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Abstract 

It is possible to model vector-borne infection using the classical Ross-Macdonald model. This 

attempt, however fails in several respects. First, using measured (or estimated) parameters, the 

model predicts a much greater number of cases than what is usually observed. Second, the 

model predicts a single huge outbreaks that is followed after decades of much smaller 

outbreaks. This is not what is observed. Usually towns or cities report a number of cases that 

recur for many years, even when environmental changes cannot explain the disappearance of the 

infection in-between the peaks. In this paper we continue to examine the pitfalls in modeling 

this class of infections, and explain that, in fact, if properly used, the Ross-Macdonald model 

works, can be used to understand the patterns of epidemics and even, to some extents, to make 

some predictions. We model several outbreaks of dengue fever and show that the variable 

pattern of year recurrence (or absence of it) can be understood and explained by a simple Ross-

Macdonald model modified to take into account human movement across a range of 

neighborhoods within a city. In addition, we analyze the effect of seasonal variations in the 

parameters determining the number, longevity and biting behavior of mosquitoes. Based on the 

size of the first outbreak, we show that it is possible to estimate the proportion of the remaining 

susceptibles and predict the likelihood and magnitude of eventual subsequent outbreaks. The 

approach is exemplified by actual dengue outbreaks with different recurrence patterns from 

some Brazilian regions. 

Keywords: vector-borne infections; dengue; outbreak patterns; geo-spatial epidemiology; 

mathematical models. 
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Introduction 

Dengue is a human disease caused by 4 related but distinct strains of a flavivirus and 

transmitted by urban vectors [1-3]. It is currently considered the most important vector-borne 

infection, affecting almost four hundred million people every year in tropical countries [4]. Its 

outbreaks recur with patterns of different magnitude and frequency that challenges our 

understanding with the current knowledge about the environment-mosquito-human interaction. 

The Brazilian government maintains a data base of the weekly incidence of dengue for a large 

number of cities in all regions of the country. This data base shows a great variety of patterns as 

shown in the four examples in figure 1. 

 

 
 

Figure 1. Four different patterns of time-distribution of dengue outbreaks in Brazil (2000-2014) 

 

This paper has three aims: 

1) To understand the origin and mechanism that produces so many different patterns; 

2) To propose a mathematical model that aims to explain those patterns and to investigate if the 

mechanisms involved are unique. 

3) To identify variables and parameters that serve to predict when the Dengue transmission 

ceases in a certain city and if not where it will occur in the future with a certain probability. 

These probabilities depend on certain measurements that may be demanding. So our third goal 

on this paper should be titled: How to forecast dengue epidemics. 

This paper is organized as follows. In section 1 we describe a very simple model of dengue 

epidemics that incorporates elements that are new to usual dengue models. These elements were 

Figure caption in normal typeface to math other figure captions.Full stop at end of figure caption.
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partially described in two previous papers by Amaku et al.[3], [5]. This model is in fact the 

classical Ross-Macdonald model  but modified to avoid  simple pitfalls in its application [5]. 

In section 2, we analyze the model and  show that it can predict any pattern of the epidemics. 

We also exemplify the production of patterns with two mechanisms: movement of people and 

seasonality. In section 3, we introduce the calculation of a few quantities that should allow 

public authorities to make predictions about future events so that resources could be better 

allocated. Finally, in section 4, we present a summary of our findings. 

 

1. The real vector of Dengue are the Humans 

Aedes aegyptii, the dengue mosquito, has a very small life span, typically lasting for one week 

[3] and a short flight range (typically of one hundred meters). During this short life and flight-

range span, therefore, the mosquito covers a very small area of the region where the dengue 

epidemics occur. Hence, considering that in big urban areas dengue circulates from one 

neighborhood to another, we are forced to admit that dengue is carried by humans that are 

infected but still able to move around. 

Based on that, we propose a very simple model that consists in N regions of a city that are more 

or less geographically apart from each other, in the sense that the inhabitants of each of those 

regions rarely (or at the wrong time of the day) visit the other regions. By this we mean to visit 

the other regions at a certain time and for a certain period of time that would allow the humans 

being bitten by the mosquitoes and acquire the infection if one of them is infected. We will 

show that this explain why in some cities there can be  a dengue epidemic in a district and not in 

another very near neighborhood in the same transmission season. 

The model consists in the following system of differential equations. The meaning of the 

symbols are given in Table 1 to help the reader. HSi, HIi and HRi are the densities of susceptible , 

infected and recovered individuals that live in the neighborhood i . MSi, MLi and MIi are the 

densities of susceptible, latent and infected mosquitoes that live in neighborhood i. The 

neighborhoods are assumed homogeneous and the populations are obtained by multiplying the 

densities by the area of each neighborhood.  
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Table 1. Variables, parameters, their biological meaning and values of system (1) 

Variable Biological Meaning Initial Value 

SiH  Susceptible Humans Variable 

IiH  Infected Humans Variable 

RiH  Recovered Humans Variable 

SiM  Susceptible Mosquitoes Variable 

LiM  Latent Mosquitoes Variable 

IiM  Infected Mosquitoes Variable 

Parameter Biological Meaning Value 

1a  Biting rate of infected 

mosquitoes 

7 week
-1 

2a  Biting rate of non-infected 

mosquitoes 

7 week
-1

 

b  Probability of Transmission 

from Mosquitoes to Humans 

0.6 

c  Probability of Transmission 

from Mosquitoes to Humans 

0.5 

H

ijβ  Proportion of individuals 

from neighborhood i that visit 

neighborhood j 

variable 

Hµ  Mortality rate of Humans 2.74 x 10
-4 

week
-1

 

H

iΛ  Growing rate of Humans Variable (usually zero) 

Hγ  Humans recovery rate 1 week
-1

 

Hα  Humans mortality rate due to 

the disease 

zero 

M

ijβ  Proportion of mosquitoes 

from neighborhood i that bite 

humans from neighborhood j 

variable 

Mµ  Mosquitoes mortality rate 0.33 week
-1

 

τ
 Extrinsic incubation period of 

dengue virus 

1 week 

ϕ  Probability of survival 

through the extrinsic 

incubation period* 

0.74 

M

iΛ  Growing rate of Mosquitoes Variable (usually zero) 

*ϕ is usually taken to be )exp( τµM−  

The equations that describe the system are: 
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From the above equations, it becomes clear that only individuals of the human populations 

travel from one neighborhood to another. For example, the proportion of susceptible and 

infected humans from neighborhood 1 that visit neighborhood 2 is denoted 
H

12β . In addition we 

assume that ( )ji
H

ij ≠β and ( )ji
M

ij ≠β are small. 

Seasonal fluctuations in the mosquitoes number is very common and may influence the pattern 

and the duration of outbreaks. To introduce these fluctuations we replace the mosquitoes 

equations by: 
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In system (3) 
1

2M  and 
2

2M define the amplitude of the oscillations in the density of 

mosquitoes due to seasonality (this is a schematic model). In the absence of infection, the 

equation for the mosquitoes populations can be solved exactly. The equation for the density of 

mosquitoes and its solutions are: 
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Note that, in system (3), the total number of mosquitoes is not affected by the infection. This is 

a very good approximation for dengue because only a very small amount of mosquitoes is 

infected and their life expectation is not affected by the disease. However, the total number of 
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infections varies with the climatic factor as compared with the case  in which the number of 

mosquitoes is constant. It also varies with the instant of time the infection is "introduced" in the 

population. 

If the disease is introduced, say, in the district 1 it will eventually spread to other districts. This 

however can be a very slow process and since that data reported is the number of cases in a 

given city per month, duration of the epidemics can be very long because the disease is 

"travelling" through the city carried by Humans. 

Remark 1:  Choosing 
H

iΛ and 
M

iΛ in such a way that the Human and the Mosquito populations 

are kept constant, then dividing the equations of system (1) by HiN and MiN we get equations 

for the proportions. Of course if there is seasonality, this cannot be done for the mosquito  

population. 

Remark 2: The above equations refers to a single dengue strain circulating in a given 

population. In some places, however, more than one serotype can circulate simultaneously in 

the same community. If we assume that the circulation of one virus does not interfere in the 

other then the two virus can be treated separately. 

Remark 3: In this paper we assumed two different biting rates (denoted 1a and 2a ) for the 

infected and non-infected mosquitoes, respectively.  We did this for the sake of generality. For 

the case of dengue it is accepted that they are both equal but this may not be true for other 

vector-borne infections (for instance, the case of plague [5]) 

 

2.Analysis of the model 

The system of equations given above does not have an analytical solution even when we 

have just one neighborhood and no seasonal fluctuations. Even if an analytical solution 

would exist it would be so complicated that it would be useless. We, therefore, list a 

number of numerical results about the system and show how they can be used. 

 

2.1. The simple Ross-Macdonald model 

Let us consider that we have just one human and one mosquito population. As pointed 

out in Amaku et al. [6], this simple system is solved by assuming an initial population 

of infected (either humans or mosquitoes) individuals uniformly distributed over the 

area we are studying. The result is a huge outbreak, as shown in figure(1). This can be 

explained as follows. If the basic reproduction number [7-9]: 

)0(
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                                                                                (4)

 

of this model is greater than 1, the outbreak increases up to a certain point where the 

number of susceptible diminishes to a certain value. The infection then disappears for a 
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number of years. This is not what is observed in real outbreaks of dengue, as discussed 

in section 1. This will be elaborated latter in this paper. 

To determine when the number of new cases begins to diminish, we use the following 

approximate threshold [10]: 

( )
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When )(tR crosses the unit from above (below), the incidence and prevalence reach a 

maximum (minimum). We consider only the first outbreak. that is, the only one that has 

physical meaning. 

It is important to note three things: 

1) If nothing changes in the neighborhood we are studying, then when the threshold, 

)(tTh , is reached, the outbreak is interrupted and the infection disappears rapidly. The 

number of residual susceptibles, H'S, results in a new R0 that we call R0b = R0 H'S/NH 

which is less than 1 in the following year. Therefore, no outbreak is expected with 

likelihood that is numerically equal to this newR0b (see discussion below). On the other 

hand, if something changes during the outbreak (heavy rains, public health 

interventions, drought, etc), then the threshold may be reached, for example by variation 

of the factor  
)(

)(

tN

tM

H

S in equation (5). In this case, the remaining number of susceptibles 

is large enough and we expect another outbreak in the following year since the 

population of mosquitoes increases very rapidly (see discussion below). 

 

2) The number of cases predicted by the model, if nothing changes, is much larger than 

the number of cases actually observed and reported in all dengue outbreaks we know. 

At first sight this is strange because the parameters used in the model are obtained 

empirically. An explanation for this will be given later. 

 

3) The total number of cases in the first outbreak predicted by this simple model 

increases with the two components of R0 [11]: 
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HMMH TTR →→ ×=0                                                                                                       (7), 

as shown in Tables 2a, 2b and 2c. 

 

 

 

Table 2a: Percentage of infected individuals in the first outbreak. 

TH→M/TM→H 0.71 0.80 0.89 0.98 1.06 1.15 1.24 1.33 1.42 

1.30 0.00 2.24 25.20 38.51 48.77 56.86 63.35 68.63 72.98 

1.46 2.24 27.02 41.21 51.86 60.07 66.54 71.73 75.94 79.39 

1.62 25.11 41.09 52.71 61.44 68.16 73.46 77.69 81.11 83.92 

1.79 38.21 51.54 61.23 68.52 74.13 78.54 82.05 84.90 87.22 

1.95 48.19 59.48 67.71 73.89 78.65 82.37 85.34 87.72 89.67 

2.11 55.95 65.66 72.74 78.05 82.13 85.32 87.85 89.89 91.54 

2.27 62.10 70.56 76.71 81.33 84.87 87.63 89.82 91.57 92.98 

2.44 67.06 74.49 79.90 83.95 87.05 89.47 91.37 92.89 94.12 

2.60 71.11 77.70 82.49 86.08 88.82 90.95 92.62 93.95 95.03 

 

 

Table 2b: Percentage of latent mosquitoes in the first outbreak. 

TH→M/TM→H 0.71 0.80 0.89 0.98 1.06 1.15 1.24 1.33 1.42 

1.30 
0.00 0.14 1.56 2.37 2.99 3.46 3.84 4.14 4.38 

1.46 
0.15 1.87 2.85 3.56 4.10 4.51 4.83 5.08 5.28 

1.62 
1.94 3.15 4.01 4.64 5.10 5.46 5.73 5.94 6.10 

1.79 
3.22 4.31 5.07 5.62 6.03 6.33 6.56 6.73 6.86 

1.95 
4.40 5.37 6.05 6.53 6.88 7.13 7.32 7.46 7.57 

2.11 
5.49 6.36 6.95 7.37 7.67 7.88 8.03 8.14 8.22 

2.27 
6.49 7.27 7.79 8.15 8.40 8.58 8.70 8.78 8.84 

2.44 
7.43 8.12 8.58 8.88 9.09 9.23 9.32 9.38 9.41 

2.60 
8.30 8.91 9.31 9.57 9.74 9.85 9.91 9.94 9.95 

 

Table 2c: Percentage of infected mosquitoes in the first outbreak. 

TH→M/TM→H 0.71 0.80 0.89 0.98 1.06 1.15 1.24 1.33 1.42 

1.30 
0.00 0.10 1.12 1.70 2.15 2.49 2.76 2.97 3.15 

1.46 
0.11 1.35 2.05 2.56 2.95 3.24 3.47 3.65 3.80 

1.62 
1.39 2.27 2.88 3.33 3.67 3.92 4.12 4.27 4.39 

1.79 
2.32 3.10 3.65 4.04 4.33 4.55 4.72 4.84 4.93 
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1.95 
3.17 3.86 4.35 4.70 4.95 5.13 5.27 5.37 5.44 

2.11 
3.95 4.57 5.00 5.30 5.51 5.67 5.78 5.86 5.91 

2.27 
4.67 5.23 5.60 5.86 6.04 6.17 6.26 6.32 6.35 

2.44 
5.34 5.84 6.17 6.39 6.54 6.64 6.70 6.75 6.77 

2.60 
5.97 6.41 6.70 6.88 7.00 7.08 7.13 7.15 7.16 

 

 

 The epidemics for large R0 eventually saturates the population, that is the 

proportion of infected people approaches one, as shown in Figure 2. 

 

 

Figure 2: Proportion of infected individuals in the first outbreak as a function of TH→M 

and TM→H. 

 

This result implies that for large values of 
0R , which is the product of TH→M and TM→H, 

it is very unlikely that the infection will return in the subsequent year after the outbreak. 

We will return to this point later on the paper. 

 

2.2.Simulating some observed patterns of dengue recurrence 

The epidemic patterns (time-distribution of the yearly incidence of the infection) in 

many cities of Brazil are extremely complicated. However, the model given by the 

system of equations (1) can be used to fit any observed pattern. In the results section we 

show two examples of such fitting for two different cities with completely different 

patterns: Natal and Recife (both at North-East of Brazil) 

Let us explain here how this can be done. As explained above the classical Ross-

Macdonald model, that is, just one population of humans and one population of 

Is it possible to label the axes in this figure? Can the x-axis be labelled 'T_{M \to H)', the y-axis 'T_(H \to M)' and the z-axis 'Proportion infected'? 

T_{H \to M} in italics

T_{M \to H} in italics

T_{H \to M} in italics

T_{M \to H} in italics

Insert full stop
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mosquitoes with 10 >R , produces a huge outbreak followed by smaller blips of 

infection that are widely separated in time (typically decades) and, therefore, non-

physical. This huge outbreaks occurs because, as pointed out in Amaku et al. [6], this 

equation is solved by assuming an initial population of infected individuals uniformly 

distributed over the region being studied. Therefore, the disease occurs simultaneously 

everywhere over the area and produces a single very large outbreak, as shown in figure 

3.  After this peak, the infection dies out, that is, the number of cases drops down to 

zero, remaining close to zero for several years. This happens when the threshold [10] is 

reached and this occurs even when 
0R is only slightly greater than 1. 

As mentioned above, however, other factors may cause )(tTh to fall below 1. For 

instance, factors affecting mosquitoes survival, like heavy rains, droughts, sanitary 

interventions, cold weather, may result in 1)( <tTh . As a consequence, it is possible to 

have a residual )(/)(' tNtH HS after the outbreak large enough that should guarantee an 

outbreak in the following year but, due to a smaller mosquitoes densities, the outbreak 

may not occur. Summarizing, if external factors do not interfere with the intensity of 

transmission, the outbreak is interrupted by the lack of enough susceptibles to maintain 

it and we will have a residual )(/)(' tNtH HS  low enough that an outbreak in the 

following year is rendered unlikely. If, however, the outbreak is interrupted by external 

factors before )(/)(' tNtH HS is low enough, then the new bR0 will be greater than 1, and 

then an outbreak in the following year will possibly occur. The size of the new outbreak 

will be dependent on the number of human susceptibles  available to be infected and 

may be larger or smaller than the first outbreak. 

If we subdivide the populations into several sub-populations and introduce the disease 

in just one of them, then we have as many peaks as the number of sub-populations. In 

this case, the total population is known as 'meta-population' in the literature [11]. Figure 

4 illustrates the pattern obtained with three identical sub-populations. 

 

Delete comma
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Figure 3: Simulation of an outbreak when the initial condition is spread all over the 

area: we get a single large peak. 

 

Figure 4: Simulated pattern obtained with 3 identical sub-populations geographically 

separated. The infection was introduced in the first sub-population and propagated to 

the others. 

 

Introducing seasonality completely changes the pattern of figure 4, as illustrated in 

figure 5. 
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Figure 5: The effect of seasonality on the pattern shown in Figure 4. 

 

 

 

2.3.An important observation: the invariance of the total number of cases after the 

first outbreak 

It is important to note that the total number of cases is independent of the pattern of 

outbreaks (time-distribution of incidence of cases) if there is no seasonality. It rather 

depends on the values of the parameter that determine the intensity of transmission at 

the beginning of the epidemic. In fact, the number of cases in the single outbreak 

produced by the simple Ross-Macdonald model is almost the same as the total number 

of cases resulting from summing up the 3 peaks of the case illustrated by figure 4. The 

small difference occurs because the single peak of the Ross-Macdonald model has a 

small duration in time, whereas in the other cases, the outbreaks last for a few years and, 

therefore, demographic effects(people are born and die) take place in between. 

Obviously, when the mortalities and birth rates are negligible, the total number of cases 

in the first and only outbreak is independent of the pattern of dengue recurrence. 

When the basic reproduction number is too low (only slightly above unit), however, 

although the threshold given by equation (5) is reached, the number of remaining 

susceptible after the outbreak may be large (see figure 2). 

2.4. The effect of seasonality 

When seasonality is considered, the total number of mosquitoes is not constant anymore 

and can vary considerably along the year. In figure 5 we introduced seasonality to 

modify the patterns shown in figure 4. The total number of cases after 3 years of 

Insert space between '2.3.' and 'An'
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simulation is quite higher than the one in the case where no seasonality is considered. 

The total number of cases depends on the time of the year the infection is 'introduced'. 

In figure 6 we show the variation in the number of cases as a function of the moment 

the infection is introduced for four different mosquitoes-to-humans ratios. In the figure, 

the dotted lines represent the averages around which the number of cases oscillate.  

 

 

Figure 6: The effect of seasonality in the total number of cases for 4 mosquitoes-to-

humans ratios. These ratios varied from the ranges [0.225-3.6] for the bottom lines to 

[0.5-8.0] for the uppermost line. The continuous lines represent the total number of 

cases when seasonality is considered. They oscillate around the averages (dotted lines) 

depending on the time of the infection is 'introduced'.  

Although we do not know for sure whether there is any preferential moment for the 

infection to be introduced in a non-affected area by an infected individual, one should 

expect that there is a higher probability of  introduction in periods of higher infection 

incidence. Note that the number of cases depends on this moment and, therefore, just 

this  suffice to influence the number of cases if the number of human susceptibles is 

high enough (above the threshold). 

2.5. The Asymptomatic Cases: Dark Matter 

Using the accepted values for the parameters that enter the Ross-Macdonald model for 

dengue, we always get a number of infections that is much greater than what has been 

reported in any endemic area [4]. In this paper, we are going to assume that a proportion 

of those cases is not identified and/or notified as dengue cases 

(asymptomatic/undiagnosed acute febrile cases). This proportion varies in the literature 

from 1:3 to 1:13 [4], [13]. We call this unreported/unidentified cases "dark matter", 

following the cosmologists jargon. In the examples that follow, we calculate this 

proportion in some locations. Unfortunately, we have only one place in Brazil where 

both seroprevalence data and dengue reported cases exist [14]. 

Suggest delete inverted commas
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2.5. More than one strain of dengue virus or different viruses (Chikungunya, Zika, 

Yellow Fever, etc) 

If there is super-infection by other dengue strains of viruses in either humans or 

mosquitoes, there are two distinct possibilities: 1) no competition between strains or 

viruses. In this case, each outbreak can be treated separately. For example, if Zika virus 

do not compete with dengue or other virus, then we can predict that the outbreak of Zika 

will be very similar to the outbreak of dengue in the same region; 2) competition 

between strains or viruses. In this case, an entirely new calculation has to be performed. 

A possible mechanism for competition can be found in [15], [16] and will be used in a 

future paper. 

3. Results: Understanding the dengue oscillator 

The main qualitative results of this paper are the following.  

 

3.1 An outbreak in a limited district 

If the number of mosquitoes in an area of a certain district is such that the R0 of this area 

is greater than 1 the disease may invade and an outbreak occurs. In this case, the 

incidence of the disease will increase until the proportion of susceptible in the host 

population decreases to a certain level approximately given by [10]: 
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Then the outbreak will decrease and disappear from this district for a number of years. 

Immediately after the outbreak, the proportion of remaining susceptible can be 

calculated as 1 minus the values shown in table 2a. 

On the other hand, if for some reason after the outbreak the newR0bis increased at least 

by a factor NHi/ HSi, then another outbreak may occur. In this case, depending on the 

remaining proportion of susceptible and the new R0b the number of affected by the new 

outbreak may be larger or smaller than the first one and the number of resistant 

individuals will approach saturation. 

The important point is that, when R0 of this area is sufficiently above 1, the total number 

of cases among humans turns out to be independent of variations in the transmission 

components 
MHT → and 

HMT → , provided their values are not significantly altered. For 

example, if the mosquito density with respect to humans is lower in one district than in 

the other, then the outbreak will take more time to disappear but the number of cases 

will be smaller, see table 2a. Note that any outbreak occurring afterwards will depend 

on the increase of the newR0b after the outbreak. 
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Using these results we can attempt to make some predictions at a certain point of the 

epidemics of what will happen in the near future. To exemplify: suppose we have a 

given district with intensity of transmission such that R0b for this district is greater than 

one. Then one can calculate what will be the number of cases reported in this district at 

the end of the outbreak. If at some point of the epidemics the total  number of cases is  

above a certain threshold, we can say that the epidemics is over,  or, with great 

probability, if it will continue in time and how many more case it will have.  

 

3.2. Examples of Calculation 

The calculation reported below follow these steps: 

a) looking at the data, we tentatively identify epidemics that presumably were 

interrupted by reaching the threshold given by equation (5). These epidemics are 

identified by long periods of very low dengue activity between two successive 

outbreaks. 

b)The epidemics may consist of outbreaks that last a few years but if they recur for 

more than five consecutive years the calculation described below breaks down. 

c) The calculation assumes a proportion (1- η) of dark matter and the epidemics is 

considered over when the number of susceptibles drops below a certain threshold (see 

Equation 5). Of courseη, the proportion of notified cases, should be confirmed by actual 

observations. However, the examples below seem to indicate that for a given 

geographical region the value of η do not vary very much from place to place. 

3.2.1. A single outbreak: The case of Recife dengue outbreak 2001-2002 

This outbreak consisted in only one peak of cases followed by several years with only 

marginal dengue transmission. We can then tentatively assume that the number of 

susceptible individuals dropped to a level that interrupted the transmission due to herd 

immunity. In Figure 6, we fitted this outbreak, calculate the total number of cases and 

found out that only assuming a value of 1:25 for the dark matter we recover the 

notification data. 
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Figure 6: Number of weekly real (crosses) and calculated (continuous line) notified 

cases for the 2001-2002 outbreak in Recife, Brazil. The total number of notified cases 

was 48,500. The total number of cases given by the model, considering η = 0.04 is 

1,260,000. 

 

This enormous number of cases represents more than 85% of the total Recife population 

at the time indicating that the threshold was reached. Incidentally one could predict that 

this particular strain of dengue virus will take some time to return. This in fact 

happened. On the other hand, this proportion agrees with the survey carried out by 

Braga et al. [14], and a herd immunity corresponding to R0> 4. 

3.2.2. Multiple outbreaks: The case of Natal dengue outbreak 2000-2007 

Contrasting with the single Recife outbreak described above, dengue in Natal in the 

period between 2000 and 2007 presented a recurrent pattern with annual outbreaks of 

smaller magnitude. This pattern was reproduced by the model using nine geographical 

regions (neighborhoods) and assuming that the infection propagates through the 

movement of infected humans hosts among those regions (see equation (1)). The period 

between weeks 200 and 330 was fitted by reducing the mosquitoes density. Of course, 

there are other mechanisms that could be used to fit this pattern. The important thing is 

that the number of asymptomatic cases (dark matter) added to the reported cases is 

greater than Natal total population. This can be explained by the fact that there are more 

than one strain of dengue virus circulating and that the population increased 1% per year 

during the period. We shall return to this point later in the paper.  

 

Figure 7. Simulation of the outbreaks in Natal, NE of Brazil. 

 

3.2.3 Forecasting outbreaks in a small neighborhood 

Ed: eta = 0.04 corresponds to 1:24
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Consider a small homogeneous neighborhood. In order to predict outbreaks and their 

intensity, we need basically three quantities: transmission components 
MHT → and 

HMT →  

of the neighborhood and the value of η, which gives the proportion of dark matter 

(asymptomatic cases). The problem is how to measure or to estimate these three 

quantities. Suppose we have a neighborhood where an outbreak happened and faded 

away for few consecutive years. Then, we can proceed in the following way. Compare 

the fraction of reported cases with the fraction predicted by the model in table 1. If the 

outbreak occurred a number of years ago it is safe to consider that the value of η is big. 

Assuming several η's we can calculate the likelihood of another outbreak and its 

magnitude. 

Unfortunately the value of η must be measured and that may be expensive. However, 

we can assume several values of η and calculate the corresponding R0 that explains each 

η. The R0 can also be calculated by another methods and then the value of η can be 

deduced. 

Even when the outbreak saturates a given neighborhood of a city, new outbreaks of 

dengue may be reported in the same city. These outbreaks occur in some other 

neighborhoods due to the movement of people. In the next section, we examine this 

problem. 

 

3.2.4. Forecasting outbreaks in large cities 

 

Example 1: São Paulo (Brazil), 2014-2015. 

 

In this case, due to human movement, there are a number of peaks before the whole 

outbreak fades out. Of course we have to fit the patterns considering the different 

neighborhoods but, in order to make predictions it is necessary to know in which 

neighborhood a particular outbreak occurs. If this is known, then the calculation 

described in 3.2.3 can be carried out for each region. However, if the city is really large, 

the outbreaks may be restricted to some boroughs. In this case we have to consider the 

population of the neighborhoods not affected to calculate the total number of cases that 

may occur in the future. Unfortunately, without further information, it is impossible to 

predict the order of the outbreaks in time and space. We are going to exemplify this 

situation with an extreme case, namely the 2013, 2014 and 2015 dengue outbreaks in 

the megalopolis São Paulo (Brazil), where we can see that the outbreaks 'travel' from 

place to place in subsequent years (figure 8). 
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  (a)    (b)   (c) 

Figure 8: Figures a, b and c show the evolution of the dengue outbreak in São Paulo. 

Figure a is the situation at the end of 2013, b, 2014 and c, 2015. The colors represent the 

number of cases per 100,000 inhabitants. 

 

Example 2: Rio de Janeiro (Brazil) 2000, 2008 and  2011-2013. 

 

In this example we illustrate several features of the model.  

Rio de Janeiro had three outbreaks in 2000, 2008 and 2011-2013. The two epidemics in 

2000 and 2008 consisted essentially of two large peaks. We assume, with some data, 

that the 2000 outbreak was essentially serotype 3 and the 2008 was mainly serotype 2. 

The three outbreaks in 2011-2013 are assumed to be serotype 4 and 1 simultaneously. 
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Figure 9: Accumulated reported cases in Rio de Janeiro (Brazil), 2000-2015 

 

The sum of reported cases can be seen in Figure 9. It shows  

1. that the outbreaks show different slopes in several parts before reaching a plateau. 

This can be interpreted as the epidemics moving through the city. 

2. The outbreaks of 2000 and 2008 reached approximately the same number of cases. 

From this we can deduce a value for η. 

3. The outbreaks of 2011-2013 did not reach the whole city. In figure 10a and 10b we 

show the accumulated number of cases for two different districts of Rio, namely, 

Ilha do Governador and Centro. 

 

 
Figure 10a. Accumulated number of dengue cases in the Ilha do Governador 

borough. Arrows point to epidemic spreading to other regions of the borough. The 

outbreaks of 2011-2013 are approximately double of the previous outbreaks. This 

indicates that there were two strains circulating. 

 

What do the arrows represent? Do you mean arrows point to the epidemic spreading to other areas of Rio de Janeiro?
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Figure 10b. Accumulated number of dengue cases in the central region of Rio de 

Janeiro. Arrows point to epidemic spreading to other regions of the borough. Note 

that in this case the outbreaks of 2011-2013 are approximately of the same 

magnitude of the previous outbreaks. This indicates that there was only one strain 

circulating in this region. 

 

 

 

 

4. Forecasting 

Forecasting outbreaks in large cities, as we have seen above, may be very difficult. Let 

us recapitulate the reasons for this:  

4.2.1. When an epidemic enters in a large city it will enter in a small neighborhood and 

then propagates to the rest of the city. This movement can lead to peaks in the same city 

for three to four years before the epidemic fades out, that is, when condition given by 

equation (5) crosses one everywhere in the city; 

4.2.2. Large cities are rarely homogenous and therefore the interruption of epidemics 

may occur with different proportions of immune people in different parts of the city; 

4.2.3. Even in a given neighborhood, as explained before, the epidemics can be 

interrupted by climatic factors. If this happens there will be a number of peaks until the 

threshold given by equation (5) crosses one downwards from above and then the 

infection disappears. 

Therefore, to predict epidemics in large cities one should proceed as follows: 
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1) choose a well described past outbreak and divide the city into homogeneous regions 

with respect to the number of cases observed, or better, with respect to the proportion of 

remaining susceptibles in the end of the outbreak; 

2) for each region, calculate the remaining number of susceptible. The difficulty here is 

to know the exact number of unapparent infections. If this is known, then the total 

number of cases can be adjusted; 

3) if this is not known then we have to choose neighborhoods free from infection for a 

few years, and so: 

3.1) assume values of η  and calculate R0 for these regions. Of course the value of 

η cannot be too big because then we end up with more people infected than the total 

population. 

3.2) given the population size of this region one can calculate the maximum value of R0 

for this particular region. 

3.3) for each R0 one can estimate the likelihood of an outbreak in the following year and 

its maximum size. 

 

5 Summary and Conclusions 

The number of dengue cases in a city (or in a borough of a city) is reported weekly in 

the whole country for years. The reported data forms a time series and show annual 

outbreaks (sometimes more than one outbreak in a single year) of very irregular nature. 

As mentioned before, we call these series the dengue oscillator.  

The purpose of this paper is to explain these outbreaks from a semi-quantitative point of 

view. To do this we used the classical Ross-Macdonald model. This model, as 

formulated usually, predicts a huge outbreak followed by smaller outbreaks that occur 

decades later and that are clearly unphysical. The reason why the model naively applied 

is unphysical is the initial conditions assume that the infections enters the city or 

borough uniformly, as pointed out by Amaku et al. [6]. The model also predicts a much 

large number of cases than is actually observed, although it uses measured parameters. 

In this paper we show that by dividing the population in small areas and introducing the 

infection in just one (or in just a few), and introducing seasonality, we are able to 

reproduce any pattern observed. The true vector of dengue is the human host who 

carries the infection around the city. The huge number of cases is explained by 

asymptomatic cases that ranges from a factor 4 to 13 with respect to symptomatic cases. 

Understanding the mechanism of dengue transmission is the first step to forecast future 

outbreaks. 
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The methods described in this paper allow other types of inferences. For instances, if in 

a given year the number of cases is far too high to be explained by dengue mechanisms 

explained above, one can suspect that another virus was introduced in the population. 

This can either be another strain of dengue or, as we suspect, a new infection like Zika 

virus (see the final inflection of figure 9). 
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