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ABSTRACT 

Space robotics has received significant attention from both theoretic research and applications. The mission 

in future will be involving and be heavily supported by different robotic systems, such as planetary rovers 
and manipulators for orbital servicing, etc[1]. The harsh environment in space can severely affect the 

operating safety of space robotic systems and therefore the lifecycle reliability problem and prognostic health 

management have paramount importance to make the space robotic systems more successful and safer in 

future space missions. Though there has a great deal of research on failure detection, fault diagnosis and 

condition monitoring for conventional space systems [1-2]  and other engineering applications such as 

nuclear power station[3-4], it has a lack of research on the general  methodology for both the reliability 

design and health management of  space robotic systems to improve the operating safety. 

This paper proposes an integrated framework (named as iRPHM) in which  the higher reliability is designed 

for space robotic systems by taking advantage of reliability-based intelligent design optimization while 

considering the expected random loadings. The prognostic health management (PHM) is implemented in the 

proposed framework to decrease the failures arising from the unexpected events in harsh space environment.  

As shown in Figure 1, the integrated framework iRPHM has mainly four steps to deliver its objectives, which 
include: 

(1) Failure mechanism analysis under harsh space environment 

During the operation in space, the harsh space conditions such as vacuum, microgravity, extreme temperature, 

micrometeoroid and space debris will affect the performance of robotic systems. In the vacuum condition, the 

adsorbed gas providing lubrication volatilizes between the mechanism joints to increase the coefficient of 

friction, which could lead to dry friction or even cold welding. The microgravity will reduce the pressure 

between the joints to result in big shocks. The different liner expansion coefficient of components, internal 
stress due to the time-variant temperature will be formed and the material strength and motion accuracy of 

mechanism will be influenced as well.  Micrometeoroid and space debris will cause shocking to the robotic 

systems to accelerate the degradation process and even produce fracture. The space conditions exhibit not 

only randomness but also time-variance. Therefore failure mechanism analysis under complex space 

conditions is a challenging research topic. 

A feasible way to address the above challenge is to construct a bond graph by considering the loading 

location, loading time and so on to analyze the energy transformation. The dynamic simulation model is then 

built to study the loading allocation. The failure mechanism could be analyzed by combining the allocated 

loading with failure modes, effects and criticality analysis (FMECA). 
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Figure 1: Intelligent reliability and prognostic health management for space robotic systems 

 

(2) Reliability indexes quantification    

There are usually several failure modes, which are furthermore time-dependent due to time-dependent 
loadings and correlated due to the common causes. Time-dependent copula function is a typical 

representative to describe the time-dependent correlation among time-dependent failure modes. Therefore it 

is proper to build the time-dependent system reliability model. 

Because of the simplification of the model, the approximation of loadings when the time-dependent 

reliability computer model is built based on physics of failures, the built model may be a little far away from 

the actual one. Model validation and updating are needed to improve the confidence level. Field data, 

operating data and experimental data are the information sources for the model validation. Time-dependent 

B-Distance model validation index could be used to testify the confidence level of the computer model and 

updating optimization could be conducted for the optimal model parameters. 

For the updated time-dependent reliability model, the time-dependent reliability analysis methods, such as 

crossing rate method [5], extreme value distribution method [6], composite limit state method [7], Gamma 
process [8] and subset simulation with splitting method [9], could be implemented for time-dependent 

reliability analysis. The corresponding reliability indexes, such as reliability function, failure rate, mean time 

to failure (MTBF) can be computed.  

(3)  PHM framework and analysis 

The PHM framework could be built by studying the sensors network configuration, fault diagnosis, fault 

prognosis, operation decision-making and health management. According to the structure and importance of 

components, the sensors network configuration is determined under the guarantee of detection accuracy. 

Adaptive fault diagnosis is one of important trends and fault diagnosis with hidden Markov model is a 

realization approach, which is an appealing research topic in the fault diagnosis field. As one important part 

in the proposed framework, fault prognosis can provide information for operational decision-making. Fault 



 

IET,IMechE, SSI AND SMeSTech SPACE ROBOTICS SYMPOSIUM, Glasgow, UK 

 

prognosis based on wavelet neural network could achieve the goal of dynamic prediction and has attracted 

some attentions. The preventive operation for space robotic missions could be made according to the 

reliability or conditions given from the fault prognosis process.  

(4) Integrated framework of reliability-based design and PHM 

The system reliability-based design model and system PHM design model could be built and then integrate 

them according to the system lifecycle reliability and cost. With considering the cost produced from design, 

material, manufacturing, launching, and operations, the overall cost model could be built.  With the reliability 

as constraints and minimal cost as objective, the reliability-based design model is then obtained. Accounting 

for the cost of sensors network, (e.g.[11]), monitoring, fault diagnosis, fault prognosis and operations, the 

cost model of the PHM framework could be developed. A function considering the acquisition ability of 

sensors, fault diagnosis ability, fault prognosis ability is built as the PHM ability. The PHM design model is 

built by minimizing the cost under the satisfaction of PHM ability. Combining the reliability-based design 
with the PHM design model, the integrated framework is then constructed. In the proposed framework the 

CIAD is employed to optimise and resolve the integrated framework for getting the optimal structural 

parameters, sensors network configuration and operational decision-making to ensure the operating safety of 

space robots. 

(5) Computational intelligence aided design for iRPHM  

 

Figure 2: Computational intelligence aided design for iRPHM 

The computational intelligence aided design (CIAD)[10] approach will be utilized to construct and optimise 

the iRPHM, as given in Figure 2, there are five steps as follows: step1, the input data, for example, Field data 

under specific outer-space conditions for space robotics; step2, the iRPHM process for space applications; 

step3 is the `CI integrated solver' that optimises the parameters for the fitness function of the IRPHM; step4 

is the validation step. In particular, performance criteria are employed to assess the optimal results, and then 
decide whether the optimisation process should continue (NO), or it should be terminated and move to step5 

(YES); step5 produces the final results and completes the post-processing tasks. More specifically, this step 

reports the optimal solution, analyses and visualises the results, and presents the recommendations to robotics 

engineers or mission operators.  

As shown in Figure 3, the conceptual framework of `Computational intelligence integrated solver (CIS)' 

comprises three parts: data input, CI Integrated solver and result output, in which, Part 1: Data Input (point 

A). This part prepares the data input for the CI Integrated solver. It collects, filters, stores, and pre-processes 

data originated from various sources, such as statistical data, simulation analyses, and system design reports, 

etc.  
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Figure 3:  Computational intelligence integrated solver (CIS)[10] 

Part 2: CI Integrated solver. In this part, a set of nature-inspired intelligent computational approaches are 

integrated into one solver to optimise complex real-world problems, which primarily involves one or more of 

the following methods: artificial neural networks, genetic algorithm, fuzzy logic, simulated annealing, 

artificial immune algorithms, and swarm intelligence algorithms, etc.  

Part 3: Result Output (point B). This part reports the final results from Part 2. As also shown in Figure2, the 

data-flow from Steps 4 to 3 is the input of the `CI integrated solver' interconnected with point A, and the 

data-flow from Steps 3 to 2 is the output of the `CI integrated solver' interconnected with point B. 
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