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Non-Intrusive Load Disaggregation using Graph

Signal Processing
Kanghang He, Lina Stankovic, Jing Liao, and Vladimir Stankovic

Abstract—With the large-scale roll-out of smart metering
worldwide, there is a growing need to account for the individual
contribution of appliances to the load demand. In this paper, we
design a Graph signal processing (GSP)-based approach for non-
intrusive appliance load monitoring (NILM), i.e., disaggregation
of total energy consumption down to individual appliances used.
Leveraging piecewise smoothness of the power load signal, two
GSP-based NILM approaches are proposed. The first approach,
based on total graph variation minimization, searches for a
smooth graph signal under known label constraints. The sec-
ond approach uses the total graph variation minimizer as a
starting point for further refinement via simulated annealing.
The proposed GSP-based NILM approach aims to address the
large training overhead and associated complexity of conven-
tional graph-based methods through a novel event-based graph
approach. Simulation results using two datasets of real house
measurements demonstrate the competitive performance of the
GSP-based approaches with respect to traditionally used Hidden
Markov Model-based and Decision Tree-based approaches.

Index Terms—energy disaggregation, graph signal processing,
energy feedback, smart metering

I. INTRODUCTION

Appliance-level load demand information significantly en-

riches customer energy feedback and improves demand man-

agement measures via, for example, appliance load shifting

[2]. While appliance-level energy monitors can yield accurate

measurements, an alternative approach is preferred that is non-

intrusive and accommodates the ever increasing number of

appliances in a household, minimizing maintenance and instal-

lation costs due to sensor lifetime and networking/security is-

sues. Hence, non-intrusive appliance load monitoring (NILM),

i.e., disaggregation of the household aggregate load down to

individual appliances, based purely on analytical tools operat-

ing only on aggregate load data, has been gaining popularity,

especially with ongoing smart meter roll-outs worldwide.

The business case for NILM is presented in [3], showing

that resulting energy savings significantly surpass the costs

of NILM technologies. NILM can support retrofit appliance

advice, demand response measures, smart home automation

[4], and is an enabler in decision making for home-owners,

utilities, appliance manufacturers and policy makers.

Though NILM appeared in the 1980’s [5], there has been a

recent explosion in the NILM literature to tackle its practical
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challenges. NILM methods can be divided into two groups:

steady-state and transient-state methods. Steady-state NILM

methods rely on features extracted under steady-state operation

of appliances, e.g., changes in steady-state active power [6],

[7], [8], [9], reactive power [5], voltage and current wave-

form [10], [11], steady-state current harmonics and total har-

monic distortion [12], [13], or voltage-current trajectory [14].

Transient-state NILM methods identify appliances based on

their transient signatures, including transient power [15], high

frequency voltage noise [16], [17], harmonics of the transients

[18], [19], [20], duration and shape of power/voltage/current

transient waveform [21], [22]. Transient-state approaches

provide more distinguishable features than steady-state ap-

proaches and hence, in general, lead to higher disaggregation

accuracy. Transient methods require sampling rates in the order

of kHz or MHz [23], unlike steady-state methods, which are

more sensitive to power level fluctuations and at low sampling

rates, require longer monitoring time to capture all operation

cycles [24]. For a more detailed review of NILM, see review

papers [21], [23].

The proposed low-rate NILM approach in this paper is

motivated by the increasing availability of low-rate data from

electricity smart meters that are being deployed at large scale,

with an increasing penetration rate, in Europe, Australia and

the USA. For example, in the UK [25] and The Netherlands

[26] every household will have access to 10-second active

power readings. In the USA and Australia, smart meters

providing readings at rates in the order of seconds and

minutes, are massively deployed. Thus, NILM outputs can

be accessible to the average household, without additional

metering or monitoring hardware. This has prompted a recent

trend in NILM literature tackling the NILM problem at low

sampling rates, for example, [6], [7], [8], [27], [28], [29].

However, at low sampling rates, only steady-state features

can be extracted reliably. Due to the similarity of steady-state

load signatures among many domestic appliances, the NILM

problem is particularly challenging.

Most recent low-rate NILM methods are state-based meth-

ods that represent each appliance operation using a state

machine with distinct state transitions, based on appliance

usage patterns. Such probabilistic approaches are usually

based on a Hidden Markov Model (HMM) and its variants

(see [7], [23], [27], [28], [29] and references therein). Four

state-based methods for low-rate NILM, using conditional

factorial HMM and Hidden semi-Markov graph models, are

proposed in [27], but these methods have high computational

complexity and are prone to converge to a local minimum.

Another factorial HMM-based method is proposed by [7]
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for disaggregation of active power loads sampled at 1min,

using expert knowledge to build initial models for states of

known appliances, requiring correctly setting a priori-values

for each state for each appliance, which is in turn limited by

or strongly dependent on the particular aggregate dataset on

which NILM is being performed. The Hierarchical Dirichlet

Process Hidden Semi-Markov Model factorial structure is used

in [30], removing some limitations of the approach of [27],

but at increased complexity. A sparse coding algorithm, that

discriminately trains sparse coding dictionaries, is proposed

in [31], to learn a probabilistic model for each appliance’s

load demand over a typical week. The HMM-based method of

lower complexity, proposed in [32], reduces the execution time

by 72.7 times, but still requires 94 minutes for disaggregating

11 appliances. The main drawback of state-based approaches

is the need for expert knowledge to set a-priori values for

each appliance state via long periods of training and their high

computational complexity, which makes them unsuitable for

real-time applications [33].

Event-based NILM approaches have thus emerged [34],

which are based on detecting events, usually via edge detec-

tion, when the load signal undergoes a statistically signifi-

cant change indicating appliance use. After event detection,

features (e.g., active power signature, increasing/falling edge

[8], duration [35], uncorrelated power spectral components

[6]) are extracted to classify the events into pre-defined cat-

egories, each corresponding to a known appliance. Different

classification tools have been used, including support vector

machines (SVM), e.g., in [36], neural networks, e.g., in [37],

nonnegative tensor factorization [9], k-means [35] and decision

trees [8]. Challenges encountered by event detection tools

include large measurement noise, including large variance

of active power readings for common household appliances,

and similarity among active power steady-state signatures of

different appliances.

This paper presents a different approach, developing a graph

signal processing (GSP) method for steady-state NILM to

address the large training overhead and associated complexity

of conventional graph-based methods through a novel event-

based graph approach. GSP [38] is an emerging field that relies

on expressing the piecewise smoothness of a signal through

a graph. In [39], a GSP-based data classifier is proposed that

searches for a smooth graph signal under known label con-

straints, and is applied to image and document datasets. The

approach is based on the regularization of graph signals, using

the fact that if a signal is piecewise smooth, then the total graph

variation is generally small. Inspired by [38] and [39], in this

paper, we propose a GSP-based approach for NILM by posing

the load disaggregation problem as a single-channel blind

source separation problem [31] to perform low-complexity

classification of active power measurements. We treat active

power measurements as a signal, indexed by the nodes of an

undirected graph where each vertex corresponds to the signal

sample, and the weights of the edges connecting the vertices

reflect the degree of similarity between the nodes, i.e., the

weights of the edges enable ‘grouping’ on/off events from the

same appliance. Then, we define an optimization problem that

contains the regularization term of the total graph variation,

that is, we apply regularization on the constructed graph signal

to find the signal with minimum variation. However, unlike

the approach in [39], which solves for a smooth graph signal

using initially known labels as prior, to avoid over-smoothing,

we use the total graph variation minimizer as a starting point to

minimise the difference between the total measured power and

the sum of the disaggregated loads, deviating from traditional

NILM approaches (see [23], [9] and references therein).

The rest of the paper is organized as follows. Sec. II

provides a short background on GSP. Sec. III describes the

proposed GSP-based NILM algorithms, followed by results in

Sec. IV. The last section concludes the paper and highlights

future work.

II. GRAPH SIGNAL PROCESSING (GSP)

In this section, we describe some basic concepts of GSP.

All matrices are denoted by upper-case bold letters, such as

X. XT and X# are the transpose and pseudo-inverse matrices

of X, respectively. An element in the i-th row and j-column

of matrix X is denoted by Xi,j . Vectors are denoted by lower-

case bold letters, such as x, with the i-th element xi, and xi:j

denotes a sub-vector [xi, xi+1, . . . , xj ]
T , for i < j. A set is

denoted using calligraphic bold-letters, such as M, where |M|
denotes its cardinality.

GSP is a novel signal processing concept [38], [40] that ef-

fectively captures correlation among data samples in time and

space by embedding the structure of signals onto a graph [40]

leading to a powerful, scalable and flexible approach suitable

for many data mining and signal processing problems, ranging

from image denoising and data compression, to classification,

biomedical, and environmental data processing (see [38], [39],

[40], [41] and references therein). GSP is particularly suitable

for data classification when training periods are short and

insufficient to build appropriate class models [39].

In GSP, a dataset x is represented by a discrete signal s

indexed by the nodes of a graph G = (V,A), where V is

the set of nodes and A is a weighted adjacency matrix of the

graph. Each element xi ∈ x corresponds to a node vi ∈ V .

The weight of the edge between nodes vi and vj reflects the

similarity between xi and xj and is usually defined using a

Gaussian kernel weighting function, which is one of the most

used kernels in machine learning for expressing similarity

between dataset elements:

Ai,j = exp
{

−
(xi−xj)

2

σ2

}

, (1)

where σ is a scaling factor. Then, s, often referred to as graph

signal, is defined as a mapping from V to a set of complex

numbers. For example, s can be a set of classification labels,

where si is set to the label of the class that xi belongs to.

We define a graph signal’s total Lipschitz smoothness [38],

[42] with respect to the intrinsic structure of the underlying

graph G as:

1

2

N
∑

i=1

N
∑

j=1

Ai,j

(

si − sj
)2

. (2)

It can be shown that (2) is equal to sTLs [38], where an N×N
Laplacian matrix L is defined as

L = D−A, (3)
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Fig. 1. A GSP example with four nodes.

which is a real symmetric matrix and can be seen as a differ-

ence operator for the graph signal s [38]. In (3), D is an N×N
diagonal matrix where for k = 1, . . . , N , Dk,k =

∑N

j=1 Aj,k.
Eigenvalues of L carry the notion of frequency spectrum of s,

where values of eigenvectors associated with low eigenvalues

(low frequency) change less rapidly [38] across the nodes,

which can be used to design graph signal filters.

Fig. 1 shows an example with four nodes. The thickness

of the graph edges reflect the correction between the nodes

and vertical lines correspond to the graph signal values. If the

graph signal s is piecewise smooth with respect to the graph G,

then (2) will be generally small, which can be used as a prior

for regularization. Indeed, in classification [39], the elements

that are strongly correlated will be connected via high-weight

edges and associated with the same classification labels si
making s varying smoothly across the connected nodes in the

graph.

III. METHODOLOGY

A. Problem Formulation

Let M be the set of all known appliances in the house

and p(ti) the measured aggregate active power of the entire

house measured at time ti. Without loss of generality, in the

following, we denote p(ti) as p(ti) = pi ≥ 0. Let pmj ≥ 0 be

the power load of appliance m ∈ M at time instance tj .

Let ∆pi = pi+1 − pi and ∆pmi = pmi+1 − pmi . Then,

pi =

|M|
∑

m=1

pmi + ni, (4)

where, ni is the measurement noise that also includes baseload

and all unknown appliances running. The disaggregation task

is, for i = 1, . . . , N and m ∈ M, given pi, to estimate pmi .

B. GSP-based Disaggregation

To tackle the disaggregation problem using the GSP frame-

work, we construct a graph G = (V,A), where each vertex

vi ∈ V is associated to one sample ∆pi, i = 1, . . . , N .

For training, we assume availability of pi and pmi , for i =
1, . . . , n < N , for all m ∈ M. Then, the task is to estimate

pmi , for n < i ≤ N .

Let Thrm ≥ 0 be a power threshold for appliance m which

is set during training (see Sec. IV) in such a way that if

the magnitude of the appliance active power change is larger

than the power threshold, then we assume that the appliance

changed its operation state (e.g., switched on/off). Then, we

define an N -length graph signal sm for Appliance m as:

smi =











+1, for |∆pmi | ≥ Thrm and i ≤ n

−1, for |∆pmi | < Thrm and i ≤ n

0, for i > n.

(5)

Note that smi can be seen as a set of classification labels, where

during training (i ≤ n) smi is set to +1 (element i belongs to

Appliance m class) or -1 (element i does not belong to the

class), depending whether the appliance changed state or not.

Since for the testing dataset (i > n) we do not know if the

appliance was running, we set corresponding values of smi to

0.

We can now calculate adjacency matrix A according to (1),

where xi = ∆pi. The graph smoothness can be calculated

using (2).

Let ri =
[

∆p1i ,∆p2i , · · · ,∆p
|M|
i

]

and let the difference be-

tween the actual aggregate power and the sum of disaggregated

appliance powers be:

f(ri) =
∥

∥

∥∆pi −
∑|M|

m=1 ∆pmi

∥

∥

∥

2

2
. (6)

We pose the disaggregation optimization problem as min-

imization of
∑N

i=n+1 f(ri) using piecewise smoothness as a

prior by introducing (2) as a regularization term, i.e.,

min
[rn+1,··· ,rN ]

N
∑

i=n+1

f(ri) + ω
∑

m∈M

∥

∥

∥sm
T

Lsm
∥

∥

∥

2

2
. (7)

Note that (7) defines an optimal solution as the smoothest

solution that minimizes (6), where ω is a parameter that trades

off smoothness and the minimization (6).

(7) is a hard optimization problem especially since |M|
and N − n can be large. Thus, we propose two approximate

solutions, one minimizing only the second term in (7), and the

other minimizing both terms iteratively.

C. Solution 1: Total Graph Variation Classifier

If we assume, as in [39], that the true classification labels

form a low-frequency graph signal sm, then for each Appli-

ance m, an individual classifier can be defined that minimizes
∥

∥

∥sm
T

Lsm
∥

∥

∥

2

2
, i.e., one that finds the smoothest signal.

We call this classifier, the total graph variation classifier.

The intuition behind it is that the labeled training samples for

i ≤ n that are close in value to the unknown samples, j > n,

will have large edge weights Ai,j , and so a smooth graph-

signal prior will ensure that the testing samples have similar

classification as these training samples.

Since sm1:n is known, determined during training, we can

simplify the smoothness term as [41]:

sm
T

Lsm =sm
T

1:nL1:n,1:ns
m
1:n+

sm
T

1:nL1:n,n+1:Nsmn+1:N+

sm
T

n+1:NLn+1:N,1:ns
m
1:n+

sm
T

n+1:NLn+1:N,n+1:Nsmn+1:N .

(8)
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Since matrix A is symmetric, D is diagonal and L is

diagonally symmetric, it follows that:

sm
T

1:nL1:n,n+1:Nsmn+1:N = sm
T

n+1:NLn+1:N,1:ns
m
1:n. (9)

Using (9), and since sm1:n is constant, the first term does not

affect minimization, we minimize (8) as:

argmin
∥

∥

∥sm
T

Lsm
∥

∥

∥

2

2
=

argmin{2sm
T

n+1:NLn+1:N,1:ns
m
1:n+

sm
T

n+1:NLn+1:N,n+1:Nsmn+1:N}.

(10)

This is an unconstrained quadratic programming problem

with a closed form solution [41], [43]:

sm
∗

= L
#
n+1:N,n+1:N

(

−sm
T

1:n

)

LT
1:n,n+1:N . (11)

Once sm
∗

is determined, for i > n, if sm
∗

i > Ts, then,

Appliance m changed state, ∆pm
∗

i is set to the mean of pmi
which is calculated through the training process; otherwise,

Appliance m did not change its state, and ∆pm
∗

i = 0.
In contrast to [39], where the threshold Ts is set to zero,

we set our classification threshold Ts =0.5, which imposes

that only samples that are highly correlated with the training

samples will be assigned to the same class. The value of

0.5 was found heuristically to yield the fewest false positives

without increasing the number of false negatives.

We repeat minimisation of the smoothness term for all

appliances m ∈ M, where after each appliance has been

disaggregated, its contribution to the total load is removed by

subtracting its mean from the aggregate. Note that the same

nodes are used for all appliances, but matrix A changes with

updated ri
∗, i = n+ 1, · · · , N .

Fig. 2. An example of GSP-based disaggregtoin.

An example is given in Fig. 2. The top figure shows the

generated graph nodes and connections between the nodes.

Note that each node corresponds to one active power reading

shown in the middle graph. The graph signal (shown on the

bottom graph) contains classification labels for each power

edge. During testing (i > n) all calculated values of sm above

threshold Ts = 0.5 will be classified to the Appliance m class,

i.e., there was appliance state change or event.

The flow chart of the algorithm is shown in Fig. 3. The

complexity of the approach depends on N − n since it is

necessary to find the pseudo-inverse of an (N −n)× (N −n)
real-valued matrix, which can be done in O((N − n)3) time.

Fig. 3. Flow chart for Solution1: Total Graph Variation Classifier.

D. Solution 2: GSP + Simulated Annealing Refinement

Fig. 4. Flow chart for Solution 2. r∗
i

, i = n + 1, · · · , N is the solution
found by Solution 1.

While Solution 1 finds the smoothest graph signal under

given constraints, it may over-smooth the result. To avoid this,

we introduce a sub-optimal solution for solving (7) based on

minimising both terms.
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First, we apply Solution 1 based on (11), which is the

starting point for the simulated annealing method [44] that will

attempt to refine the result by minimising the first term of (7).

We demonstrate in the next section that simulated annealing

provides a solution identical or close to a greedy full-search

method, which has exponential complexity in |M|.
The flow chart of Solution 2 is shown in Fig. 4. Note that

the input is, r∗i , i = n+ 1, · · · , N , which is a solution found

by Solution 1. This solution is refined via iterative simulated

annealing, where iternum denotes the number of iterations. In

each iteration, a candidate solution qi is formed by randomly

setting appliances on/off. Step exp
{

f(ri)−f(qi)
T

}

> rand()

ensures that when the “temperature” T is high, the algorithm

does not accept a worse solution, where rand() is a function

that returns a random number in the interval (0, 1). We

heuristically demonstrate the convergence of the algorithm in

the next section.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the following results: (1) Relative

performance of using Simulated Annealing (SA) vs. Full

Search, (2) Relative performance of Solution 1, SA only and

Solution 2, (3) Comparison with state-of-the-art methods of

[8] and [7], (4) Computational complexity.

We use the publicly available REDD dataset that contains

load data from US houses [45], downsampled to 1min res-

olution, and the REFIT dataset [4], one of the largest UK

datasets that contains active power measurements, sampled at

8 sec resolution, and collected over a continuous period of 2

years from 20 UK homes. The REDD dataset contains clean

data and a small number of unknown appliances. On the other

hand, the REFIT dataset contains many unknown appliances

and high variations in the baseload. For validation purposes,

household appliances, for which timestamped individual power

consumption is available via submetering, are treated as known

appliances. They are: Dishwasher (DW), Refrigerator (REFR),

Microwave (MW), Washer dryer (WD), Kitchen outlet (KO),

Stove (ST), air-conditioning high (ACH ) and low (ACL)

state, Electronics (EL), Washing machine (WM), Kettle (KE),

Electric shower (ES), Electric heater (EH), Freezer (FRZ),

Fridge-freezer (FFRZ). Baseload and Unknown appliances are

abbreviated as BL and UN, respectively.

For training with the proposed methods, for each appliance,

we used a period in the aggregate dataset when only that

appliance is running (together with the BL). If a new appliance

is introduced in the household, the training dataset is updated

with that particular appliance’s signature, comprising samples

representing a full run from on to off. No retraining needs to

be performed for other appliances. At least 14 days worth of

data is used for testing.

Thrm is always set to one half of the difference between

mean values of Appliance m’s consecutive states. For example,

if a two-state appliance, on and off, Thrm would be half of

the power value in the on-state. The scaling factor σ is picked

during training in the area from the first non-zero value of the

smoothness term to the inflection point, which was shown to

provide the highest performance. For SA, temperature thresh-

old Y = 0.01, T0 = 100|M| and iternum = 1000 which

trades off performance and complexity. For both proposed

algorithms, we use windows of size 1000 samples, which

ensures low complexity (see Subsection IV-D).

The evaluation metrics used are precision (PR), recall (RE)

and F-Measure (FM ) [46] defined as:

PR = TP/(TP + FP ) (12)

RE = TP/(TP + FN) (13)

FM = 2 ∗ (PR ∗RE)/(PR+RE), (14)

where true positive (TP) is recorded when the detected ap-

pliance was actually used, false positive (FP) is when the

the detected appliance was not running, and false negative

(FN) indicates that the appliance operation was not detected.

Precision captures the correctness of detection - the higher the

PR, the fewer the FPs. On the other hand, high RE means

a low number of FNs, which implies that a higher percentage

of appliance state changes are detected correctly. FM balances

PR and RE.

In addition, we use the average normalized error metric to

measure the total energy difference between power estimated

by the NILM algorithm and the actual power consumed, across

all known appliances, which is defined as:

ANE =

∣

∣

∣

∑N

i=1 p̄i −
∑N

i=1 p̂i

∣

∣

∣

∑N

i=1 p̄i
, (15)

where p̂i is the power estimated by the NILM algorithm from

all disaggregated appliances m ∈ M at time i and p̄i is the

actual power consumed by all known appliances at time i. This

measure is useful, e.g., for appliance-itemized billing, when

quantifying, across a fixed period of time, the error incurred by

the NILM algorithm in estimating the total power consumed

by individual appliances.

A. Full-Search vs Simulated Annealing

Fig. 5 shows an example of the convergence of the SA

algorithm. It can be seen that the method converges after less

than 300 iterations. Similar results are obtained for different

datasets.

A full-search method can be used to minimize (6) off-line

when |M| is small. Assuming only two-state appliances (i.e.,

ON/OFF), for each sample i, each appliance can either be

switched on or off, or does not change state. Thus, with full-

search, there are 3|M| possible combinations that should be

inspected for each sample. Table I shows the FM value com-

parison between the full-search method and SA for two houses

from the REDD dataset. One can see that the proposed sub-

optimal SA approach finds a solution that is either identical

to or very close to the full-search method.

B. SA, Solution 1 and Solution 2 Comparison

In this subsection we compare three approaches: (1) Total

Graph Variation (Solution 1); (2) minimizing the first term of

(7) only, i.e., (6), using SA; (3) Solution 2, incorporating the

latter two approaches. As shown in Tables II and III, SA and
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Fig. 5. Convergence of the simulated annealing method for House 2 from
the REDD dataset.

TABLE I
SA VS. FULL-SEARCH (FS) FOR REDD HOUSE (H) 2 AND 6.

REFR ST MW KO EL ACH ACL DW

FS H2 0.84 0.31 0.91 0.83 - - - 0.62
SA H2 0.84 0.30 0.91 0.83 - - - 0.62

FS H6 0.77 0.75 0.77 0.55 0.48 0.92 0.56 -
SA H6 0.77 0.75 0.77 0.55 0.48 0.92 0.53 -

Solution 1, lead to significantly worse FM performance for

some appliances than treating them jointly (Solution 2).

When minimizing Equation (6), SA only uses known mean

values of pmi and thus does not account for small fluctuations

in actual instantaneous pmi . SA results in Table II are poor

for Stove, since Stove (mean pmi = 408W) is often confused

with the low-power state of Dishwasher (mean pmi =349W).

Similarly, in Table III, Kitchen Outlet and Electronics have

similar operating power states, hence they are often incorrectly

labelled.

SA only does not outperform Solution 1, however the

advantage of Solution 2 (integrating Solution 1 and SA) is

consistent across all appliances and especially significant for

appliances such as Electronics and AC.

TABLE II
THE FM RESULTS FOR REDD HOUSE 2.

Appliance REFR ST MW KO DW

Avg.Power [W] 171 408 1840 1056 1201 (349)

Solution1 0.81 0.81 0.91 0.85 0.83
SA 0.84 0.30 0.91 0.83 0.62

Solution2 0.84 0.86 0.93 0.88 0.84

TABLE III
THE FM RESULTS FOR REDD HOUSE 6.

Appliance REFR ST MW KO EL ACH ACL

Avg.Power [W] 149 1724 1352 946 815 2376 357

Solution1 0.77 0.92 0.91 0.86 0.28 0.94 0.53
SA 0.77 0.75 0.77 0.55 0.48 0.92 0.56

Solution2 0.78 0.92 0.91 0.88 0.66 1.00 0.79

C. Comparison with state of the art

A comparison of performance of Solution 2 with the state-

of-the-art NILM approaches, namely Decision Tree (DT)

approach [8] and HMM-based approach [7] is shown in

Tables IV, V, and VI for REDD Houses 1, 2, 6, respectively.

TABLE IV
COMPARISON BETWEEN THE PROPOSED SOLUTION 2 (P), HMM AND

DT-BASED METHODS FOR REDD HOUSE 1.

Appliance REFR MW DW KO WD

FMp 0.88 0.70 0.57 0.39 0.89
FMHMM

0.97 0.50 0.13 0 0
FMDT

0.88 0.85 0.39 0.19 0.88

TABLE V
COMPARISON BETWEEN THE PROPOSED SOLUTION 2 (P) AND HMM AND

DT-BASED METHODS FOR REDD HOUSE 2.

Appliance ST REFR KO MW DW

FMp 0.86 0.84 0.88 0.93 0.84
FMHMM

0.21 0.90 0.68 0.47 0.04
FMDT

0.33 0.97 0.92 0.97 0.32

TABLE VI
COMPARISON BETWEEN THE PROPOSED SOLUTION 2 (P), HMM AND

DT-BASED METHODS FOR REDD HOUSE 6.

Appliance ST REFR KO MW AC EL

FMp 0.92 0.77 0.88 0.91 0.88 0.66
FMHMM

0 0.88 0 0 0.12 0.03
FMDT

0.67 0.99 0 0 0.89 0

The proposed method was also tested using the noisy REFIT

dataset [4]. The REFIT households were monitored remotely

and uninterruptedly, while they were going about their usual

domestic routines. Each house contains numerous appliances

that were not monitored, including oven, lights, chargeable

devices, small electronics, etc., which are considered unknown

and contribute significantly towards noise. Tables VII and VIII

show results for REFIT Houses 2 and 17, respectively. These

two houses were selected as two houses which had relatively

fewer unknown appliances compared to other houses in the

dataset.

TABLE VII
COMPARISON BETWEEN THE PROPOSED SOLUTION 2 (P), HMM AND

DT-BASED METHODS REFIT HOUSE 2.

Appliance FRZ WM DW TV MW KE

FMp 0.77 0.55 0.62 0.49 0.95 0.88
FMHMM

0.49 0.26 0 0.06 0.01 0.01
FMDT

0.33 0.73 0.36 0 0.95 0.58

Tables IX, X, and XI show the relative contribution of

known appliances to the total aggregate load, for REDD

Houses 1 and 2 over a period of two weeks and REFIT

Houses 2 and 17 over a period of one month (October

2015). The proposed Solution 2 can disaggregate over 60%

of the household’s total load, demonstrating its effectiveness

in accounting for individual appliance demand.
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TABLE VIII
COMPARISON BETWEEN THE PROPOSED SOLUTION 2 (P), HMM AND

DT-BASED METHODS FOR REFIT HOUSE 17.

Appliance FRZ FFRZ KE MW WM

FMp 0.64 0.76 0.96 0.81 0.76
FMHMM

0.32 0.19 0.01 0.22 0.01
FMDT

0.81 0.79 0.97 0.71 0.50

TABLE IX
REDD HOUSE 1 AND 2. THE TOTAL DEMAND FOR TWO WEEKS WAS 158

KWH AND 77 KWH FOR HOUSES 1 AND 2, RESPECTIVELY.

REFR MW ST KO DW WD BL UN

H1 14% 8% - 1% 7% 10% 22% 39%

H2 31% 8% 2% 1% 5% - 16% 37%

TABLE X
REFIT HOUSE 2. TOTAL MONTHLY DEMAND WAS 372 KWH.

FFRZ WM DW TV MW KE ES BL UN

7% 4% 12% < 1% < 1% 6% 15% 18% 35%

TABLE XI
REFIT HOUSE 17. TOTAL MONTHLY DEMAND WAS 341 KWH.

FRZ FFRZ KE MW WM EH ES BL UN

15% 7% 8% 2% 2% 11% 8% 21% 27%

With respect to disaggregation accuracy, the ANE measure

given by (15), which measures the discrepancy between the

true consumption and the disaggregated values, is, for REDD

Houses 1 and 2, 7.33% and 6.91%, respectively, and for REFIT

Houses 2 and 17, the ANE is 8.97% and 9.24%, respectively.

These results demonstrate that a very small percentage of the

total load is wrongly disaggregated.

1) Discussion: As can be seen from Tables IV, V, and

VI, the proposed method significantly outperforms the HMM-

based approach for all appliances in the REDD dataset except

the refrigerator. HMM usually performs well disaggregating

the refrigerator due to continuous and sole operation (i.e.,

without any other appliances running) during the night and

hence large data availability for learning and improving initial

models [7], [8]. The poor performance for other appliances

can be attributed to the short training period. The proposed

method shows better or similar performance to the method of

[8] expect for microwave in Houses 1 and 2, and refrigerator

in most houses. These appliances have very small power

fluctuations during operation, and hence the decision tree

classifier based on the rising and falling power edge works

especially well.

Tables VII and VIII show poor HMM results for the

REFIT dataset due to the noise and many unknown appliances.

The proposed solution is again better than or equal to the

benchmark methods for most of the appliances except washing

machine in House 2, where DT performs the best due to very

distinctive high-state washing machine power edges.

The results for both REDD and REFIT dataset demonstrate

that the proposed method provides more accurate disaggre-

gation than the benchmark methods for most appliances. The

difference is especially pronounced for the kitchen appliances,

namely Kettle, Microwave, and Stove. This is due to the

fact that Stove and other kitchen appliances normally have a

short operation time and relatively high power, thus machine-

learning based approaches cannot generate probabilistic mod-

els that accurately capture appliance operation. The HMM-

based approach is sensitive to noise and suffers from a

short training period. The DT-based method works well for

appliances that have small fluctuations in load during their

steady-state operation.

The results for multi-state appliances (dishwasher, washing

machine) are generally worse for all tested algorithms. This is

due to first, the fact that low-power operating states are often

difficult to detect since they are ‘hidden’ in the baseload and

noise. Second, since these appliances are on for a very longer

period, many appliances are likely to run in parallel, adding to

noise. Finally, multi-state appliances are not used frequently,

thus it is more difficult to isolate good training periods.

On the other hand, cold appliances, refrigerator, freezer

and fridge-freezer, are always on and have regular periodic

signatures; thus the algorithms show good accuracy. However,

due to higher level of noise from many unknown appliances,

slightly worse results are obtained for the REFIT dataset with

a higher false positive rate.

The TV in REFIT House 2 is hard to identify since it

has relative low operating power and thus it is often hidden

by noise and baseload. In addition, TV runs usually for a

long period of time, and thus many appliances will run in

parallel. Still, the proposed method is more successful than the

benchmark methods, since it is less sensitive than HMM to the

training dataset that does not have any instances of TV running

alone and it is more successful in resolving the cases when

multiple appliances run in parallel than DT. Electronics in

REDD House 6 include different electronics equipment which

produce complex power signatures that lead to worse results.

The proposed algorithm again shows more robustness than the

benchmark methods in this situation, since it is less sensitive

to fluctuations in steady-state power signature during training

and testing.

Tables IX, X, and XI show that unknown appliances,

including lighting, whose consumption could not be validated,

make up only under 40% of the total load. The ANE results

indicate that the discrepancy between the actual load due

to known appliances and NILM-estimated load is very low.

However, the ANE results of REFIT houses are slightly worse

than in the case of REDD dataset, mostly due to additional

noise from unknown appliances and multi-state appliances,

i.e., washing machine and dishwasher. Note that, each REFIT

house contained over 40 operational appliances (see [4] for

monitoring details), many of which could not be validated via

a time-diary or appliance-level load measurements. Moreover,

considering that lighting, which contributes towards the ‘Un-

known’ category in Table X and XI, accounts for about 20% of

a household’s domestic consumption in October in UK (see [4]

and references therein), the results demonstrate the potential

of the proposed technology in effectively disaggregating smart

meter aggregate loads.
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D. Computational complexity

The proposed algorithm was implemented in Matlab2015b

and executed on an Intel(R) Core(TM) i5-3470 CPU @

3.20GHz machine running Windows 7 64-bit. Table XII shows

the computational time needed to disaggregate the refrigerator,

which is periodically on, in the REDD House 1 for various

testing set sizes N − n. The shaded row shows the accuracy

when the testing dataset of size N − n is split into windows

of 1000 samples each, and each window is independently

processed, this way reducing the dimension of matrix L and

hence lowering the complexity of calculation in (11). The

bottom unshaded row shows the accuracy when the entire

testing dataset is processed in one go - it also shows indirectly

the effect of using only one ‘window’ of size 1000, 2000, 3000

etc. Similar FM values in all cases confirm that splitting the

testing dataset in smaller manageable ‘windows’ significantly

reduces execution time without a loss in performance. The

table also shows that the proposed method performs well

with a small training overhead, i.e., increasing the number of

samples in the testing dataset does not improve performance.

Note that a window size of less than 1000 would not capture

a full run of appliances with long operation period, such as

washing machines or AC.

TABLE XII
COMPUTATION TIME OF THE PROPOSED SOLUTION 2 FOR REFR IN REDD

HOUSE 1. THE SHADED ROWS SHOW RESULTS OBTAINED USING SMALL

WINDOWS OF 1000-SAMPLES EACH. THE BOTTOM ROWS SHOW RESULTS

WHERE THE TRAINING DATASET IS NOT SPLIT.

N − n 1000 2000 3000 4000 5000 6000 7000

Time [s] 1.33 3.22 3.86 4.41 4.99 5.52 6.01
FM 0.89 0.89 0.90 0.90 0.90 0.89 0.89

Time [s] 1.33 16.85 44.81 90.96 153.99 243.88 406.69
FM 0.89 0.89 0.90 0.90 0.90 0.90 0.90

When two weeks of data are used, comprising just over N =
20, 000 samples, the computation time on average for REDD

House 1, 2 and 6, is between 10 to 12 sec for disaggregating

one appliance. This is faster than the HMM-based method

which disaggregates the same amount of data in 40-50 sec, as

reported in [35].

V. CONCLUSION

This paper presented two NILM algorithms based on the

emerging concept of GSP. The first approach minimizes the

total graph variation. The second approach further refines

the total graph variation solution using simulated annealing.

Experimental results show the competitiveness of the methods

with respect to two NILM methods, and were demonstrated

over two datasets with a range of appliances. We also discuss

the relative performance of the proposed methods for different

appliances and how robust the methods are to short training pe-

riods, and how fast this can be implemented through effective

windowing without performance loss. The proposed methods

could work with conventional smart meters, e.g., accessing

10 second data via the Consumer Access Device, and do

not require any additional hardware installation. Future work

will consist of using confusion matrix results of other similar

measures to attempt to identify in more detail weaknesses and

efficient real-time implementation of the proposed algorithms

and integration into smart home decision support systems

for demand response as well as designing advanced energy

feedback mechanisms.
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