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ABSTRACT  

We report a novel approach for patterning thermoresponsive hydrogels based on N,N-

diethylacrylamide (DEAAm) and bifunctional Jeffamine ED-600 by dip-pen nanolithography 

(DPN).  The direct writing of micron-sized thermoresponsive polymer spots was achieved with 

efficient control over feature size.  A Jeffamine-based ink prepared through the combination of 

organic polymers, such as DEAAm, in an inorganic silica network was used to print 

thermosensitive arrays on a thiol-silanised silicon oxide substrate.  The use of a Jeffamine 

hydrogel, acting as a carrier matrix, allowed a reduction in the evaporation of ink molecules with 

high volatility, such as DEAAm, and facilitated the transfer of ink from tip to substrate.  The 

thermoresponsive behaviour of polymer arrays which swell/de-swell in aqueous solution in 

response to a change in temperature was successfully characterised by atomic force microscopy 

(AFM) and Raman spectroscopy: a thermally-induced change in height and hydration state was 

observed, respectively.  Finally, we demonstrate that cells can adhere to and interact with these 

dynamic features and exhibit a change in behaviour when cultured on the substrates above and 

below the transition temperature of the Jeffamine/DEAAm thermoresponsive hydrogels.  This 
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demonstrates the potential of these micropatterned hydrogels to act as a controllable surface for 

cell growth. 

 

INTRODUCTION  

Hydrogels are three-dimensional polymer networks which exhibit a high level of 

biocompatibility due to their ability to trap water and biological fluids.1,2  Some hydrogels undergo 

changes in swelling or network structure in response to external stimuli such as  pH,3 

temperature,4,5 light,6,7 ionic strength3 and electric field.8  The development of such materials has 

recently received considerable interest due to the potential applications in a vast range of areas.9,10  

Of the possible stimuli, temperature is the most widely studied due to the prospective use of 

thermoresponsive polymers in biological systems, as well as the relatively simple control of 

temperature as an external stimulus.11,12 

Thermoresponsive polymers in aqueous solution undergo a phase transition at a certain 

temperature, which causes a change in the solubility of linear polymer chains in water.  At this 

phase transition temperature, a given polymer–water mixture passes from a one-phase system to a 

two-phase system or vice versa.  Polymers which become soluble upon heating have an upper 

critical solution temperature (UCST), while systems whose solubility in water increases upon 

cooling have a lower critical solution temperature (LCST).13  The majority of thermoresponsive 

systems reported in the literature exhibit a LCST in aqueous solution, such as poly(N-

isopropylacrylamide), polysaccharides, and block copolymers of poly(ethyleneoxide) (PEO) and 

poly(propyleneoxide) (PPO).14  The LCST-type transition takes place as a result of a local 

structural transition which involves water molecules surrounding macromolecular chains in 
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solution: water-polymer interactions are thermodynamically favoured below the LCST and by 

increasing the temperature above the LCST, the hydrophobic backbone and non-polar groups of 

the polymer tend to interact and aggregate.  Such changes in the hydration state of the polymer 

chains are attributed both to the breakdown of polymer-water hydrogen bonding interactions, and 

to the “hydrophobic effect” which causes a local ordered structure like a hydrated shell between 

the molecules of water surrounding the hydrophobic groups of the polymer.15,16  At the molecular 

level, this phase transition also leads to a volume transition from a coiled state of the polymer to 

the collapsed or globular state, in which hydrophobic interactions can occur between the polymer 

molecules.  Accordingly, polymer chains which are completely soluble in water at temperatures 

below the LCST undergo a precipitation in aqueous solutions as the temperature is increased 

beyond the LCST.  In the case of crosslinked hydrogels, in water at temperatures below the LCST, 

they cannot be dissolved due to the covalent bonds between polymer chains but they will be 

hydrophilic and therefore “swollen”; whereas when the temperature goes above the LCST, the 

hydrogel becomes hydrophobic and will thus “de-swell”.  By comparison with the corresponding 

linear polymer molecules, the temperature sensitivity of these gels similarly occurs due to a 

delicate balance of specific interactions between the water molecules and the monomer units and 

results in changes of enthalpy and entropy of mixing according to the Flory-Huggins theory.17  

These controlled conformational and thermodynamic changes can be exploited for their potential 

use in a variety of applications such as cell culture,18-22 thermally controlled drug delivery,23-25 

protein separation,26-28 microactuators29-31 and microfluidic devices.32,33  Many of these 

applications involve the formation of a switchable substrate, either by coating the entire surface 

with a layer of thermoresponsive polymer, or by producing polymer patterns which allow spatially 

controlled thermoresponsive features.  
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Previous patterns of thermoresponsive polymers on a surface involve the formation of polymer 

films or polymer brushes created by, for example, electron beam lithography,34 microcontact 

printing35 or nanografting.36  These approaches involve patterning of an initiator followed by atom 

transfer radical polymerisation (ATRP) for the production of polymers.  However, direct printing 

of polymer patterns onto a surface allows further control of feature size and shape and can provide 

a switchable substrate with highly tuneable topography.37   

Dip-pen nanolithography (DPN) is a direct-write technique which uses an atomic force 

microscope (AFM) tip to “write” molecular “inks” onto a surface with extremely high accuracy 

and resolution.38  The patterning of polymers and hydrogels by DPN has been an area of significant 

interest over recent years and many useful applications have been investigated.39-42  Lee et. al. used 

thermal dip-pen nanolithography (tDPN) to produce nanostructures of a thermoresponsive 

polymer, poly(N-isopropylacrylamide) (PNIPAAm), for protein adsorption.37 They printed lines 

of PNIPAAm and used adhesion force measurements to characterise the thermoresponse.  Whilst 

they observed the expected hydrophilic-hydrophobic transition, they observed no change in 

topography which could potentially limit the use of their substrates for certain applications.   

The work presented in this paper demonstrates the patterning of thermoresponsive polymers 

using DPN with significant control over feature size and shape.  AFM and Raman spectroscopy 

have been utilised for the morphological and chemical characterisation of the printed arrays and 

to confirm the thermoresponsive behaviour of the micron-sized features when attached to the thiol-

silanised silicon oxide surfaces.  To demonstrate the potential use of these patterned substrates in 

biological applications, cells were cultured on the surfaces in order to investigate if they would 

respond to the polymer features.  The cells adhered to and interacted with the polymer microspots 

and a change in behaviour was observed across the transition temperature.   
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EXPERIMENTAL SECTION  

Reagents and Materials 

Acetone (≥99.5%), ethanol (≥99.8%), isopropyl alcohol (≥99.7%), glacial acetic acid (≥99.7%), 

3-glycidoxypropyltrimethoxysilane (GPTMS) (≥98%), O,O‘-Bis(2-aminopropyl) polypropylene 

glycol-block-polyethylene glycol-block-polypropylene glycol (Jeffamine ED-600), poly(ethylene 

glycol) dimethacrylate, average Mn=550 (PEGDMA), 1-hydroxycyclohexyl phenyl ketone 

(photoinitiator) (99%), 3-(trimethoxysilyl)propyl methacrylate (TMSPM) (98%) and (3-

mercaptopropyl)trimethoxysilane (MPTMS) (95%) were purchased from Sigma-Aldrich (Dorset, 

UK.  N,N-diethylacrylamide (DEAAm) (>98%) was purchased from Tokyo Chemical Industry 

UK Ltd (Oxford, UK).  All the chemicals were used as received except Jeffamine ED-600 which 

was dried under dynamic vacuum for 2 h before use to remove humidity.  Silicon dioxide substrates 

with addressable registration marks to easily identify locations, 1D M-type pen arrays with 12 tips 

and a pitch of 66 たm, and multi-channel inkwell arrays were provided by Nanoink Inc. (Skokie, 

IL, USA). 

 

Fabrication of thermoresponsive polymer arrays 

Silicon dioxide substrates were cleaned by sonication in acetone, isopropanol and water, for 10 

min in each solvent, and blown dry with nitrogen after each sonication bath.  Substrates were then 

plasma-cleaned for 40 s at 50 % power, 72 cm3 / min in oxygen.  To silanise surfaces with MPTMS, 

the cleaned substrates were placed in an Erlenmeyer flask with 2 mL of MPTMS in a nitrogen 

atmosphere for 30 minutes and then placed in an oven at 100 °C overnight before printing.  For 

treating substrates with TMSPM,43 50 たL of TMSPM was diluted in 10 mL of ethanol and then 
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0.3 mL of dilute acetic acid (1:10 glacial acetic acid:water) was added just before use.  This silane 

solution was poured onto the surfaces and allowed to react for 3 min.  The excess was poured off 

and then substrates were rinsed with ethanol to remove the residual reagent and also dried under a 

nitrogen flux. 

DPN experiments were performed using a Nanoink NLP 2000 nanolithography instrument.  1D 

M-type pen arrays were plasma cleaned for 40 s at 50% power (72 cm3 / minute) prior to use to 

remove any organic contamination.  All the printing experiments were performed at 22-23 °C and 

in a relative humidity range of 25-35 %.  DEAAm ink was prepared by mixing 500 mg of DEAAm, 

0.5% wt of PEGDMA w.r.t. DEAAm (2.51 mg) and 3 % wt of photoinitiator w.r.t. DEAAm (15.46 

mg) in a closed vial protected from light to minimise the activation of photoinitiator before 

printing.  0.3 たL of this mixture was then added to each inkwell and the tips were dipped in a 12-

channel microfluidic inkwell.  Once printed arrays were created, the substrates were exposed to a 

UV lamp for 10 min.  For Jeffamine ink, stoichiometric amounts (2:1) of GPTMS (442.4 mg) and 

Jeffamine ED-600 (494.2 mg) were mixed in a closed glass vial under magnetic stirring for at least 

2 h.  100 たL of distilled water was then added to the mixture and left under stirring for 10 more 

minutes.  The printed Jeffamine arrays were left in a closed box overnight and then cured at 40°C 

for 1 h.  The Jeffamine/DEAAm ink (mixed system) was made up by mixing the Jeffamine ink, 

prepared as described above, and the DEAAm ink, including also 1 % wt (5.05 mg) of TMSPM 

w.r.t. DEAAm, in a 1:1 ratio and then directly used for printing.  These arrays were UV-cured for 

10 min, left in a closed box overnight and eventually cured at 40 °C for 1 h. 

Characterisation and instrumentation 

The swelling behaviour of bulk thermoresponsive materials was analysed in duplicate at 

temperatures ranging from room temperature (20 °C) to 40 °C. Cured polymer samples were firstly 
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placed in a lidded Petri dish filled with distilled water to swell at ambient temperature.  After 

swelling for 72 h to reach equilibrium swelling, the hydrogels were blotted free of excess water 

with paper filter and their weights were measured using a scale. The samples were then moved in 

a beaker full of distilled water at 40 °C for 72 h. The weights at 40 °C were measured as previously 

described and the swelling ratio was calculated according the following formula: 

  

where W20°C is the weight of the swollen samples at 20 °C and W40°C at 40 °C. The above process 

was repeated for a second time in order to verify the reversibility of swelling/shrinking 

characteristics.  

AFM topography analysis in air was carried out on a DPN 5000TM nanofabrication system 

(Nanoink Inc., Skokie, IL, USA), in close-contact mode using ACT probes purchased from 

AppNano (nominal value of spring constant = 40 N/m). 

The printed spots were analysed by a Witec Alpha300 R microscope (Ulm, Germany) provided 

with a 633 nm laser and a 100x objective.  The grating was 600 g mm-1 and coupled to a 

thermoelectrically cooled charge-coupled device (CCD).  Spectra were collected using 5 x 10 s 

accumulations. 

AFM images in liquid were obtained by scanning the surface using a PeakForce QNM Scanning 

Probe Microscope (Digital Instruments, Santa Barbara, CA, USA).  The AFM measurements were 

obtained using ScanAsyst-Fluid probes with a spring constant of 0.67 N/m (nominal value of tip 

radius = 2 nm).  

Cell Culture 

LE2 cells (a line of mouse lung capillary endothelia from B10D2 congenic mice, cd 133+)44 

were cultured in Hams F10 media (Sigma Aldrich, UK) supplemented with 3% FBS (Sigma 

20 40Swelling ratio (SR) C CW W 
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Aldrich, UK), 2% antibiotic mix (60% v/v 200 mM L-glutamine (Sigma Aldrich, UK), 35% v/v 

penicillin/streptomycin (Sigma Aldrich, UK), 5% v/v fungizone (Invitrogen, UK)), 5 mL of 7.5% 

sodium bicarbonate (Sigma Aldrich, UK) and 10 mL ITS (100x, Life Technologies).  Hams was 

chosen as it is CO2 independent and thus can be simply cultured in different temperature 

environments. 

 

Immunocytochemistry 

After 4 days of culture, cells were fixed (10 mL 37% formaldehyde, 2 g sucrose in 90 mL PBS 

solution) for 15 minutes.  Permeabilising buffer (10.3 g sucrose, 0.292 g NaCl, 0.06 g MgCl2, 

0.476 g HEPES, 0.5 mL Triton X, in 100 mL of H2O, at pH 7.2) was then added for 5 mins at 4°C.  

To block non-specific binding, samples were next incubated in 1% BSA/PBS for 5 mins at 37°C. 

H-vin 1 primary antibody (1:200, monoclonal antihuman raised in mouse (IgG1) Sigma Aldrich 

UK, in 1% BSA/PBS) was added for 1 hour along with rhodamine-conjugated phalloidin (1:100, 

Sigma Aldrich UK).  Substrates were then washed three times in 0.5% Tween 20/PBS (5 minutes 

each).  Secondary, biotin-conjugated antibody (1:50 in 1% BSA/PBS, antimouse (IgG) raised in 

horse, Vector laboratories UK) was added for 1 hour, followed by substrate washing as described 

above.  FITC-conjugated streptavidin was added (1:50 in 1% BSA/PBS, Vector Laboratories UK) 

for 2 hours before samples were given a final wash.  Samples were mounted using mounting 

medium for fluorescence, with DAPI counterstain (Vector Laboratories), and viewed by 

fluorescent microscopy (Zeiss Axiophot).  

 

In-cell Western  
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Cells were fixed and permeabilised as per immunocytochemistry. Afterwards, non-specific 

binding sites were blocked with PBS/1% milk protein for 1.5 hours at room temperature with 

gentle agitation on a plate shaker.  Samples were incubated in PBS/1% milk protein containing 

anti-KLF2 antibody H60 (sc-28675, Santa Cruz Biotechnology, CA, USA) primary antibody 

(1:50) and GAPDH primary antibody (1:10000, mouse monoclonal antihuman, Sigma Aldrich, 

UK) for 2 hours at 37°C.  Samples were washed five times in 0.1% PBS/Tween 20 with gentle 

agitation (5 minutes each).  Samples were then incubated for 1 hour with gentle agitation in 

secondary antibodies (donkey anti mouse IR680RD and donkey anti rabbit IR800CW, 1:500, Li-

cor UK) diluted in PBS/1% milk protein containing 0.2% Tween 20.  The samples were then 

washed five times in 0.1% PBS/Tween, as previously described.  Wells were dried and analysed 

using the Licor Odyssey Imaging System.  Readings at 700 nm and 800 nm were taken and 

quantified in excel. 

 

RESULTS AND DISCUSSION 

Thermoresponsive ink properties and fabrication of polymer arrays 

The thermoresponsive nature of polymers can arise from various structural properties such as 

the presence of a thermosensitive polymer backbone45,46 or by thermosensitive units linked on the 

polymer chains.47,48  Among these systems exhibiting thermoresponsive behaviour, N-substituted 

poly(acrylamides) are one of the most extensively investigated polymers, especially due to their 

known biocompatibility.49  In addition, N-alkyl acrylamides can be copolymerised with other 

stimuli-responsive monomers to combine characteristics of different monomeric units in a single 

system.  Recently, a range of commercially available amino-terminated copolymers of ethylene 
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oxide and propylene oxide, known as Jeffamines, have also been shown to possess 

thermoresponsive properties.50,51 

Figure 1. (a) Chemical reaction for the ink with N,N-diethylacrylamide (DEAAm) as 

thermoresponsive component, (b) Jeffamine ED-600 and (c) for the mixed system using DEAAm 

and the Jeffamine-based gel as host matrix. 
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The development of a suitable thermoresponsive ink for DPN printing was one of the most 

crucial phases in our work.  We investigated different thermoresponsive inks and compared their 

ink transport and writing capabilities.  We first studied a UV-curable ink mainly composed of 

N,N-diethylacrylamide (DEAAm) acting as a thermoresponsive monomer with a small percentage 

of crosslinker and photoinitiator (Figure 1 (a)).  To covalently bond the thermoresponsive 

structures patterned by DPN to silicon oxide substrates, two different silanes, one with a 

methacrylate end functional group and another one with a terminal thiol, were investigated for the 

functionalisation of the silicon surface.  The transfer of this thermoresponsive ink from the inked 

tip onto the two substrates, however, was dominated by the volatility of DEAAm in air.  Due to its 

high volatility, DEAAm becomes even more volatile at the microscale.  UV-cured micron–sized 

spots deposited by DPN showed a Raman spectrum very similar to that of the crosslinker, because 

the monomer in the ink had evaporated during the loading of the tip and the printing process (See 

supporting information, Figure S1).  The printing experiments were performed at room 

temperature (22-23°C) and at a rather low percentage of relative humidity (25-35%).  An increase 

of the temperature did not improve ink transport and patterning because it caused an increased 

vaporisation of DEAAm.  In addition, a higher relative humidity accelerates the process of 

evaporation of DEAAm due to the high solubility of DEAAm in water, which causes liquid 

DEAAm to convert into a gas more rapidly.  To solve this issue, we examined an ink with 

Jeffamine ED-600 (Figure 1 (b)).  Due to the presence of Jeffamine, the ink exhibited a 

hydrophilicity higher than the UV-curable material which resulted in it spreading across surfaces 

such as bare and methacrylate-silanised silicon oxide.  Reproducible polymer arrays were created 

only on thiol-silanised silicon oxide substrates (Figure 2(a)), which turned out to be hydrophobic 

enough to prevent the spreading of the Jeffamine ink.  Figure 2 (a) shows a white light image of 
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the printed arrays with Jeffamine ink and (c) displays an AFM topography image of a small area 

within the same region.  Figure 2 (e) shows the height profile measured across two array spots.  

The increased viscosity of the Jeffamine ED-600 (75 cp) allowed for improvement of the kinetics 

of ink flow from the tip to the substrate and enabled the printing of large sets of arrays, without 

the need to re-ink the tip.  The bulk material of Jeffamine ink after heat-curing showed a swelling 

ratio of 1.4 which is lower than that of the UV-cured DEAAm bulk sample (≈ 4). Moreover, a 

reversible switch was not observed across the transition temperature for the Jeffamine bulk 

samples. 

To create patterns with a higher degree of swelling and a reversible temperature-induced switch, 

the combination of these two systems was also studied.  The ink composed of Jeffamine can be 

used not only as a thermoresponsive component but also as a carrier matrix.  The addition of the 

Jeffamine matrix having hydroxyl and secondary amine groups capable of polar interactions and 

hydrogen bonding with the amide group of DEAAm, can reduce the evaporation of DEAAm and 

improve the ink transport.  After preparing the Jeffamine ink, we added the DEAAm ink prepared 

as mentioned previously, as well as a silane with a methacrylate terminal group to covalently link 

the Jeffamine matrix to the acrylamide network (Figure 1 (c)).  This mixed system (from here on 

referred to as Jeffamine/DEAAm) exhibited a swelling ratio of 2.3, an intermediate value between 

those measured for the other inks investigated.  The increased swelling ratio of the mixed system 

in comparison to the Jeffamine alone is due to the larger swelling weight of the Jeffamine/DEAAm 

at room temperature, which can be attributed to the less packed hydrogel structure of this system 

and the fact that the water-polymer interactions in the Jeffamine/DEAAm are more 

thermodynamically favoured at 20°C than when the Jeffamine is present alone.  Less difference in 

swelling weight is observed at 40°C due to the less packed polymerized structure which favours 



 14 

hydrophobic interactions in the polyDEAAm chains, causing the Jeffamine/DEAAm to de-swell 

in the same way that the Jeffamine does.   Similarly to the Jeffamine ink system, large sets of 

arrays with consistently sized features were also obtained when printing with the 

Jeffamine/DEAAm ink (Figure 2 (b) and (d)).  

 

 

Figure 2. Optical images of (a) Jeffamine and (b) Jeffamine/DEAAm arrays printed by DPN using 

a 0.5 s dwell time.  (c) and (d) AFM topography images from selected areas of the arrays shown 

in (a) and (b), respectively.  (e) Height profiles of two array spots from the images shown in (c) 

(solid line) and (d) (dashed line) from the Jeffamine and Jeffamine/DEAAm arrays, respectively. 

As part of the optimisation process and to determine whether spot size could be controlled, the 

dwell time (length of time the tip is in contact with the surface during printing) was varied and 

AFM images were collected of the resulting arrays.  Arrays were patterned using the M-type pen 

arrays with 12 individual pens and three random spots from three different sets of arrays were 

analysed using AFM.  Figure 3 shows the plot of dwell time against (a) spot height and (b) spot 
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diameter for both the Jeffamine and Jeffamine/DEAAm inks.  It can be observed here that there is 

a general increase in both spot height and diameter with increasing dwell time for each of the two 

inks.  The height of the spots patterned in this study with Jeffamine ink ranged from about 605 nm 

up to 720 nm by varying the dwell time from 0.1 s to 1 s. The smallest spot diameter obtained was 

11 たm using a 0.1 s dwell time which increased up to nearly 15 たm using a dwell time of 1 s.  For 

the Jeffamine/DEAAm ink, the printed spots were smaller, ranging from 546 nm to 654 nm in 

height and from about 9 たm to around 13 たm in diameter.  The observed difference in spot size 

could be attributed to a slight change in viscosity between the two inks or the fact that the arrays 

were printed using different tips.  It is important to note that the size of spots can vary between 

different surfaces and tips and therefore a standard size range should be tested to determine a 

relationship between dwell time and spot size in individual cases. However, the general increase 

with increasing dwell time for both ink systems indicates that feature size can be controlled by the 

straightforward adjustment of printing conditions. 
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Figure 3. Plot of dwell time against spot height (a) and spot diameter (b) for the Jeffamine ED-

600 arrays (black) and the Jeffamine/DEAAm arrays (red). 

 

 

Chemical Characterisation of Printed Arrays 

Raman spectroscopy was used to characterise the array spots after printing and curing and the 

resulting spectra were compared to those of the bulk material.  Figure 4 (a) shows that the spectrum 

of the Jeffamine array spot has the same peaks as those obtained from the bulk material.  There is 

also a good agreement between the peak vibration frequencies obtained for Jeffamine bulk material 

and the spot deposited by DPN in the 1200 - 3500 cm-1 region (Table S1) and thus it can be 

confirmed that the array spots contain the same components as the original ink. 
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Figure 4. (a) Raman spectra of the Jeffamine bulk material (red) and array spot (black) (b) Raman 

spectra of the Jeffamine/DEAAm bulk material (blue), corresponding array spot (black) and 

Jeffamine bulk material (red).  Spectra were obtained using a 633 nm laser excitation wavelength 

and 5 x 10 s accumulations. 

 

Figure 4 (b) compares the Raman spectra of the Jeffamine/DEAAm ink (bulk and printed spot) 

and the Jeffamine bulk material.  The spectrum of Jeffamine/DEAAm bulk material has a relatively 

strong band in the C=C and C=O stretch region (the peak of C=C stretching at 1615 cm-1 and a 

shoulder of tertiary amide C=O stretching at 1673 cm-1).  The absence of such similar bands in the 

C=C and C=O stretch region in the spectrum obtained from the Jeffamine/DEAAm spot led to the 

suggestion that spots printed with the mixed ink system were only composed of Jeffamine.  

However, differences between Jeffamine and Jeffamine/DEAAm array spots were observed in the 

thermoresponsive properties and these are shown in the following section. Consequently, this 

suggests the presence of polyacrylamide chains in the array spots created with the mixed system, 

even though their composition seems rather different from the original ink. 
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Thermoresponsive properties of patterns 

In order to assess the thermoresponsive behaviour of the polymer arrays, we investigated the 

changes in the array spots which occurred in aqueous solution and when heated across the LCST.  

Raman scattering was first used to investigate any structural changes taking place as a result of the 

interactions between the polymer and water molecules.  Previous studies have shown that changes 

in Raman spectra of thermoresponsive polymers can be observed across the LCST.52,53  Arrays 

printed using a 0.5 s dwell time were analysed dry before being left in water for 72 h to allow 

equilibrium swelling to be reached.  After collecting the Raman spectra of the arrays in water, the 

temperature was increased to 37 °C and the arrays were again left for 72 h to allow the system to 

equilibrate.  Resulting spectra can be found in Figure 5 (a) and (b) for the Jeffamine and 

Jeffamine/DEAAm, respectively.  This shows that, as well as the appearance of the OH stretch 

between 3000 cm-1 and 3500 cm-1 and the OH bending mode at around 1600 cm-1, there is a change 

in the ratio of the symmetric and asymmetric CH stretches when the arrays are in water.  The 

observed OH stretch is broad and flat which can be attributed to the interaction of the water 

molecules with the polymer and thus the restriction in position and orientation of the water 

molecules.  There is also a shift in frequency in the OH bending mode upon heating, as well as an 

increase in intensity and narrowing of the band, which is typically found due to the weakening of 

hydrogen bonds and the strengthened OH bonds.54  The area under the peaks was calculated so 

that the ratios could be compared more accurately, and it was found that the ratio of the symmetric 

CH stretch : asymmetric CH stretch decreased between the dry arrays and arrays in water and upon 

heating, increased to an intermediate point (Table 1).  This indicates that the decrease is coinciding 

with increasing water content and thus confirms the temperature-induced changes in the polymer 
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array spots.  It is also shown here that the ratio of the OH stretch : CH stretch changes significantly 

before and after heating and the decrease in this ratio is consistent with water being expelled on 

collapsing/de-swelling of the polymer microspot.  Furthermore, the changes which can be 

observed in the ratio of the OH stretch : CH stretch before and after heating are more significant 

in the Jeffamine/DEAAm than in the Jeffamine alone, indicating that the thermoresponsive 

properties are greater in this system.  Additionally, the differences in the Raman spectra are 

consistent with the changes in swelling ratio which are observed between the two systems in bulk.  

The increased water content of the Jeffamine/DEAAm system at room temperature is apparent in 

the Raman spectra where the ratio of the OH stretch : CH stretch is greater for the 

Jeffamine/DEAAm array spot in water at room temperature.  Therefore, even although the 

microspot spectrum is different from that of the bulk material (Figure 4 (b)), the polyacrylamide 

chains are present in the microspot resulting in an increase in the swelling properties when 

compared to those of the Jeffamine alone.  AFM was then used to analyse the array spots before 

and after heating in order to determine whether changes in topography could be observed.  After 

leaving the arrays in water for 72 h to allow equilibrium swelling to be reached, AFM images were 

collected.  The arrays were then left for a further 72 h at 37°C and AFM images were collected in 

the same way.  In order to ensure a fair comparison, registration marks on the silicon dioxide 

surface were used to allow the exact same areas to be scanned before and after heating so that the 

height and diameter of the same spots, before and after heating, could be compared.  Figure 5 (c) 

and (d) show the AFM data of the Jeffamine spots and the Jeffamine/DEAAm, respectively.  In 

the Jeffamine/DEAAm in particular, when the height profiles before and after heating are 

compared, we can see a clear decrease in height and increase in diameter which indicates that the 

polymer is de-swelling or collapsing upon heating.  The fact that this change is less clear for the 
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Jeffamine alone further confirms that the introduction of DEAAm into this system has led to an 

improvement in the thermoresponsive properties.  This data can be seen more clearly in Table 2 

where the actual changes in height and diameter are noted.  The average sizes in this table were 

taken from the AFM images of three different spots before and after heating.  The changes in 

height and diameter which have been observed show that, by increasing the temperature above the 

transition point, we can achieve a change in topography of the polymer microstructures on the 

surface.  This temperature-induced change in topography creates a controllable surface which 

could be useful in a variety of applications such as cell culture, drug delivery and tissue 

regeneration. 

 
Figure 5. (a) Raman spectrum of dry Jeffamine array spot in air (blue), array spot immersed in 

water at room temperature (red) and array spot in water with heating (green). (b) Corresponding 

Raman spectra from arrays of Jeffamine/DEAAm. Spectra were collected using 633 nm laser 
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excitation with 5 x 10 second accumulations. (c) Height profile of Jeffamine array spot before (red) 

and after (blue) heating to 37°C.  Inset: AFM images from which the height profiles were obtained 

with white lines highlighting the exact location of the corresponding profile. (d) Corresponding 

AFM data for Jeffamine/DEAAm array spots. 

 

 

Table 1. Area under peaks corresponding to CH and OH stretching modes and comparison of peak 

ratios between dry arrays, arrays in water at room temperature and arrays in water at 37°C. 

 Peak Ratio  

(CH Stretch (2835 – 2900 cm-1):CH Stretch  

(2907 – 2963 cm-1)) 

Peak Ratio  

(OH Stretch (3046 cm-1 – 3552 cm-1):CH 

Stretch (2835 cm-1 – 2963 cm-1)) 

Dry 

Arrays 

Jeffamine: 2.08 ± 0.26  

Jeffamine/DEAAm: 2.28 ± 0.09 

- 

Before 

Heating 

Jeffamine: 0.51 ± 0.12  

Jeffamine/DEAAm: 0.74 ± 0.14 

Jeffamine: 7.38 ± 0.17  

Jeffamine/DEAAm: 16.24 ± 1.90 

After 

Heating 

Jeffamine: 0.84 ± 0.06  

Jeffamine/DEAAm: 0.85 ± 0.08 

Jeffamine: 2.74 ± 0.48  

Jeffamine/DEAAm: 5.29 ± 0.33 

 

 

Table 2. Changes in height and diameter of Jeffamine and Jeffamine/DEAAm array spots in water 

after heating to 37°C. 

 Average Height Change (nm) Average Diameter Change (たm) 

Jeffamine - 33.0 ± 6.1 + 0.2 ± 0.11 

Jeffamine/DEAAm - 68.0 ± 12.6 + 0.6 ± 0.05 



 22 

 

Cellular response to thermoresponsive polymer arrays 

In order to observe potential cell responses, we cultured endothelial cells, which have previously 

been shown to respond to small changes in surface topography,55 on the patterned surfaces in both 

swollen and de-swollen states.  The LE2 cells were cultured on surfaces printed with 

Jeffamine/DEAAm arrays using a 1 s dwell time with features spaced 22 µm apart.  At first this 

was performed only at 37oC, standard culture conditions, for 4 days and vinculin staining of cell 

adhesions showed regular interaction with the posts (Figure 6 (a)).  The interaction tended to result 

in adhesions forming around, rather than on, the posts.  This became clearer with actin cytoskeleton 

staining and vinculin staining showing adhesions around the posts and membrane invaginations 

occurring where the cells contacted the posts (Figure 6 (b)).  After ascertaining that the endothelial 

cells adhered, spread and interacted with the features, we next looked at phenotype through in-cell 

western analysis in Krüppel-like Factor 2 (KLF2), an endothelial transcription factor with roles in 

angiogenesis.56  Analysis indicated that while KLF2 expression reduced in cells on the patterned 

surfaces compared to planar controls at 37oC suggesting loss of phenotype with post interaction, 

at 33oC this loss of expression in response to posts was not seen  and KLF2 levels remained the 

same as on controls at 33oC and 37oC (Figure 6 (c)).  Further analysis allows us to postulate that 

this may be due to altered cellular interaction with posts at the lower temperature resulting in 

maintained KLF2 expression (Figure 6 (d)). While the mean values for number of interactions are 

similar at 4.82.8 for 37oC and 4.92.7 for 33oC, the adhesion spread is different. At 33oC, there 

is less data spread with many cells having 4-6 feature interactions. However, at 37oC, the data is 

spread out with a notable increase in cells with many interactions in the 10-12 range. Although 

these results are preliminary, it is interesting to note that the cells are interacting well with the 
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polymer features and that a difference in the cell behaviour can be observed across the transition 

temperature, indicating the potential use of the surfaces in biological applications. 

 

 
Figure 6. (a) Vinculin staining (adhesions seen as white lines within the cell boundaries) showing 

that adhesions form around rather than on the printed features (arrows point to adhesions close to 

posts). (b) Actin (red) and vinculin (green) staining showing that this adhesion pattern causes 

membrane invaginations to form around the posts (arrows point to invaginations around posts) 

(nuclei are blue). (c) KLF2 expression showing that the features prevent loss of KLF2 expression 

with reduced temperature (n=1). (d) Quantification of number of features individual cells interact 

with, showing that cells interact more strongly with the posts at lower temperature (arrows show 

vinculin positive adhesions close to features) (50 cells counted per substrate). 
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CONCLUSIONS 

Dip-pen nanolithography has been used for the consistent patterning of thermoresponsive 

polymer arrays onto a thiol-silanised silicon dioxide substrate with significant control over feature 

size.  A novel ink formulation based on Jeffamine ED-600 has been developed and we have shown 

that this can act as a carrier matrix to improve the printing of DEAAm whilst also increasing the 

swelling properties of the hydrogel when compared to the Jeffamine ink alone.  Characterisation 

of the arrays by Raman and AFM has shown that, as well as a change in hydration state of the 

polymer, a temperature-induced change in topography of the arrays on the surface can be observed.  

We envisage that this thermally controlled switchable surface could be useful in a variety of 

applications ranging from cell culture to micro-actuators for microfluidic devices.  Preliminary 

experiments show that cells adhere to and interact with the polymer features and that a change in 

cell behaviour is observed with changing temperature.  This indicates that the controllable surfaces 

are biocompatible and have potential use for cellular applications. 
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