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Antibiotic resistance is becoming an increasingly urgent threat to public health in both a clinical and 

community setting. Failure to combat this crisis is predicted to have catastrophic human and 

economic consequences, potentially leading to 10 million extra deaths per year by 2050 and costing 

the global economy up to 100 trillion USD.
1
 TŚĞ ͞E“KAPE͟ ŐƌŽƵƉ ŽĨ ƉĂƚŚŽŐĞŶƐ (comprising 

Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, 

Pseudomonas aeruginosa and Enterobacter species) are of particular concern.
2,3

 

Fluoroquinolones are an important class of bacterial type II topoisomerase (DNA gyrase and 

topoisomerase IV) inhibitors that show broad-spectrum activity and are highly effective in the clinic. 

In recent years however, the worldwide emergence of fluoroquinolone resistance has raised serious 

concerns regarding the future utility of this drug class.
4ʹ7

 Resistance occurs via a range of 

mechanisms including target-site gene mutations, overexpression of multi-drug resistance efflux 

pumps, modifying enzymes and target protection proteins.
8ʹ10

  

These factors have increased the need to develop new classes of antibiotics that tackle the issue of 

bacterial resistance. One approach is to identify and explore novel targets with no pre-existing 

antimicrobial resistance. Issues surrounding target validation along with a lack of physicochemical 

diversity within screening collections has hindered progress in this area.
11

 An alternative approach is 

to explore clinically validated targets for new compounds that show limited or no cross-resistance to 

existing antibiotics. This avenue removes the risk of target validation and has been employed 

effectively within several drug classes.
12

 

Recent  reports have described the use of isothiazoloquinolones and isothiazolopyridones as DNA 

gyrase inhibitors and some have displayed excellent antimicrobial activity.
13ʹ15

 Redx Pharma reports 

herein the synthesis, structure-activity relationships and in vitro evaluation of a novel class of 

isothiazolone inhibitors of bacterial type II topoisomerase. A compound from this series has recently 

been reported to display balanced inhibition of both the supercoiling activity of DNA gyrase and the 

decatenation function of topoisomerase IV.
16

 



  

The synthetic route to compounds 7a-o was designed to allow the late stage introduction of 

chemical diversity via manipulation of the chloro substituent within compound 6 (Scheme 1). 

Starting material 1 was converted to the tert-butyl imine and reacted with triethyl 

methanetricarboxylate to afford the pyridone 2. Chlorination and subsequent displacement with 

potassium thioacetate afforded thiol 4. Treatment with hydroxylamine-O-sulfonic acid generated the 

isothiazolone ring system 5. Trial coupling reactions using intermediate 5 were poor yielding. 

Protection of the amide groups with TIPS-Cl to afford 6 allowed the coupling reaction to proceed 

with improved yields. The protecting group was removed during the work up procedure. 

 

Scheme 1. General synthesis of isothiazolones. Reagents and conditions: (i) tert-butylamine, Ti(Cl)4, 

DCM, rt, 75% (ii) CH(CO2Et)3, (Ph)2O, 160
o
C, 53% (iii) (COCl)2, DCM, rt, 89% (iv) potassium thioacetate, 

DMF, rt, 78% (v) hydroxylamine-O-sulfonic acid, THF/H2O, K3PO4, rt, 79%(vi) triisopropylsilyl 

trifluoromethylsulfonate, 2,6-lutidine, rt, 57% (vii) amine, sodium tert-butoxide, Pd2(dba)3, (2-

biphenyl)di-tert-butylphosphine, toluene, 100
o
C, 4 - 40%. 

Regioisomers 8a-c were prepared in a similar fashion from the corresponding isomeric starting 

materials. 

 

Figure 1. Ciprofloxacin  

The route to prepare derivative 14 involved incorporation of the indazole at an early stage (Scheme 

2). Bromo-indazole 9 was lithiated and treated with N-methoxy-N-methyl butanamide to afford 

ketone 10. An analogous sequence of steps to Scheme 1 was then followed to afford the final 

product 14. 



  
 

Scheme 2. Synthesis of indazole derivative 14. Reagents and conditions: (i) n-BuLi, N-methyl N-

methoxy-N-methyl butanamide, THF, -78
o
C, 44% (ii) tert-butylamine, Ti(Cl)4, DCM, rt, 100% (iii) 

CH(CO2Et)3, (Ph)2O, 160
o
C, 43% (iv) (COCl)2, DCM, rt, 82% (v) potassium thioacetate, DMF, rt, 65% (vi) 

hydroxylamine-O-sulfonic acid, THF/H2O, K3PO4, rt, 20%. 

The antibacterial activity of these compounds was determined against a panel of Gram-positive and 

Gram-negative bacterial strains including S. aureus, A. baumannii, K. pneumoniae, P. aeruginosa and 

E. coli from the ESKAPE pathogens. Ciprofloxacin, a fluoroquinolone antibiotic, was also included as a 

positive control (Figure 1). The MICs (Minimum Inhibitory Concentrations), determined as previously 

described, are reported in Table 1 along with data for the highly sensitive and efflux-deficient 

(ȴacrA) E. coli N43 strain.
16,17

 

Table 1: In vitro antibacterial activity (MIC, µg/mL) of ciprofloxacin and isothiazolone compounds
a
.  

List R Ab Kp Pa Sa Ec  Ec N43  

CIP 
 

64 0.25 1 0.25 0.03 0.004 

5 

 

16 128 >128 8 16 0.25 

7a 

 

2 4 1 1 0.25 0.03 

7b 

 

1 4 1 0.5 0.015 0.001 

7c 

 

4 8 1 2 0.5 0.03 

7d 

 

16 2 0.06 0.12 0.008 0.001 



  

7e 

 

64 4 0.06 0.12 0.002 чϬ͘ϬϬϬϭ 

7f 

 

8 8 8 4 0.5 0.06 

7g 

 

64 64 32 4 4 1 

7h 

 

8 4 1 1 0.5 0.008 

7i 

 

>128 32 2 2 1 0.008 

7j 

 

>64 >64 64 16 32 1 

7k 

 

>64 >64 64 16 16 0.5 

7l 

 

>64 64 16 8 4 0.5 

7m 

 

16 2 1 0.015 0.12 0.008 

7n 

 

32 4 0.5 0.12 0.25 0.03 

7o 

 

>64 >64 4 0.12 0.5 0.12 

14 

 

2 16 4 0.12 0.5 0.004 

8a 

 

64 >128 >128 32 >64 8 

8b 

 

>128 >128 >128 32 N.D N.D 

8c 

 

>64 >64 >64 64 >64 8 

a
 Sa (Staphylococcus aureus ATCC 29213), Ab (Acinetobacter baumannii NCTC 13420), Kp (Klebsiella 

pneumoniae ATCC 700603), Pa (Pseudomonas aeruginosa ATCC 27853), Ec (Escherichia coli W4573), 

Ec N43 (Escherichia coli N43). CIP (ciprofloxacin). N.D (Not determined).  



  

Racemic 7a displayed broad-spectrum activity across most strains tested. The stereochemistry of 

enantiomers 7b and 7c had a limited effect on the activity. 

Removal of one or both methyl groups had a pronounced effect on activity as shown by 7d and 7e. 

Both compounds demonstrated increased potency against E. coli and P. aeruginosa in particular but 

also suffered a corresponding loss of potency against A. baumannii. This could be attributed to the 

increased polarity (Table 3) relative to the dimethyl parent compound 7c causing an increased 

susceptibility to the efflux pump mechanisms of A. baumannii.
18

  

Bicyclic amine analogues gave varying results with both 7f and 7g showing reduced activity. Potency 

for the 5,6-bicyclic analogue was restored by removal of the methyl group 7h. 

In comparison to 7d, homologated analogue 7i displayed reduced activity against all strains except 

for the E. coli N43 efflux-deficient strain. This suggests 7i may retain potency at the enzyme level but 

suffer from an increased efflux liability. 

Switching from a pyrrolidine ring to a 6-membered piperidine or piperazine was detrimental to 

activity as shown for 7j, 7k and 7l. The reduced activity against the E. coli N43 strain was considered 

to be indicative of reduced enzyme activity. 

A series of non-basic compounds were prepared and showed retention of activity in many Gram-

negative strains. Hydroxyl analogues 7m and 7n retained good activity against S. aureus, E. coli and 

P. aeruginosa. Difluoro analogue 7o retained reasonable potency against several strains and showed 

a low efflux ratio between E. coli N43 and its isogenic parent E. coli W4573. Indazole analogue 14 

retained broad-spectrum activity.  

Meta substitution was detrimental to activity as shown by examples 8a, 8b and 8c. Again, this was 

attributed to reduced enzyme activity as indicated by the relatively elevated MICs against the efflux-

deficient E. coli N43 strain. 

Point mutations within the QRDR (quinolone-resistance determining region) of gyrA, gyrB, parC 

and/or parE are a common source of fluoroquinolone resistance with mutations at S83 and D87 of 

GyrA being particularly prevalent.
19

 Representative compounds, 7a, 7g and 14, were tested against a 

panel of isogenic laboratory strains of E. coli bearing multiple target specific mutations (e.g. LM693) 

and efflux mutations (e.g. LM367).
20

 All compounds, including ciprofloxacin, displayed a similar fold 

change reduction in activity against LM625 and LM367 compared to the isogenic parent strain E. coli 

MG1655 (LM179). However, 7a was observed to show a much less significant decrease in activity 

against isogenic strains bearing a greater level of mutations (LM693 and LM705) compared to 

ciprofloxacin. The compounds were further evaluated against a panel of characterised MDR (multi-

drug resistant) clinical E. coli UTI (urinary tract infection) isolates (CH440, CH460, CH418 and CH448) 

which also included resistance obtained via horizontal gene transfer. 7a, 7g and 14 all showed a 

significantly reduced susceptibility to a range of key fluoroquinolone mutations in comparison to 

ciprofloxacin (Table 2). However, the elevated MIC values for the tested isothiazolones across both 

panels exposed an underlying level of fluoroquinolone cross-resistance. 

 



  

Table 2: Antibacterial activity (MIC, µg/mL) of ciprofloxacin and selected compounds against E. coli 

mutant strains 

    CIP   7a   7g   14 

Strain genotype MIC fold x 

WT 

  MIC fold x 

WT 

  MIC fold x 

WT 

  MIC fold 

x WT 

LM179
a
 Wild-type 0.016   0.5   4   0.5  

LM625
a
 GyrA S83L D87N 0.25 16  4 8  16 4  8 16 

LM367
a
 ѐmarR͕ ѐacrR 0.12 8  2 4  16 4  4 8 

LM693
a
 GyrA S83L D87N, ParC 

S80I 

32 2000  8 16  >64 >16  16 32 

LM705
a
 GyrA S83L D87N, ParC 

“ϴϬI͕ ѐmarR͕ ѐacrR 

64 4000  64 128  >64 >16  >64 >128 

CH440
b
 GyrA S83L D87N, ParC 

S80I E84V, ĂĂĐ;ϲ͛Ϳ-Ib-

cr
c
 

>64  >4000  16 32  >64 >16  16 32 

CH460
b
 GyrA S83L D87N, ParC 

S80I E84V, qepA
c
 

>64  >4000  16 32  64 16  16 32 

CH418
b
 GyrA S83L D87N, ParC 

S80I E84G, qnrA
c
 

64 4000  16 32  64 16  16 32 

CH448
b
 GyrA S83L, qnrS

c
 32 2000   16 32   32 8   16 32 

a
 isogenic laboratory strain 

b 
MDR clinical UTI isolate 

c
 relevant genotype 

 

Representative compounds were evaluated for in vitro toxicity as shown in Table 3. No toxic effects 

were observed in a Hep G2 mammalian cytotoxicity assay for all tested compounds. 7a was 

measured for hERG inhibition and displayed 84% inhibition at a concentration of 100 µM, with an 

IC50 of 20 µM. In line with previous literature reports describing the effects of logD and pKa on hERG 

inhibition, significant reductions in hERG inhibition were measured for both the more polar analogue 

7d and the less basic compound 7n, although subtle structural changes could also be playing a 

role.
21ʹ23

 

 

Table 3: In vitro safety profiles of representative isothiazolones and ciprofloxacin 

 

Compound HepG2          

(IC50, 

µg/mL)
a
 

logD7.4
b
 hERG (% block 

at 100µM)
c
 

CIP >128 N.D 28 

7a >128 1.4 84 (20) 

7d >128 1.2 34 

7n >16 1.5 22 

 
a
 Hep G2 cells incubated for 24 h at 37 

o
C in 5 % CO2 and viability determined using CellTiter-Glo® 

(Promega, WI, USA)  
b
 Partition coefficient (LogD) determined by  shake-flask method, using 10 mM 

phosphate buffer at pH 7.4 and n-octanol 
c 
Percent block of hERG K

+ 
channel measured via IonWorks 

at 100 µM. Value in parentheses indicates IC50 (µM) 

 



  

In summary, this paper describes the SAR and in vitro evaluation of a novel isothiazolone-based 

series of bacterial topoisomerase II inhibitors. Broad-spectrum activity was observed for many 

compounds and representative examples showed a promising in vitro safety profile. Examples from 

the series showed encouraging activity against a panel of MDR clinical E. coli UTI isolates in 

comparison to ciprofloxacin. Further work is required to understand the binding mode of the series 

and the impact this has on cross-resistance with fluoroquinolones. 
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