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Many fungal plant diseases are strongly controlled by weather, and global

climate change is thus likely to have affected fungal pathogen distributions

and impacts. Modelling the response of plant diseases to climate change is

hampered by the difficulty of estimating pathogen-relevant microclimatic

variables from standard meteorological data. The availability of increasin-

gly sophisticated high-resolution climate reanalyses may help overcome this

challenge. We illustrate the use of climate reanalyses by testing the hypothesis

that climate change increased the likelihood of the 2008–2011 outbreak of

Coffee Leaf Rust (CLR, Hemileia vastatrix) in Colombia. We develop a model

of germination and infection risk, and drive this model using estimates of

leaf wetness duration and canopy temperature from the Japanese 55-Year

Reanalysis (JRA-55). We model germination and infection as Weibull functions

with different temperature optima, based upon existing experimental data. We

find no evidence for an overall trend in disease risk in coffee-growing regions

of Colombia from 1990 to 2015, therefore, we reject the climate change hypoth-

esis. There was a significant elevation in predicted CLR infection risk from

2008 to 2011 compared with other years. JRA-55 data suggest a decrease in

canopy surface water after 2008, which may have helped terminate the out-

break. The spatial resolution and accuracy of climate reanalyses are

continually improving, increasing their utility for biological modelling.

Confronting disease models with data requires not only accurate climate

data, but also disease observations at high spatio-temporal resolution. Invest-

ment in monitoring, storage and accessibility of plant disease observation data

are needed to match the quality of the climate data now available.

This article is part of the themed issue ‘Tackling emerging fungal threats

to animal health, food security and ecosystem resilience’.

provided by Open Resear
1. Introduction
Fungal pathogens are the most damaging disease agents in global crop

production. Despite chemical controls and plant resistance breeding, around

one-quarter of global production is lost, enough to feed hundreds of millions

[1]. Despite efforts to restrict the spread of diseases via quarantine and other

biosecurity controls, fungal pathogens are spreading rapidly to reach their

plant hosts around the world [2]. Recent examples of range expansions include

arrival of wheat blast (Magnaporthe oryzae) into Bangladesh from Latin America

[3], the virulent Ug99 race of wheat stem rust (Puccinia graminis f. sp. tritici) into

Egypt from sub-Saharan Africa [4], and orange rust of sugar cane (Puccinia
kuehnii) into Argentina, probably from Brazil [5].

The impact of resident pathogens varies dramatically in time and space,

depending upon factors such as susceptibility of the host crop, evolution of

pathogen virulence, disease management strategies and prevailing environ-

mental conditions [6]. The life cycles of many fungal pathogens are strongly

determined by weather. Dispersal can be assisted by wind and rain, while ger-

mination and infection rates are often dependent upon liquid water on the plant
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Figure 1. Monthly coffee yield (t ha21) in Colombia, January 1990 to
December 2013. Monthly production data [25] were divided by estimates
of monthly harvested area derived by six-month moving average interpolation
of annual harvested area [26]. Grey line shows monthly yield; black line
shows trend derived from seasonal-trend decomposition by loess [27]; vertical
dotted line marks January 2008.
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surface (sometimes high relative humidity) and species-specific

optimal temperature ranges [7]. The role of weather in deter-

mining the likelihood of disease outbreaks is well known to

farmers, and numerous risk-forecasting models have been

developed to assist in timing management interventions, such

as fungicide sprays, for maximum efficiency [8]. In the UK,

for example, agronomists predict that the record-breaking

warm winter of 2015–2016 will trigger severe outbreaks of sev-

eral fungal pathogens [9]. The importance of weather has also

motivated the application of species distribution models,

which employ estimates of species’ climatic tolerances, to

map potential future geographical ranges of fungal pathogens

[10].

Average global surface temperatures have increased by

nearly 0.98C in the century to 2015 [11], accompanied by

significant changes in the dynamics of the oceans and atmos-

phere [12]. Wild populations of plants and animals have

shifted their geographical ranges and phenologies in response

[13], and changes in crop–pathogen interactions mediated by

altered climates are thus a reasonable expectation [14,15]. Attri-

bution of plant disease outbreaks and invasions to particular

causes has important policy implications [6], influencing the

relative investment in measures such as quarantine, predictive

risk models and plant protection—the response to finding that

an outbreak was due to the breakdown of plant resistance

would differ from that due to weather.

There are two common approaches to investigating the

influence of climate change on crop–pathogen interactions.

The first, prospective, approach is to compare the predictions

of weather-dependent disease risk models driven with current

climates and future climate projections, thereby determining

how disease impacts might change in future. The risk models

vary from mechanistic descriptions of the pathogen life cycle

driven by hourly estimates of weather conditions [16,17], to

statistical relationships with weather [18] or annual climatic

averages [10]. A disadvantage of these projections is that vali-

dations of such long-range projections are rare, because they

occur in the future (but see [15]). The second, retrospective,

approach is to statistically analyse historical patterns and

trends in disease distributions or impacts, either for particular

case studies [19], or multiple species [20], correlating these with

climate trends to determine whether climate change that has

already occurred could be responsible for altered disease risk.

This mirrors the analysis of wild population responses to his-

torical climate change [13]. While there is some evidence for

a response in plant pathogen impacts and distributions to

historical climate change [15,20], the method is hampered by

missing observational data and the strong influence of other

confounding factors affecting plant disease [19,21].

Here we propose that combining mechanistic disease

models with increasingly sophisticated climate reanalyses

[22] will facilitate retrospective modelling of plant disease

risk. We illustrate this idea with an analysis of the recent out-

break of coffee leaf rust (CLR), caused by the Basidiomycete

fungus Hemileia vastatrix, in Latin America [23]. We focus

particularly on Colombia, one of the world’s largest coffee pro-

ducers with around one million hectares under cultivation,

primarily of the high-value Coffea arabica species. CLR is ende-

mic to the centre of origin of coffee in Ethiopia, but has spread

to all coffee-growing regions, reaching Brazil by 1970, and

Colombia by 1983 [24]. Since then, CLR damage has varied

among countries and from year to year. Mean annual pro-

duction in Colombia is around 60 000 tonnes, which declined
by around 40% from 2008 to 2011, increasing again thereafter

(figure 1). This production decline has been linked to a

severe CLR outbreak that occurred across Colombia

and neighbouring Latin American countries from 2008 to

2013 [23]. Several hypotheses have been proposed to explain

the recent CLR outbreak, including the evolution of a

new, virulent race of the pathogen, changes in plantation

management regimes promoting disease development and

favourable weather conditions due to climate change [23].

A recent analysis employed a simple correlative approach to

test the climate change hypothesis, which indicated that

changes in diurnal temperature ranges may have been influen-

tial [23]. We develop a mechanistic model of CLR germination

and infection risk, and drive this model with the JRA-55

climate reanalysis dataset [28]. We compare the outputs

of the risk model with the observed outbreak in Colombia,

and test the hypothesis that climate-driven risk has changed

significantly over recent decades.
2. Material and methods
(a) Study system
Our region of interest (ROI) includes Colombia and neighbour-

ing countries (figure 2a). Colombia is topographically complex,

rising from the Amazon Basin in the southeast to the Andes in

the northwest. Temperatures decline with altitude but are largely

aseasonal. The majority of the country is classified as Equatorial

climate, with a region of Temperate Oceanic climate on the Vene-

zuelan border (Köppen–Geiger classification). Coffee-producing

areas were identified using estimates of crop distributions in the

year 2000 [29]. Coffee harvested area in Colombia declined from

around 100 000 ha in the early 1990s to around 80 000 ha from

2000 onwards [26]. Coffee is planted at all altitudes, with the

highest density of planting in Colombia in the ‘Coffee Cultural

Landscape of Colombia’ World Heritage Site, also known as

the ‘Coffee Triangle’ (figure 2b). The high-value Coffea arabica is

grown primarily at altitudes from 1000 to 2000 m.a.s.l., while

C. robusta, which has greater resistance to CLR, can be planted

at lower altitudes [24] but is uncommon in Colombia. We defined

a Region of Coffee in Colombia (RCC) as all pixels (averaged to

the spatial resolution of JRA-55) with a harvested area greater

than 1%, comprising around 267 000 km2.

http://rstb.royalsocietypublishing.org/
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Figure 2. Topography and coffee production. (a) Median elevation (m.a.s.l.)
from NASA SRTM digital elevation model at 5 arcmin resolution. Labelled
countries are Brazil (BR), Colombia (CO), Dutch Antilles (AN), Ecuador (EC),
Panama (PA), Peru (PE) and Venezuela (VE). (b) Coffee cultivation, percentage
of area planted in 2000 at 5 arcmin resolution [29]. The blue polygon encom-
passes the six UNESCO World Heritage Site areas within the Coffee Cultural
Landscape of Colombia.
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(b) Disease risk model
Hemileia vastatrix (Basidiomycota: Pucciniomycetes) is an obligate

biotroph infecting Coffea spp., primarily attacking the leaves.

CLR tends to reduce vigour and productivity of coffee plants,

rather than kill them. Asexual disease progression occurs when

the germinating uredospores form an appressorium (infection

structure) and enter the host via the stomata [30]. Most stages

of the CLR life cycle are strongly determined by weather [31].

Rain and wind assist spore dispersal, while germination is inhib-

ited by solar radiation. As with many fungal foliar pathogens [7],

germination of uredospores on the leaf surface and subsequent

entry into via stomata requires the presence of liquid water and

temperatures within a particular range [32–34]. Here, we focus

on modelling the processes of spore germination and infection

in relation to leaf wetness and temperature, in our estimation

of disease risk.

Our model is motivated by a simple model of fungal foliar

disease which assumes that infection by a germinated cohort of

spores will take place if leaves have been wet for longer than a
critical leaf wetness duration (Wcrit), with Wcrit dependent upon

both the pathogen-specific minimum wetness duration (Wmin)

and the prevailing temperature via a temperature-dependent

relative rate r(u) determined by the cardinal temperatures—

minimum (umin), maximum (umax) and optimum (uopt)—of the

pathogen [7]. The temperature response function requires

estimates of the three cardinal temperatures [35]:

rðuÞ ¼ umax � u

umax � uopt

� �
u� umin

uopt � umin

� �ðuopt�uminÞ=ðumax�uoptÞ
,

if umin � u � umax and 0 otherwise, taking values in (0,1). The

model is attractive because it requires relatively few biological

parameters (cardinal temperatures and Wmin) and weather

variables (leaf wetness and temperature).

The existing literature on temperature and water relations of

CLR permit estimation of the required parameters for estimating

disease risk [32–34]. While CLR germination and infection are

strongly dependent upon the presence of liquid water (i.e. they

will not occur under conditions of high humidity alone), one of

the more recent studies suggests that the temperature response

and infection processes of H. vastatrix are somewhat more com-

plex than described in the aforementioned model. Specifically,

the cardinal temperatures differ considerably between uredo-

spore germination and appressorium formation [32], where

appressorium formation is the prelude to infection through the

stomata [30]. One interpretation of this ontogenetic change in

temperature response is that H. vastatrix is adapted to maximize

leaf wetness duration (LWD), germinating in the early evening

and infecting overnight as temperatures cool, thereby avoiding

dry spells during the day [32]. LWD and temperature mea-

surements in coffee canopies in Costa Rica support this

interpretation [36].

Another observation is that germination and appressorium

formation (henceforth we term this latter stage ‘infection’ for con-

venience) are random processes, with probabilities varying

through time [32], and therefore can be modelled using survival

analysis [37]. The time T to transition (i.e. from a spore becoming

wet to germination, or from germination to appressorium for-

mation) is a random variable with probability density f (t) and

cumulative distribution F(t) at time t after initiation. Our aim is

to model F(t), which can be interpreted as the fraction of a popu-

lation transitioned by t, for germination and infection by CLR

(see the electronic supplementary material for details of the

model and a worked example). F(t) is determined by the cumu-

lative hazard function H(t), where the hazard function h(t) is the

instantaneous risk of transformation given survival to t:

FðtÞ ¼ 1� e–HðtÞ:

Conversely, the survival function S(t) ¼ 1 2 F(t). Survival pro-

cesses are commonly modelled using the Weibull distribution

which allows the hazard to vary over time:

hðtÞ ¼ g

a

� � t
a

� �g�1

and HðtÞ ¼
ðt

0

hðsÞds ¼ t
a

� �g

,

where a is the scale parameter, and g the shape parameter (note,

in some sources g is the numerator of t). The processes of spore

germination and infection are affected by temperature, hence we

multiply h(t) and thus H(t) by r(u), so that rates are greatest at

the optimum temperature and decline to zero if outside the

temperature range.

Jong et al. [32] provide mean values for the fraction of spores

germinated, and fractions of germinated spores that have formed

appressoria, at various time intervals, and at various tempera-

tures (their fig. 1). We estimated parameters for the Weibull

distributions and temperature response functions of germination

http://rstb.royalsocietypublishing.org/
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and infection from the Jong et al. data by nonlinear least-squares

optimization (see the electronic supplementary materials).

We assumed a constant rate of spore deposition and that

ungerminated spores did not accumulate on leaves during

dry periods, and so in each hour of a wet period a constant

number of spores begin to germinate [7]. As the spore number is

treated as unity, we omit this from the following description. If

temperature were constant then calculation of H(t) would be

straightforward, however, temperature varies arbitrarily over

time and therefore H(t) must be calculated piecewise. Given

an hourly time series, a wet period of length W will contain

hourly intervals i ¼ (1,. . .,W ). For simplicity, let the relative rate

ri during the ith interval be calculated from the mean of the temp-

eratures at the beginning and end of the interval (ui21 þ ui)/2,

such that

HðtÞ ¼
Xt

i¼1

ri
i
a

� �g

� ri
i� 1

a

� �g

with parameters for germination or infection. A new cohort of

spores begins to germinate at the beginning of each hour of each

wet period, hence for the jth cohort

HjðtÞ ¼
Xt

i¼1

ri
i� jþ 1

a

� �g

� ri
i� j
a

� �g

:

Thus, the jth cohort will begin to germinate at t ¼ j 2 1, and

H(t , j ) ¼ 0. The total number of spores germinated during the

ith hour is the sum across all cohorts

FGðiÞ ¼
XW
j¼1

expð�HGj ði� 1ÞÞ � expð�HGj ðiÞÞ:

We use the same calculations, parametrized appropriately, for the

number of germinated spores that infect, except that for the kth

infecting cohort, the size of the starting population of germinated

spores is FG(k 2 1). This means that no infections occur in the first

hour of a wet period. The final number of infecting spores is then

the sum across all cohorts at the end of the wet period.
(c) Climate data
The CLR model requires hourly estimates of temperature and leaf

wetness. Air temperature is a commonly measured meteorological

variable that varies relatively smoothly in time and space [38]. One

potential issue in modelling disease risk is that pathogens are more

likely to be controlled by the leaf temperature, rather than that of

the surrounding air [39]. In contrast to temperature, leaf wetness

is not usually measured by synoptic weather stations and shows

complex spatio-temporal variability [38]. Leaves become wet

via precipitation, fog or condensation (dewfall from the air or dis-

tillation from the soil), and dry out when relative humidity falls

below saturation. Numerous methods exist for estimation of

LWD, from detailed physical models of latent heat flux [40] to

simpler statistical relationships with variables such as relative

humidity [38,41,42].

The growing sophistication, spatio-temporal resolution and

coverage of climate reanalyses potentially provide a new source

of LWD estimates for plant pathology. Climate reanalyses combine

multiple weather data sources with descriptions of the Earth

system (e.g. soils and vegetation) and physical models of water

and energy fluxes to provide regular, gridded estimates of the

status of the oceans, atmosphere and land surface [22]. Here, we

employ the Japanese 55-Year Reanalysis, JRA-55 [28], to drive

our CLR risk model. We chose JRA-55 for several reasons: it has

relatively high spatio-temporal resolution, it directly estimates

variables of interest in plant pathogen risk modelling, and it is

among the most sophisticated reanalyses currently available.

JRA-55 provides global coverage of the period since 1958, with a

temporal resolution of 3 h and spatial resolution of
approximately 55 km. Data from ships, buoys, synoptic weather

stations, radiosondes, balloons, aircraft and satellites are assimi-

lated and processed using four-dimensional variational analysis

(4D-Var). Outputs of relevance to pathogen risk modelling include

canopy temperature and liquid water on the canopy surface. We

obtained 3-hourly forecasts of canopy temperature and canopy

liquid water for our ROI from 1990 to 2015 (http://rda.ucar.

edu), and linearly interpolated these values to 1-hourly estimates.

We assumed that any canopy moisture value above zero consti-

tuted a wet canopy, and ran our germination and infection

models for the resulting wet periods in the R programming

environment [43].

The model yielded relative numbers of infecting spores at the

end of each wet period. For each pixel, we summed the relative

infection numbers for each month from January 1990 to December

2015, and divided the sums by the number of days in the month to

give a mean daily infection risk score per month. We investigated

temporal variation in climate variables and disease risk by decom-

posing time series into seasonal, trend and residual components

using the seasonal decomposition of time series by loess (STL)

algorithm [27] implemented by function stl in R. We tested for

significant temporal trends across our ROI using a generalized

least-squares model, incorporating a spherical autocorrelation

error model because of like spatial dependence among residuals,

using the gls function in package nlme for R [44].
3. Results
From data in Jong et al. [32], we estimated that germination has

umin, uopt and umax as 12.9, 21.4 and 30.98C, respectively, while

appressorium formation was 11.6, 11.6 and 32.18C. umin and

uopt for appressorium formation were nearly identical, so we

adjusted these slightly (11.08C and 11.58C) for the purposes

of modelling. The relative rates of these processes therefore

follow quite different responses to temperature (figure 3a).

We estimated the parameters of the Weibull functions as a ¼

13.4 for germination and a ¼ 19.1 for infection, and g ¼ 1.29

for germination and g ¼ 2.14 for infection (figure 3b).

The maximum canopy water holding capacity in the JRA-

55 model is approximately 0.5 mm, equivalent to 0.5 kg m22.

The temporal distribution of canopy water was strongly

skewed, with values of zero occurring 54% of the time in

the RCC. The median LWD (canopy water above zero) in

the RCC was 17 h (interquartile range 11–17 h). The fraction

of time the canopy was wet (i.e. including dry days) varied

from around 0.2 to around 0.5 in the RCC, declining some-

what after 2012 (figure 4a). Canopy moisture was seasonal

in the RCC, being lowest in January, rising to April, declining

to July, then rising again to October. Canopy moisture followed

a diurnal pattern of wetting in the early evening and drying in

the morning (see the electronic supplementary material). The

diurnal temperature cycle showed a minimum around 8.00

and rising to a maximum around 15.00, then declining more

slowly over the afternoon and overnight. Mean daily canopy

temperatures within the RCC showed no clear trend from

1990 to 2015, but increased during the El Niño–Southern Oscil-

lation warming events of 1997–1998, 2009–2010 and 2015

(figure 4b).

Mean daily infection risk per pixel from 1990 to 2015 was

negatively correlated with coffee production across Colombia

(Spearman rank correlation ¼ 20.42), generally increasing

towards the southeast, where little coffee is grown (figure 5a).

The greatest mean risk was predicted in parts of Ecuador.

Mean daily infection risk from 1990 to 2015 per pixel varied

http://rda.ucar.edu
http://rda.ucar.edu
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http://rstb.royalsocietypublishing.org/
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from zero to 3.82, with a median of 0.92, interquartile range

0.30–1.50. For reference, a value of one would occur if all

spores in a cohort germinated, and subsequently infected a

leaf. Mean daily infection risk per month was strongly corre-

lated with mean canopy moisture per pixel (Spearman rank

correlation¼ 0.87), and followed a similar seasonal cycle with

a peak in October and minimum in January. The per pixel

trend in infection risk from 1990 to 2015 over the ROI was

small in comparison to the mean, with interquartile range

0.0021–0.034 yr21, and increased towards the southwest

where no coffee is produced (figure 5b). A similar pattern was

seen in the difference between mean values from 2008 to 2011

and the remaining years, although northeastern Colombia

and Ecuador also had somewhat elevated predicted risk

(figure 5c).

Scaling the 2008–2011 difference by the relative amount

of coffee grown per pixel suggested elevated infection risk

during this period in the RCC and Ecuador (figure 5d ). In

the RCC, mean daily infection risk was somewhat elevated

in 2008–2011, declining again after 2011, but was also high

in 1996 (figure 4c,d ). Taking spatial autocorrelation among

pixels into account, no statistically significant linear trend in

mean daily infection risk was detected from 1990 to 2015 in

the RCC (generalized least-squares model, mean

20.00074+ 0.0025, d.f. ¼ 68, t ¼ 20.29, p ¼ 0.76). However,

a small but significant elevation in mean daily infection risk

between 2008 and 2011 compared with other years was

detected (generalized least-squares model, mean difference

in 2008–2011 ¼ 0.055+ 0.024, d.f. ¼ 68, t ¼ 2.25, p ¼ 0.0274).
4. Discussion
Fungal pathogen life cycles are strongly determined by

weather, particularly temperature and water availability.

Obtaining estimates of water availability is problematic and

remains an issue for disease prediction [38]. We have pro-

posed that the increasing observational data assimilation,

modelling sophistication, spatio-temporal resolution and cov-

erage of climate reanalyses offer a powerful, but underused,

tool to assist in modelling historical and current fungal

plant pathogen risk. We illustrated this approach by testing

the hypotheses that (i) the weather was responsible for a

recent outbreak of CLR in Colombia and (ii) that climate

change increased the probability of weather conditions

favourable to CLR, by using the state-of-the-art JRA-55 reana-

lysis to drive a model of spore germination and infection

parametrized using experimental data. While CLR infection

risk was elevated in 2008–2011 in coffee-growing regions of

Colombia, we found no compelling evidence for a large

increase in predicted infection risk over the period in which

the CLR outbreak is reported to have been most severe, and

no long-term trend in risk from 1990 to 2015. Therefore, we

conclude that while weather conditions in 2008–2011 may

have slightly increased the predicted risk of CLR infection,

long-term climate change is unlikely to have increased dis-

ease risk. We found a decline in mean daily LWD from

around 2012–2015 and a resulting decline in daily CLR

risk, suggesting that weather conditions have become less

favourable for CLR in recent years. It is possible that this

drying helped to bring the epidemic to a close.

Early indicators suggest that new aggressive variants of H.
vastatrix did not emerge to cause the recent CLR epidemic [45].

This, however, merits greater investigation with comparative

genomic analysis gathered across the region. Another analysis

of the outbreak concluded that changes in coffee management

exacerbated the impact of CLR on production [23]. In particular,

fertilizer use declined due to dramatic price rises during the 2008

global financial crisis, leading to decreased vigour of coffee

plants. The same study suggested that increased annual rainfall,

reduced sunshine and decreased diurnal temperature range

favoured infection and reduced the latent period of infection.

While precipitation can indicate when plant canopies will be

wetted, LWD is dependent not only on input by precipitation,

but also by condensation and the rate of evaporation. Hence,

models of energy and moisture fluxes between the soil, the

plant canopy and the atmosphere are required to fully describe

the dynamics of LWD [40]. Climate reanalyses can provide plant

pathologists with a convenient estimate of LWD without the

need for data assimilation from multiple sources, and complex

atmospheric physics models. However, hydrology is among

the most difficult components of the climate system to model,

and caution must be applied when using hydrological outputs

of reanalyses [28]. Thus, relative differences in canopy moisture

among pixels and over time are likely to be more informative

than the absolute values. Reanalyses provide more biologically

relevant temperature measures, such as canopy temperature,

for modelling [39]. This is important because leaf temperature

can differ significantly from air temperature, particularly

under water stress conditions [46]. Although the air-canopy

temperature difference will be minimal at night when canopies

are wet and the infection process takes place, further research

is required into the effect of choosing different temperature

estimates on disease risk estimates.
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The approach we employed has been termed ‘forward’

modelling in the species distribution modelling literature,

whereby process-based models of a species’ life history are

developed independently of any calibration against observa-

tional data of occurrence or abundance [47]. This contrasts

with correlative models which statistically relate environ-

mental variables to species abundance, and in which there

is an implicit assumption that biological processes are

responding to the environment. The parameters of process-

based models may be tuned using observational data, but

in purely forward models like ours, parameters are derived

independently of observations, i.e. from controlled exper-

iments. Forward process-based models avoid the problem

of equifinality, whereby different parametrizations yield

similar predictions. Forward models can be used to test

hypotheses concerning responses of species to environmental

change because they are less likely to produce correct results

for the wrong reasons, in contrast to correlative models para-

metrized from observational data [47]. An additional reason

for parametrizing models from experimental data, rather

than observed distributions, is that observed distributions do

not reflect the fundamental climatic niche of a species but

rather a subset constrained by biotic factors and migration

[48,49]. In our model, the cardinal temperatures are abstrac-

tions of an axis of the climatic niche. Process-based models

should therefore be parametrized from experimental data or

from biophysical first principles if the fundamental niche is

to be estimated [50].

A weakness of our approach is that we modelled only two

of the various life cycle components affected by weather. We

omitted the processes of spore production, and dissemination

by rain, wind and non-climatic factors such as disturbance of

the canopy during management and harvesting activities

[31]. Thus, our conclusions are limited to considerations of

the probabilities of leaf infection. Wind speed and direction
could be obtained from climate reanalyses and used to model

long-range dispersal, if the shape of the dispersal kernel were

known [51]. However, there are currently insufficient pub-

lished empirical data to enable reliable parametrization of

these processes. Short-range dispersal by rain splash or man-

agement occurs at spatial scales far below the resolution of

current reanalyses.

Spore germination and appressorium formation have

different temperature response functions [32]. Several fungi

have different temperature optima for germination and

growth [52], but this is not considered in the simple model

[7] upon which we based our analysis. Parameters for these

response functions were estimated from a single study [32],

which to our knowledge has not been replicated. This lack

of replication may be because H. vastatrix is an obligate bio-

troph, and therefore it cannot be cultured in vitro, making

experimental manipulation more difficult. Further investi-

gation of temperature responses, including acclimation and

adaptation potential, is warranted to improve the parametri-

zation of CLR risk models.

We modelled infection risk in the absence of consider-

ation of the host response to varying weather conditions,

and the role of the host in disease epidemiology, e.g. as a

source of inoculum. Coffee yields in Colombia have been

highly erratic over time (figure 1), a consequence of varying

weather, disease pressure, management and socio-economic

factors. While the decline in yield beginning in 2008 is

clear, large yield fluctuations occurred in the 1990s, and

attempts have been made to explain variability post hoc
with reference to various events and trends [23]. In order to

properly understand the likely impact of climate change on

production, and partition out the effects of weather, disease

and other factors on coffee yield, a weather-driven coffee

yield model is required. Simultaneous modelling of crop

yield and disease risk has been undertaken, for example,
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for potato late blight, and used to project future disease

risks [17]. Unfortunately, coffee yield models appear to

be under-developed in the literature, for example, the UN

FAO AQUACROP model has not been parametrized for

coffee [53].

For CLR and many other fungal plant diseases, tempera-

ture and leaf wetness are the most important determinants of

infection risk [7]. The JRA-55 reanalysis directly estimates rel-

evant variables—canopy temperature and surface water—at

a temporal resolution sufficient to enable hourly time series

to be used in disease models. Other global reanalyses, such

as MERRA and ERA-Interim, do not directly estimate these

variables. While JRA-55 is among the most sophisticated and

data-rich sources currently available, there remain areas for

improvement from a disease modelling perspective. In

common with many reanalyses, precipitation observations

are not incorporated to drive the analysis, but rather precipi-

tation is predicted from atmospheric temperature and

humidity [28,54]. Another potential climate data source, the

North American Regional Reanalysis, does assimilate precipi-

tation observations, and it has a number of other attractive

features: temporal resolution is 3 h, spatial resolution is slightly
finer (approx. 32 km) than JRA-55, and canopy surface water is

estimated [55,56]. However, upon investigation we found that

observational data sources affecting the hydrological cycle

changed in 2003, severely biasing results in our ROI. The

spatial resolution of JRA-55 is finer than previous reanalyses,

but remains coarse relative to the biological systems we wish

to model. Topography, microclimate and land use can vary

greatly within a 55 km grid cell. However, the increasing avail-

ability of high-resolution satellite data and growing computing

power promise to continually improve the data available for

modelling plant disease. In addition, the relationship between

mean canopy moisture across a grid cell and the spatial distri-

bution of surface moisture within a canopy, and its impact on

disease development, is unknown.

Climate reanalysis is the task of the climate research com-

munity, but responsibility for recording disease outbreaks,

which are the observational data against which models can

be tested, lies with the producers, researchers, agribusinesses

and plant protection agencies that monitor agricultural

systems. It is evident that despite the threat posed by patho-

gens, serious data gaps remain of where and when outbreaks

occur, particularly in the developing world [21]. Platforms

http://rstb.royalsocietypublishing.org/
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such as the IPM PIPE disease monitoring network in the

USA, the AHDB monitoring service in the UK, and the

observations of CLR provided by the National Coffee Associ-

ation in Guatemala [23], serve as examples of the kinds of

data required for model validation. Often, short-term,

small-scale observations used to validate models published

in the scientific literature are not deposited in open-access

databases to enable re-use by other researchers. We hope

that new initiatives such as Global Open Data for Agriculture

and Nutrition will begin to address this issue, bringing plant
pathology data into step with the open-access philosophy

seen in climate research.
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