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Abstract: A new strategy of optimal experimental design (OED) is proposed for a kinetically controlled 

synthesis system by considering both observation design and input design. The observation design that 

combines sampling scheduling and measurement set selection is treated as a single optimization problem 

arranged in the inner loop, while the optimization of input intensity is calculated in the outer loop. This 

multi-objective dynamic optimization problem is solved via the integration of particle swarm algorithm 

(for the outer loop) and the interior-point method (for the inner loop). Numerical studies demonstrate the 

efficiency of this optimization strategy and show the effectiveness of this integrated OED in reducing 

parameter estimation uncertainties. In addition, process optimization of the case study enzyme reaction 

system is investigated with the aim to obtain maximum production rate by taking into account of the 

experimental cost. 

Keywords: multi-objective optimal experimental design (OED), process optimization, observation 

strategy, input design, parameter estimation, enzyme reaction system. 



1. INTRODUCTION 

Mathematical models are widely used in process systems 

engineering especially when using modern techniques (Peleg, 

et al., 2002). Model development includes determining 

suitable model structure and estimation of unknown model 

parameters (Franceschini and Macchietto, 2008). 

Biochemical processes are normally highly nonlinear and 

contain complex dynamic behaviours. Intuitive 

experimentation for these systems may produce data lacking 

effective modelling information, which therefore affects the 

parameter estimation quality. Collecting rich data for 

biochemical systems through experimentation is also cost 

intensive and time consuming. Therefore, designing 

experiment to generate efficient data is crucial for modelling 

of complex systems. Incorporating optimal experimental 

design (OED) into parameter estimation procedure has a 

good potential to improve estimation quality for high-

dimension systems with sparse and noisy data for model 

development. Here OED refers to devising experiments to 

obtain the most informative data so that the model parameters 

can be estimated from those measurement data with the best 

statistical quality (Faller, et al., 2003). A number of methods 

have been developed and successfully applied in modelling 

of biological and biochemical systems (Atkinson, et al., 2014; 

Baltes, et al., 1994; Liepe, et al., 2013; Walter and Pronzato, 

1990; Yu, et al., 2015). 

Experimental design for parameter estimation may need to 

handle the choice of input conditions, sampling strategy, 

measurement state subset and other factors associated with 

either input signals or measurement data. An OED problem 

can be formulated as dynamic optimization problem with 

respect to the design factors of interest, where the major 

objective is to maximise the data information through a 

measure of certain scalar function of Fisher information 

matrix (FIM). Since biochemical systems are often described 

by nonlinear and stiff differential equations, the OED 

problem is normally non-convex, so it is hard to find the 

optimal solution. Various methods have been proposed to 

solve this optimization problem, among them a popular 

method, called the control vector parameterization (CVP) 

method, which discretizes the control variables and transfer 

the OED problem into a nonlinear programming (NLP) 

problem (Balsa-Canto, et al., 2008; Bauer, et al., 1999; Bauer, 

et al., 2000). However, by considering input factors and 

observation factors together, the degrees of freedom in OED 

are greatly increased, which makes it extremely difficult to 

find the optimal solution. Traditional methods such as 

sequential quadratic programming may lead to local minimal 

solution only (Banga, et al., 2002). Stochastic algorithms 

aiming for a global solution are computationally expensive. It 

is therefore necessary to develop an efficient strategy for a 

complex OED that includes both input and observation 

design. This is the main motivation of this work. 

In this work, we aim to tackle the OED problem for a 

kinetically controlled synthesis system with multiple tasks 

regarding both input and observation factors. We propose to 

combine the sampling (time) design and measurement set 

selection into one observation design problem that can be 

relaxed into a convex optimization problem. This reduced 

observation design problem is then integrated with input 

optimisation. To avoid the problem of high degrees of 

freedom, the input factors and the observation factors are 

optimised separately yet connected through a structure with 
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the inner loop for observation design and the outer loop for 

input design. 

Process optimization is also a challenging task for the case 

study enzymatic reaction system, where the product of 

interest is not the thermodynamically most favourable one 

among all reactants. A successful operation should aim to 

achieve maximum product quantity with the consideration of 

production cost. Preliminary investigation of this process 

optimisation task is attempted in this work.  

The rest of the paper is organized as follows. In Section 2, 

preliminaries on parameter estimation and its relation to 

Fisher information matrix are briefly introduced. In Section 3, 

the multi-objective OED problem is formulated and the 

double-loop solution strategy is presented. The proposed 

OED algorithm is applied to an enzyme kinetically controlled 

synthesis system and the process optimization is also 

discussed in Section 4. Finally, conclusions and discussions 

are given in Section 5. 

2. PRELIMINARIES 

Consider a general nonlinear model for a biochemical system 

described in the form of ordinary differential equations: 

    0 0f , , ,t t X X ș X X  (1) 

  h , ,t Y X ș ȟ  (2) 

where T

1 2[ , , , ] n

nx x x X  denotes the vector of n state 

variables with initial condition 
0X ; 

T

1 2[ , , ] p

pk k k ș  

is the vector of p model parameters;  f   is a set of state 

transition functions which are assumed to be continuous and 

first-order derivative; mY  is the measurement output 

vector with  m m n  measurable variables, and  h   is the 

measurement function, normally used for selecting which 

variables to be measured. ȟ  is the measurement noise which 

is assumed to be independently and identically distributed 

(i.i.d.), zero-mean Gaussian noise. In practice, some model 

parameters are known and need to be estimated by comparing 

model prediction with experimental data. The most prevalent 

method for parameter estimation is the (weighted) least-

square estimation, where the problem is formulated as: 

 

 

    2

2
1 1

ˆ arg min

1 1 ˆarg min ,
2

m N

i l i l

i l i

J

y t y t
 



 
ș

ș

ș ș

ș
  (3) 

where  i ly t  and  ˆ ,i ly tș  are measured values and model 

prediction of the i-th state variable, respectively, at sampling 

times 
lt  ( 1,2,3, ,l N ), N is the total number of sampling 

data in the time dimension. 2

i  denotes the measurement 

error variance of the i-th state variable which is used to 

compensate measurement uncertainties.  

Once parameter estimation is conducted, it is necessary to 

assess the adequacy of the model and parameter significance 

by evaluating the output residuals through statistical tests. A 

lack-of-fit test is normally applied to evaluate whether the 

structured model can explain the experimental data 

satisfactorily. Regarding parameter estimation, the student t-

test and the method based on joint confidence regions 

between parameters are two widely used methods to evaluate 

the estimation quality (Franceschini and Macchietto, 2008). 

The latter (Motulsky and Christopoulos, 2004) is used in this 

work. The confidence region can be determined based on the 

cost function in (3): 

    1

,
ˆ: 1 p N p

p
J F J

N p




           
ș ș ș  (4)  

where 1

,p N pF 
  is the upper (0 1)   -critical level of the 

F  distribution with p  and ( )N p  degrees of freedom, 

(0 1)    is a positive real number. However, for a 

nonlinear model,  J ș  is not a quadratic function with 

respect to ș , and a linearization approximation is made by the 

second-order Taylor series expansion around the estimated 

parameters ș̂ . The confidence region can then be 

approximated as: 

      T
1 1

,
ˆ ˆ ˆ

p N pp F  
     ș ș V ș ș ș   (5) 

where 
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21
ˆ

ˆ ˆ2 ,
T

J J

N p

 
   

  

ș
V H ș H ș

ș ș
  (6) 

Here V  is the parameter estimation error covariance matrix 

which is used as the cornerstone to measure parameter 

estimation uncertainty.    ˆJ N pș  is an approximation of 

residual variance. H is the Hessian matrix. The confidence 

interval of a single parameter 
ik  can be determined by 

 i N p iit    V   (7) 

where N pt   is the student distribution with (1  ) confidence 

level and ( N p ) degrees of freedom.  

The FIM is defined by 
T 1FIM S Q S , where   S X ș  is 

the local parametric sensitivity matrix, and Q is the 

measurement error covariance matrix. It can be seen that the 

FIM is approximately equal to the inverse of the parameter 

estimation error covariance matrix, thus can be used to 

approximate V . It provides the lower bound of the parameter 

estimation errors based on the Cramer-Rao inequality (Ljung, 

1987). Many OED techniques are therefore developed based 

on FIM.  

3. MULTI-OBJECTIVE OPTIMAL EXPERIMENTAL 

DESIGN  

3.1  Basics of Optimal Experimental Design 
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Denote the design factors which characterize the experiment 

into a vector ȗ , the FIM can be written as: 

      T 1, , ,FIM ș ȗ S ș ȗ Q S ș ȗ   (8) 

The OED problem can be cast as the minimization of a 

proper measure of FIM, i.e.   

   * argmax ,


 
ȗ ȍ

ȗ FIM ș ȗ   (9) 

where ȍ  is the admissible space of design factors,     

represents a function to scalarise the FIM. The most 

commonly used design criteria are A-optimal, D-optimal, E-

optimal, and modified E-optimal design (Hosten, 1974; 

Ljung, 1987).  

3.2  Multi-task Observation Design 

In this work, observation design consists of two aspects: (a) 

the selection of measurement set; and (b) the choice of 

sampling time strategy. In measurement set design, the most 

informative measurable state variables will be determined for 

parameter estimation. This problem can be represented as 

follows (Brown, et al., 2008; He, et al., 2010): 
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1

2 T

1

T
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n
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i sel
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 




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 
  
 

 
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 
 
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1 Ȝ

 (10) 

where 
i  is an integer weight with values of 0 or 1, relating 

to the i-th state variable, 
seln  is the total number of selected 

measurement state variables. The variance terms of 

measurement noise are considered to be the same and are 

constant for all the noise channels, therefore has no effect to 

the optimization design.  

The optimal sampling design is to determine the best 

sampling (time) schedule for the measurable variables that 

will provide the most informative experimental data for 

parameter estimation. For a continuous-time dynamic system, 

choosing sampling points in the time horizon is an infinite 

dimensional non-convex dynamic optimization problem, 

which is hard to solve. Therefore, the sampling time design 

for most biochemical systems is dealt with as a discrete 

optimization problem where the available measurement 

points are defined in priori (Kutalik, et al., 2004): 

    
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1 2

1 2
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 (11) 

where  T1 N Ȧ  is the weighting vector for all 

available measurement points. 
spN  is the total number of 

sampling points to be selected.  

When the measurement set selection and sampling design is 

integrated together, it provides a wide option that both 

measurement set and sampling time are free to choose within 

the design domain. Each state variable at each available 

sampling point is given a small weighting. The observation 

design problem can be defined in a similar form to (11), and 

the only difference is that the number of the integrated 

weighting factors is extended to n N . This integer 

optimization problem can then be transferred into a 

continuous optimization problem by relaxing the weightings 

to a continuous value between [0, 1] shown as: 

    

 

1 2

1 2

T* 2

1

T

arg min

s.t. 0, 1 , .

N n

N n

N n

i i i

i

i sp

t t t

t t

N

  

 









 

 
  
 

   
 

 


Ȧ ȍ

ȗ

ȗ S S

1 Ȧ

  (12) 

At each sampling time point the FIM for each measurable 

state variable is a positive definite matrix. Therefore, the 

continuous optimization problem can be converted into a 

convex optimization problem by using different scalar design 

criteria. In this work the D-optimal criterion is used and the 

design problem can be formulated as a finite-dimension 

constrained linear optimization problem which can be solved 

by the interior-point method (Boyd and Vandenberghe, 2004). 

3.3  Integration of Observation Design and Input Design 

To consider the overall experimental operations, both input 

and observation strategies should be handled in an integrated 

framework. Since the change of input conditions will 

inevitably affect the system dynamics, the input design 

problem is formulated as a complex non-convex optimization 

problem. On the other hand, the observation design problem 

can be reduced to a convex optimization problem as 

mentioned in Section 3.2. As such, there is no simple solution 

for this multi-objective optimization problem.  

In this work, we propose to solve this integrated design 

problem with a two-loop sequential numerical procedure as 

shown in Fig. 1. Within the context of biochemical systems, 

here the input design refers to the calculation of initial 

concentrations of reactants. The input signal design is 

arranged in the outer loop, and the observation design is put 

in the inner loop. In this structure, the input signals are firstly 

determined by one iteration update of particle swarm 

algorithm, based on which the observation design problem is 

solved in the inner loop with the interior-point method. The 

designed observation strategy is then used in the next 

iteration of outer-loop input signal design. This process will 

continue until the optimal solution is obtained.  

While the inner-loop optimisation can obtain a global optimal 

solution for observation design under the given input 
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conditions, the outer-loop design with stochastic searching 

largely increases the chance of finding a global solution. This 

is a clear advantage over the traditional local numerical 

algorithm, e.g. sequential quadratic programming (SQP) 

method. For a complex design problem including both input 

signal design and observation design, it is also 

computationally more efficient to put the observation design 

within the inner loop since this is a convex optimization 

problem that is relatively easy to solve.  

OED for input design

Final experimental strategy

Yes

No

Initialisation

Interior-point 

method 

PSA  for one 

iteration

Outer loop

Inner loop

(FIM)

Updated 

observation 

strategy

Updated input 

values

Sampling design
Measurement set 

selection

Combined observation design

 

Fig. 1 Numerical strategy for multi-objective OED problem 

4. CASE STUDY FOR AN ENZYME REACTION 

SYSTEM  

4.1  Sensitivity Analysis and Identifiability Analysis 

An enzyme kinetically controlled synthesis process is 

considered in this work. The detailed model description, the 

nominal values of all parameters and initial conditions, and 

local sensitivity analysis (LSA) can be found in (Yue, et al., 

2013). In this enzyme process, the experimental length is set 

to be 100 minutes and sampling takes place in every minute. 

Previous work has shown that the three most sensitive 

parameters are 5k W , 3k  and 3k  from the measure of 

integrated local sensitivities. However, this local sensitivity 

analysis does not consider correlations between parameters. 

In biochemical systems, correlations between kinetic 

parameters are often seen in reversible reactions. The 

parameter correlation between 
ik  and 

jk  can be determined 

from FIM as: 

 
 cov ,i j

ij

ii jj

k k
R

FIM FIM



  (13) 

The correlation matrix is composed of 
ijR , in which except 

for the diagonal elements, any entries with values close to 

1  suggests a strong correlation between the two involved 

parameters. This will cause problems in parameter 

identifiability. Fig. 2 describes the parameter pair correlation 

for the enzyme reaction model, where  1 1,k k ,  3 3,k k , 

 5 5W,k k ,  5 6W,k k ,  5 6,k k  are seem to be highly 

correlated. The orthogonalized sensitivity methods, which 

include forward selection and backward elimination, are used 

in this work for the selection of key parameters (Yao, et al., 

2003). The detailed ranking results are shown in Table 1. It is 

worth noting that the ranking difference between LSA and 

the orthogonalized sensitivity methods are very obvious. 
3k  

and 
3k  are the two most important parameters via LSA 

ranking. However, when considering the high correlation 

level between these two parameters, it is found that they 

cannot be identified simultaneously (see Fig. 2). Therefore, 

the orthogonalization based methods provide more reliable 

results in parameter ranking. From the parameter 

identifiability analysis, 
3k , 

5k W  and 
2k  are found to be the 

three most important and identifiable parameters. 

 

Fig. 2 Visualization of parameter pair correlations  

Table 1 Comparison of different parameter importance 

ranking result 

Parameter ranking 

methods 

Parameter importance rankings 

LSA k-3  k3  k5W  k2  k4  k-4  k-2  k-5  k6  

k1  k-1 

Orthogonal forward 

selection 

k-3  k5W  k2  k1  k4  k3  k-2  k6  k-4  

k-1  k-5 

Orthogonal 

backward 

elimination 

k-3  k5W  k2  k4  k3  k-2  k6  k1  k-5  

k-4  k-1   
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4.2  Design of Observation Strategy 

Once 
3k ,

5k W  and 
2k  have been determined as the most 

important parameters, the OED for the estimation of these 

key parameters is applied in order to find the best observation 

schedule. Assuming that one hundred evenly space data 

points for each measurable state variable are available 

sampling points, the objective is to find 20 measurement data 

points that will lead to the most information. The D-optimal 

criterion is used to measure the data information and the 

design result is shown in Table 2. It can be seen that by using 

the OED techniques, the determinant of FIM increases almost 

three orders of magnitude which means that on average the 

uncertainty of each parameter is decreased nearly 30%, which 

is a significant improvement for the increase of parameter 

precision. Furthermore, we can see that the design result 

suggests the measurement of S to be taken from 10 to 15 

minutes and from 53 to 59 minutes, and the measurement of 

Q to be taken from 71 to 77 minutes. These two state 

variables are determined as the most valuable states and the 

measurement of them can lead to the most informative 

experimental data. Note that the observation design only 

manipulates the measurement strategy while the system 

dynamic is not changed. This also indicates that the model-

based OED is very necessary in the improvement of 

parameter estimation precision.  

Table 2 Measurement strategy from observation design 

Measurable state 

variables 

Non-designed 

sampling (unit: 

min) 

Designed 

sampling (unit: 

min) 

S 25, 50, 75, 100 10-15, 53-59 

P 25, 50, 75, 100 / 

N 25, 50, 75, 100 / 

Q 25, 50, 75, 100 71-77 

R 25, 50, 75, 100 / 

Det(FIM) 2.986e-8 2.428e-5 

4.3  OED for All Design Factors 

The observation design has already shown very significant 

improvement in reducing parameter estimation uncertainty. 

Now we consider the OED for all design factors including 

observation strategy and input signals. The D-optimal design 

result is shown in Table 3. It can be seen that S and Q are still 

determined as the most valuable state variables which is 

consistent with the observation design results. However, it is 

suggested that measurement of S should only be taken in the 

early reaction, while in the middle of reaction S does not 

need to be measured. This is different from the observation 

design result. It can be seen that after OED the increase of the 

objective value is up to six orders of magnitude, which is 

obviously better than the observation design. Fig. 3 shows the 

confidence intervals of 
2k  and 

3k  with different experiment 

strategies. It is found that that the uncertainty of 
3k  is only 

around 5% after experimental design, while experimentation 

with nominal conditions (before OED) may results in the 

uncertainty of 
3k  to be more than 20%, similar improvement 

for 
2k  with uncertainty from 34% (before OED) to 5% (after 

OED). 

Table 3 Comparison of experimental conditions before OED 

and after OED 

Experiment strategies 

Before OED After OED 

Input values 

( mol*L
-1

) 

E0: 1.5e-5 Input 

values 

(mol*L
-1

) 

E0:1.247e-5 

S0:  0.8 S0:0.796 

N0:  0.9 N0:0.962 

observation 

strategies 

(sampling 

time points, 

unit: min) 

S:  25, 50, 

75, 100 

observation 

strategies 

(sampling 

time points, 

unit: min) 

S: 15-21 

P:  25, 50, 

75, 100 
P:  / 

N:  25, 50, 

75, 100 
N: / 

Q:  25, 50, 

75, 100 
Q: 87-99 

R:  25, 50, 

75, 100 
R: / 

det(FIM) 2.896e-8 det(FIM) 0.065 

 

Fig. 3 Comparison of CI ellipsoids for [k2, k-3] with different 

experiment strategies 

4.4  Process Optimization 

Previous literature has highly recommended that parameter 

estimation and process optimization should be separated, 

because investigation of process optimization without 

validated model might result in erroneous conclusion. 

Therefore, quite a lot of work focusses on model 

identification based on the FIM in order to reduce parameter 

estimation variance. However, in many cases the reason for 

building mathematical models is as a basis for process 

optimization. Process optimization consists of choosing the 
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input variables and process time that will give the best 

possible outcome as defined by a certain objective function.  

Therefore, the user is more concerned with model behaviour 

only in that small region around the point where the optimal 

condition can be achieved. To this point, model identification 

should be integrated with process optimization so that the 

model will be more accurate in that region of state space of 

interest. 

Now we look at the process optimization of this enzyme 

kinetic model to investigate how the input values will affect 

the process behaviour. It is also primary work for further 

integration of process optimization and parameter estimation. 

In this case there are three input values which are E0, N0 and 

S0. The aim is to optimize these three input values in order to 

obtain the most possible outcome of Q with the consideration 

of the budget. Therefore, the objective can be defined as: 

 
0

0 0argmax(aQ bS cE )
testtest TObj


  

X ȍ
  (14) 

where 
0X  is the vector of input state variables. The 

coefficients a, b and c represents the unit price of 
testQ , S0 

and E0, respectively. Their values are given as: a=10, b=5 and 

c=5000. As we change the values of E0, the reaction rate will 

also change which will lead to the change of time when the 

maximum Q is achieved. Therefore, a fixed time point 
testT  is 

set to 1000, which is the time when the maximum Q should 

be attained. This problem is solved by SQP method, where 

the simulation result is shown in Table 4. It can be seen that 

through the process design, the objective is increased nearly 

50% over that with nominal condition. In addition, the input 

values obtained from process design is totally different from 

that determined by OED methods. Therefore, it is reasonable 

to integrate parameter estimation with process optimization 

so that the model identification process can be more focussed 

on the interesting region of state space.  

Table 4 Simulation result of process optimization  

 Input values ( mol*L
-1

) Objective value 

Nominal 

condition 

S0: 0.8 

  E0: 1.5e-5 

N0: 0.9 

0.876 

Optimal 

condition 

S0: 0.526 

     E0: 9.702e-6 

N0: 0.503 

1.286 

5. CONCLUSIONS 

In this work, we consider the integrated OED for both input 

design and observation design. To solve this complex high-

dimensional optimisation problem, a two-loop optimisation 

procedure is proposed, in which the relatively easy 

observation design is processed in the inner loop, and the 

input signal is calculated in the outer loop with a stochastic 

searching mechanism. The computational efficiency is 

effectively increased.  

This new design algorithm has been applied to an enzyme 

kinetically controlled synthesis process. From the observation 

design, it is suggested that the state variables Q and S provide 

the most informative experimental data than the other 

measurable variables for those important parameters to be 

estimated. From the sampling time design, it can be seen that 

measurement should be taken in the early reaction stage and 

in the middle reaction for S, and in the late reaction for Q, 

respectively. The OED result of all design factors is in 

agreement with the observation design result in terms of the 

measurement set selection – Q and S are selected in both 

cases. The sampling strategy is different when the input 

design is also considered, where the measurement of S is 

only required in the early reaction stage. With the integrated 

OED, the parameter estimation uncertainties of those three 

key parameters are all reduced to a level below 5%. In 

addition, the process optimization of this kinetic process is 

also investigated, from which the production rate of Q is 

largely increased.  

The proposed algorithm provides a computationally efficient 

framework for integrated OED. It has been shown capable of 

handling the case study enzyme reaction system. Further 

investigations will be made to improve its function to more 

complex systems such as systems with large model 

uncertainties or systems with time-varying input factors. 
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