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a b s t r a c t

This article investigates the computational efficiency of constraint handling in multi-objective evolu-

tionary optimization algorithms for water distribution systems. The methodology investigated here

encourages the co-existence and simultaneous development including crossbreeding of subpopulations

of cost-effective feasible and infeasible solutions based on Pareto dominance. This yields a boundary

search approach that also promotes diversity in the gene pool throughout the progress of the optimi-

zation by exploiting the full spectrum of non-dominated infeasible solutions. The relative effectiveness of

small and moderate population sizes with respect to the number of decision variables is investigated

also. The results reveal the optimization algorithm to be efficient, stable and robust. It found optimal and

near-optimal solutions reliably and efficiently. The real-world system based optimization problem

involved multiple variable head supply nodes, 29 fire-fighting flows, extended period simulation and

multiple demand categories including water loss. The least cost solutions found satisfied the flow and

pressure requirements consistently. The best solutions achieved indicative savings of 48.1% and 48.2%

based on the cost of the pipes in the existing network, for populations of 200 and 1000, respectively. The

population of 1000 achieved slightly better results overall.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

An effective solution method that is reliable and easy to use is

required for the optimization of water supply systems that provide

an essential service in the communities they serve worldwide.

Optimization addresses not only the capital and operating costs

along with hydraulic performance and reliability but also increas-

ingly the efficient management of energy and scarce water re-

sources and other environmental concerns (Allam et al., 2016;

Cherchi et al., 2015; Kurek and Ostfeld, 2013; Matrosov et al.,

2015; Ren et al., 2016; Wang et al., 2016).

Genetic algorithms are used frequently in the optimization of

water distribution systems. Generally, genetic algorithms require

additional case-specific and/or external procedures to solve opti-

mization problems that have constraints and the execution times

can be excessive when applied to large optimization problems

involving real-world water distribution networks with hundreds of

pipes, especially those that require extended period simulation.

This paper investigates the computational efficiency of

constraint handling in multi-objective evolutionary optimization

algorithms for water distribution systems based on the coexistence

and simultaneous development including crossbreeding of sub-

populations of cost-effective feasible and infeasible solutions that

are non-dominated. This yields a boundary search approach that

also promotes diversity in the gene pool throughout the progress of

the optimization by exploiting the full spectrum of non-dominated

infeasible solutions.

Results for a real-world network with variable-head supply

nodes, variable demands, multiple demand categories and operating

conditions including fire-fighting flows are included to illustrate the

methodology. The relative merits of small and moderate population

sizes compared to the number of decision variables were investi-

gated also. The multiobjective genetic algorithm formulation we

developed does not require any additional case-specific or external

procedures for the minimum node pressure constraints. Embedded

in the genetic algorithm, the hydraulic analysis model can simulate

realistically both feasible and infeasible solutions, with fitness

directly related to the hydraulic properties.

Many optimization models have been proposed previously

including mathematical programming approaches such as linear
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and non-linear programming with the design variables assumed to

be continuous (Alperovits and Shamir, 1977). Evolutionary algo-

rithms have gained widespread acceptance in recent years. Some

examples include genetic algorithms (Dandy et al., 1996), ant col-

ony optimization (Ostfeld and Tubaltzev, 2008), particle swarm

optimization (Montalvo et al., 2008), simulated annealing (Marques

et al., 2015), shuffled frog leaping (Eusuff and Lansey, 2003), dif-

ferential evolution (Zheng et al., 2015), harmony search (Geem,

2006) and tabu search (Cunha and Ribeiro, 2004). Genetic algo-

rithms are used extensively in the optimization of water distribu-

tion systems in areas such as pump operation scheduling (Rao and

Salomons, 2007), leakage minimization (Creaco and Pezzinga,

2015) design and rehabilitation (Bi et al., 2015), water quality

optimization (Farmani et al., 2006) and service reservoir location,

design and operation (Prasad, 2010; Siew et al., 2016).

Inspired by Darwin's theory of evolution, genetic algorithms use

natural selection as the driving force. A genetic algorithm involves a

population of individuals that are represented as chromosomes,

each consisting of a set of genes that describe a solution. Individuals

are selected from the population to create a mating pool based on

their respective fitness levels. Individuals with a higher fitness level

have a higher probability of being selected to produce offspring that

represent new solutions. A very small proportion of the offspring

will mutate after reproduction. Genetic operators consist of selec-

tion, crossover and mutation. Crossover involves the creation of

new offspring by transforming two or more individuals. Mutation

randomly changes an individual to help increase genetic diversity.

Selection drives the search towards the regions with the fittest

individuals i.e. the best solutions. Roulette wheel and tournament

selection (Goldberg and Deb, 1991) are examples of selection op-

erators. Tournaments are often preferred as the roulette wheel

operator is characterised by rapid loss of genetic diversity that may

cause premature convergence (Goldberg and Deb, 1991). An

assessment of the operators applied in evolutionary algorithms is

available in McClymont et al. (2015).

There have been many attempts to enhance genetic algorithms.

Examples include Gray coding (Dandy et al., 1996), real coding

(Vairavamoorthy and Ali, 2000), integer coding (Barlow and

Tanyimboh, 2014), creeping or adjacency mutation (Barlow and

Tanyimboh, 2014; Dandy et al., 1996), variable mutation rate

(Kadu et al., 2008) and the mapping of redundant binary codes to

closed pipes (Saleh and Tanyimboh, 2014). Referring to the above-

mentioned schemes, the candidate solutions in a genetic algo-

rithm may be represented in different ways. Binary coding is a

common scheme where problem variables are represented by bit

combinations of 0s and 1s. Gray coding is similar to binary coding,

but differs in that only a single bit changes in the representation of

adjacent values of the decision variables. In real and integer coding,

genes are represented as real numbers and integers, respectively.

A simulation model helps ascertain the fitness of every indi-

vidual in the population of solutions. Vairavamoorthy and Ali

(2000) used a regression model that approximates the hydraulic

properties. Vairavamoorthy and Ali (2005) and Kadu et al. (2008)

used solution space reduction methods that limit the scope of the

search, to reduce the execution times of the algorithms. Also, par-

allel algorithms have been used to improve the execution times in

examples such as Balla and Lingireddy (2000) for model calibration,

Ewald et al. (2008) for the location of booster chlorination stations

and Barlow and Tanyimboh (2014) for pipe sizing.

Constraints in the optimization problems are often addressed

using penalty functions based on the severity of constraint viola-

tion, as in Kougias and Theodossiou (2013), for example. Many re-

searchers have attempted to address the difficulties associated with

penalty functions (Dridi et al., 2008). For example, Khu and

Keedwell (2005) considered node pressure constraints as

additional objectives. Prasad (2010) used a constraint dominance

tournament (Deb et al., 2002). Wu and Simpson (2002) developed a

self-adaptive penaltymethod. Farmani et al. (2005) proposed a self-

adaptive fitness procedure that does not require parameter cali-

bration. Saleh and Tanyimboh (2013, 2014) developed a penalty-

free approach for joint topology and pipe size optimization.

The optimization of real-world water distribution systems in-

volves multiple objectives that tend to be in conflict, e.g. mini-

mizing capital and operating costs whilst simultaneously

maximizing hydraulic performance and reliability. A multi-

objective optimization approach is suitable for such problems as

it produces a set of non-dominated solutions that are equal in rank.

Such solutions are said to be Pareto-optimal as it is not possible to

improve the solutions in any objective without making at least one

of the other objectives worse. Pareto-optimal solutions are practical

as they offer flexibility, since the final choice of the decision maker

is a trade-off.

Evolutionary optimization approaches such as genetic algo-

rithms are suited to multiobjective optimization problems (Konak

et al., 2006). Strength Pareto Evolutionary Algorithm (Zitzler and

Thiele, 1998), Nondominated Sorting Genetic Algorithm II (Deb

et al., 2002) and Pareto Archived Evolution Strategy (Knowles and

Corne, 2000) are some of the common multiobjective evolu-

tionary algorithms. Elitism is one of the key factors for successful

application of multiobjective evolutionary algorithms that helps to

prevent the loss of good solutions and achieve better convergence

(Bekele and Nicklow, 2005; Kollat and Reed, 2006; Zitzler et al.,

2000). The Nondominated Sorting Genetic Algorithm NSGA II is

popular due to its efficient nondominated sorting procedure and

strong global elitism that preserves all elites from both the parent

and child populations.

An additional advantage of NSGA II is that it requires few user-

specified parameters (Dridi et al., 2008). Its use in the optimiza-

tion of water distribution systems is widespread. For example,

Farmani et al. (2006) optimised the design and operation of a

network that included pump scheduling and tank location and

design. Jayaram and Srinivasan (2008) optimised design and

rehabilitation based on whole-life costing. Jeong and Abraham

(2006) optimised operational response strategy to mitigate the

consequences of deliberate attacks. Preis and Ostfeld (2008) and

Weickgenannt et al. (2010) optimised sensor placement for

contamination detection. Nicolini et al. (2011) optimised leakage

management. Additional applications of NSGA II in water distri-

bution systems include Saleh and Tanyimboh (2013, 2014) who

optimised topology and pipe sizing and Zheng and Zecchin (2014)

who investigated a two-stage optimization approach.

Furthermore, evolutionary algorithms can potentially locate the

neighbourhood that has the global optimum in the solution space

while local search methods can find local optima more rapidly. For

example, Haghighi et al. (2011) incorporated integer linear pro-

gramming while Barlow and Tanyimboh (2014) included local

search and cultural improvement operators. Wang et al. (2015)

have compared the performance of two hybrid search procedures

to NSGA II while other algorithms investigated previously include

ParEGO, LEMMO and PESA-II (di Pierro et al., 2009).

This article investigates the computational efficiency of

constraint handling in multiobjective evolutionary optimization

algorithms for water distribution systems based on the co-

existence and simultaneous development including crossbreeding

of subpopulations of cost-effective feasible and infeasible solutions

that are non-dominated. This yields a practical boundary search

approach that also promotes diversity in the gene pool throughout

the progress of the optimization by exploiting the full spectrum of

non-dominated infeasible solutions. The results revealed insights

on the relative merits of small and moderate population sizes
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compared to the number of decision variables also.

2. Optimization approach

Evolutionary algorithms typically start with a randomly gener-

ated set of potential solutions that may include both feasible and

infeasible solutions. To address violations of the node pressure

constraints in water distribution systems, penalty methods have

been applied widely (Kougias and Theodossiou, 2013; Ostfeld and

Tubaltzev, 2008). The major drawback of the penalty methods is

that in general additional case-specific parameters are required

whose calibration is generally challenging (Dridi et al., 2008; Saleh

and Tanyimboh, 2013; Siew et al., 2014).

2.1. Fitness assessment with particular reference to infeasible

solutions

In an attempt to alleviate the difficulties that theminimumnode

pressure constraints pose, Siew and Tanyimboh (2012b) developed

an approach in which violations of the minimum node pressures

are addressed in the hydraulic simulation model through pressure-

driven analysis. Pressure-driven analysis takes proper account of

the relationship between the flow and pressure at a demand node

(Gupta and Bhave, 1996; Tanyimboh et al., 1997). Solutions with

insufficient pressure do not satisfy the demands in full and the

resulting shortfall is a real measure of the deficiency in hydraulic

performance (Kalungi and Tanyimboh, 2003). Hence, pressure-

driven analysis addresses the minimum node pressure con-

straints seamlessly.

The genetic algorithm used herein to design the water distri-

bution system employs a pressure-driven extension of EPANET 2

(Rossman, 2000) known as EPANET-PDX (pressure-dependent

extension) (Seyoum and Tanyimboh, 2014a; Siew and Tanyimboh,

2012a). EPANET-PDX incorporates the pressure-dependent node

flow function that Tanyimboh and Templeman (2010) introduced,

in the hydraulic analysis model in EPANET 2. Siew and Tanyimboh

(2012a) developed EPANET-PDX by upgrading the source code of

EPANET 2 in the C/Cþþ programming language. Seyoum and

Tanyimboh (2014b) improved EPANET-PDX further for better per-

formance under conditions of extremely low pressure (Seyoum,

2015). Moreover, with increasing emphasis on water loss man-

agement due partly to more stringent regulations and greater

environmental awareness, leakage management based on

pressure-dependent modelling is known to be effective (Wu et al.,

2011). The network investigated subsequently in this article (Sec-

tions 3 and 4) includes water loss as a separate demand category.

Previous successful applications of the genetic algorithm

(abbreviated as PF-MOEA, i.e. penalty-free multi-objective evolu-

tionary algorithm) include design, rehabilitation and capacity

expansion applied to multiple benchmark networks in the litera-

ture including the Hanoi network, New York Tunnels and the town

of Wobulenzi, Uganda, network (Siew and Tanyimboh, 2012b; Siew

et al., 2014). Whole-life costing, water demand growth, temporal

variations in the structural integrity and roughness of pipes and

other factors were addressed. Overall, the algorithm achieved su-

perior results for all the optimization problems considered in terms

of cost, hydraulic performance and/or computational efficiency

compared to all other algorithms in the literature.

PF-MOEA is practical and requires no prior network simplifica-

tion or additional parameters. Moreover the algorithm has per-

formed well to date with the most basic operators i.e. single-point

crossover and single-bit mutation. By contrast the differential

evolution algorithm in Zheng et al. (2011) required complex and

extensive problem simplification and pre-processing based on a

combination of graph theory, non-linear programming with

commercial software and solution space reduction. Furthermore,

the methodology is limited in scope in that it is not readily appli-

cable to the more realistic real-world problems that involve reha-

bilitation, networks with pumps, multiple operating conditions

and/or continuously varying demands.

Similarly, Barlow and Tanyimboh's (2014) multiobjective

memetic algorithm utilised many operators (e.g. randommutation,

creeping mutation, local and cultural improvement operators) and

additional user-specified parameters (e.g. frequency of applying

local and cultural improvement operators, number of individuals

selected for cultural improvement, percentage of the non-

dominated front available for local improvement, etc.) that influ-

ence the effectiveness of the algorithm. In addition, Barlow and

Tanyimboh (2014) generated only the least-cost feasible solutions

as the algorithm searches only in the infeasible portion of the so-

lution space. PF-MOEA on the other hand provides a range of effi-

cient feasible and infeasible solutions that allow considerable

flexibility in choosing a particular solution.

Barlow and Tanyimboh (2014) compared the results of their

memetic algorithm to NSGA II using the Kadu et al. (2008)

benchmark network. The memetic algorithm sampled

1.01244 � 109 solutions in total. For the same problem, PF-MOEA

achieved comparable results by sampling only 15 � 106 solutions

(Siew et al., 2014). Furthermore, PF-MOEA achieved over 4000

feasible solutions that are cheaper than the previous best solution

in Kadu et al. (2008). It is worth noting also that the two previous

best solutions in Kadu et al. (2008) and Haghighi et al. (2011) were

infeasible.

For the benchmark network in Alperovits and Shamir (1977), PF-

MOEA achieved the least cost solution of $420,000 within 2600

function evaluations whereas Savic and Walters (1997) needed

250,000 function evaluations. To the best of our knowledge PF-

MOEA is the only algorithm that has consistently achieved good

results on the established benchmark problems, compared to all

other algorithms collectively. The preceding characterization

notwithstanding, its performance on complex problems with large

solution spaces remains entirely unknown. The aim of this paper is

to investigate whether the constraint handling approach intro-

duced in PF-MOEA is viable for serious computationally intensive

optimization problems in the real world.

2.2. Formulation of the multiobjective optimization model

The total capital and operating cost of the network and its hy-

draulic performance are the two conflicting objectives considered.

The two objectives produce a set of non-dominated solutions that

are equal in rank, based on the trade-off between cost and hy-

draulic performance. The first objective function is

f
ðiÞ
1 ¼ c

2
i ; i ¼ 1; :::; Np (1)

Np is the population size; i and (i) refer to the ith solution; ci is

the ratio of the cost of solution i to the cost of the most expensive

solution in the same generation.

ci ¼
Ci

MaxðCi; i ¼ 1; :::; NpÞ
; i ¼ 1; :::; Np (2)

Ci is the cost of solution i.

The second objective function is

f
ðiÞ
2 ¼

 

1

T

X

T

t¼1

st;i

!4

; i ¼ 1; :::; Np (3)

For solution i, st,i is a hydraulic performance measure that is the
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ratio of the total available flow of the network to the required flow,

for time step t of the extended period simulation. T is the number of

hydraulic time steps.

In the function f2, the expression in parentheses is the mean

value of the demand satisfaction ratio (DSR) for the network as a

whole, for the entire operating cycle (Ackley et al., 2001; Siew and

Tanyimboh, 2012b; Siew et al., 2014). Both objective functions take

values from zero to one; f1 is minimised while f2 is maximized

(Ackley et al., 2001). A solution that has a demand satisfaction ratio

that is less than unity is infeasible and cannot satisfy all the nodal

demands in full. The demands are satisfied in full if the distribution

network has sufficient capacity and pressure (Tanyimboh et al.,

1997).

2.3. Features of the proposed multiobjective evolutionary

optimization approach

The decision variables are represented using binary coding. The

genetic operators used are single-point crossover, single-bit mu-

tation per solution and binary tournament selection for crossover.

The crossover point is selected randomly. The probability of

crossover is always 1.0 by default. Bit mutation reverses the

selected bit from 0 to 1, or vice versa. The solutions that mutate are

selected randomly to fulfil the user-specified mutation rate. The

two extremes of the solution space are always included in the initial

population by default. The solution vector at the lower end consists

entirely of the smallest values of the decision variables. Conversely,

the solution vector at the upper end consists entirely of the largest

values of the decision variables. The remaining ðNp� 2Þ solutions

are generated randomly; Np, defined previously, is the population

size. A key feature of the algorithm is that it exploits the response

i.e. properties of all feasible and infeasible solutions generated in

full. For water distribution systems, an efficient and reliable

pressure-driven analysis procedure (e.g. EPANET-PDX) is thus a pre-

requisite.

PF-MOEA does not use constraint dominance (Deb et al., 2002).

Instead, the algorithm assesses and rates all feasible and infeasible

solutions in every generation strictly according to their costs and

hydraulic performances using f1 and f2, respectively. Moreover, if

the number of solutions in the best non-dominated front exceeds

the population size Np, an additional level of elitism formulated in

PF-MOEA ensures that the cheapest feasible solutions make up 30%

of the population in the next generation. Selection of the remaining

70% of the population considers the crowding distance. The

crowding distance (Deb et al., 2002) is a measure of the spatial

density of the solutions in the objective space that facilitates the

achievement of a relatively uniform distribution of solutions in the

Pareto-optimal front.

3. Network design example

The example provided to illustrate the properties of the opti-

mization algorithm is a water supply zone of a network in the UK.

The problem involves multiple loadings, multiple variable-head

supply sources plus temporal and spatial variations in the nodal

demands. The typical execution time of the algorithm for a single

optimization run with one million function evaluations is approx-

imately 30 days on aworkstationwith two quad-core 2.4 GHz CPUs

and 16 GB RAM. The system was optimised as a new network

design that was compared to the existing network, to reveal the

amount of spare capacity available for the purposes of long term

investment planning. Thus, for example, some of the savings un-

covered could be invested to improve water loss management.

3.1. Optimization problem specifications

The network consists of 251 pipes of various lengths, 228 de-

mand nodes of which 29 are fire hydrants at various locations, five

variable-head supply nodes and three demand categories. The de-

mand categories comprise domestic and10-h commercial demands,

andunaccounted forwater (i.e.water losses). The network also has a

fire demand of 1 h at each of the 29 fire hydrants located at different

positions in the network (Seyoum and Tanyimboh, 2014a). Water

loss in distribution networks is a serious problem for both devel-

oping and industrialised countries (FarleyandTrow, 2003; Thornton

et al., 2008; Wu et al., 2011) and consequently water loss manage-

ment is a priority forwater utilities. Some of the advantages ofwater

loss control include lower energy consumption and delaying the

development of new sources along with other associated socio-

economic and environmental benefits (Wu et al., 2011). Water los-

ses are thus a separate demand category in this network.

The minimum residual pressure required was 20 m at the de-

mand nodes, and 3 m at the fire hydrants based on a fire-flow

demand of 8 L per second at the hydrant. The water utility that

operates the network provided the system and operational data.

Ten commercially available pipe diameters were selected, based on

Fig. 1. Network topology and the unit costs of the candidate pipe diameters.
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the pipe diameters in the network that range from 32 mm to

400 mm. The 10 pipe diameters for 251 pipes provide 10251 feasible

and infeasible solutions in total. Fig. 1a shows the topology of the

networkwhile Fig.1b shows the candidate pipe diameters and their

respective costs per metre. The respective average heads at the

supply nodes were (HR1, HR2, HR3, HR4, HR5)
T ¼ (130.33, 129.94,

129.85, 129.88, 130.32 m)T.

Additional details on the pipes and nodes are available as sup-

plementary data in Fig. A1. The Darcy-Weisbach formula for the

headloss due to friction was used in the hydraulic analysis

(Rossman, 2000). The pipe roughness heights range from 0.01 mm

to 3.0 mm. To ensure consistent comparisons with the existing

network, both the network and dynamic operational data, taken

from a calibrated EPANET 2 model, were used in the optimization

without modification. Pipe roughness values for new pipes that are

smoother would likely yield cheaper solutions; however, the cali-

brated model inherently includes some built-in assumptions and

uncertainty. The extended period simulation was for a period of

31 h with a hydraulic time step of one hour.

There was a fire demand at a different hydrant in each hour of

the 31-h operating cycle except for the first and last hour. Flow

velocity constraints were not considered in the optimization pro-

cedure but were included in the results for completeness and

enhanced understanding of the system. Based on the British Stan-

dard for Water Supply Requirements for Systems and Components

Outside Buildings (BS EN 805:2000) velocities in the range

0.5e2.0 m/s may be appropriate and, in special circumstances, e.g.

fire-fighting flows, velocities up to 3.5 m/s can be acceptable.

3.2. Computational solution

The optimization problem has an enormous solution space of

10251 solutions, with spatial and temporal variations in the de-

mands that are significant. The problem is computationally inten-

sive, and was solved using high performance computing. The high

performance computing facility has 276 compute nodes. Each node

has dual Intel Xeon 2.66 GHz CPU of six cores each and 48 GB RAM

with the Linux operating system. The typical execution time of the

algorithm for a single optimization run with one million function

evaluations is approximately 30 days on a workstation with two

quad-core 2.4 GHz CPUs and 16 GB RAM.

A four-bit binary string with 16 i.e. 24 codes was used to

represent the pipe diameters. A one-to-one mapping of the 10 pipe

diameters to the 16 codes leaves six unallocated codes that are thus

redundant. The redundant codes were allocated one each to the

two smallest and two largest diameters and one each to the two

Table 1

Results and performance characteristics of the optimization algorithm.

Properties and criteria Number of simulations permitted

500,000 1,000,000 500,000

Number of optimization runs 20 10 10

Population size 200 1000 1000
aConstruction Cost (£)

Minimum 419,900 (0.09%) 419,514 (0.00%) 432,566 (3.11%)

Maximum 478,356 (14.03%) 432,643 (3.13%) 478,359 (14.03%)

Mean 439,311 (4.72%) 421,938 (0.58%) 446,297 (6.38%)

Median 436,129 (3.96%) 420,408 (0.21%) 441,545 (5.25%)

Standard deviation 15,074 4038 15,000
bNumber of Function Evaluations

to Achieve Convergence

Minimum 476,209 951,000 437,000

Maximum 500,000 998,000 499,000

Mean 493,190 973,700 488,200

Median 497,000 972,000 496,500

Standard deviation 7544 13,849 19,188
bCPU Time to Achieve

Convergence (hours)

Minimum 5.18 11.20 5.45

Maximum 7.16 13.43 6.81

Mean 6.65 12.81 6.43

Median 6.72 13.13 6.72

Standard deviation 0.39 0.82 0.52

a The values in parentheses are the percentage differences in cost relative to the minimum cost achieved of £419,514.
b Convergencehere relates to the best feasible solutionachieved in eachoptimization run. The respectivemeans andmedians of thenumbersof functionevaluationare close

to the respective maximum values permitted. This suggests that in theory further reductions in the construction cost may be possible with additional function evaluations.

Fig. 2. Influence of the population size on the convergence properties of the algorithm.
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diameters in the middle. When arranged in ascending order, the

allocation of the redundant codes is symmetrical and corresponds

to the 1st, 2nd, 5th, 6th, 9th and 10th diameters. Other approaches

for allocating redundant codes are available in the literature, e.g.

Saleh and Tanyimboh (2014). The crossover and mutation proba-

bilities were pc ¼ 1.0 and pm ¼ 0.005, respectively. Trial runs to

optimize pm and pc were not carried out.

In total, 30 optimization runs were performed. Two different

pollution sizes were investigated: (a) 20 runs with a population of

200; and (b) 10 runs with a population of 1000. For the smaller

population of 200 there were 2500 generations, i.e. 500,000 func-

tion evaluations per run. For the larger population of 1000 there

were 1000 generations, i.e. one million function evaluations per

run. The total number of function evaluations for each population

size was thus 10 million, i.e. 10 � 1,000,000 for the population of

1000 and 20 � 500,000 for the population of 200. The initial

populations were generated randomly, except for the cheapest and

most expensive solutions available that were included automati-

cally by default as explained previously in Subsection 2.3. The

cheapest solution has the smallest values of the decision variables

while the most expensive has the largest values, i.e. all the pipe

diameters were 32 mm or 400 mm, respectively.

Due to the complexity and size of the network, we considered

the performance of the entire network for fitness assessment in f2
in Eq. (3). Siewand Tanyimboh (2012b) used the performance of the

critical node to achieve much faster convergence. The critical node

is time dependent i.e. it changes continually based on the spatial

and temporal variations in the nodal demands and is the node with

the smallest residual pressure.

4. Results and discussion

The results achieved are summarised in Table 1, with additional

details provided as supplementary data. The minimum cost ach-

ieved was £419,514 within 985,000 function evaluations for the

population of 1,000, and £419,900 within 499,000 function evalu-

ations for the population of 200. The average, median and

maximum values of the minimum cost for the population of 200

were £439,311, £436,129 and £478,356 respectively. Corresponding

values for the population of 1000 were £421,938, £420,408 and

£432,643 respectively. The cost of the existing network is £809,700.

On average, savings of 45.7% and 47.9% were achieved, for

populations of 200 and 1000, respectively. The cheapest feasible

solutions achieved represent savings of 48.1% and 48.2%, for pop-

ulations of 200 and 1000 respectively. The standard deviation of the

minimum cost for the smaller population of 200 was £15,074. For

the larger population of 1000 the standard deviation was £4038.

These results suggest that the reliability of the algorithm is high

considering the complexity of the optimization problem addressed.

In each of the measures, the larger population of 1000 out-

performed the smaller population of 200. While the population of

1000 provided better results overall, the results would appear to

suggest that in a situation where computing resources and/or time

are limited, a population of 200 might be preferable. The conver-

gence properties of the algorithm and the influence of the popu-

lation size are summarised in Fig. 2. Convergence was faster with a

population Np of 200 than Np of 1000. With the smaller population,

there would be greater emphasis on exploitation than exploration.

The larger population would allow more exploration and diversity

in the population, with less selection pressure and slower progress.

Table 1 reveals that, within 500,000 function evaluations, the

smaller population outperformed the larger population. Given the

same tournament size of two, the selection pressure in the smaller

population is greater than in the larger population due to the

increased selection competition frequency in the smaller

population. Whereas the smaller population of 200 requires five

binary tournament selection cycles to produce 1000 new solutions

through crossover, the larger population of 1000 requires only one

cycle. Thus, on average, a larger population eliminates inefficient

solutions more slowly.

A single optimization run with 1,000,000 function evaluations

took approximately 30 days on a workstation with two quad-core

2.4 GHz CPUs and 16 GB RAM. On the other hand, to complete a

single optimization run consisting of 500,000 function evaluations,

the average CPU time was 6.7 h and the standard deviation was

0.4 h using high performance computing. For 1,000,000 function

evaluations the average CPU time was 13.17 h and the standard

deviation was 0.94 h using high performance computing. Each

optimization run was executed on a single node of the high per-

formance computer.

The solutions in the Pareto-optimal fronts of the 20 runs with a

population of 200 were combined from which the final set of non-

dominated solutions (199 solutions in total) was selected. Similarly,

for the 10 runs with a population of 1000, the final set of non-

Fig. 3. Consistency and accuracy of Pareto-optimal fronts achieved.
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dominated solutions (1083 solutions in total) was obtained after

combining the Pareto-optimal fronts. Fig. 3 shows the non-

dominated solutions achieved, and the consistent performance of

the algorithm.

On completing the optimization, the best solutions achieved

were re-analysed in EPANET 2 that is a demand-driven analysis

model to re-confirm their feasibility. Figs. 4e6 show the pipe di-

ameters, residual pressures at the nodes and pipe velocities,

respectively. The optimised solutions in general have smaller pipe

diameters and lower residual pressures than the existing network.

It may be noted, however, that the existing network has some pipe

diameters that are no longer commercially available. The minimum

residual pressure of 20 m at the demand nodes and 3 m at fire

hydrants were fulfilled for the entire operating cycle of 31 h. The

pressures at the fire hydrants far exceeded the minimum require-

ment of 3 m due to the proximity of the demand nodes.

In the optimised designs, 43 velocities in 27 pipes for the pop-

ulation of 1000, and 44 velocities in 28 pipes for the population of

200 exceeded the target value of 3.5 m/s. It was observed that high

velocities occurred in short sections of pipe that are about 1 m long

and located at the pipe junctions. Details of the connections and

fittings were not investigated in this research, as the data were not

available. The short pipe sections may include various connections

and fittings. The velocities that exceeded 3.5 m/s had arithmetic

means of 4.6 m/s and 4.7 m/s, respectively, for the populations of

1000 and 200.

While the velocities in the existing network were all less than

3.5 m/s (BS EN 805:2000), a large proportion of the velocities

seemed excessively low, based on considerations such as water age

and discolouration (Boxall and Saul, 2005; Furnass et al., 2013;

Seyoum and Tanyimboh, 2014a). The maximum velocity in the

existing network was 1.1 m/s. Based on the maximum velocity of

less than 2.0 m/s (BS EN 805:2000), it appears the network has

spare capacity as the optimised solutions indicate very clearly.

Although velocity constraints were not included in the optimiza-

tion, other feasible solutions in the Pareto-optimal front were

available for consideration, and if necessary, minor adjustments

could be made in addition. This may be an area for additional

research in the future.

5. Conclusions

This article addressed the efficacy of constraint handling in

multiobjective evolutionary optimization algorithms for water

distribution systems based on the coexistence and simultaneous

development of subpopulations of cost-effective feasible and

infeasible solutions throughout the execution of the algorithm. The

results for both small and moderate population sizes of 200 and

1000 respectively, relative to the number of decision variables,

show that the methodology of the search that involves straddling

the active constraint boundaries throughout the entire duration of

the optimization and promoting diversity in the gene pool based on

strict Pareto-dominance is indeed reliable and highly effective. The

fraction of the solution space sampled before finding optimal and

near optimal solutions was consistently less than 10�245 for the

problem investigated here. Consistently good results were achieved

without undue reliance on mutation.

The results showed the algorithm to be stable and capable of

finding optimal and near-optimal solutions reliably and efficiently.

The optimization problem involved multiple supply sources, mul-

tiple demand categories and extended period simulation. The al-

gorithm provided least-cost solutions that satisfied the flow and

pressure requirements consistently. The least-cost solution ob-

tained was lower in cost by approximately 48%, compared to the

existing network. Considering the relatively low rate of mutation

employed, progress towards the solution was consistent, with no

stalling or premature convergence. The pressure dependent anal-

ysis algorithm EPANET-PDX (Siew and Tanyimboh, 2012a)

embedded in the evolutionary optimization algorithm performed

reliably well also. It is thus suggested that the methodology be

considered for adaptation in other applications along with further

sophistication of the genetic operators.
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