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Abstract

In this paper, we study two-period subproblems proposed by [1] for lot-sizing
problems with big-bucket capacities and nonzero setup times, complementing
our previous work [3] investigating the special case of zero setup times. In
particular, we study the polyhedral structure of the mixed integer sets related
to various two-period relaxations. We derive several families of valid inequalities
and investigate their facet-defining conditions. We also discuss the separation
problems associated with these valid inequalities.

1 Introduction

In this study, we investigate multi-item production planning problems with big bucket
capacities, i.e., each resource is shared by multiple items, which can be produced
in a specific time period. These real-world problems are very interesting, as they
remain challenging to solve to optimality and also to achieve strong bounds. The
uncapacitated and single-item relaxations of the problem have been previously studied
by [7]. The work of [6] introduced and studied the single-period relaxation with
“preceding inventory”, where a number of cover and reverse cover inequalities are
defined for this relaxation. Finally, we also note the relevant study of [5], who studied
a single-period relaxation and compared with other relaxations.

We present a formulation for this problem following the notation of [2]. Let NT ,
NI and NK indicate the number of periods, items, and machine types, respectively.
We represent the production, setup, and inventory variables for item i in period t by
xi
t, y

i
t, and sit, respectively. We note that our model can be generalized to involve

multiple levels as in [1], however, we omit this for the sake of simplicity.
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min
NT∑

t=1

NI∑

i=1

f i
ty

i
t +

NT∑

t=1

NI∑

i=1

hi
ts

i
t (1)

s.t. xi
t + sit−1 − sit = dit t ∈ {1, . . . , NT}, i ∈ {1, . . . , NI} (2)

NI∑

i=1

(aikx
i
t + ST i

ky
i
t) ≤ Ck

t t ∈ {1, . . . , NT}, k ∈ {1, . . . , NK} (3)

xi
t ≤ M i

ty
i
t t ∈ {1, . . . , NT}, i ∈ {1, . . . , NI} (4)

y ∈ {0, 1}NTxNI ; x, s ≥ 0 (5)

The objective function (1) minimizes total cost, where f i
t and hi

t indicate the setup
and inventory cost coefficients, respectively. The flow balance constraints (2) ensure
that the demand for each item i in period t, denoted by dit, is satisfied. The big bucket
capacity constraints (3) ensure that the capacity Ck

t of machine k is not exceeded in
time period t, where aik and ST i

k represent the per unit production time and setup
time for item i, respectively. The constraints (4) guarantee that the setup variable is
equal to 1 if production occurs, where M i

t represents the maximum number of item
i that can be produced in period t, based on the minimum of remaining cumulative
demand and capacity available. Finally, the integrality and non-negativity constraints
are given by (5).

2 Two-Period Relaxation

Let I = {1, . . . , NI}. We present the feasible region of a two-period, single-machine
relaxation of the multi-item production planning problem, denoted by X2PL (see [1]
for details).

xi
t′ ≤ M̃ i

t′y
i
t′ i ∈ I, t′ = 1, 2 (6)

xi
t′ ≤ d̃it′y

i
t′ + si i ∈ I, t′ = 1, 2 (7)

xi
1 + xi

2 ≤ d̃i1y
i
1 + d̃i2y

i
2 + si i ∈ I (8)

xi
1 + xi

2 ≤ d̃i1 + si i ∈ I (9)
∑

i∈I

(aixi
t′ + ST iyit′) ≤ C̃t′ t′ = 1, 2 (10)

x, s ≥ 0, y ∈ {0, 1}2×NI (11)

Since we consider a single machine, we dropped the k index from this formulation,
however, all parameters are defined in the same lines as before. The obvious choice
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for the horizon would be t+1, in which case the definition of the parameter M̃ i
t′ is the

same as of the basic definition of M i
t+t′−1

, for all i and t′ = 1, 2. Similarly, capacity

parameter C̃t′ is the same as Ct+t′−1, for all t
′ = 1, 2. Cumulative demand parameter

d̃it′ represents simply dit+t′−1, t+1
, for all i and t′ = 1, 2, i.e., d̃i1 = di1,2 and d̃i2 = di2. We

note the following polyhedral result for X2PL from [1].

Proposition 2.1 Assume that M̃ i
t > 0, ∀t ∈ {1, . . . , NT}, ∀i ∈ {1, . . . , NI} and

ST i < C̃t, ∀t ∈ {1, . . . , NT}, ∀i ∈ {1, . . . , NI}. Then conv(X2PL) is full-dimensional.

For the sake of simplicity, we will drop subscript t and symbol ˜ in the following
notations. In this paper, we investigate the case of ai = 1, ∀i ∈ {1, . . . , NI} with
nonzero setups. We establish two relaxations of X2PL and study their polyhedral
structures. For a given t, we define the first relaxation of X2PL, denoted by LR1, as
set of (x, y) ∈ R

NI × Z
NI satisfying

xi ≤ M iyi, i ∈ I

NI∑

i=1

(xi + ST iyi) ≤ C

xi ≥ 0, yi ∈ {0, 1}, i ∈ I

Next, we present a result from the literature [4] concerning this relaxation.

Definition 2.1 Let S1 ⊆ I and S2 ⊆ I such that S1 ∩ S2 = ∅. We say that (S1, S2)
is a generalized cover of I if

∑
i∈S1

(M i + ST i) +
∑

i∈S2
ST i − C = δ > 0.

Proposition 2.2 (see [4]) Let (S1, S2) be a generalized cover of I, and let L1 ⊆
I\(S1 ∪ S2) and L2 ⊆ I\(S1 ∪ S2) such that L1 ∩ L2 = ∅. Then,

∑

i∈S1∪L1

xi +
∑

i∈S1∪S2∪L1∪L2

ST iyi −
∑

i∈S1

(M i + ST i − δ)+yi −
∑

i∈S2

(ST i − δ)+yi

−
∑

i∈L1

(qi − δ)yi −
∑

i∈L2

(ST
i
− δ)yi ≤ C −

∑

i∈S1

(M i + ST i − δ)+ −
∑

i∈S2

(ST i − δ)+

is valid for LR1, where A ≥ max(maxi∈S1
(M i+ST i),maxi∈S2

ST i, δ), qi = max(A,M i+

ST i), and ST
i
= max(A, ST i).

For a given t, second relaxation of X2PL, denoted by LR2, can be defined as the
set of (x, y, s) ∈ R

NI × Z
NI × R

NI satisfying

xi ≤ M iyi, i ∈ I

xi ≤ diyi + si, i ∈ I

NI∑

i=1

(xi + ST iyi) ≤ C

xi ≥ 0, yi ∈ {0, 1}, si ≥ 0, i ∈ I
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In this talk, we will present the trivial facet-defining inequalities for LR2, and
then derive several classes of valid inequalities such as cover and partition inequali-
ties. We will also present item- and period-extended versions of some of these families
of inequalities, and we will establish facet-defining conditions for all families of in-
equalities. We will also discuss the separation problems associated with these valid
inequalities.
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