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Automatically Detecting and Correcting Errors in

Power Quality Monitoring Data
Steven M. Blair, Member, IEEE, Campbell D. Booth, Gillian Williamson, Alexandros Poralis,

and Victoria Turnham

Abstract—Dependable power quality (PQ) monitoring is cru-
cial for evaluating the impact of smart grid developments.
Monitoring schemes may need to cover a relatively large network
area, yet must be conducted in a cost-effective manner. Real-time
communications may not be available to observe the status of
a monitoring scheme or to provide time synchronization, and
therefore undetected errors may be present in the data collected.
This paper describes a process for automatically detecting and
correcting errors in PQ monitoring data, which has been applied
in an actual smart grid project. It is demonstrated how to: unam-
biguously recover from various device installation errors; enforce
time synchronization between multiple monitoring devices and
other events by correlation of measured frequency trends; and
efficiently visualize PQ data without causing visual distortion,
even when some data values are missing. This process is designed
to be applied retrospectively to maximize the useful data obtained
from a network PQ monitoring scheme, before quantitative
analysis is performed. This work therefore ensures that insights
gained from the analysis of the data—and subsequent network
operation or planning decisions—are also valid. A case study
of a UK smart grid project, involving wide-scale distribution
system PQ monitoring, demonstrates the effectiveness of these
contributions. All source code used for the paper is available for
reuse.

Index Terms—Distribution systems, harmonics, power quality,
time synchronization.

I. INTRODUCTION

P
OWER quality (PQ) monitoring is important for measur-

ing the effectiveness of smart grid implementations and

trial projects. Wide-scale monitoring is increasingly feasible,

and these schemes can provide utilities and customers with

information regarding the operation of converter-connected

devices, non-conventional loads, energy storage, and novel

automation and control systems [1], [2].

The validity of PQ monitoring data must be verified before

any conclusions can be confidently drawn from these data; this

is particularly important for trial projects, where it is critical to

maximize the understanding of novel technologies and meth-

ods. Furthermore, although accurate PQ monitoring devices

are becoming more cost-effective [3], large-scale monitoring

schemes may be expensive to implement, may operate for a

limited time, and may not have real-time communications for

managing the operation of the scheme. A relatively simple

error, such as an incorrect current sensor polarity, can affect
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multiple derived measurements and can entail a complex and

ad hoc post-processing effort to correct the initial error, to

avoid distorting the results; as noted in [4], the complexity of

PQ data management and analysis can be more costly than

the equipment. If undetected, such an error could result in

invalid conclusions and actions being taken. It is therefore

important that these errors can be detected and, where possible,

a clear and robust procedure must be defined to correct these

errors in order to maximize the useful data extracted from the

monitoring scheme. It is also important that PQ monitoring

data can be readily visually inspected and therefore that the

data are graphically represented faithfully, without distortion

or aliasing.

There is a significant body of work which discusses meth-

ods for: automated event detection, classification, and feature

extraction from PQ monitoring data [5]–[8]; the removal of

outliers or “bad” data [9], [10]; and indexing and selecting

appropriate PQ monitoring data for later analysis work [11].

However, this paper focuses on a different, but fundamental,

issue: comprehensively validating that the raw PQ data are

correct. Existing standards such as IEC 61000-4-30 describe

appropriate PQ measurement methods, but this paper addresses

salvaging the maximum useful data from a monitoring scheme

which has already been completed.

There are three main contributions in this paper: 1) a

novel process for counteracting accidental monitoring device

installation errors is defined in Section II; 2) validation and

correction of time synchronization for multiple PQ devices,

as described in Section III-C; and 3) the analysis of methods

for correctly and efficiently visualizing PQ data, given in

Section IV. The successful application of these methods is

demonstrated in Section V in the context of a recent large-

scale smart grid trial project.

II. CORRECTING PQ MONITORING DEVICE INSTALLATION

ERRORS

A. Feasibility

It is possible for PQ monitoring device installation errors

to significantly affect the collected data, thereby producing

misleading results from subsequent analysis of the data if

undetected. This problem is especially pertinent to large-scale

monitoring schemes which—to minimize cost—do not have

remote communications to validate the device functionality

during the course of the monitoring scheme. Potential installa-

tion errors include [12]: wrong sensor polarity; wrong voltage

or current sequence; correct voltage and current sequence,

but inconsistent phase order (e.g., Va, Vb, Vc and Ib, Ic, Ia);
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TABLE I
FEASIBILITY OF AUTOMATED DETECTION AND CORRECTION OF

INSTALLATION ERRORS

Potential installation error Can be

detected?

Can be

corrected?

Voltage phase A does not match system phase A No No

Incorrect voltage sequence Yes Yes1

Current phase A does not match voltage phase A Yes2 Yes2

Incorrect current sequence Yes2 Yes2

Incorrect current polarity Yes2 Yes2

1If excessive negative sequence voltage is measured, the measurements (both

voltage and current) from phases B and C can be swapped to correct the

sequence. However, it is not possible to evaluate if the phases are connected to

the correct system phases without additional information (such as correlation

of a specific triggered event with another device).
2With certain assumptions and limitations, as described in Section II-B.

or combinations of these issues. These issues may not be

identified until the monitoring scheme has been completed.

However, it is possible to detect and correct some of these

problems retrospectively, based on assumptions of the normal

operation of three-phase systems. For example, it can be

assumed that three-phase voltages and currents should be

predominantly positive-sequence, and that the direction of real

power flow should be consistent for all phases. Other rules

could be applied based on knowledge of the system being

monitored.

Table I summaries several types of installation errors and

identifies those which can be automatically detected and cor-

rected. Without additional information, it is not possible to val-

idate that the voltage connections are absolutely correct; only

the voltage sequence can be validated. However, it is assumed

that voltage connection errors are less likely than for current

sensor connections (due to current sensors possibly lacking

color-coding and the ease with which they can be “clamped-

on” with the wrong polarity), and that voltage polarity errors

are not possible for systems with a star/wye configuration

where there is a common neutral point. The process for

resolving current sensor connection errors is described in

Section II-B.

B. Detailed Current Phase Validation and Correction Process

It is assumed that each PQ monitoring device records

the magnitude and angle of the fundamental component of

the voltage and current in each phase. Typically, the phase

angles will be given relative to the measured phase A voltage.

Therefore, the current phasors, as depicted in Fig. 1, can be

tested for their expected locations. There are six permutations

of current phase connections (e.g., Ia, Ib, Ic; Ib, Ic, Ia; etc.) and

a further 23 possibilities for the polarity of each phase, leading

to a total of 48 configurations (two of which are illustrated in

Fig. 1a). It is possible to unambiguously restore the correct

phase configuration from any possible erroneous configuration.

The detailed process is described in Fig. 2. It is important that

the current magnitude measurements are within the sensor’s

rated range because otherwise the phase response of the sensor

may be unreliable. The initial presence of a phase connection

error or sensor polarity error can be detected by comparing

60° A
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A

C

B

(a) Unity power factor

60° 

A

B

C

A

C

B

20° 

(b) A power factor of 0.94 lagging
(equating to an angle shift of 20º)

Fig. 1. Expected regions for current phasors with different power factors (for
both correct and incorrect sensor polarity)

the negative sequence current magnitude to a threshold (such

as >0.5 pu, relative to the rated current) or by the angle for

any phase being outside the expected region given in Fig. 1a

(i.e. within ±30° for phase A, 210° to 270° for phase B,

and 90° to 150° for phase C). The sensitivity of this check

can be improved by ignoring the magnitudes of the current

phasors in the negative sequence calculation (by assuming 1 pu

magnitude), thereby excluding the impact of current unbalance

which is common in three-phase LV networks [13]. If an error

exists, the phase can be reassigned based on the expected

locations given in Fig. 1a.

This approach applies to systems where, for all three phases:

• The real power flow is consistently in one direction i.e.

there are no significant distributed generation connections

on just one or two phases,

• The power factor is greater than approximately 0.866

(30º) leading or lagging, and

• The power factor is similar.

As demonstrated in Fig. 1b, it is not possible to distinguish

between a correct phase configuration with relatively low

power factor (<0.866) and certain erroneous configurations.

This process can be repeated for every time-step in the

sampled data or, if it is known to represent the remaining

data consistently (i.e., there were no changes to the sensor

configuration over time), the first sample can be used to define

the pattern for all of the data. In general, it is advisable to

remove the initial samples and to delete “isolated” samples at

the start of the capture. This is because the device may be

switched on and off several times during the initial commis-

sioning and testing (during which the connections may not

be correct). If the power factor is known to be greater than

the threshold of 0.866 (30º), which is typical for residential

demand, this process can be fully automated; otherwise manual

reassignment of the phase connections and polarities may be

required.

For the large-scale monitoring scheme described in Section

V, installation errors were automatically detected in 21 out

of 77 PQ monitoring devices. In 18 cases, the errors can be

resolved automatically and the data can be confidently used

for further analysis. In the three remaining cases, the presence

of low (or cyclically-low) demand affects the accuracy of the

current sensors (which were rated for a minimum of 50 A)

and therefore distorts the measurements, despite the phase

connections likely being correct.
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Fig. 2. Current sensor connection validation and correction

C. Updating Derived Parameters

Parameters which are derived from the raw voltage and

current measurements will also be affected by device instal-

lation errors but, in some cases, can similarly be corrected

automatically. Depending on the type of error, the following

corrective action should be applied:

1) If a phase connection was determined to be incorrect

(e.g., connected in negative sequence), then the individ-

ual phase data values for all captured data (e.g., THD,

real power, etc.) should be reassigned. Furthermore,

the positive and negative sequence values, if recorded,

should be recalculated from the new individual phase

values.

2) If a current sensor polarity is determined to be incorrect:

a) Invert the measured current values for the affected

phase and recalculate all derived parameters, such

as real power and power factor.

b) If the monitoring device records minimum and

maximum values of the affected phase over the

sampling period, these should be inverted and

swapped. An illustrative example for a single phase

is given in Fig. 3.

c) The three-phase average values for each parameter,

if recorded, should also be recalculated from the

new individual phase values. Some derived param-

eters, such as the minimum and maximum negative

sequence current, cannot be recovered for certain

types of errors because they are calculated over the

entire measurement reporting period; these values

should be discarded.

III. VALIDATING AND CORRECTING TIME

SYNCHRONIZATION

A. Overview of Method

It is important to have confidence in the time-stamps of

PQ data when comparing data from multiple measurement

locations, or when relating measurements to other network

events such as smart grid automation and control interventions

(as required for the case study in Section V). To reduce cost,

each monitoring device may not be fitted with accurate GPS-

based or communications-based time synchronization meth-

ods, and instead will rely on a local clock within the device

for time-stamping measurements. The clock may have been

set incorrectly and may drift over time.

However, assuming that the monitoring devices record mea-

sured frequency, it is possible to retrospectively verify the

time synchronization by correlation of the measured frequency

trends over time [14], because measured frequency should be

approximately the same at all locations throughout an intercon-

nected AC power system at any instant in time. Furthermore,

if a device’s clock is found to be inaccurate, it is possible to

calculate the time offset and compensate for this when reading

data. A simplified illustration of this method is given in Fig. 4,

where the clock time offset, ∆t, exhibited by Monitor 3 can be

corrected by comparison with the measured frequency trends

from Monitor 1 and Monitor 2.

B. Frequency Trend Correlation

By assuming that, at a given instant in time, the majority of

PQ monitoring devices retain accurate clocks, it is possible to

correlate the frequency measurements from a single device

with the mean value across all devices. If the frequency

measurement from device i out of n at time t is fi,t , the mean

frequency measurement from all devices at time t is mt as

follows:

mt =
∑

n
i=1 fi,t

n
(1)

In other words, mt is the mean of each “column” of

frequency measurements at an instant in time (as shown

graphically in Fig. 5). Therefore, for convenience, vectors of

all device frequency measurements (Fi) and the corresponding

mean values (M) within a window size, w, can be calculated

as follows:

Fi =
[

fi,1 . . . fi,w

]

(2)

M =
[

m1 . . . mw

]

(3)

A window size of 1 day gives w= 288 samples for 5-minute

sampling. The correlation coefficient [14], ρ , between the 288

frequency measurements for a given monitoring device and

the 288 mean values can be calculated as follows, where X is

the mean of a given vector X , and σX is the standard deviation

of X :
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Fig. 3. Example of real power average, minimum, and maximum correction
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Fig. 4. Overview of frequency trend synchronization

ρ (Fi,M) =
∑

w
t=1

(

fi,t −Fi

)(

mt −M
)

(w−1)σFi
σM

(4)

A correlation coefficient value of ρ (Fi,M) = 1.0 signifies

that the two frequency trends are fully positively linearly

correlated. A threshold of ρ (Fi,M) > 0.9 has been used

to determine the condition for monitoring device i being

sufficiently correlated with the mean, such that the clock of

device i can be trusted. The output of this process is a day-

by-day assessment of the “trustworthiness” of the clock for

each device. A minimum number of monitoring locations

must have data available for each window before the time

synchronization detection process is attempted; a threshold of

20 locations has been used for the case study in Section V.

Fig. 5 illustrates typical results for a window size of 1 day

(with most columns not shown for brevity) of real field data

from the case study in Section V. The frequency measurements

are 5-minute average aggregate values, and each shaded col-

umn represents a 5-minute period. The entire distribution of

frequency measurements is color-coded as a heat map between

white (relatively low frequency) and dark-orange (relatively

high frequency). The mean of each “column” of frequency

measurements is also shown. The final row contains “third-

party” measurements of the UK system frequency, obtained

from [15]; the time-stamps for both sources of data have been

aligned (although the capture rates do not precisely match

which affects the correlation results). Note that the mean

and third-party measurement rows each have independent heat

maps from the device frequency measurement window.

In the majority of cases, the frequency measurements are

well-correlated—both with each other (i.e., with the mean),

and with the third-party frequency measurement. This is

indicated by each column being approximately the same shade,

and this pattern is consistent across the full time range of data.

Therefore, this confirms that these monitoring device internal

clocks have been set correctly and are reliable within approxi-

mately 5 minutes (i.e. the accuracy of the time synchronization

depends on the measurement period), which is sufficiently

accurate for the power quality analysis tasks described in

Section V. In some cases, such as monitoring locations 1, 2,

and 16 in Fig. 5, the frequency measurement is not consistently

aligned. The following section describes how the data can

be salvaged by automatically correcting the time-stamps. A

further improvement to the yield of usable measurements can

be obtained by assuming that relatively short gaps in time

synchronization validity (which may occur due to the device

being briefly unpowered), between periods which have been

validated, can also be “trusted”.

C. Automatically Correcting Time Offsets

As noted in Section III-A, the measured frequency trends for

some devices may not correlate with the other measurements,

implying that these devices’ internal clocks have not been

set consistently. It is possible to correct the clocks for these

devices by detecting the clock offset. This can be achieved by

sliding the window of frequency measurements, as described

in Section III-B, backwards or forwards in time until the

correlation threshold is met; i.e., the window used for cal-

culating Fi is adjusted, while M is held constant. To reduce

execution time, the method used in the case study searches for

the first occurrence which satisfies the correlation threshold.

This avoids the need for a time-consuming exhaustive search

of all possible offsets, particularly given that the majority of

time offsets are within the relatively small offset of 1 hour.

A benefit of the proposed approach is that correlation of

frequency measurements provides an absolute time reference

(within the accuracy of the measurement period). As described

in Section III-B, the process is performed continually to cal-

culate the clock offset over time (e.g. an interval of one day).

Therefore, the proposed method includes protection against

clock drift due to a new offset being calculated at regular

intervals for each PQ monitoring device.

IV. VISUALIZATION OF LARGE-SCALE PQ TIME-SERIES

DATA

A. Requirements

It is important to be able to graphically view recorded

PQ data in a simple and consistent way; along with the

automated methods described in Sections II and III, this is

important for validating and understanding PQ data. Analysis

of the PQ data may also require visualization of short periods

(e.g., one day) or long-term trends (e.g., multiple years).
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Fig. 5. Heat map of typical frequency trend correlation results from the case study field data

For visualizing trends over a relatively long period of time,

it is critical to properly re-sample the time-series data. For

example, a sampling period of 5 minutes should result in

over 100,000 captured values per year, per measurand, which

must be down-sampled for plotting annual trends. This is

essential for practical reasons (even high-resolution computer

displays have a relatively small number of horizontal pixels

and cannot meaningfully represent very granular data) and for

efficient computational performance (to avoid time-consuming

operations on unnecessarily-large data sets).

Therefore, the re-sampling algorithm must be capable of

substantially reducing the number of data points, without

excessive computational time or complexity. The algorithm

must avoid aliasing and must deal with missing data el-

egantly. Furthermore, some PQ monitoring devices record

mean, maximum, and minimum values over the sampling

period, which are important for understanding actual system

characteristics such as accurately determining maximum de-

mand; each data type must be re-sampled appropriately to

preserve this information. Care must be taken to ensure that the

re-sampling algorithm correctly “centers” each data point on

the appropriate time-stamp. An appropriate and efficient data

storage mechanism is also required for achieving responsive,

real-time data queries for visualization applications involving

relatively large quantities of PQ data [16].

B. Re-sampling of PQ Data

Table II compares various approaches for re-sampling PQ

data, and graphical results are given in Fig. 6 for a target

number of samples of 500. The preferred approaches (algo-

rithms 2 and 3), which are accurate and practical, use the

“pandas” library [17] for the Python programming language

which is designed to support the robust manipulation of time-

series data. Similar results can also be obtained using the

Time Series functionality in MATLAB. Any method which

involves decimation of the data (i.e., blindly keeping every nth

sample, such as algorithm 1) is liable to introduce aliasing;

trends which are not present in the original data may be

extracted. However, this can be mitigated by first applying

a moving average filter or a low-pass filter (LPF). LPF-based

methods require the filter parameters (i.e., the order and cut-

off frequency) to be specified, and a zero-phase digital filter

must be used to avoid erroneous phase distortion (i.e., a time

shift in the resulting re-sampled PQ data).

Algorithms 2 and 3 are recommended for use in PQ

visualization tools, and an example implementation is available

at [18]. This visualization tool, which applies algorithm 2, is

illustrated in Fig. 7 and can be accessed online at [19]. The tool

is able to dynamically and efficiently re-sample PQ data based

on the desired time range; for example, seasonal variation in

demand is evident in Fig. 7. By substantially reducing the

number of sampling points, depending on the required view

of the data, both the network data transfer latency and the

software plotting times are significantly reduced.

C. Missing and Spurious Data Points

Following verification of monitoring device installation and

time synchronization, there are other potential errors in the

time-series data recorded by each monitoring device which

can be addressed:

• Missing values, due to loss of communications, device

failure, or other factors. Depending on the extent of the

missing data, it is possible to interpolate the missing

values; however, care must be taken to observe daily,

weekly, and annual trends when interpolating. Single

missing values can be safely interpolated from adjacent

(healthy) values, and a linear interpolation should be

sufficiently accurate. Only mean measurements can be
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TABLE II
COMPARISON OF PQ DATA RE-SAMPLING ALGORITHMS

Algorithm Number of data

points can be

selected

Applicable to

different plot types

(mean, min, and max)

Relative

computational

speed

Suitable for

representing

both short and

long periods

Implementation

complexity

Deals with

missing data

elegantly

Visually

acceptable

results

1) Decimation Yes Yes, but results are

distorted

Very fast Yes Very simple Yes No

2) “pandas”

re-sampling

Yes, by selecting

an appropriate

re-sampling rate

Yes Medium Yes Simple; must ensure

data are correctly

centered on time-stamps

Yes Yes

3) “pandas”

moving average,

decimated

Yes, by

specifying the

window size

Yes (different

functions are used for

mean, min, and max)

Fast Yes Simple; must ensure

data are correctly

centered on time-stamps

Yes Yes

4) LPF,

decimated

Yes No Fast Yes, but

appropriate filter

parameters must

be specified

Medium; filter

parameters must be

specified and zero-phase

filtering must be used

Yes Yes (for

mean plot

types only)

5) Cubic spline

interpolation

Yes No Slow Not suitable for

long periods

Complex No No

Fig. 6. Re-sampling algorithm results

Fig. 7. Example of PQ monitoring data visualization tool

interpolated; missing minimum and maximum values

cannot be meaningfully estimated. An iterative process

may be needed: first determine all suspicious data, then

attempt interpolation from healthy data.

• Other obvious erroneous values, such as invalid values

during device initialization and single or multiple data

points “frozen” at a constant value. A method such

as Chebyshev’s inequality can be used to detect such

erroneous values, and its use for filtering demand data is

described in [20]. This is especially useful if the original

data set is relatively unreliable [21]. However, care must

be taken not to confuse genuine anomalies, such as fault

currents or voltage sags, as errors.

V. CASE STUDY SMART GRID PROJECT

A. Project Overview

The Capacity to Customers (C2C) project has been com-

pleted by Electricity North West Limited (ENWL), a distribu-

tion network operator (DNO) in the UK, with several indus-

trial and academic partners. The project combined large-scale

demand-side response contracts, new post-fault automation

schemes, and interconnected network operation to maximize

the potential for new load and generation connections. A trial



7

��������

�	
������

�����

��������

���������

�����

��

��������

��

��������

(a) Radial operation

��������

�	
������

�����

��������

���������

�������

��

��������

��

��������

(b) Interconnected operation

Fig. 8. C2C trial circuit operation modes

has been conducted over an extensive area of ENWL’s network

[22]. The operation of 6.6/11 kV circuits in interconnected

mode (Fig. 8b) rather than conventional radial mode (Fig.

8a) has the potential to affect PQ, particularly voltage total

harmonic distortion (THD), due to the change in effective

impedance of the circuits and the aggregation of harmonic dis-

tortion from the two radial circuits. Therefore, it was important

to thoroughly establish the impact of the interconnected circuit

operation on PQ, such that the potential wide-scale deployment

of the C2C approach can be accepted.

B. PQ Comparison Methodology

A total of 77 “PQube” [23] PQ monitoring devices have

been deployed on a representative subset of the C2C project

trial circuits for approximately 18 months. The devices have

been installed on the LV side of 6.6/11 kV to 400 V

transformers in secondary (or distribution) substations. Using

the PQ monitoring data captured during the trial, several

measured system parameters have been compared to ascertain

any differences that are apparent as a result of operating

in either radial configuration or interconnected configuration.

Therefore, the effects of interconnected operation on PQ—

if any—can be quantified. It is assumed that week-by-week

demand is typically similar, and therefore that the relevant

power quality metrics can be compared fairly by selecting one

week of data before and after the change of state of a Normally

Open Point (NOP). By analyzing a log of NOP open/close

commands from the DNO’s control room, “valid” events have

been extracted where the state of the NOP is consistent for

one week before and one week after the NOP state change.

C. Data Validation Requirements

It is essential to validate the monitoring data so that any

conclusions being drawn from the measurements are sound

and fair. In particular, it is critical that the internal clock of

each PQ monitoring device is relatively accurate—within a few

minutes of a known, absolute time reference such as Coordi-

nated Universal Time (UTC)—and reliable. This is because

comparisons must be made between radial and interconnected

network configurations; this involves aligning monitoring data

to independently time-stamped switching events from the

DNO’s control room logs. The following steps have been

performed to validate the monitoring data:

1) Extract NOP switching events (i.e., transitions between

radial and interconnected circuit operation modes) from

TABLE III
VALID EVENTS AND CORRESPONDING MONITORING DATA

Stage Description Number of

suitable

events

Number of

monitoring

locations included

1 NOP state change events with

valid date range

123 n/a

2a Monitoring data available

within date range

114 57

2b Continuous data available

from at least one monitoring

location on circuit

83 51

3a Valid time synchronization 78 49

3b Valid time synchronization,

with additional “trusting”

81 49

4 Demand variation check 52 34

the DNO’s control room logs for each monitored circuit

and determine the events which occur in valid date

ranges.

2) Determine the data availability profile for each monitor-

ing location, i.e., the dates where the PQ monitor was

operational and correctly recorded data.

3) Validate clock synchronization for all PQ monitoring

devices using the method in Section III. Where possible,

realign clocks, and the corresponding measurement data,

which exhibit a time offset. In general, the PQ devices

which experienced clock errors were typically off by

one hour, most likely due to the clock being initially

set to local daylight saving time, rather than being set

according to UTC.

4) Elimination of monitoring locations for NOP state

change events where the mean difference in demand

between the two weeks to be compared is greater than

5%. This ensures that no unusual events occurred during

one of the two weeks, which may skew the results. This

threshold has been chosen by examining the distribution

of the differences in mean demand between the two

weeks of data; in the majority of cases, the difference

in demand is within 5%.

Table III summarizes the number of valid events at each

stage of the validation process. Although a relatively small

percentage (42%) of the initial events are ultimately usable

in the numerical analysis, the results in Section V-D can

be considered to be very robust due to the comprehensive

validation process.

D. Data Analysis and Results

The data from all valid events have been used to quantify

of the extent of the change between radial and interconnected

operation, if any, for various PQ metrics. These metrics are:

THD, Total Demand Distortion (TDD), short-term flicker

(Pst), and long-term flicker (Plt). For example, the difference

in the weekly mean THD measurements, δT HD, has been

calculated as follows:

δT HD = mean(T HDinterconnected)−mean(T HDradial) (5)
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Fig. 9. Comparison of change in PQ measurements (interconnected operation
“minus” radial operation)

Therefore, a positive δT HD value represents generally higher

THD for interconnected operation compared with radial op-

eration. The results for all circuits, for all PQ metrics, are

aggregated as a histogram in Fig. 9. For simplicity, the results

for each phase—which are calculated individually—are com-

bined in the distributions given in Fig. 9. It can be observed

that interconnected operation has no significant impact on the

PQ of the trial circuits; these results are described in more

detail in [21].

The error detection and correction process defined in this

paper has maximized the useful data captured during the case

study project. In particular, the successful validation of each

PQ monitoring device’s clock was crucial for associating mon-

itoring data with time-stamped network automation events,

with a high level of confidence.

VI. CONCLUSIONS

When the results of PQ monitoring may affect decision-

making, the actions of automation and control systems, or the

learning from trial projects, it is important to assume the worst-

case and to treat measurements as potentially erroneous—until

comprehensively verified. This paper has described a process

for automatically detecting and correcting several types of

errors which may be present in PQ monitoring data. All source

code used in this paper is available at [18], [24], [25]. Although

some of the errors described in this paper can be avoided by

adopting a rigorous installation procedure for PQ monitoring

devices, it is possible that some errors may unintentionally

be present—and this may not be known until the completion

of the monitoring scheme. It is essential that PQ visualization

tools correctly re-sample data and cater for missing values. The

effectiveness of the proposed methods has been demonstrated

through its application in a smart grid project in the UK.
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