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An AC modulated Near InfraRed gain calibration system for a 

‘Violin-Mode’ transimpedance amplifier, intended for advanced 

LIGO suspensions 
 

N.A. Lockerbie and K.V. Tokmakov 

SUPA (Scottish Universities Physics Alliance) Department of Physics, 

University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, UK. 

Abstract. The background to this work was a prototype shadow sensor, which was designed for 

retro-fitting to an Advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-

mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 

600 mm long by 0.4 mm diameter fused-silica suspension fibres.  The shadow sensor comprised 

a LED source of Near InfraRed (NIR) radiation, and a ‘tall-thin’ rectangular silicon photodiode 

detector, which together were to bracket the fibre under test.  The photodiode was positioned so 

as to be sensitive (primarily) to transverse ‘Violin-Mode’ vibrations of such a fibre, via the 

oscillatory movement of the shadow cast by the fibre, as this moved across the face of the 

detector.  In this prototype shadow sensing system the photodiode was interfaced to a purpose-

built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration 

was made of the sensor’s DC responsivity, i.e., incremental rate of change of output voltage 

versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the 

illuminating beam. The work reported here concerns the determination of the sensor’s more 

important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct 

AC modulation of the source, and actual Violin-Mode signals, and of the transformative rôle of 

the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the 

construction of the AC/DC calibration source described here. A method for determining in 

practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this 

source, is illustrated by a specific numerical example, and the gain ratio for the prototype 

sensing system is reported over the frequency range 1 Hz–300 kHz. In fact, a maximum DC 

responsivity of 1.26 kV.m
-1

 was measured using the prototype photodiode sensor and amplifier 

discussed here.  Therefore, the measured AC/DC transimpedance gain ratio of 922.5 for this 

sensor, at 500 Hz, translated into a maximum Violin-Mode (AC) responsivity of (1.16 ± 0.05) 

MVm
-1

, at that frequency. 

PACS numbers: 04.80.Nn, 84.30.-r, 06.30.Bp, 07.07.Df, 07.57.-c 

1. Introduction 

A prototype system of four shadow-sensors was designed to be retro-fitted to an advanced 

LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, 

in which a 40 kg test-mass is suspended by four fused silica fibres, the dimensions of the 

fibres being approximately 600 mm long by 0.4 mm in diameter [1–6].  Initially, the 

shadow-sensor—one intended for each suspension fibre—consisted of a single ‘tall, 

narrow’ rectangular silicon photodiode (Hamamatsu S2551, [7]), together with a collimated 

source of Near InfraRed (NIR: λ = 880–890 nm) illumination—this casting a shadow of the 

illuminated fibre over one vertical edge the facing detector.  In later work, however, a 

higher displacement sensitivity (but more elaborate) ‘synthesized split-photodiode’ detector 

was employed [8,9].  The principal purpose of the full detection system, using either 

detector, was to monitor any lateral ‘Violin-Mode’ resonances that might be excited in these 

fibres. The purpose-built Violin-Mode (VM)  amplifier, which was interfaced to the 

detector, had two separate outputs: a relatively low (transimpedance) gain ‘DC’ output, to 

monitor the photodiode’s quiescent photocurrent, and a much higher transimpedance gain, 

but lower displacement-sensing range, AC output, this being intended for detecting VM 

oscillations—ultimately, down to below 100 picometres (rms), in 1 second, at frequencies 

in the range 500 Hz–5 kHz [8,9,11].  Sensing VM oscillations was the primary function of 
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the shadow-sensor, but an important ancillary rôle of the amplifier’s separate DC and AC 

outputs was to allow an actual calibration of the VM (AC) displacement responsivity of the 

detection system to be made. This calibration was accomplished in two stages.   

Firstly, a 0.4 mm diameter silica-fibre sample was translated at a steady rate (~50 µm s
−1

) 

transversely through the shadow-sensor’s illuminating NIR beam, and the resulting ‘notch’ 

was recorded in the amplifier’s DC output voltage as a function of fibre position—the notch 

occurring as the fibre’s shadow passed across the face of the photodiode detector.  The 

shadow-notch voltage then was differentiated off-line, as a function of fibre position, so as 

to yield the rate-of-change of detected DC voltage with incremental fibre displacement, 

versus mean fibre position. This quantity was the DC (quasi-static) responsivity of the 

sensor to fibre displacement.  It reaching its maximum value when the fibre’s shadow 

overlapped—and its centre was aligned with—just one vertical edge of the photodiode 

detector.  This stage of the calibration process has been reported elsewhere [12].  Following 

such a calibration procedure, any additional low-level vibration of the vertical shadow, at a 

given VM frequency, would sweep the shadow back-and-forth across the face of the 

photodiode detector—between effectively two fixed (fibre) positions; and, as a result of the 

calibration, the DC (quasi-static) responsivity would have been established over this span.  

Unfortunately, the response of the attendant amplifier to AC photocurrents was different 

from its response to the (change in) DC photocurrent, over the same excursion of fibre 

position; but if the ratio of the amplifier’s AC to DC responses could be found, then the 

detection system’s AC responsivity to shadow displacement could be inferred from its 

measured DC responsivity.  It is the determination of this ratio that is reported here. 

However, in order to accomplish this, a method needed to be found for illuminating the 

photodiode detector with a NIR beam having both a steady level of mean irradiance, and an 

accurately known (relative) depth of sinusoidally modulated irradiance—at a controlled 

frequency.  The mean level of irradiance would generate the amplifier’s DC output signal, 

whilst the sinusoidal modulation would generate the corresponding ‘VM’ (AC) output, so 

that the ratio of these signals—and so their relative responsivities—could be linked.  The 

approach that was taken, together with the results obtained, are reported below.  It turned 

out that the VM (AC) displacement responsivity would be found to lie (typically) in the 

Megavolt(s) per metre of fibre displacement range. 

2. The prototype Violin-Mode amplifier   

2.1. Separating the photocurrents: the amplifier’s DC and AC outputs 

The circuit diagram of the prototype Violin-Mode amplifier is shown in Figure 1, a 

subsequent dual-input version being covered in [10, and references therein].  Here, a 

Hamamatsu S2551 photodiode has a small reverse bias (~0.5 V) due the self-biasing action 

of the JFET (BF862) transistor, at a drain current ~1.1 mA.  The source-follower action of 

the JFET transistor prevented AC voltages from being impressed across the photodiode, and 

its connecting cable, thereby reducing considerably any ‘noise-gain peaking’ in the 

amplifier’s AC response [10].  In the Figure, the photodiode detector is shown being 

illuminated from the left by a NIR beam of constant mean intensity, this beam having an 

additional small-amplitude sinusoidal modulation of its intensity, at a known frequency. 

Thus, if the reverse photocurrent generated in the photodiode by the beam is Iphoto, as 

indicated, then Iphoto = IDC + i, where IDC is a steady DC photocurrent, and i is an 

incremental AC photocurrent, due to the modulation, superimposed onto the steady DC 

current flow.  



LIGO- P1500199-v2 

 3 

        

Figure 1.  Circuit diagram of the prototype VM amplifier (±15 V supply omitted). In the Figure, Near InfraRed 

radiation, incident from the left onto the photodiode, consists of a steady flux with a small superimposed 

intensity modulation.  The illumination of the reverse-biased photodiode causes a photocurrent Iphoto to flow 

through it, as indicated, where Iphoto = IDC + i.  Here, IDC is a steady DC photocurrent, and i is the incremental 

AC photocurrent due to the modulation.  The ‘debout’ (French for ‘upright,’ or non-inverting) integrator in the 

circuit, taking as its input the voltage V’, forces these two photocurrents to follow the different transduction 

paths indicated in the Figure. This action is explained in the text. Separately, the JFET transistor in the circuit 

mitigates any ‘noise-gain peaking’ due to the capacitance of the photodiode (please refer to the text).  In the 

Figure: R = 100k, C = 100n, R
i
 = 120k, R

f
 = 1M2, C

f
 = 10p7, C

2
 = 100n, R

2
 = 10k, R

3
 = 3k, and C

3
 = 1000p. 

In Figure 1, IC1 and IC2 are op-amps, and IC3 is a simple non-inverting (op-amp based) 

amplifier, with an AC voltage gain of ×101; and the negative, integrator, feedback in the 

circuit causes the DC photocurrent, IDC, and the AC (Violin-Mode) photocurrent, i, to 

follow the different paths indicated. Consequently, VDC = −IDC Ri (always a negative 

voltage), and −Ri (Ri  = 120 kΩ) is seen to be the DC transimpedance gain of the amplifier. 

In a similar way, −Rf (Rf = 1.2 MΩ) is seen to be the AC transimpedance gain of the 

amplifier, if taken just to the output of IC1 (ignoring for the moment the effect of Cf). 

However, this output voltage is high-pass filtered by C2−R2, before being post-amplified by 

IC3, which is an AC amplifier, having a non-inverting voltage gain of ×101.  The output of 

IC3 is then low-pass filtered by R3−C3, so as to roll-off the AC signal gain more strongly 

above frequencies ~12 kHz, where there are no VM signals of interest.  Thus, the AC 

transimpedance gain of the amplifier is seen to be effectively −101R
f
, mid-band (i.e., at 

1.71 kHz), or 121.2 MΩ—ignoring the sign. 

In summary, the theoretical DC transimpedance gain of this amplifier was (−)120 kΩ, 

whilst the corresponding AC transimpedance gain was (nominally) (−)121.2 MΩ—mid-

band. Therefore, the ratio of its AC to DC responses to the same change in photocurrent 

was set nominally at 1010, mid-band.  In fact, the amplifier’s fairly narrow bandwidth 

resulted in the passband’s plateau peaking—theoretically—at the slightly lower mid-band 

value of 1004.  
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2.2. The prototype VM  amplifier’s output  frequency responses 

The prototype VM amplifier which was constructed for this work, and whose circuit is 

shown in Figure 1, can be analysed straightforwardly to yield, in terms of the complex 

frequency s, a transimpedance relationship at its DC output of the form  

( )ifff
2

f

RRsCRRCRCs

R

++
−=

DC

DC
V

I
                                                           (1). 

Clearly, for a strictly DC component of photocurrent (i.e., s = 0) Equation 1 reduces to the 

simple expression iRDCDC I−=V , as mentioned in §2.1.  For the component values used 

(given in the caption of Figure 1), the expression in equation 1 is effectively that of a low-

pass response, with a dominant pole at 161 Hz (and a second, HF, pole at 12.2 kHz).  In a 

similar fashion, the ratio of the amplifier’s AC response to a VM signal photocurrent, to its 

DC response to a steady quiescent photocurrent, i.e., the amplifier’s ratio of transimpedance 

gains, can be found to be 
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The magnitude of Equation 2 is plotted as the dashed line in Figure 5 as a function of the 

frequency f (in Hz), using A = 101, and using the component values given in the Figure 1 

caption.   Here, the value of the small capacitor Cf  (nominally 10 pF) was used as a fitting 

parameter (resulting in Cf  = 10.7 pF).   

2.3. Practical Near InfraRed (NIR) gain calibration 

Equation 2 expresses the relative sensitivity of the amplifier’s AC and DC outputs to 

changes in photocurrent due to the same displacement of a fibre’s shadow falling across 

(the edge of) the photodiode detector: in the one case a change occurring at a frequency 

s (= jω, for a sinusoidal modulation at angular frequency ω, where j = ξെ1, and ω = 2πf ); 

and in the other a change occurring from one steady value to another.  It is this expression 

of relative dependency which motivated the practical calibration of the VM (AC) 

displacement responsivity, at a given modulation frequency, f. 

A calibration system was therefore designed and built in order to measure the ratio of the 

AC to DC responses of an S2551 photodiode, connected to the prototype amplifier. A short 

(< 80 mm) miniature coaxial lead was used to make this electrical connection, but, in order 

to simulate the capacitance of a coaxial cable 6+ m long (as might be used in a Gravitational 

Wave Detector environment), a 680 pF capacitor was placed in parallel with the photodiode.  

3. A calibration system for both AC and DC responsivities   

3.1. The calibration source 

The calibration system needed to irradiate the amplifier’s single photodiode detector with a 

very low intensity beam from a NIR LED, the beam consisting of a steady component of 

fixed intensity, plus a small sinusoidal intensity-modulation on top of this, at a known 

frequency, f. Figure 2 shows the circuit diagram of the calibration source for the 

photodiode/amplifier that was constructed for this work.  The NIR beam’s modulation-

controlling circuit was based on a published article which described the control of an 

IPL10530KAL device [13].  In this work, however, separate devices were used: a discrete 

BPW34S photodiode (PD) was mounted off-axis at a distance of approximately 15 mm 



LIGO- P1500199-v2 

 5 

 

Figure 2.  InfraRed modulation circuit derived from an original article by Lukasz Sliwczynskia and Marcin 

Lipinski [13].   Two voltage regulators supply the ±5 V rails for the Near InfraRed intensity controlling and 

modulation circuit. Via local, optical, feedback, the NIR beam emitted by the OD50L LED was a precise 

analogue in its intensity of the voltage at the ‘Control INPUT’—for both the DC level and for any AC 

modulation superimposed on top of this level, i.e., for the sum of any such voltages, provided the sum was ≥ 0. 

from the lens of a high-power OD50L, NIR LED, emitter (λ = 880 nm), the PD being 

located at an angle of approximately 5° from the LED’s beam-axis. The PD monitored the 

emitter’s output beam intensity, whilst an AD820 op-amp, together with its indicated 

feedback components, acted in a transimpedance rôle. 

 

Figure 3.  Example of the optical feedback control of emitted intensity.  In this example a very high level of 

relative modulation was used. Upper trace (yellow): Control INPUT to the circuit of Figure 2, showing a 

‘command’ voltage in the form of a 1 kHz, 4.0 volt peak-peak, modulation, about a steady 2.0 volt DC level. 

Lower trace (blue): Monitor OUTPUT (offset down the screen by approximately 1 volt). Here, local, optical, 

negative feedback between the OD50L LED and the local BPW34S silicon photodiode has forced the intensity 

of the beam emitted by the NIR LED to be a close analogue of the command voltage—even under these rather 

extreme conditions (+5 volt supply to the circuit, and total input control voltage descending to zero volts).  
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The Control INPUT voltage to the circuit shown in Figure 2 consisted of a positive DC 

level, about which a (generally) small-amplitude sinusoidal AC modulation was added, this 

modulation being at a fixed frequency, f, in the range 1 Hz– 300 kHz.  A DC current of 

typically ~ 200 mA was generated by the DC voltage (typically, ~2 V) applied to this 

Control input.  It was sourced by the pnp transistor, Q1, which powered the OD50L emitter.  

Local, optical, feedback via the BPW34S photodiode then slaved the LED’s emitted output 

intensity to be a very precise analogue of the control input voltage (both DC level and AC 

modulation)—and this was verified at the circuit’s Monitor output, where, under correct 

operation, Monitor OUTPUT voltage = Control INPUT voltage.  Figure 3 shows an 

example of this action.  In this way, the intensity of the NIR beam emitted by the LED 

became a very close analogue of the Controlling input voltage—for both the DC level and 

the AC modulation. 

3.2. AC and DC relative gain measurements 

Figure 4 shows schematically a modulated NIR beam, coming from the OD50L LED, being 

used to illuminate the prototype amplifier’s photodiode, via a pinhole in a mask.  The LED 

was positioned with the front of its lens approximately 35 mm from the mask, and with its 

beam incident normally onto the mask. The pinhole was 0.35 mm in diameter.  On the 

Control INPUT side of the source, as shown in Figure 2, both the DC and modulation 

(peak-peak) levels were noted for the particular modulation frequency being used. These 

waveforms then were checked for fidelity (i.e., proper feedback control) at the Monitor 

OUTPUT of the source. The resulting AC and DC output signals from the prototype 

amplifier also were measured at this time. The ratio of the amplifier’s AC/DC gain then was 

computed from these four measured signals, for that particular modulation frequency—as 

described in the following example (illustrated in Figure 4).  

The three graphs shown in Figure 4 are actual oscilloscope screen shots taken during a 

measurement: at the lower right of the Figure the Control input is seen to consist of a DC 

level = 2.151 V, plus a small sinusoidal modulation [58.0 mV (peak-peak), at 1 kHz].  Here, 

the Monitor output signal was indistinguishable from that at the Control input—over the 

frequency range 1 Hz ≤ f ≤ 300 kHz; in the lower left screen shot the amplifier’s DC output 

= −1.023 V; and in the top screen shot the amplifier’s AC output = 27.33 V (peak-peak)—in 

anti-phase with the input modulation at 1 kHz, as expected. Therefore, in this example the 

measured AC/DC gain ratio = (27.33/58.0e−3) / (1.023/2.151) = 991 (± 4), at 1 kHz.   

This procedure was repeated for modulation frequencies in the range 1 Hz–300 kHz, 

although, towards the lower end of this frequency range, the amplitude of modulation had to 

be increased—so that the AC response might become more easily measurable.  

The results of such measurements as a function of the modulation frequency f are shown in 

Figure 5. Clearly, the measurements followed the theoretical expectation very well up to 

~ 100 kHz, i.e., well above the required VM bandwidth, which extended from 500 Hz–

5 kHz.  Indeed, Equation 2 gives the theoretical AC/DC gain ratio to be 927.1 at 500 Hz, 

and 994.2 at 1 kHz, whereas the measured values, using the method shown in Figure 4, 

gave this same ratio as being 922.5 ± 4 at 500 Hz, and 991 ± 4 at 1 kHz.  

For the numerical example illustrated in Figure 4, the AC responsivity = 991 × the DC 

responsivity (measured separately, as explained in §1; and in [12]), at 1 kHz. 

In fact, a maximum DC responsivity of 1.26 kV.m
−1

 was measured using the prototype 

photodiode sensor and amplifier discussed here.  Therefore, the measured AC/DC 

transimpedance gain ratio of 922.5 for this sensor, at 500 Hz, translated into a maximum 

VM (AC) responsivity of (1.16 ± 0.05) MVm
−1

, at that frequency. 
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Figure 4.  Schematic diagram showing a measurement of the AC/DC gain ratio of the photodiode/prototype 

amplifier at a particular frequency, f  (here, f = 1 kHz).  The infrared beam from the OD50L infrared LED was 

incident onto the amplifier’s S2551 photodiode via a pin-hole in an aluminium foil mask.  The three graphs are 

actual oscilloscope screen shots: on the right the Control Input = 2.151 V + (58.0 mVp-p, 1 kHz, modulation); in 

the lower left screen shot the amplifier’s DC output = −1.023 V; and in the top screen shot the amplifier’s AC 

output = 27.33 Vp-p, this being in anti-phase with the input modulation at 1 kHz, as expected. The DC zero 

voltage levels have been emphasized in each of the screen shots.  Please refer to the text for the AC/DC gain 

ratio calculation. 

The measured ratio of the AC/DC (s = 0) transimpedance gains for the prototype amplifier/ 

photodiode shadow detector, shown in Figure 5, clearly followed the theoretical curve 

(indicated by the dashed line in the Figure) very well indeed, up to ~100 kHz.  Evidently, the 

amplifier was functioning as anticipated, from the theory given in §1 and §2. One small 

feature of the measurements of the AC/DC gain ratio that was noticed, however, was that 

between its two −3 dB points (give in the caption to Figure 5), where this ratio approached a 

value of 1000, the measured values tended to lie slightly below (< 1% below) the theoretical 

expectations.  It could be argued that only 1% tolerance resistors had been used in 

constructing the amplifier, and so the agreement was unexpectedly close, anyway; but then 

this shortfall did not extend either to lower, or to higher frequencies,  f  (for f < 100 kHz, that 

is). An alternative explanation might be that in this frequency regime the AC output signals 

were typically ~27 volts (peak-peak).  No obvious distortion was seen in such cases, but this 
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level of excursion lies close to the maximum voltage swing of the OP27E op-amp’s output—

with a ±15 V supply.  In retrospect, it might have been better to have limited such voltage 

swings to ~25 volts (peak-peak), say.  The fall-off in the AC/DC gain ratio above ~100 kHz, 

however, was due to the effective bandwidth of the AC amplifier built around IC3, which was 

expected to be only ~80 kHz.  This additional roll-off in response towards higher frequencies 

3.3. The AC/DC ratio of transimpedance gains, measured as a function of frequency 

 
Figure 5.  Measured ratio of the AC/DC (s = 0) transimpedance gains for the prototype amplifier/photodiode, 

as a function of the modulation frequency, f, using the calibration apparatus shown in Figures 2 and 4.  The 

solid data points are measurements made using the technique shown in Figure 4, the (blue) full-line through 

these data being simply a guide to the eye.  The dashed line running from 1 Hz–1 MHz (largely obscured) is 

the magnitude of the theoretical gain ratio, given by Equation 2. For these measurements an additional 680 pF 

capacitor was placed in parallel with the single Hamamatsu S2551 photodiode, in order to simulate the 

capacitance of 6+ m of co-axial cable running between the photodiode and the amplifier (please refer to the 

text). The -3 dB frequencies for the ratio of the AC/DC gains were found here to be 241 Hz, and 12074 Hz. 
The phase response gave a 33° phase-lead at a frequency of at 500 Hz, moving to a phase lag of 24° at 5 kHz. 

was seen as being positively beneficial, however—from the point of view of reducing the 

overall noise-bandwidth of the amplifier. 

4. Conclusions 

A bench measurement of the shadow-sensor’s quasi-static responsivity to suspension fibre 

displacement (or DC responsivity), clearly allows the more valuable AC responsivity to be 

inferred—with a high degree of confidence, given the agreement with theory—at any 

specified VM frequency; but the use of a transimpedance amplifier having two separate 

outputs (DC and AC) is then a sine qua non.  Moreover, the ratio of AC/DC transimpedance 

gains for the amplifier then has to be found, as shown in Figure 5, and, in order to make that 

measurement, the modulated illuminating source, as described here in §3.1 and §3.2, has 
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turned out to be indispensable.  In contrast, trying to vibrate the entire fibre, bodily, within 

the illuminating beam, as an isolated entity (having no physical supports, and no excited 

vibrational modes), and with an accurately-known amplitude of 1.00 µm, say, across the 

whole frequency range, was never an option.  

The single photodiode detector / prototype transimpedance amplifier discussed here was 

developed, eventually, into the split-photodiode / dual-input transimpedance amplifier, 

discussed in [9,11]; and, for comparison, the DC responsivity of this later development was 

measured at 10.7 kVm
−1

, averaged over its four sensors, compared with the 1.26 kV.m
−1

 

reported here.  The effective AC/DC gain ratio for the dual-input amplifier was 904 ± 4 at 

500 Hz—determined by placing the pinhole mask over each detector element, separately—

leading to a high (average) VM responsivity of 9.65 MVm
−1

, at this frequency.  

At the time of writing neither the Violin-Mode amplifier and sensor system described here, 

nor its successor [8,9,11,14], has been adopted for aLIGO, and, indeed, the need for 

separate VM sensing and damping has not yet been demonstrated.  The current baseline 

solution is to use aLIGO’s Arm Length Stabilization system as a VM sensor / damper [15]. 

In fact, the issue of vacuum compatibility remains unresolved for the VM sensor described 

here, and its successor, because the Hamamatsu photodiodes used for the detector elements 

had been encapsulated, using an unknown epoxy.  However, were it to become necessary, 

the issue of the epoxy for the photodiodes from this, or another, manufacturer probably 

could be resolved, and the LEDs and other components used are likely to prove vacuum 

compliant, or have vacuum-compliant alternatives. 
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