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Abstract: In the past halo orbits were used for most of the spacecraft missions going to the Lagrange
point regions. However, other natural motions exist near these points presenting some advantages
compared to halos. Quasi-periodic motions on invariant tori are associated with frequencies and
amplitudes and surround the halo and vertical Lyapunov orbits. In this paper main characteristics of
quasi-periodic orbits around the far-side Lagrange point in the Earth-Moon system are discussed. Optimal
manoeuvres are identified to vary properties (phases, amplitudes) of an orbit. The proposed techniques
utilise the stable manifold allowing for single manoeuvre transfers. The separation of spacecraft from
a periodic orbit and a rendezvous scenario are discussed with respect to future missions, that have to
cope with regular vehicle traffic, rendezvous and docking activities. Fuel-optimal transfers from a halo to
a quasi-periodic orbit are identified in order to separate spacecraft. A second scenario assumes two
spacecraft with a given phase separation on a quasi-periodic orbit. A target orbit is defined in which the
spacecraft rendezvous. Parameter studies show that phase and amplitude changes strongly depend on
the time when the manoeuvre is performed.
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1. Introduction

Recent programmatic approaches for a future in-orbit infrastructure for human and robotic space ex-
ploration programmes show serious considerations of an orbital gateway station located at the far-side
Lagrange point of the Earth-Moon system (EML2), providing a flexible platform for future science and
exploration missions. The Space Launch System succeeding the Space Shuttle together with the Multi-
Purpose Crew Vehicle is providing the crew transportation and exploration infrastructure, and concepts
are required for crew and cargo access and storing beyond Earth orbit in conjunction with payloads
delivery. A gateway station at L2 provides Moon surface access and could serve as a fuel storage and
transportation system for interplanetary missions [3].

A variety of (quasi-)periodic trajectories exist in the vicinity of EML2, that can serve as nominal orbit for
such a gateway station. The Lagrange point regions are particularly suitable for missions that rely on
regular manoeuvres, as a high ∆v is required for the transfer, but once arrived all other ∆v requirements
are relatively small. Manoeuvring spacecraft between different orbits become a key element for such
a mission to cope with regular in-space operations, rendezvous, docking activities. The utilisation of
quasi-periodic orbits increases the flexibility in planning future missions. The complexity of long-term
space missions would decrease, when long stay times and any time access are driving requirements for
human exploration missions. For example, new launch opportunities arise if multiple phasing options
exist, or if multiple spacecraft will be launched on the same rocket and then separated in the proximity of
the Lagrange point.

Section 2 gives insight into the existence of quasi-orbits and their range in frequencies and amplitudes
around the far-side Lagrange point in the Earth-Moon system. It is followed by the description of optimal
manoeuvres derived analytically from the linearised Lissajous motion in section 3. The knowledge
from previous sections is used in the last section to identify optimal manoeuvres to change properties
(phases, amplitudes) of an orbit. Manoeuvre concepts are provided to appropriately phase spacecraft on
a quasi-periodic orbit, and manoeuvre between a variety of periodic and quasi-periodic orbits, including
formation deployment and rendezvous scenarios.

2. Periodic and quasi-periodic orbits in the Lagrange point regions

The model used for computations is the circular restricted three-body problem (CR3BP) that describes a
particle moving under the gravitational forces of a primary and a secondary body. A first assumption is
that the particle is massless and the second one that the secondary body travels around the primary
body in a circular orbit. The second order differential equation of motion is introduced as
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Figure 1: Periodic orbits around L2 in the rotating reference frame in natural units. Family of Northern
halo orbits (solid), vertical (dashed) and horizontal (dotted) Lyapunov orbits.
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where r21 = (x − µ)2 + y2 + z2 represents the distance from the spacecraft to the larger primary, and
r22 = (x+ 1−µ)2 + y2 + z2 to the smaller one. This study focuses on the Earth/Moon three-body problem
assuming a mass ratio of µ = 0.0123. The motion of the spacecraft is described in terms of dimensionless
rotating coordinates relative to the barycentre of the system primaries. A so-called non-inertial synodic
reference frame is introduced with a rotating x-axis directed from the primary to the secondary body. The
two primaries are stationary in this frame, and the origin of the reference frame rotates with a constant
angular velocity about the barycentre at the same rotation rate as the secondary body rotates around the
primary [1]. The above introduced coordinate system is normalised such that the gravitational parameter
G equals one. The non-dimensional scaling parameters for time, mass and length quantities are: t∗

(inverse of the mean motion), l∗ (distance between the primaries), m∗ (total mass of the system). Despite
the non-dimensional coordinates introduced above, the plots in this paper refer to natural units (km, s,
kg).

The CR3BP possess five equilibrium points named (L1 − L5), which are also called Lagrange or libration
points. L1 and L2 are the closest points to the secondary body. A known integral of motion in the circular
restricted three body problem is the Jacobi constant C, which is used later to classify periodic and
quasi-periodic trajectories. It is defined as

C = x2 + y2 + 2
1− µ
r1

+ 2
µ

r2
− (ẋ2 + ẏ2 + ż2). (2)

A variety of bounded orbits and trajectories that exponentially escape or approach the neighbourhood of
a Lagrange point exist. The bounded orbits are associated with the four-dimensional centre manifold.
Planar and vertical Lyapunov periodic orbits have a single frequency ωv and ωv, respectively. Two families
of halo orbits exist, which are symmetric with respect to the xz-plane. The Northern class of halo orbits is
characterised with a dominant part of the motion above the z-plane. The three types of periodic orbits
near the L2 Earth/Moon Lagrange point are plotted in Fig. 1 over the Jacobian constant in a range of
C = {3.038 to 3.149}. The arrows indicate the order of the orbits by an increasing C. The circle indicates
the position of the Earth, the cross Lagrange point L2. The corresponding frequencies vary for the halo
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Figure 2: Quasi-periodic orbit around halo orbit (left). Cross section A for a variety of tori around the
generating halo orbit (right).

orbits between ωhn = {2.1183 to 2.1183}, for the vertical Lyapunov ωvl = {1.6017 to 1.7657}, and for the
horizontal ones ωhl = {1.5676 to 1.8331} (2π / t∗).

There are families of orbits near halo and vertical Lyapunov orbits remain on a toroidal surface that
surrounds the generating orbit. In other words, periodic orbits in the Lagrange point regions are
surrounded by a variety of quasi-periodic orbits. These orbits serve as periodic seeds for the calculation
of families of invariant tori. The computation of periodic orbits is based on a iterative scheme with an initial
seed obtained from the third-order analytical approximation. A robust method to compute quasi-periodic
trajectories utilise a Fourier representation to describe an invariant curve representing the intersection of
an invariant torus with a Poincaré section. The basic algorithm is described in detail in literature [4, 5],
and is modified to additionally provide the parametrisation and system frequencies. By applying this
method to a wide range of periodic halo orbits of the Northern L2 family, the family of invariant tori are
computed.

Two quasi-periodic orbits are shown in Fig. 2. The cross section, together with family of feasible tori
is projected onto the z-plane. The family of tori for a particular periodic orbit is reduced to a single
parameter, defining either the rotation number, or the cross section. The cross section A is plotted
as a function of the orbit energy within the halo and vertical Lyapunov family in Fig. 2. The curves in
Fig. 2 show possible geometries. The existence of tori strongly depends on the orbital energy as the
extension of those curves is constraint by the horizontal Lyapunov orbit at the same energy. The motion is
directly linked to the frequency base of the torus, and can be described by a particle that is longitudinally
moving about the generation orbit with the frequency ω1, while rotating with frequency ω2. For parameter
dependencies, see Fig. 3.

3. Manoeuvres in linear theory

Any quasi-periodic orbit is characterised by its time related frequencies and phases and geometric
properties such as amplitudes. In the following manoeuvres are introduced to modify those properties.
The idea is to change a single parameter and maintain the others. Optimal amplitude and phase changes
have already been studied in literature for the linearised equation of motion about a Lagrange point,
neglecting the non-linear behaviour [2]. Analytic solutions to those problems are known from the linear
Lissajous motion, where optimal manoeuvres are introduced. Those are renewed in the following. The
first step is to introduce linearised dynamics in the vicinity of a quasi-periodic orbit. An entire linear
solution is known for orbits around the equilibrium points. A new reference frame with the same axis
definition as the synodic frame introduced above with an origin at the equilibrium point of interest is used.
The linearised equations of motion have the form
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Figure 3: The frequencies ω1 (a) and ω2 (b) plotted as a function of the continuation parameter of the
torus family A for several iso-energetic quasi-periodic orbit series.

ẍ = 2ẏ + (1 + 2c2)x

ÿ = −2ẋ+ (c2 − 1)y

z̈ = −c2z
(3)

with

c2 =
1

γ3
(µ+ (1− µ)

γ3

(1− γ3)3
(4)

the constant c2 is only depended on the mass parameter and the location of the Lagrange point. Note
that the expression for c2 is only valid for the Lagrange point L2. The linearised system is characterised
by a coupled motion in the xy-plane and a decoupled one in the z-direction, as seen in Eq. 5. The
in-plane phases and amplitudes relate to the motion in the xy-plane, whereas the out-of-plane parameters
describe the motion in z-direction. The periodic part of the analytic solution is written with the help of an
amplitude and phase as

x = A1e
λt +A2e

−λt +Ax cos(ω2t+ θ2)

y = cA1e
λt − cA2e

−λt + κAx sin(ω2t+ θ2)

z = Az cos(ω1t+ θ1)

(5)

with

λ2 =
c2 − 2 +

√
9c22 − 8c2

2
ω2
1 = c2 ω2

2 =
2− c2 +

√
9c22 − 8c2

2
(6)

and c = λ−1−2c2
2λ , κ = ω2−1−2c2

2ω2
. The equation of motion contain of an oscillatory part and hyperbolic

exponential parts. The hyperbolic exponential parts comprise of a exponential part with a positive
exponent, and a part with a negative exponent. The integral of motion A1 and A2 are related to the
unstable and stable component. If A1 is zero and a A2 component exists, this components decays
exponentially to zero. In order to avoid unstable behaviour the integral A1 that is associated with it is set
to zero.
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Figure 4: In-plane phase change by manoeuvre conducted at time tm = 6.51 days utilising stable manifold
for transfer (top). Out-of-plane phase change using intersection of initial and final trajectory (bottom).

The following equation are all derived from the linear equation of motion Eq. 5. The exact derivation of
the equations can be found in [2]. The manoeuvre direction is defined is such way that the unstable
motion is cancelled out and the only a stable part is introduced. The manoeuvre direction and a constant
β is introduced, which represents a gradient. They are given by

sdir =

(
1

d1
,
−κ
d2
, 0

)T
β = tan−1

(κ
c

)
(7)

The in-plane and out-of-plane phase is analogous to the true anomaly of a keplerian orbit. They define
the position of an orbiting spacecraft along the trajectory. With respect to the torus theory this implies that
the spacecraft before and after the manoeuvre will be on the same torus structure. An optimal in-plane
and out-of-plane phase change manoeuvre at a time tm has the form

θf2 − θi2 = −2(ω2tm + θi2 − β) (8)

θf1 − θi1 = −2(ω1tm + θi1) (9)

where the indices i correspond to initial and f to final parameters. It is required to point out that at
a particular time there is only one possible jump possible with single manoeuvre strategies. Optimal
solutions for amplitude changes are derived in the same way as for phase change in the previous cases.
The optimal manoeuvre at time tm to change phasing of the final orbit is of magnitude and direction

∆vxy = 2Ax sin(ω1tm + φi − β)‖sdir‖ (10)
∆vz = 2Az sin(ω2tm + ψi) (11)

Two transfers on a linear Lissajous orbit with a Az = Ax = 2 · 104 km are shown in Fig. 4. In both
cases a linear Lissajous orbit is propagated started from t = 0 days, one with a phase shift of φ = 0
rad (red, dashed) and φ = 2.946 rad (blue, solid), which exactly correspond to the optimal shift at the
manoeuvre time tm = 6.51 days. The manoeuvre is executed and the satellite asymptotically reaches its
new trajectory. The stable manifold of the arrival point is shown in gray, showing that the satellite uses the
manifold to approach its final orbit. In this case the time until arriving at the final orbit is ∆t = 11.3 days.
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It is important to note that the transfers are based on a different methodology. In the in-plane case the
manoeuvre does not instantly send the spacecraft onto the final orbit, but onto the stable manifold with
the effect that the spacecraft asymptotically reaches its final orbit. In the out-of-plane case the position of
initial and final orbit cross and with a transfer time equals zero the spacecraft continues its motion on the
final orbit. multiple manoeuvres and intermediate transfer arcs may be used for more generalised cases.

4. Impulsive transfers between (quasi-)periodic orbits

Impulsive transfers between (quasi-)periodic orbits are studied with respect to an orbital gateway station.
There are different options to create transfers. Two impulsive manoeuvres can be used in order to target
the desired state with the first manoeuvre and the second one corrects the velocity component. The
previous section provided insight into transfers that are optimal with respect to the linearised dynamics,
providing a first approximation of the ∆v requirement for phase changes. In the following the focus is set
on single impulse transfers utilising the stable manifold in the dynamic regime of the CR3BP.

4.1. Manifold transfer optimisation

It is essential that fuel-optimal transfers are investigated for future mission relying on multiple manoeuvres
once arrived at EML2. The transfers will provide flexible phasing opportunities along with the required
costs. Manifold transfers are good and suitable options to manoeuvre on quasi-periodic trajectories.
Those transfers are constructed by matching the outgoing manifold of the final orbit with the initial
state. The advantage of a manifold transfer is that a second insertion manoeuvre is not required as the
spacecraft asymptotically reaches its target. This methods offers lower ∆v expenses for the transfer
compared to two impulse transfer arcs. The target quasi-periodic trajectory is described by angular
coordinates and the torus function. This enables to use θ1 and θ2 as optimisation variables without
numerical integration of the final trajectory. The prime constraint is to match the initial position variables
with the manifold arc.

The optimisation is initialised by scanning the positive and negative branch of the stable manifold and
evaluating the closest approach to the initial state x0, along with the costs ∆v1 to correct the velocity
between the initial state and the manifold branch. An additional constraint is required if the initial position
is part of the torus structure as the scan will exactly find this point as closest solution. To avoid this in the
guess generation additional to the distance evaluation, the direction of the manoeuvre ∆v is examined.
The guess is dropped, if the second manoeuvre is along the original velocity direction.

The stable manifold is created by backward integration of a state on the quasi-periodic orbit. One manifold
branch approaches the Moon, whereas the second one leaving the Lagrange point region in the opposite
direction, see Fig. 5 for a partial part of the manifold for a fix θ1 = 0. A small manoeuvre is executed in
the direction linearised stable direction in order to force the spacecraft onto the stable manifold. The set
of parameters (θ1, θ2, ttf ,∆v1) corresponding to the smallest distance between xf (θ1, θ2) and x0 serve
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Figure 5: Partial positive and negative stable manifold branch of a quasi-periodic orbit
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as initial guess in a gradient-based optimisation process. The optimisation process finally connects
the stable manifold branch with the initial condition x0. The results of the optimisation process are the
position along the quasi-periodic orbit, whose stable manifold crosses the initial position. The optimal
phase change is evaluated as ∆θ = θ2 − θ0 − (tm + ttf )ω at a given time tm.

4.2. Spacecraft separation from periodic orbit

In the following formation deployment aspects are studied. The use of a single launch vehicle to launch a
set of satellites is faster and easier to realise. An efficient way has to be found to separate the satellites
either during transfer or once they are inserted into orbit around the Lagrange point. Apart from such
a separation scenario, transfer to nearby orbits become relevant for a gateway station concept where
locations for e.g. storage are investigated. The naturally existing trajectories in the proximity of a nominal
orbit provide optional operation orbits and enable an increased operational flexibility in terms of launch
windows and rendezvous scenarios.

The scenario assumes two spacecraft launched and injected into a halo orbit with a orbital period of
T = 13.50 days. The goal is to inject them into a quasi-periodic orbit in such a way that the phase
difference in ω2-direction is 120 deg. In order to find the optimal time for such a transfer, the optimal final
phases on the quasi-periodic orbit after the transfer are evaluated. Two solution are highlighted and
feasible at a time t in θ2-direction. Those present the two connection from the positive and negative
branch of the stable manifold. The same effect as the linear study in the previous part. The phase θ1
varies around zero, the small deviation from zero is caused by the different period of the initial and final
orbit.

For the scenario a feasible transfer solution is highlighted in the plot. The first spacecraft is transferred at
t = 1.45 days reaching the final quasi-periodic orbit with a phase of θ2 = 0.1384 rad after ∆t = 6.18 days.
At t = 5.79 days the second spacecraft is sent to a phase θ2 = 3.9326 rad, arriving at the final orbit in
∆t = 3.93 days. The ∆v for the transfer is ∆v1 = 41.1ms and ∆v1 = 44.87ms . The distances between the
spacecraft and relative to the halo orbit are plotted in Fig. 6.
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Figure 6: Geometric properties plotted as a function of time. Spacecraft are on same orbit until t = 1.45
days. Distance to halo orbit for first (dashed) and second (dotted) spacecraft.
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4.3. In-orbit rendezvous

For a gateway traffic management it is important to reconfigure spacecraft in such a way that they
rendezvous in orbit for docking activities. In past studies, phasing manoeuvres are used to fulfil mission
requirements, such as for the implementation of eclipse avoidance strategies as quasi-periodic Lissajous
suffer of longer eclipse periods compared with halo orbits. In contrast to the amplitude changes of the
torus, phases changes maintain the geometric properties of a quasi-periodic orbit, but changes the
position of a orbiting spacecraft along the trajectory. With respect to the torus theory this implies that the
orbit before and after a successful transfer is described by the same torus function u.

A scenario with two spacecraft flying rendezvous manoeuvres on the same quasi-periodic orbit are
studied. The quasi-periodic orbit has the following frequencies: ω = {2.01, 1.40}. A pair of spacecraft
is inserted onto the same quasi-periodic orbit with initial phases of θ = {0, 0} and θ = {0.3137, 2.8146}.
The objective is that both spacecraft meet at a time t at the same location. To provide a parametric
analysis on phase changes along a quasi-periodic trajectory, the manifold connections are evaluated.
Both spacecraft follow their nominal path until t = 1.45 days with an initial separation of 2.2 · 104 km.
One spacecraft conducts a manoeuvre at t = 1.45 and the other one continues its nominal path. 13.55
days later both spacecraft rendezvous and follow the quasi-periodic orbit. The ∆v requirement for the
rendezvous is 83.38ms . Fig. 8 shows the inter-spacecraft distance shown for a rendezvous scenario of
two spacecraft (solid). Rendezvous takes place at t = 15 days. Distance to periodic orbit for first (solid
line) and second (dashed) spacecraft.
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Figure 7: Results of a parametric study of transfer options on a quasi-periodic orbit (ω1 = 2.01 and
ω2 = 1.40).
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Figure 8: Inter-spacecraft distance shown for a rendezvous scenario of two spacecraft (solid). Ren-
dezvous takes place at t = 15 days. Distance to periodic orbit for first (solid line) and second (dashed)
spacecraft.
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5. Conclusions

The exploitation of natural motion relative trajectories for traffic management around a gateway station at
the far-side Earth-Moon Lagrange point allows to improve the sustainability of associated exploration
scenarios. This is achieved by minimizing ∆v, transfer times, and a optimum design of manoeuvre
strategies. The transfers studied in this paper utilise the information on frequencies and amplitudes from
existing orbits around EML2. Spacecraft separation and rendezvous scenarios prove the concept and
show the flexibility in introducing regular manoeuvres to phase spacecraft along orbits that remain on a
toroidal surface surrounding periodic orbits.
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