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1. Introduction 

Practical high performance composite laminates are usually comprised of stiff layers of resin pre impregnated 

reinforcing plies bonded together with more compliant interface layers of resin. The thickness of the more compliant 

interface layers is assumed to be very small compared to that of the reinforcing layers implying that the material is 

effectively homogeneous. By invoking homogeneity and employing Euler Bernoulli beam theory Williams (1988) 

was able to derive closed form expressions for the total, mode I and mode II ERRs together with their mixity for a 

number of layered composite delamination test samples when a variety of loadings are applied. However, the 

validity of partitioning the total ERR into its mode I and mode II components by this global approach was 
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Abstract 

Composite laminates are usually assumed to be homogeneous when determining the energy release rates (ERRs) associated with 

inter-ply delamination. This short paper discusses the effect of neglecting this assumption by accounting for inter-ply interface 

layer thickness and the resulting influence that this may have on the ERRs. A global approach is used to analytically determine 

ERRs for delaminations subject to mixed mode loading in symmetric double cantilever beam (DCB) samples of a material 

formed of alternating stiff and compliant layers. In contrast to their homogeneously determined counterparts these ERRs and 

their mixity are dependent on both sample depth and interface thickness and when compared the conditions under which obvious 

differences become apparent can be explicitly identified. Some brief conclusions on the application of the analysis to the 

prescription of practical delamination testing protocols for composite laminates are drawn. 
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questioned by subsequent experimental evidence such as that of Davidson et al (1997) and Ducept et al (1999), 

particularly for samples with asymmetric geometry. Other analytical partitioning approaches that account for the 

local distribution of stress ahead of the crack tip have therefore been reported by for example Wang and Harvey 

(2012) and Williams (2015) himself. Current consensus acknowledges the equivalence of global and local 

partitioning approaches for test samples with symmetric geometry but for asymmetric test samples there appears to 

be no consensus and the applicability of each approach remains contentious. Furthermore, material homogeneity is 

invariably assumed in both approaches to partitioning.  

 

If homogeneity is assumed then the flexural rigidities of the cracked and undamaged sections of a delamination 

test sample will vary as the cube of their depth, d. Thus, provided that the applied moments, M, are scaled according 

to (M)
2
 ĝ (d)

3
, samples of different depths will yield the same ERRs. However, Wheel et al. (2015) have recently 

demonstrated that a heterogeneous laminate comprised of alternating stiff and compliant layers can exhibit size 

scaling effects reflecting either those forecast for more generalized elastic continuum theories as discussed by Lakes 

(1995) for example or, depending on the layer ordering, anomalous effects not forecast by such theories. These size 

effects can be quite prominent even when the thickness of the compliant layers is relatively small compared to that 

of the stiff layers and, furthermore, the flexural rigidity will no longer vary with depth cubed. The remainder of this 

paper uses the heterogeneous laminate model along with a global analysis to determine the ERRs in symmetric 

delamination tests. These are compared to the ERRs determined on the assumption of homogeneity. The 

circumstances under which this assumption is suspect can thus be clearly identified. 

 

Nomenclature 

b  laminate width  

d, d1, d2  depth of intact and separating homogeneous laminate sections 

E0, E1, E2 flexural modulus of intact and separating homogeneous laminate sections 

E, EA, EB flexural modulus of heterogeneous laminate and constituent materials, A and B 

G, GI, GII total, mode I and mode II energy release rates 

I0, I1, I2  second moment of area of intact and separating homogeneous laminate sections 

I  second moment of area of heterogeneous laminate 

M, M1, M2 moments applied to intact and separating homogeneous laminate sections 

MI, MII  globally partitioned moments associated with mode I and mode II delamination 

i  integer index 

n  number of layers of material A in heterogeneous laminate 

tA, tB  thicknesses of heterogeneous laminate constituent material layers 

y  distance from heterogeneous laminate section neutral axis 

2. Size Effects and Energy Release Rates in Heterogeneous Composite Laminates 

Figure 1 shows a typical laminate sample of breadth b and depth d with the laminate being comprised of 

alternating layers of two different materials, A and B, of moduli EA and EB respectively. The corresponding 

thicknesses of the layers are tA and tB. A delamination of length a resides within the core layer, comprised of 

material B. The upper part of the delaminated end of the sample is of depth d1 while the lower part is of depth d2 

with d1 = d2 and they are loaded by corresponding bending moments M1 and M2 that are not necessarily equal in 

magnitude or sense. The intact end of the sample must be loaded by a moment, M, where M = M1 + M2. Given that 

material B forms the core layer then the number of layers of material A must be even. Furthermore, layers of 

materials B of thickness ½tB are located adjacent to the laminate surfaces. Thus the cross sections of the intact 

laminate and the separating halves are all individually symmetric and the volume fraction of each material is 

independent of the number of material layers in all three sample parts. 

 

Figure 2 shows further details of the cross section of the heterogeneous laminate. Although the number of plies 

of material A in the intact laminate section is even, the number of layers of this material in the delaminating halves 
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may be either simultaneously odd or even. Both cases are thus depicted in Figure 2. If the number of plies of 

material A is denoted by n then the flexural rigidity, EI, of the laminate can be determined by summing the products 

of the layer moduli and their second moments of area about the section neutral axis. For odd n this gives 
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while for even n it yields 
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where y is the distance from the section neutral axis to a given material layer. Evaluating these summations gives the 

flexural rigidity as 
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in both cases. Since the depth of the section is n(tA+tB), the leading term here represents the rigidity of a 

homogeneous beam of modulus (EAtA+EBtB)/(tA+tB), this being the mean modulus of the section. The rigidity thus 

depends on the cube of the section depth in the absence of the second term. This term, however, produces a size 

effect which depends on the relative magnitudes of EA and EB. When material B is stiffer than material A the rigidity 

will be increased. Such behaviour is consistent with that of Cosserat or micropolar like continuum behaviour as 

demonstrated recently by Wheel et al. (2015). The variation in rigidity to depth ratio with section depth squared for 

the case where EB = 10EA and tB = tA is shown in figure 3. The positive intercept associated with this variation is 

indicative of such behaviour according to Lakes (1995). The intercept would be coincident with the origin if the 

material were exhibiting classical, size independent behaviour. A paradoxical size effect that is not anticipated by 

either classical or the more generalized continuum theories is forecast when material B is more compliant than 

material A. The case where EB =0.1EA with tB = tA is also shown in figure 3 where an apparent increase in flexibility 

as depth reduces is implied by the negative intercept. 

 

Now, according to Williams (1988) the total ERR, G, given by 
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can be partitioned into mode I and mode II ERRs, GI and GII, according to:- 
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and 
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where E0I0, E1I1 and E2I2 are the flexural rigidities of the intact and lower and upper separating parts of the sample 

respectively. This partitioning assumes that the moments MI and MII associated with modes I and II delamination 

can be expressed in terms of the applied moments M1 and M2 via 
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By assuming material homogeneity Williams (1988) was able to simplify these expressions since the flexural 

rigidities of the three parts of the sample scale as the cube of their depths. It is then possible to demonstrate that both 

mode I and mode II ERRs along with their mixity will be independent of the separating section depths when the 

loadings are scaled as indicated previously. This implies that samples comprised of differing numbers of reinforcing 

plies having a common thickness separated by interfaces of a given depth should all yield the same ERR after 

scaling. However, this neglects the size effects forecast for a heterogeneous composite laminate by equation 3. This 

paper thus addresses the question of what influence might material heterogeneity have on the modes I and II ERRs 

determined by the foregoing global analysis and, moreover, whether it might also affect their mixity resulting from 

partitioning according to equations 2 and 3. 

3. Mixed Mode Loading of the Symmetric Double Cantilever Beam with EB < EA 

When M1 = 0 and M2 > 0 a symmetric DCB sample is subject to mixed mode loading with a mode mixity, GII/GI, 

of 0.75 assuming homogeneity. The ratio of interface modulus to that of the reinforcement is now set as EB = 0.01EA 

this being indicative of typical fibre reinforced composite laminates. Since interface layer thickness is less certain 

the thickness ratio is first prescribed as tB = 0.1tA and then tB = 0.01tA. The moment M2 is scaled according to (M2)
2
 ן 

(d2)
3
 so that as the laminate depth is varied both ERRs would remain constant if the material were homogeneous. 

Figure 4 shows how both the modes I and II ERRs vary with sample depth as quantified by the number of layers of 

material A, n, when equation 3 is used in determining the flexural rigidities of the heterogeneous material. The ERR 

variations shown here are normalized with respect to their homogeneous counterparts which are independent of 

laminate depth when the loading is suitably scaled. When tB = 0.1tA both ERRs clearly depend on the laminate 

depth. When n is large they asymptotically approach the depth independent homogeneous value but as n is reduced 

both the mode I and mode II ERRs begin to exceed the corresponding homogeneous values. In the case of the 

thinnest possible laminate the mode I ERR is approximately 20% greater while the discrepancy exceeds 25% for the 

mode II ERR. Furthermore, figure 4 suggests the mode I and mode II ERRs do not vary proportionately as n is 

reduced. Thus the mode mixity must also depend on the laminate depth as shown in figure 5. While figure 4 

indicates that both ERRs show significant variation as depth is reduced figure 5 implies that the variation in the 

mode mixity is less pronounced. However, it cannot necessarily be ignored since it deviates from its homogeneous 

equivalent by nearly 5% in the case of the smallest sample. 

 

Variations in the normalized ERRs with laminate depth when tB = 0.01tA but all other parameters remain 

unchanged are also shown in figure 4. These variations are now noticeably less markedly and for the thinnest sample 

the disparities are now only around 1% for the mode I ERR and 2% for the mode II ERR. Thus the increased 

material homogeneity resulting from the reduction in interface thickness diminishes the dependency of the ERRs on 
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depth as expected. Similarly, as seen in figure 5 the variation in the mode mixity with depth also becomes less 

discernible as interface thickness is reduced. 

4. Discussion and Conclusions 

Previous analyses of delamination within fibre reinforced composite laminates have invariably assumed that the 

interface layers bonding two adjacent reinforcing plies are of negligible thickness. The analysis presented in this 

short paper incorporates finite interface thickness thus making it possible to determine how, as a consequence, the 

ERRs associated with interfacial delamination are influenced. In conclusion, it appears that the usual assumption of 

material homogeneity is valid when the ratio of interface to ply thickness is O(10
-2

) since there is little influence on 

the ERRs. However, when this ratio is increased to O(10
-1

) then material heterogeneity starts to have a noticeable 

influence on both of the ERRs and also their mixity. This influence becomes more marked as sample depth is 

decreased through reducing the number of ply and interface layers.  

 

These conclusions may have important repercussions for standardized delamination testing methods for 

composite laminates. Such methods are well established in for example ISO (2001, 2014) standards for pure modes I 

and II delamination and an analogous ASTM (2001) standard for mixed mode testing. However, when used to test 

laminates in which interface thickness cannot be neglected then caution may need to be exercised when applying an 

analysis that assumes homogeneity to thin samples comprised of just a few reinforcing plies otherwise erroneous 

ERRs may be obtained.  
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Figure 1 Composite laminate with delamination of length a 

 
Figure 2 Details of laminate cross section 
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Figure 3 Variation in rigidity/depth with depth squared when tB = tA, EB = 10EA (stars) and tB = tA, EB = 0.1EA (crosses) 

 

 
 

Figure 4 Unevenly loaded symmetric sample: variation in normalized mode I (squares) and mode II (diamonds) ERRs with number of layers of 

material A (reinforcement) for tB = 0.1tA (filled markers) and tB = 0.01tA (open markers) 
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Figure 5 Unevenly loaded symmetric sample: variation in mode mixity with number of layers of material A (reinforcement) for tB = 0.1tA (filled 

circles) and tB = 0.01tA (open circles) 
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