. As MS/MS fragmentation preferentially
results in peaks from glycan fragments, it is possible to detect sets of compounds with related
glycans even when the substrates to which the glycans are attached are themselves unrelated®®.
To date, 3,891 putative analogs have been identified in public data using GNPS variable
dereplication (Supplementary Table 5). These 3,891 putative analogs include several unique
molecules that could be user-curated and added to GNPS reference libraries (see Molecular
Explorer below on accessing and annotating putative analogs).

To assess the reliability of the MS/MS matches found by GNPS dereplication, GNPS users can
rate the quality of matches returned by automated GNPS reanalysis (see below). These ratings are
4 star (correct), 3 star (likely correct, e.g. could also be isomers with similar fragmentation
patterns), 2 star (unable to confirm the annotation due to limited information) and 1 star (incorrect)
(Supplementary Table 6). So far, of the 3,608 matches that have been rated, 139 (3.9%) matches
were given 1 or 2 stars (insufficient information (2.9%) or incorrect (1%)) by user ratings. These
percentages are consistent with the false discovery rates estimated using spectral library searches
of benchmark LC-MS datasets with compound standards (Supplementary Note 3 and
Supplementary Fig. 1,2). Furthermore, these 3,608 match ratings were associated with 2,041
library spectra, therefore the average rating of a library spectrum can offer insight into the reliability
of its reference annotation, not unlike Yelp ratings for restaurants. Incorrect matches can arise
through either spurious high-scoring matches to library spectra or incorrect annotations for library
spectra. Of the 2,041 library spectra with match ratings, 72 (3.5%) spectra had average ratings
below 2.5 stars. These percentage ratings were further broken down by spectral library (Fig. 2e).
We found that for GNPS-Collection and GNPS-Community libraries, only 29 out of 1746 (1.7%) of
the rated library spectra had average ratings below 2.5 stars. These ratings demonstrate that the
perceived reliability of GNPS spectral libraries compares favorably with established community
resources such as NIST and Massbank, with 10.5% and 20.1% of the ratings were below 2.5 stars
respectively, and reinforces confidence that the community curation process is, and will continue to
be, a success. Thus, the key advantages of searching using GNPS are that one can run simple or
variable dereplication against all publicly accessible reference spectra, where community-rated
matches can be used to improve the quality of the reference libraries and matching algorithms.
None of these dereplication capabilities are possible with existing published resources.

Molecular Networking
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Molecular networks are visual displays of the chemical space present in mass spectrometry
experiments. GNPS can be used for molecular networking'*?"*"?® a spectral correlation and
visualization approach that can detect sets of spectra from related molecules (so-called spectral
networks?®) even when the spectra themselves are not matched to any known compounds (Fig.
3a). Spectral alignment'>?” detects similar spectra from structurally related molecules, assuming
these molecules fragment in similar ways reflected in their MS/MS patterns (Fig. 3b), analogous to
the detection of related protein or nucleotide sequences by sequence alignment. GNPS is currently
the only public infrastructure that enables molecular networking. The visualization of molecular
networks in GNPS represents each spectrum as a node and spectrum-to-spectrum alignments as
edges (connections), between nodes. Nodes can be supplemented with metadata including
dereplication matches or information that is provided by the user, such as abundance, origin of
product, biochemical activity, hydrophobicity, etc., which can be reflected in a node’s size or color.
It is possible to visualize the map of related molecules as a molecular network?'*-
(Supplementary Fig. 3) both online at GNPS (Fig. 3¢) or exported for analysis in Cytoscape®'.
Molecular networking analyses of 272 public datasets (Fig. 4a) from a diverse range of samples
reveals that on average 35.2% of all unidentified nodes are significantly matched to other spectra
of related molecules within a cosine score of 0.8 (increasing to 44.7% of all nodes in more
exploratory networks with a cosine score of 0.65). This indicates that a large fraction of all
unidentified spectra could be identifiable if their or their neighboring nodes’ reference spectra were
available in the reference spectral libraries.

Living Data by Continuous Analysis

Funding agencies and publishers have called for raw scientific data, including mass spectrometry
data, and analysis methods to be made publically available where possible. Consistent with this
aim, GNPS datasets usually comprise the full set of mass spectrometry files produced during a NP
research project or the full set of spectra analyzed for a peer-reviewed publication
(Supplementary Note 4). While it is potentially advantageous to the community for all data to be
made public, GNPS user data can remain private until users explicitly choose to make it public
(private data is also analyzable and privately sharable, with >93 million spectra in >250,000 private
LC/MS runs already searched using GNPS). GNPS has the largest collection of publicly accessible
natural product and metabolomics MS/MS datasets and is the only infrastructure where public data
sets can be reanalyzed together and compared to each other(Table 1). To date, GNPS has made
272 public GNPS datasets openly available which are comprised of more than 30,000 mass
spectrometry runs with approximately 84 million MS/MS spectra. In common with other public
repositories®?°, GNPS datasets can be downloaded. However, data availability on its own does
not serve to enable data reuse. GNPS is unique among MS repositories by enabling continuous
identification: the periodic and automated re-analysis of all public datasets (Supplementary Note
5,6 and Supplementary Table 7,8). This continuous re-analysis, which incorporates molecular
networking and dereplication tools, implements a ‘virtuous cycle’ as illustrated in Figure 1a.
Because GNPS spectral libraries are constantly growing due to community contributions and
continued generation of reference spectra, the number of matches made by successive re-
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analyses of public datasets has already grown and is expected to continue to grow over time (Fig.
4b). GNPS users are periodically updated with alerts of new search results.

For example, a Streptomyces roseosporeus project (MSV000078577) was deposited April 8, 2014.
At first, only 7 MS/MS spectra were matched. However as of July 14, 2015 36 spectral matches
have been made to GNPS libraries. Overall, the total number of compounds matched to GNPS
datasets increased more than tenfold, while the number of matched MS/MS spectra in GNPS
datasets increased more than twenty-fold in 2015 (Fig. 4b). GNPS users can also subscribe to
specific datasets of interest, rather like ‘following’ people on Twitter. When new matches are made,
changed, or revoked, all subscribers are notified of new information by an email summarizing
changes in identification. From April 2014 to July 2015, 45 updates were initiated by CCMS and
automatically sent to subscribers (Supplementary Fig. 4). Update emails have led to substantially
more views per dataset, compared to non-GNPS datasets (192 proteomics datasets) deposited in
MassIVE. Continuous identification not only keeps a single dataset ‘alive’, it can create
connections between datasets and users over time. Similarities between datasets could form the
basis of a data-mediated social network of users with potentially related research interests despite
seemingly disparate research fields, rather like the “People You May Know” feature on LinkedIn.
On average each GNPS user already has 5 suggested collaborators (Supplementary Fig. 5).

Molecular Explorer

Molecular Explorer is a new feature that can only be implemented on ‘living data’ repositories and
thus exists only in GNPS. Molecular Explorer allows users to find all datasets and putative analogs
that have ever been observed for a given molecule of interest. We anticipate this can guide the
discovery of previously unknown analogs of existing antibiotics. Public NP data contains more than
one hundred unidentified putative analogs of antibiotics such as valinomycin, actinomycin,
etamycin, hormaomycin, stendomycin, daptomycin, erythromycin, napsamycin, clindamycin,
arylomycin, and rifamycin, highlighting a clear potential to generate leads to discover structurally
related antibiotics though the application of GNPS (Supplementary Fig. 6,Supplementary Table
5, and Supplementary Note 7).

To demonstrate this principle we searched for an analog of stenothricin, a broad spectrum
antibiotic produced by S. roseosporus with a unique biological response profile®*®
(Supplementary Fig. 7). MS/MS data from S. roseosporus and Streptomyces sp. DSM5940
extracts (MSV000079204) were analyzed by molecular networking and dereplication in GNPS
(Supplementary Note 8 and Supplementary Fig. 8). Nodes corresponding to the stenothricin®
from S. roseosporus were identified in the molecular network. In addition, a small sub-network
corresponding to spectra from Streptomyces sp. DSM5940 (Fig. 5a) included 14 nodes that were
41 Da smaller than nodes already known to be stenothricin analogs. This sub-network seemed to
indicate that Streptomyces sp. DSM5940 produces a set of 5 abundant analogs of stenothricin
which we named stenothricin-GNPS 1-5 (Supplementary Table 9). To our knowledge, a chemical
entity that is related to stenothricin with a mass shift of -41 Da has not been described in any
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database or in the literature. The most abundant analog, stenothricin-GNPS 2 (m/z 1105) was
purified and the MS/MS spectra manually compared to MS/MS spectra produced from stenothricin
D. This confirmed structural similarity (Fig. 5b,c Supplementary Fig. 9). Differential 2D NMR
(Supplementary Fig. 10-14, Supplementary Table 10, and Supplementary Note 9), Marfey’s
analysis® (Supplementary Fig. 15), and genome mining (Supplementary Fig. 16,17,
Supplementary Table 11, and Supplementary Note 10) all support that the -41 Da mass shift is
due to a lysine to serine substitution.

The structural comparison between stenothricin D and stenothricin-GNPS has identified a
potential role for the lysine residue of stenothricin D in biological function. Stenothricin-GNPS was
subjected to fluorescence microscopy based bacterial cytological profiling***® (Fig. 5d). Unlike
stenothricin D, stenothricin-GNPS is only active against Escherichia coli IptD cells, which are
defective in the essential outer membrane protein LptD (Supplementary Fig. 18 and
Supplementary Note 11). Although both stenothricin D and stenothricin-GNPS increased
membrane permeability of bacterial cells within two hours, stenothricin-GNPS did not have the
membrane solubilization function of stenothricin D (Fig. 5d), indicating that the activity of
stenothricin D is altered by the presence of a lysine residue that is absent from stenothricin-GNPS.
Several published applications of molecular networking and MS/MS based dereplication using
GNPS have been reported while the infrastructure has been under development. Specifically,
GNPS has enabled the discovery of natural products including colibactin*'™°, characterization of
biosynthetic pathways*®*’, understanding of the chemistry of ecological interactions?®***? and
development of metabolomics bioinformatics methods®. The application of GNPS workflows to
such diverse research areas demonstrates the utility of GNPS to broad interdisciplinary science.

Conclusion

GNPS aims to expand our understanding of nature’s chemical diversity by supporting community-
wide identification of compounds that have important roles in ecology, medicine, and
biotechnology. To this end, GNPS delivers a community-centric knowledge space in which NP data
is shared, analyzed and annotated by researchers, groups of scientists, and laboratories
worldwide. The synergy implemented by GNPS creates a cycle of annotation, drawing users back
to curate community data, and a cycle of knowledge, by providing reference spectral libraries,
public datasets, and continuous dereplication. GNPS thus provides the NP community with an
open, free, and community-curated analysis platform for iterative and collaborative annotation of
NP mass spectrometry data.

The living data enabled by the GNPS platform will mediate connections between researchers and
has the potential to transform data networks into social networks. Of 1,272 compound
identifications obtained by continuous identification with the GNPS-Community library, 1,063
(83.6%) were made using reference spectra that were not uploaded by the submitter - in other
words, the vast majority of identifications were enabled by other community members. This reuse
of knowledge and data is inline with other community-wide curation efforts including Wikipedia and
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crowd-sourced dictionaries. Since their initial deposition, 59% of datasets have an increased
number of identifications, with the average dataset more than doubling the number of
identifications since submission (Supplementary Fig. 19). GNPS enables facile sharing of
individual analyses (Supplementary Fig. 20) and uses molecular networks to reveal connections
between datasets from different laboratories and biological sources that would otherwise remain
disconnected. To date, 3,145 analysis jobs have included files shared between GNPS users,
encompassing 548 unique pairs of individuals’ collaborations. GNPS recasts public datasets as
“conversation starters” in a data-mediated social network. Continuous identification means that
GNPS transforms data networks into social networks and continuous updates draws users back to
GNPS for re-analysis, bringing data to life.

While we have described only one simple application of GNPS to identify an analog of
stenothricin, the community has already begun to utilize GNPS to expedite natural product
analysis?#1424%46:50.52 'Fyrther it is expected that the user base of GNPS will expand to the many
fields that utilize MS/MS data, including the study of the metabolome, exposome, the chemistry of
the human habitat, drug discovery, microbiome, immunology, food industry, agricultural industry,
stratification of patients in clinical trials, clinical adsorption/metabolism, and ocean science to name
a few, resulting in different GNPS workflows****4"*153 As previously shown in genomics® and
protein structure analysis® , the models of global collaboration and social cooperation which are
present in GNPS could empower scientific communities to collectively translate big data into
shared, reusable knowledge and profoundly influence the way we explore molecules using mass
spectrometry.
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Figure 1 — GNPS Overview. (a) Representation of interactions between the natural product
community, GNPS spectral libraries, and GNPS datasets. At present 221,083 MS/MS spectra from
18,163 unique compounds are used for the search at GNPS. These include both 3" party libraries
such as MassBank, ReSpect, and NIST, as well as, spectral libraries created for GNPS (GNPS-
Collections) and spectra from the natural product community (GNPS-Community). GNPS spectral
libraries grow through user contributions of new identifications of MS/MS spectra. To date, 55
community members have contributed 8,853 MS/MS spectra from 5,568 unique compounds
(30.5% of the unique compounds available). In addition, on-going curation efforts have already
yielded 563 annotation updates for library spectra. The utility of these libraries is to dereplicate
compounds (recognition previously characterized and studied known compounds), in both public
and private data. This dereplication process is performed on all public datasets and results are
automatically reported, thus enabling users to query for all datasets/organisms/conditions that a
particular molecule occurred. Automatic reanalysis of all public data creates a virtuous cycle where
new contributions to libraries see immediate impact in the form of matches to all public data.
Combined with molecular networking (Fig. 3), this automatic analysis empowers community
members to identify novel analogs that can then be added to GNPS spectral libraries. (b) GNPS as
an analysis platform has grown to serve a global user base including 9,200+ users from 100
countries.

Figure 2 — GNPS spectral libraries. (a) The various computational resources of the
metabolomics and natural products community are categorized into two main categories: i)
Reference collections (red dots) of MS/MS spectral libraries and ii) Data Repositories (blue
dots)designed to publicly share raw mass spectrometry data associated with research projects.
Reference collection resources are contributors and aggregators of reference MS/MS spectra,
some of which also include data analysis tools, e.g. online multi-spectrum MS/MS search
(magnifying glass icon). Several resources have aggregated MS/MS spectra from various
reference collections so that the analysis tools at a respective resource can leverage more of the
community efforts to annotate data (red and blue arrows). GNPS has imported all freely available
reference collections (>221,000 MS/MS spectra) and makes these available for online analysis.
GNPS and several other resources provide both reference MS/MS spectra and data in an open
and free manner to the public (pink caps). (b) Comparison of spectral library sizes of available
libraries (MassBank, ReSpect, and NIST) and GNPS libraries; GNPS-Collections includes newly
acquired spectra from synthetic or purified compounds and GNPS-Community includes all
community-contributed spectra. (c) Searching all public GNPS datasets revealed that
Massbank/ReSpect/NIST libraries matched to 1,217 unique compounds, with GNPS libraries
increasing unique compound matches by 41% (corresponding to 29% of total unique matches) with
an accompanying 4% increase in spectral library size. Overall, GNPS libraries increase the total
number of spectra matched in public datasets by 144% (59% of total public MS/MS matches) and
spectra matches across all GNPS public and private data by 767% (88% of all MS/MS matches).
(d) The distribution of precursor masses in all GNPS public datasets is shown in gray and
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compared to the precursor mass distributions of Massbank, ReSpect, NIST, and GNPS libraries.
Though GNPS libraries have a combined size that is significantly smaller than
MassBank/ReSpect/NIST, GNPS libraries have a stronger emphasis on molecules in the higher
m/z range and thus complement the emphasis on lower precursor mass molecules in existing
libraries. (e) The quality of spectrum matches obtained by searching against the available spectral
libraries is assessed with user ratings (1 to 4 stars see Supplementary Table 6) of continuous
identification results. The high quality of GNPS library spectra is illustrated by user ratings of 2.5+
stars for 98%+ of GNPS library matches, which compares favorably to the 90% mark for NIST
matches, whose high marks demonstrate how important these 3™ party libraries still are to the
GNPS platform. We note that the lower mark for NIST matches does not suggest lower quality
spectra, as it is more likely explained by its higher emphasis on lower precursor mass molecules
with spectra that have fewer peaks and are generally harder to match.

Figure 3 — Molecular Network Creation and Visualization. (a) Molecular networks are
constructed from the alignment of MS/MS spectra to one another. Edges connecting nodes
(MS/MS spectra) are defined by a modified cosine scoring scheme determines the similarity of two
MS/MS spectra with scores ranging from O (totally dissimilar) to 1 (completely identical). MS/MS
spectra are also searched against GNPS Spectral Libraries, seeding putative nodes matches in the
molecular networks. Networks are visualized online in-browser or exported for third party
visualization software such as Cytoscape®'. (b) An example alignment between three MS/MS
spectra of compounds with structural modifications that are captured by modification tolerant
spectral matching utilized in variable dereplication and molecular networking. (c) In-browser
molecular network visualization enables users to interactively explore molecular networks without
requiring any external software. To date, over 11,000 molecular networks have been analyzed
using this feature. Within this interface, (i) users are able to define cohorts of input data and
correspondingly, nodes within the network are represented as pie charts to visualize spectral count
differences for each molecule across cohorts. (ii) Node labels indicate matches made to GNPS
spectral libraries, with additional information displayed with mouseovers. These matches provide
users a starting point to annotate unidentified MS/MS spectra within the network. (iii) To facilitate
identification of unknowns, users can display MS/MS spectra in the right panels by clicking on the
nodes in the network, giving direct interactive access to the underlying MS/MS peak data.
Furthermore, alignments between spectra are visualized between spectra in the top right and
bottom right panels in order to gain insight as to what underlying characteristics of the molecule
could elicit fragmentation perturbations.

Figure 4 — “Living data” in GNPS through crowdsourcing of molecular annotations. (a) A
global snapshot of the state of MS/MS matching of public natural product datasets available at
GNPS using molecular networking and library search tools. Identified molecules (1.9% of the data)
are MS/MS spectrum matches to library spectra with a cosine greater than 0.7. Putative Analog
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Molecules (another 1.9% of the data) are MS/MS spectra that are not identified by library search
but rather are immediate neighbors of identified MS/MS spectra in molecular networks. ldentified
Networks (9.9% of the data) are connected components within a molecular network that have at
least one spectrum match to library spectra. Unidentified Networks (25.2% of the data) are
molecular networks where none of the spectra match to library spectra; these networks potentially
represent compound classes that have not yet been characterized. Exploratory Networks (an
additional 20.1% of the data) are unidentified connected components in molecular networks with
more relaxed parameters (Supplementary Table 12). Thus, 55.3% of the MS/MS spectra at least
have one related MS/MS spectrum in spectral networks, with 44.7% having none. In this 44.7% of
the data, each MS/MS spectrum has been observed in two separate instances and should not
constitute noise. Altogether, this analysis indicates that the vast amount chemical space captured
by mass spectrometry remains unexplored. (b) In the past year, there has been significant growth
in the GNPS spectral libraries, driving growth in the match rates of all public data. The number of
unique compounds matched in the public data has increased 10x; the number of total spectra
matched has increased 22x; and the average match rate has increased 3x. It is expected that
identification rates will continue to grow with further contributions from the community to the GNPS-
Community spectral library.

Figure 5 - GNPS enabled discovery of a new chemical entity. a) The stenothricin molecular
family identified during analysis of a molecular network between chemical extracts of S.
roseosporus NRRL 15998 (Green) and Streptomyces sp. DSM5940 (Blue). This analysis indicates
that Streptomyces sp. DSM5940 produces a structurally similar compound to stenothricin with a -
41 Da m/z difference. An enlarged version of the network can be found in the supporting
information. b) Based on preliminary structural analysis, stenothricin-GNPS, the -41 Da new
chemical entity, is proposed to be due to a Lys to Ser substitution. c) Comparison of the MS/MS of
stenothricin D with its -41 Da analog stenothricin-GNPS 2. d) Although structurally related,
stenothricin and stenothricin-GNPS have different effects on E. coli as visualized using
fluorescence microscopy. Red is the membrane stain FM4-64, blue is the membrane permeable
DNA stain DAPI, green is the membrane impermeable DNA stain SYTOX green. SYTOX green
only stains DNA when the cell membrane is damaged. The scale bar represents 2 ym.
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“Europe reference spectral library is access at a time
Europe under construction to include o (J,E)
draft structures.
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North America orary w ) access at a time (G,J,NA,R,H)
s distribution database.
Public reference library for plant Yes, open Can search single
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Public reference library for Yes, open Can search single
HMDB rary » OP spectrum 17202168
human metabolites. access (H)
Reference library for
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T but the library is commercial and . of files up to 25Gb 16404815
online/Metlin . . . w/MS2, 23 total) available
—_ not available for public (Mt)
redistribution.
Reference libraries for
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available for redistribution.
A metabolomics search engine
mzCloud and reference library. The Yes, not freely
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Table 1 - Metabolomics and Natural Products MS/MS Computational Resources Overview —
The various computational resources available to the MS/MS-based metabolomics and natural
product communities. For each resource a short summary is provided along with the URL and
PubMed identifier for the associated publication. High level core functionality is also listed for each
resource. Data repository — denotes whether a resource is designed to publicly share projects data
with the community or between different research groups. Total number of MS/MS datasets and

total datasets are shown in parenthesis. Reference collection of MS/MS spectra — indicates
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whether resources contribute new MS/MS reference spectra to spectral libraries (rather than
redistributing them); mode of access to download the MS/MS reference spectra is clarified. Online
analysis utilizing MS/MS reference spectra available at each resource, with emphasis on batch
capabilities; the MS/MS spectral libraries available for searches at each resource are highlighted
with the following notation: GNPS libraries (G), MassBank JP libraries (J), MassBank EU libraries
(E), MassBank of North America libraries (NA), HMDB libraries (H), ReSpect libraries (R), NIST
libraries (N), Metlin libraries (Mt), mzCloud libraries (Mz).
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Methods
Spectral Library Searching

Input MS/MS spectra (i.e., query spectra) are considered matched to library spectra if they meet
the following criteria: same precursor charge state, precursor m/z is within a user defined
Thompson tolerance, share a minimum number of matched peaks, and exceed a user-defined
minimum spectral match score. Exact spectral matches between library and query spectra are
scored with a normalized dot product®®>’. The matching of peaks between two spectra is
formulated as a maximum bipartite matching problem'® where peaks from the library and query
spectra are represented as nodes with edges connecting library and query peaks. Edges connect
peaks that are within a user defined fragment mass tolerance. The bipartite match of library to
query peaks that maximizes the normalized dot product is selected. The highest scoring library
match for each query spectrum is reported. Estimated false discovery rates of the exact spectral
library search are shown in Supplementary Note 3. Parameters of the search can be found in
Supplementary Table 13.

Variable Dereplication

Variable dereplication utilizes a modification tolerant spectral library search. Similar to exact
spectral matches, except additional edges are added to the bipartite matching between library and
query peaks which differ by a 6 (as determined by their precursor mass difference 0 ) +/- the user
defined fragment mass tolerance.

Molecular Network Construction

Molecular networks can be constructed from any collection of MS/MS spectra. First, all MS/MS
spectra are clustered with MSCluster®® such that MS/MS spectra found to be identical are merged
into a consensus spectrum. Consensus spectra are then matched against each other using the
modification tolerant spectral matching scheme'®. All spectrum-to-spectrum matches that exceed a
user defined minimum match score are retained. MS/MS spectra are then represented as nodes in
a graph and significant matches between spectra are represented as edges. Further, edges in the
graph are only retained if the two nodes, A and B, connected by a given edge satisfy the following
properties: i) B must be in the top K highest scoring neighbors of A and ii) A must be in the top K
highest scoring neighbors of B. All other edges are removed.

GNPS Collections — Sample Preparation
The NIH Prestwick Phytochemical Library, NIH Natural Product Library, and NIH Small Molecule

Pharmacologically Active Library compounds were received as stock solutions of pure compounds
(10 mM in DMSO). They were reformatted by 1 yL of each compound into 89 yL of methanol into
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96 well plates with 11 distinct compounds in each well. They were further diluted 100-fold for a final
1 uM concentration.

The NIH Clinical Collections and FDA Library part 2 were received as stock solutions of pure
compounds (10 mM in DMSO). They were diluted to final concentration of 1 uM in 50:50
methanol:water and formatted onto 96 well plates with 10 compounds per well.

GNPS Collections — LC MS/MS Acquisition

LC-MS/MS acquisition for all in house generated libraries was performed using a Bruker Daltonics
Maxis qTOF mass spectrometer equipped with a standard electrospray ionization source (ESI).
The mass spectrometer was tuned by infusion of Tuning Mix ES - TOF (Agilent Technologies) at a
3 uL/min flow rate. For accurate mass measurements, lock mass internal calibration used a wick
saturated with hexakis (1H,1H,3H - tetrafluoropropoxy) phosphazene ions (Synquest Laboratories,
m/z 922.0098) located within the source. Samples were introduced by a Thermo Scientific
UltraMate 3000 Dionex UPLC using a 20 L injection volume. A Phenomenex Kinetex 2.6 ym C18
column (2.1 mm x 50 mm) was used. Compounds from NIH Prestwick Phytochemical Library, NIH
Natural Product Library, and NIH Small Molecule Pharmacologically Active Library were separated
using a seven minute linear water - acetonitrile gradient (from 98:2 to 2:98 water:acetonitrile)
containing 0.1% formic acid. Compounds from NIH Clinical Collections and FDA Library part 2
Library employed a step gradient for chromatographic separation [5% solvent B (2:98
water:acetonitrile) containing 0.1% formic acid for 1.5 min, a step gradient of 5% B-50% B in 0.5
min, held at 50% B for 2 min, a second step of 50% B-100% B in 6 min, held at 100% B for 0.5
min, 100%-5 % B in 0.5 min and kept at 5% B for 0.5 min]. The flow rate was 0.5 mL/min. The
mass spectrometer was operated in data dependent positive ion mode; automatically switching
between full scan MS and MS/MS acquisitions. Full scan MS spectra (m/z 50 — 1500) were
acquired in the TOF and the top ten most intense ions in a particular scan were fragmented using
collision induced dissociation (CID) utilizing stepping.

GNPS Collections — Spectral Library Creation

All raw data were centroided and converted to 32-bit uncompressed mzXML file using Bruker Data
Analysis. A script was developed to select all possible MS/MS spectra in each LC-MS/MS run that
could correspond to a compound present in the sample. For each compound, we calculated the
theoretical mass M from its chemical composition and searched for the M+H, M+2H, M+K, and
M+Na adducts. Putative identifications included all MS/MS spectra whose precursor m/z had a
ppm error <50 compared to the theoretical mass of each possible precursor m/z; all tandem
MS/MS spectra with an MS1 precursor intensity of <1E4 were ignored. All candidate identifications
were manually inspected and the most abundant representative spectrum for each compound was
added to the corresponding library at the gold or bronze level based upon an expert evaluation of
the spectrum quality. The best MS/MS spectrum per compound as added to the GNPS-Collections
library without filtering or alteration from the mzXML files.
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GNPS-Community Contributed Spectral Library Processing and Control

User contributed library spectra are not filtered or altered in any way from the user submission.
MS/MS spectra are extracted from the submitted data and are made available in the GNPS
libraries. The list and description of metadata fields can be found in GNPS online documentation.
To preserve provenance information, the full input file is also retained and made available for
download for each library spectrum (e.g. link). Different levels of reference spectra submissions are
enforced with access restrictions on a per user basis. The description of each of the quality levels:
Gold, Silver and Bronze and be found in Supplementary Table 3. While any MS/MS spectrum can
be Bronze quality level in the GNPS libraries, Silver contributions require peer-reviewed publication
of the MS/MS spectra, and Gold contributions require MS/MS spectra to be of synthetics or purified
compounds with complete structural characterization.

Materials and Strains

Streptomyces sp. DSM5940, obtained from Eberhard-Karls-Universitat Tubingen, Germany, was
originally isolated from a soil sample collected from the Andaman Islands, India. Streptomyces
roseosporus NRRL 15998 was acquired from the Broad Institute, MIT/Harvard, MA, USA, whose
parent strain S. roseosporus NRRL 11379 was isolated from soil from Mount Ararat in Turkey. All
media components were purchased from Sigma-Aldrich. Organic solvents were purchased from JT
Baker at the highest purity.

Streptomyces sp. DSM5940 and S. roseosporus Metabolite Extraction

S. roseosporus and Streptomyces. sp. DSM5940 were inoculated by 4 parallel streaks onto
individual ISP2 agar plates™. After incubating for 10 d at 28 °C, the agar was sliced into small
pieces and put into a 50 mL centrifuge tube containing 1:1 water:n-butanol and shaken at 225 rpm
for 12 h. The n-butanol layer was collected via transfer pipette, centrifuged, and dried with in
vacuo.

Streptomyces sp. DSM5940 and S. roseosporus MS/MS Acquisition

MS/MS spectra for crude extracts of S. roseosporus and Streptomyces sp. DSM were collected as
previously described”’. Briefly, MS/MS spectra were collected using direct infusion using an Advion
nanomate-electrospray robot and capillary liquid chromatography using a manually pulled 10 cm
silica capillary packed with C18 reverse phase resin. Samples were introduced for capillary LC
using a Surveyor system using a 10mL injection (10 ng/uL in 10% ACN). Metabolites were
separated using a time variant gradient [(minutes, % of solvent B): (20, 5), (30, 60), (75, 95) where
solvent A is water with 0.1% AcOH and B is ACN with 0.1% AcOH] using a 200mL flowrate (1% to
instrument source with 1.8kV source voltage). Both methods utilized detection by a Thermo
Finnigan LTQ/FT-ICR mass spectrometer. The mass spectrometer was operated in data
dependent positive ion mode; automatically switching between full scan high resolution FT MS and
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low resolution LTQ MS/MS acquisitions. Full scan MS spectra were acquired in the FT and the top
six most intense ions in a particular scan were fragmented using collision induced dissociation
(CID) at a constant collision energy of 35eV, an activation Q of 0.25, and an activation time of 50 to
80 ms. RAW files were converted to .mzXML using ReAdW.

Molecular Networking Parameters

A molecular network was created at GNPS data from the S. roseosporus and Streptomyces sp.
DSM5940 MS/MS data. The specific job is browse-able online (link). Full parameters can be found
in Supplementary Table 14.

Stenothricin-GNPS extraction and purification

400 ISP2 agar plates were inoculated with spore suspension of Streptomyces sp. DSM5940 strain
and incubated for 10 d at 30 °C. The agar was sliced into small pieces and extracted twice with 1:1
water:n-butanol for 12 h at 28 °C and 225 rpm in two 2.8 L Fernbach flasks. Agar pieces were
removed by filtration. The resultant filtrate was centrifuged and the n-butanol layer was collected,
dried and resuspended in 1 mL methanol. The extract was fractionated using a Sephadex LH20
column utilizing a methanol mobile phase at a flow rate of 0.5 mL/min. Each fraction was analyzed
by dried droplet MALDI-TOF MS for the m/z values corresponding to stenothricin-GNPS. For this
analysis, 1 mL of each fraction was mixed 1:1 with a saturated solution of Universal MALDI matrix
(Sigma-Aldrich) in 78 % acetonitrile containing 0.1 % TFA and spotted on a Bruker MSP 96 anchor
plate. The sample was dried and analyzed by either a Microflex or Autoflex MALDI-TOF MS
(Bruker Daltonics). Mass spectra were obtained using the FlexControl software and a single spot
acquisition of 80 shots. MALDI-TOF MS data was analyzed by FlexAnalysis software. Fractions
containing m/z values putatively assigned to stenothricin-GNPS were combined and further purified
by a two-step reversed-phase HPLC procedure (Solvent A: water with 0.1% TFA; Solvent B: ACN
with 0.1% TFA). Initial HPLC analysis (SUPELCO C18, 5 um, 100 A, 250 x 10.0 mm) utilized a
linear gradient from 50% to 75% solvent B in 35 min at flow rate 2 mL/min. Fractions containing
target peptide m/z values as detected by MALDI-TOF MS were collected, combined, and
evaporated. Subsequent HPLC analysis (Thermo, Syncronis Phenyl HPLC, 5 um, 150 x 4.6 mm)
used an isocratic elution with 35% solvent B. Purified stenothricin-GNPS 2 (m/z 1091) and 3 (m/z
1105) were lyophilized and stored at -80 °C.

Stenothricin-GNPS NMR

50 ug stenothricin-GNPS 2 was dissolved in 30 yL of CD3;0D for NMR acquisition. 'H-NMR spectra
were recorded on Bruker Avance Ill 600 MHz NMR with 1.7 mm Micro-CryoProbe at 298 K, with
standard pulse sequences provided by Bruker. The NMR spectrum was overlayed with the NMR

spectrum from stenothricin D and analyzed using the MestReNova software®’.

Genome sequencing and de novo assembly Streptomyces sp. DSM5940
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Streptomyces sp. DSM5940 genome was subjected to partial genome sequencing by lon Torrent
and lllumina MiSeq with paired end sequencing. The resulting contigs were assembled by
Geneious 5.1.1 using the S. roseosporus 15998 genome sequence as template. Sequences have
been deposited in NCBI with accession number assignment pending.

Sequence definition of the gene cluster in Streptomyces sp. DSM5940

To identify the Strenothricin-GNPS gene cluster, the Streptomyces sp. DSM5940 genome was
annotated using Artemis®®®'. Non-ribosomal peptide synthesis (NRPS) biosynthetic gene clusters
were manually assigned using the Artemis Comparison Tool (an “all-against-all” BLAST (NCBI)
comparison of proteins within the database)®. The adenylation domains of each NRPS gene
cluster were further assessed using NRPSpredictor2®**. The predicted 10 amino acid codes for
each A-domain within the NRPS gene clusters was manually compared to those predicted for the
putative stenothricin gene cluster from S. roseosporus®. The gene cluster with highest A-domain
similarity was putatively identified as the stenothricin-GNPS gene cluster. Full sequence alignment
of both the stenothicin-GNPS and stenothricin using ClustalW2 confirmed high sequence identity
and similarity®®.

Phylogenetic Analysis of C-domains

To determine whether the stenothricin and stenothricin-GNPS gene clusters code for similar amino
acid stereochemistry, the condensation domain (C-domain) sequences in the putative stenothricin-
GNPS and stenothricin gene clusters were aligned with a subset of C-domain sequences
representing the six C-domain  families (heterocyclization,  epimerization,  dual
condensation/epimerization (dual), condensation of L amino acids to L amino acids (L to L), and
condensation of D amino acids to L amino acids (D to L), and starter) using ClustalWw2%.

Fluorescence Microscopy

A pre-culture of E. coli IptD cells (NR698) was grown to saturation, then diluted 1:100 into 20 mL
LB. Flasks were incubated at 30°C until an ODgyo of 0.2 was reached. Cultures were then mixed
with the appropriate amount of compound. Compounds were used at the following final
concentrations: 1% MeOH, 0.5% DMSO, 20 ug/mL stenothricin D, 40 pyg/mL stenothricin-GNPS
2/3. 15 yL of treated cells were transferred into a 1.7 mL tube and incubated at 30°C in a roller.
Samples were collected for imaging at 2 hours. 6 pL of cells were added to 1.5 uL of dye mix (30
pg/mL FM 4-64, 2.5 yM SYTOX green and 1.2 pg/mL DAPI) prepared in 1X T-base, and
immobilized on an agarose pad (20% LB, 1.2% agarose) prior to microscopy. All microscopy was
performed on an Applied Precision Spectris microscope as previous described® Images were
deconvolved using softWoRx V 5.5.1 and the medial focal plane shown. The SYTOX green images
were normalized within Figure 5d based on intensity and exposure length relative to the treatment
with the highest fluorescence intensity.
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Code availability

Source code and license is available at the CCMS software tools webpage.
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