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ABSTRACT 

High frequency (HF) heating of the ionsosphere excites hydromagnetic waves which propagate 

to the ground and into the magnetosphere. In the mid-latitude ionosphere, modulated HF heating 

in the F-region produces a local fluctuating electron temperature, and the resulting pressure 

gradient leads to a diamagnetic current which excites magnetosonic waves.   In the E-region, 

where the Hall conductivity is dominant, these waves lead to oscillating Hall currents that 

produce shear Alfvén waves.  The excitation of hydromagnetic waves in the mid-latitude 

ionosphere is simulated using Hall MHD model and taking into account the Earth’s dipole 

magnetic field. With the heating in a region located at L = 1.6, altitude of 500 km and HF waves 

modulated at 2 – 10 Hz,  the waves  are generated by processes similar to the high-latitude case. 

The shear Alfven waves propagating to the magnetosphere become electromagnetic ion 

cyclotron waves at higher altitudes and propagate to the ion cyclotron resonance layer.   

 

1.  INTRODUCTION 

Ionospheric heating experiments have enabled exploration of the ionosphere as a large-scale 

natural laboratory for the study of many plasma processes. These experiments inject high 

frequency (HF) radio waves into the overhead plasma using high power transmitters and an array 

of ground- and space-based diagnostics are used detect the ionospheric response. The modulated 

heating of the plasma lead to fluctuations in the ionospheric current system and associated 

controlled generation of low frequency waves [Papadopoulos et al., 1989; 2011a, b; Stubbe, 

1996]. The HF heating experiments conducted using the HAARP facility has generated low 

frequency waves [Papadopoulos et al., 2011a, b]  in all the three ranges, viz. ultra low frequency 

(ULF, <10 Hz),   extremely low-frequency (ELF, 0.01 - 3 kHz)   and very low frequency (VLF, 

3-30 kHz).     

 

The low frequency waves are generated in the ionosphere during heating experiments with 

modulated HF waves (1 – 10 MHz) due to multiple  physical mechanisms which operate at 

different altitudes and conditions. One such mechanism is the modulation of the D/E-region 

conductivity by modulated HF heating and requires the presence of an electrojet current, viz. the 

auroral electrojet. The associated modification of the electrojet current creates an effective 

antenna radiating at the modulation frequency [Papadopoulos et al., 1989; Stubbe, 1996]. This 

mechanism of low frequency wave generation by a modulated heating of the auroral electrojet, at 

~ 80 km altitude in the D/E region, is referred to as the Polar Electrojet (PEJ) antenna. In another 

mechanism modulated HF waves heat the plasma in the F-region, producing a local hot spot and 
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thus a region of strong gradient in the plasma pressure. This leads to a diamagnetic current, on 

the time scale of the modulation frequency, and excites  hydromagnetic waves, primarily in the 

magnetosonic branch. In this case there is no quasi-steady or background current and the wave 

excitation is controlled by the plasma conditions, HF modulation frequency, size of the heated 

region, etc. This mechanism has been studied in simulations of the high latitude ionosphere 

[Papadopoulos et al., 2011a; Eliasson et al., 2012] for conditions typically corresponding to the 

HAARP facility. Another mechanism for the generation of ELF waves was motivated by 

observations by the DEMETER satellite during experiments at HAARP with no modulation of 

the HF power. These waves have been identified as whistlers with frequencies consistent with  

lower hybrid waves generated by parametric processes [Vartanyan et al., 2015].  

 

The mid-latitude ionosphere has no steady large scale current or electrojet and modulated HF 

heating can generate low frequency waves due to the processes similar to the case of high-

latitude ionosphere. Numerical simulations of the modulated heating in the mid-latitude 

ionosphere show that the geometry of Earth’s dipole field plays an important role in their 

propagation to the magnetosphere. The modelling of excitation and propagation of low 

frequency waves in HF heating of the mid-latitude ionosphere are presented in this paper.   

 

2.  MODELING LOW-FREQUENCY WAVES IN HF HEATING 

The hydromagnetic waves in the ionosphere are described in general by the MHD model, in 

which all plasma species are magnetized.  The plasma density in the ionosphere has a  maximum, 

with the corresponding Alfvén speed minimum, at an altitude of ~300 km.  In the E-region 

altitudes of 80-120 km where the ion – neutral collision frequency νin is larger than the ion 

cyclotron frequency ωci, the ions are strongly coupled to the neutrals, and the Hall conductivity 

dominates the dynamics. The dominant low frequency mode is the helicon mode [Papadopoulos 

et al., 1994], which is the low frequency (

 

ω << ωci ) branch of whistler wave, and is carried by 

the electrons. In this region the Hall conductivity σH dominates over the Pedersen conductivity 

σP. This altitude dependence of the conductivities has important consequences in the propagation 

of waves, viz. mode conversion between magnetosonic and shear Alfven waves [Hughes, 1983].   

 

The propagation of low frequency waves (

 

ω << ωci << ωce ) in the ionosphere is described by a 

collisional Hall-MHD model of the plasma [Eliasson et al., 2012]. Neglecting the electron 

inertia, the momentum equation governing the electron flow velocity ve in the electric filed E 

and magnetic fields B becomes  

 0 = െ ݁݉ (۳ െ ܞ × ۰)െ ܞߥ െ  ܲ݊                (1) 

where ܲ(ܚ, (ݐ = ݊ ܶ(ܚ,  is the modulated electron pressure due to local heating, n the (ݐ

electron density, ܶ(ܚ,  the electron-neutral (ܚ)ߥ   ,the electron temperature in energy units (ݐ

collision frequency, ݁ the magnitude of the electron charge, and ݉ the electron mass. The ion 

fluid velocity ܞ is governed by the ion momentum equation 

 
ݐ߲ܞ߲ =

݁݉ (۳ െ ܞ × ۰)െ ܞߥ  ,                (2) 
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where ߥ is the ion-neutral collision frequency and ݉ is the ion mass.  The electric and 

magnetic fields   are governed by Faraday’s and Ampère’s laws:  × ۳ = െ డ۰డ௧                                   (3) 

and   × ۰ = ܞ)(ܚ)݁݊ߤ െ   )                       (4)ܞ

  
On the scales relevant to the low frequency waves the various processes due to the HF waves 

result in a local region with enhanced temperature and whose size and duration are determined 

by the beam size and modulation frequency, respectively. The processes at such the short scales 

do not play a direct role in this study and a volume averaged model in which the heated region 

with an  enhanced electron pressure Pe. is used. In the numerical model, the electron temperature 

is assumed to have a Gaussian profile and with azimuthal symmetry: 

 ܶ = ܶௗtanhଶ ൬ ௧൰ܦݐ cos (߱ ݐ)exp ቈെ ଶܮఏଶݎ െ ݖ) െ ௭ଶܮ)ଶݖ  , (5) 

where ܶௗ is the modulation amplitude of the electron temperature, ܦ௧ is the rise time, ܮ is the 

width in the plane at z = zo,  ܮ௭ is the vertical width of the heated region and the heating is 

modulated at frequency ߱. Similar to Eliasson et al. [2012],  the slow mean temperature increase 

due to the HF heating is neglected as it will not contribute significantly to the wave-dynamics.  

For the study of wave excitation and propagation  the plasma conductivity tensors obtained from 

the linearized equations are used. The conductivity along the magnetic field צߪ is determined by 

the electron and ion mobilities, and the high parallel conductivity serves to short circuit the 

parallel electric field. The Hall conductivity σH dominates over the Pedersen conductivity σP in 

the D and E regions, and the reverse is the case at higher altitudes.  

  

The mid-latitude ionosphere has features, such as the curvature of Earth’s dipole magnetic field 

and the absence of a steady current system, may lead to physical processes different from the 

high-latitude case. Simulations of the mid-latitude region thus require a model that takes these 

into account. A generalized model is derived from   Eqs.  (1) - (4)  [Eliasson et al. 2012]: 

 
ݐۯ߲߲ = െ۳                (6) 

and 

 
ݐ۳߲߲ = െɘୡ୧(Ȟ + Ȟ)۳+

ઽധି[ × ×) ߤ[(ۯ െ   ന܀
×] ×) ߪߤ[(۳ + ൬߱܀ന  െ ൰ݐ߲߲  Pୣ݁݊ (7)

where we introduced the vector and scalar potentials ۯ and ߶ via ۰ = × and ۳ ۯ = െ߶ െ߲ݐ߲/ۯ, using the gauge ߶ = 0. The ܀ന and ܀ന  matrices (organizing the vectors as column 

vectors) are deduced from the electron and ion equations of motion, viz. Eqs.  (1) and (2), using 

the definitions (ܞ × ۰ + ݉ ߥܞ/݁)/ܤ ؠ  ܞ)  andܞനࡾ  ×  ۰ െ݉ߥ ܞ/݁)/ܤ ؠ ന܀  ܞ, 
respectively. In doing so, the Cartesian coordinate system (x, y, z) of Eliasson et al. (1012) is 

here replaced by a spherical coordinate system (ܴ, ߮, ߠ) where ܴ, ߮ and ߠ is the radial, 
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longitudinal and co-latitudinal coordinate, respectively. In the spherical coordinates, the 

magnitude of the dipole magnetic field is ܤ = (ܴாܤ ܴΤ )ଷξ1 + 3 cosଶ ന܀ ന and܀  The .ߠ  matrices are used to construct the inverse of an effective dielectric tensor ઽധିଵ = െ(ݒଶ/ߝܿଶ) ܀ന܀ന  , where ݒ = ܿ߱/߱ is the Alfvén speed, and a conductivity tensor ࣌ന  =߱(Ȟ + Ȟ)ઽധ, were we have denoted Ȟ = /߱ and Ȟߥ = /߱. Here, ߱ߥ =  /݉ܤ ݁
and ߱ = /݉ are the ion and electron cyclotron frequencies, ߱ܤ ݁ = (݊ ݁ଶ/ߝ ݉)ଵ/ଶ and ߱ = (݊݁ଶ/ߝ ݉)ଵ/ଶ are the ion and electron plasma frequencies, ߝ =  /ܿଶ is the electricߤ

permittivity in vacuum, ܿ is the speed of light in vacuum, and  ߪ = ߱ଶߝ /߱.  

 

The mid-latitude ionosphere has similar plasma profiles as the auroral region but the magnetic 

field geometry is significantly different in at least two ways. As shown in Figure 1, the field lines 

are oblique and curved, and can lead to changes in the propagation characteristics of the waves. 

Further, a wave front propagating out of a heated region in the mid-latitude ionosphere will 

intercept a wider area in the E-region where the shear Alfvén waves are excited.   

 

The simulations are conducted in a domain in 

the north-south plane in the spherical 

coordinates covering ܴ = ܴா + 100 km to ܴா + 4000 km in the radial direction and a 

region 90ל wide angular region in the co-

latitudinal direction centered at the foot of the ܮ = 1.6 shell, i.e. arcsin(1/ξܮ)െ ל45  ߠ 
arcsin(1/ξܮ) +  The simulation runs up to .ל45

12 seconds using 4 × 10ହ timesteps. The 

ionosphere is represented by a Chapman profile, 

with a peak density of 5×10
10

 m
-3 

at about 500 

km, corresponding to a minimum of the Alfvén 

speed of  ݒ ൎ 900 km/s. The simulation 

domain was resolved with 500 cells in the radial 

direction and 460 cells in the co-latitudinal 

direction. A centered 2
nd

-order difference 

scheme was used in the radial direction and a 

pseudo-spectral method with periodic boundary 

conditions in the co-latitudinal direction. The 

simulations were stopped before the waves 

reached the simulation boundaries in the co-

latitudinal direction, hence eliminating the 

effects of the artificial periodic boundary 

conditions. First order outflow boundary 

conditions were used at the top boundary in the radial direction. At the lower boundary between 

the plasma and free space at ܴ = ܴா + 100 km, we have constructed boundary conditions, by 

assuming that the horizontal components of the electric field and vector potential, and their radial 

derivatives, are continuous. In free space, we have assumed infinite speed of light and that there 

are no electric charges or currents, while the ground at ܴ = ܴா is perfectly conducting, so that 

 

 

Figure 1.  Part of the simulation domain 

(shaded in green) using polar coordinates in the 

mid-latitude region with the Earth’s dipole 

magnetic field. The heated region (in red) is 

centered at the magnetic field line ܮ =

.݈ܽ ݐ݁ ܽ݉ݎ݄ܽܵ] 1.6  , 2015ܽ].   
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analytic approximations for the free space electromagnetic fields can be used  (see Eliasson et al. 

2012). In this setup Te given by Eq. (5) peaks in the center of the heated region on the ܮ shell. In 

these simulations ܴா = 6000 km, ܶௗ = 2000 K, ܦ௧ = 0.5 s, ܦఏ = 40 km, ܦ = 20 km, and ݄௫ = 300 km, and ܮ = 1.6.   

 

The propagation of the low frequency waves into the magnetosphere, where the magnetic field is 

significantly reduced, leads to the possibility of their coupling to other modes, notably the 

electromagnetic ion cyclotron mode.  For perpendicular propagation   the  compressional or 

magnetosonic waves (の  kvA) are excited.   For parallel propagation and large wavenumbers ݇ ذ ܿ/߱, the shear Alfvén mode splits into two modes, viz. the right-hand circularly polarized  

(R-mode) whistler and the left-hand circularly polarized (L-Mode) electromagnetic ion cyclotron 

(EMIC) mode, also 

known as the Alfvén-ion 

cyclotron mode. While 

the whistler mode can 

propagate at frequencies ߱ > ߱ at large 

wavenumbers, the EMIC 

propagates at frequencies ߱ < ߱ and has a 

resonance at ߱ for large 

wavenumbers.   

 

The excitation of both 

magnetosonic and shear 

Alfvén waves in the case 

of modulation at 5 Hz is 

shown in Figure 2. At 

frequencies much below 

the ion cyclotron 

frequency the shear 

Alfvén wave propagates 

primarily along the 

magnetic field lines. 

Magnetosonic waves (ܤ௫) 

are created by the 

fluctuating diamagnetic 

current and propagate at 

large angles to the 

geomagnetic field lines upwards to the magnetosphere and downwards to E-region (Figure 2). 

Somewhat below the ܮ = 1.6 magnetic field line extending from the heated region are whistler 

mode waves (cf. Figure 2d). These waves are not created in heated region but at the Hall region 

at the bottom of the ionosphere where magnetosonic waves have been mode converted to helicon 

waves, which propagate to higher altitudes as whistler waves. Near the heated region there is 

also a direct generation of EMIC waves.  

Figure 2. Wave magnetic field (pT) of 5 Hz ELF waves excited by 

modulate ionospheric heating. The ܤ௫ component [panels a) and b)] is 

associated with magnetosonic waves, while the ܤ௬ component [panels 

c) and d)] is associated with shear Alfvén waves. Panels b) and d) show 

a close-up of a) and c), respectively, in the heated region [Sharma et al., 

2015a].     
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As the wave frequency becomes comparable to the ion cyclotron frequency, the splitting of the 

shear Alfvén wave into the whistler and EMIC branches become more pronounced. The whistler 

wave is characterized by a longer wavelength and higher propagation speed than the EMIC wave 

at a given frequency. An interesting question is what happens when the EMIC reaches the ion 

cyclotron resonance at high altitudes, indicated by thin lines in Figures 2a and 2c. The 

simulations show that the10 Hz EMIC waves cannot propagate beyond ion cyclotron resonance 

layer where their wavelength goes to zero, and the EMIC wave energy will pile up near the 

resonance [Sharma et al., 2015a, b].  

   

The HF heating experiments in the mid-latitude ionosphere using the facilities at Arecibo 

[Ganguly et al., 1986],  Platteville [Utlaut et al., 1974 ] and Sura [Kotik et al., 2013]  have provided a 

range of observations. The Arecibo experiment used transmitters at 3.1 and 5.1 MHz and the 

detectors were located 7 and 150 km offsite.  In one experiment the HF frequencies were offset 

by predetermined frequencies in the ULF range, and the power spectra of the waves detected on 

the ground showed peaks at these frequencies. The detected ULF waves were interpreted as resulting 

from nonlinear coupling between the two transmitted waves.  In another experiment the HF wave was 

modulated at ULF frequencies and there was a good coincidence between the HF wave transmission and 

the detection of ULF at the modulation frequency. The Plattevile experiments used transmitters with   

5- 10- MHz  in a ring array and detected the formation of field aligned artificial irregularities in 

the ionograms but there was no direct evidence of excited waves [Utlaut et al., 1974]. The 

experiment using the Sura facility (4.5 – 9 MHz, three ground detectors 2.6, 9.5 and 13.7 km 

offsite in a nearly linear array)  provided the first comprehensive evidence of the generation of  

hydromagnetic waves by modulated heating of the mid-latitude ionosphere [Kotik et al., 2013]. 

The effects of many factors, e. g., the wave polarization, geomagnetic activity and dependence 

on HF power, were examined in many experiments. The observations were interpreted as due to 

the HF waves heating the plasma due to nonlinear coupling [Gurevich, 1978] in a ring shaped 

region and the resulting pressure gradient leading to a ponderomotive force that is responsible for 

the low frequency wave excitation.   

 

3.  CONCLUSIONS 

The generation of low frequency hydromagnetic waves is a main feature of HF heating of the 

ionosphere. The nunerical simulations and experiments using HAARP facility have yielded a 

comprehensive understanding of the plasma processes in the ionosphere that leads to wave 

generation. In the high-latitude ionosphere these waves are excited under most conditions, viz. 

with or without an auroral electrojet. The essential mechanism is a multi-step process in which 

the pressure gradient in the heated region in the F region drives a local diamagnetic current, 

which excites magnetosonic waves propagating across the magnetic field and in turn excites 

shear Alfvén waves in the E region. The dominance of the Hall conductivity over the Pederson 

conductivity due to the strong coupling of the ion and nutral dynamics is responsible for the 

conversion of the compressional to shear modes. The propagation of the shear Alfvén waves 

along the field lines, to the ground and to the magnetosphere, have been detected by ground and 

satellite based measurements.  

 

In the mid-latitude ionosphere where there is no steady current or electrojet, the hydromagnetic 

waves are generated by essentially the same mechanism. The simulations for this case take into 
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account the curved geometry of the Earth’s dipole field and show new features in the generation 

of EMIC waves in the magnetosphere. In the equatorial ionosphere where the equatorial 

electrojet is prevalent, HF heating is expected to generate  low frequency waves by the same 

mechanism as in the high- and mid-latitudes. A striking feature of the equatorial ionosphere is its 

highly enhanced Cowling conductivity, which can lead to more efficient wave generation 

[Eliasson and Papadopoulos, 2009; Jain et al., 2012]. The Cowling conductivity, which is 

associated with the equatorial electrojet,  can be larger than the conductivity associated with the 

auroral elctrojet by two orders of magnitude, and thus can potentially magnify the wave 

generation significantly. 

 

The hydromagnetic waves in the ionosphere and magnetosphere play key roles in a variety of 

processes and have been observed by ground-based detectors and low-earth orbit satellites. The 

numerical simulations, such as these presented here, identify the plasma processes underlying the   

observations and thus provide a comprehensive understanding.     
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