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Abstract

Understanding the complex regulatory networks underlying development and evolution of multi-cellular organisms is a
major problem in biology. Computational models can be used as tools to extract the regulatory structure and dynamics of
such networks from gene expression data. This approach is called reverse engineering. It has been successfully applied to
many gene networks in various biological systems. However, to reconstitute the structure and non-linear dynamics of a
developmental gene network in its spatial context remains a considerable challenge. Here, we address this challenge using
a case study: the gap gene network involved in segment determination during early development of Drosophila
melanogaster. A major problem for reverse-engineering pattern-forming networks is the significant amount of time and
effort required to acquire and quantify spatial gene expression data. We have developed a simplified data processing
pipeline that considerably increases the throughput of the method, but results in data of reduced accuracy compared to
those previously used for gap gene network inference. We demonstrate that we can infer the correct network structure
using our reduced data set, and investigate minimal data requirements for successful reverse engineering. Our results show
that timing and position of expression domain boundaries are the crucial features for determining regulatory network
structure from data, while it is less important to precisely measure expression levels. Based on this, we define minimal data
requirements for gap gene network inference. Our results demonstrate the feasibility of reverse-engineering with much
reduced experimental effort. This enables more widespread use of the method in different developmental contexts and
organisms. Such systematic application of data-driven models to real-world networks has enormous potential. Only the
quantitative investigation of a large number of developmental gene regulatory networks will allow us to discover whether
there are rules or regularities governing development and evolution of complex multi-cellular organisms.
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Introduction

Elucidating the regulatory structure and dynamics of gene

networks is a major objective in biology. The inference of

regulatory networks from gene expression data is known as reverse

engineering [1–7]. It is being widely and successfully applied, from

microbes to animals (see, for example, [8–16]). Many reverse

engineering studies aim to determine regulatory structure from

large-scale perturbation- or time-series data based on microarray

or transcriptome-sequencing technology (reviewed in [5,17]). This

approach has two significant limitations: first, spatial information

on gene expression is lost, since homogenised tissue samples or

disaggregated cells are studied. And second, most resulting models

are of a static and probabilistic nature, which cannot be used to

investigate network dynamics (for example [18–20]). If dynamical

models are used, they are often linear (for example [21–23]).

Network inference using complex non-linear dynamical models is

deemed a considerable technical challenge [6,17,24]. However,

there are many important biological questions that absolutely

require consideration of non-linear and spatial aspects of a system.

Here we discuss such a case, and show that reverse engineering

can be used for its study with a reasonable amount of experimental

and computational effort.

Our research focuses on how developmental gene regulatory

networks produce spatial patterns in multi-cellular organisms, and

how these patterns evolve through changes in the underlying

structure of the network [25,26]. In this context, reverse

engineering is implemented by fitting non-linear systems of

differential equations to quantitative, spatial gene expression data

(reviewed in [7]). There are many network modelling formalisms

[27–29], and a number of powerful global non-linear optimisation

methods [7,30,31], which are suitable for this task.

So far, only a small number of developmental systems have been

reverse-engineered using dynamical models (see, for example, [32–

34]). One of those is the (trunk) gap gene network of the vinegar fly

Drosophila melanogaster (reviewed in [35]). This regulatory network

consists of four genes—hunchback (hb), Krüppel (Kr), giant (gt) and

knirps (kni)—which all encode transcription factors. Gap genes are
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involved in establishing the segmented body plan of the animal.

They are active during a very early period of Drosophila

development, called the blastoderm stage, which occurs before

the onset of gastrulation. At this stage, the embryo consists of a

multi-nucleate syncytium allowing transcription factors to diffuse

through the tissue. Gap genes are expressed in broad, overlapping

domains along the embryo’s major, or antero-posterior (A–P) axis.

They are regulated by long-range gradients of transcription factors

encoded by maternal co-ordinate genes bicoid (bcd), hunchback (hb),

and caudal (cad), and are repressed by the terminal gap genes tailless

(tll) and huckebein (hkb) in the pole regions of the embryo. Maternal

co-ordinate and gap genes form the first two tiers of the

segmentation gene hierarchy in Drosophila. Together they regulate

pair-rule and segment-polarity genes, the latter forming a

molecular pre-pattern that leads to morphological segmentation

at later stages of development (see, [36,37], for review).

The particular reverse-engineering approach we use to inves-

tigate the gap gene network is called the gene circuit method

[1,38,39] (Figure 1). It uses mathematical models called gene

circuits that represent the basic properties of the embryo and the

transcriptional regulatory interactions underlying the network.

Gene circuits are described in detail in Materials and Methods.

Here we provide a brief overview of the model, which consists of a

row of dividing nuclei (Figure 1, top left) each harbouring an

identical version of the regulatory network. There are three

processes that occur within and between nuclei: (1) regulated gene

product synthesis, (2) Fickian gene product diffusion, and (3) linear

gene product decay (Figure 1, top middle). Regulatory interactions

that direct synthesis are represented by a genetic interconnectivity

matrix: each regulatory weight in this matrix can represent

activation, repression, or no interaction depending on whether it is

positive, negative or (close to) zero (Figure 1, bottom panel, right).

The interconnectivity matrix can also be displayed as a network

diagram (Figure 1, bottom panel, left). Note that the values of

regulatory weights are not set a priori. Instead, they are estimated

by fitting the model to quantitative gene expression data. Those

model solutions that fit the data well are analysed to characterize

the regulatory structure and dynamics of the network (Figure 1,

bottom). In this way, gene circuits act as tools to extract regulatory

information from quantitative data.

Previous reverse-engineering studies of the gap gene network

were based on quantitative expression data obtained by visualising

the distribution of gap gene mRNA [40], or protein products [41–

43] using fluorescent whole-mount in situ hybridisation, or antibody

staining (immunofluorescence) respectively. Stained embryos were

imaged using confocal laser-scanning microscopy, and the resulting

expression profiles were quantified using a processing pipeline that

includes image segmentation to identify nuclei, time classification,

removal of non-specific background staining, data registration to

remove embryo-to-embryo variability, and data integration (re-

viewed in [44]). It took years of effort by several researchers to

establish the protein data set [41,43]. mRNA data, on the other

hand, were acquired by one of the authors of this paper in

considerably less time [40]. However, these mRNA data remain

incomplete in that they only cover a subset of gap genes (Kr, kni, and

gt) during the earliest stages of expression.

These previous reverse-engineering studies have yielded many

new insights into gap gene regulation, which would have been

difficult to obtain by experimental approaches alone. An early

pioneering study predicted a co-operative effect between maternal

factors Bcd and Hb on the regulation of gap gene expression [45].

Later efforts uncovered a mechanism for the dynamic anterior

shift of gap domains over time [46,47], removed ambiguities in the

published experimental evidence [48,49], identified core mecha-

nisms for gap gene regulation [48,50], and explained the

robustness of the system against variable levels of maternal inputs

[47,51]. Taken together, these studies clearly demonstrate the

utility and feasibility of the approach: over the past two decades,

reverse engineering has contributed significantly to our under-

standing of gap gene regulation.

It would be extremely interesting to apply the gene circuit

method to other developmental systems. In our view, reverse

engineering has tremendous potential for the study of gene

regulatory networks in development and evolution. For instance,

gene circuits could be used to reconstruct homologous develop-

mental regulatory networks across a range of species, to compare

their regulatory structure and dynamical behaviour [26]. This

could be used to map which regulatory changes in a network

correspond to which changes in gene expression during evolution.

Alternatively, it would also be highly interesting to compare

network structures and dynamics between different developmental

processes.

Despite this potential, the application of dynamic, non-linear

reverse-engineering approaches beyond gap genes in Drosophila has

been very limited. The main reason for this, we suspect, is the

following: collection of high-quality data sets—such as the spatio-

temporal profiling of gap genes described above—is costly both in

terms of time and resources. It is clearly the bottleneck of the

approach. Protocols based on immunofluorescence require anti-

bodies, which are difficult and expensive to obtain. Confocal

microscopy is time-consuming and laborious, since a large number

of embryo images need to be scanned. Moreover, while protocols

for data acquisition and quantification work efficiently in

Drosophila, their application to less well-established experimental

models is not trivial. In particular, it is often difficult to adapt

fluorescent staining protocols to non-model species.

Thus, in order to make the gene circuit method more widely

applicable—and hence useful for the study of developmental gene

regulatory networks—it is imperative that we simplify the method.

We address an important question which applies to reverse-

engineering approaches in general: how much, and what kind of

Author Summary

To better understand multi-cellular organisms we need a
better and more systematic understanding of the complex
regulatory networks that govern their development and
evolution. However, this problem is far from trivial.
Regulatory networks involve many factors interacting in
a non-linear manner, which makes it difficult to study them
without the help of computers. Here, we investigate a
computational method, reverse engineering, which allows
us to reconstitute real-world regulatory networks in silico.
As a case study, we investigate the gap gene network
involved in determining the position of body segments
during early development of Drosophila. We visualise
spatial gap gene expression patterns using in situ
hybridisation and microscopy. The resulting embryo
images are quantified to measure the position of expres-
sion domain boundaries. We then use computational
models as tools to extract regulatory information from the
data. We investigate what kind, and how much data are
required for successful network inference. Our results
reveal that much less effort is required for reverse-
engineering networks than previously thought. This opens
the possibility of investigating a large number of devel-
opmental networks using this approach, which in turn will
lead to a more general understanding of the rules and
principles underlying development in animals and plants.
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data are required to successfully infer a gene regulatory network?

Answering this question in the context of the gap genes will allow

us to minimise the cost of data acquisition and processing. This, in

turn, will decrease the barrier for applying reverse-engineering

methodology to other developmental systems, many of which are

similar in kind and complexity to the gap gene network.

The quality of a gene circuit model depends directly on the

quality of the data it was fit to. What matters most in this regard is

the timing and position of expression domain boundaries with

respect to each other. The relative level of expression in each

domain is less crucial. For instance, early gap gene circuit models

did not capture the formation of the abdominal kni domain

correctly (see Figure 2 in [45]). This was due to the incorrect

relative position of this domain in the data resulting in a large gap

between it and the posterior hb domain (see Figure 1, ibid.). This

defect is no longer present in more recent models based on data

Figure 1. The gene circuit method. Top panel: a Drosophila embryo is modelled as a row of nuclei that undergo mitosis. Each nucleus contains
four gap genes: hunchback (hb), Krüppel (Kr), giant (gt) and knirps (kni). The products of these genes diffuse, decay, and interact with each other to
regulate gene expression. In addition gap genes are regulated by four external inputs, provided by the gene products of bicoid (bcd), caudal (cad),
tailless (tll) and huckebein (hkb). Central circle: fitting the model to quantitative, spatial expression data is done via an iterative optimisation algorithm.
A gene circuit with random regulatory parameters is used as the starting point for an exploration of parameter space. This is achieved by repeatedly
changing parameter values to yield new gene circuit solutions. For each of these solutions model output is calculated and compared to the data by
evaluating the sum of squared differences between the two. New gene circuit solutions are selected according to a global optimisation strategy (see
Materials and Methods). The aim is to improve the fit to the gene expression data over many iterations until no further improvement can be achieved.
Bottom panel: gene circuits that accurately reproduce expression data contain parameter estimates that encode a specific regulatory network
structure. These models are analysed to yield insights into the regulatory dynamics and function of each interaction in the network.
doi:10.1371/journal.pcbi.1002589.g001
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Figure 2. Image acquisition and processing. As an example we show quantification of kni expression. (A–D) Embryo images are acquired using
wide-field microscopy: unprocessed bright-field (A), DAPI counter-stain (B), and DIC images (C), as well as higher-resolution details of membrane
morphology using DIC (D). Whole-embryo DIC images (as shown in C) are subjected to a sequence of image segmentation steps: 1. convert the
image to gray-scale, 2. adjust gamma, 3. invert image, 4. apply Sobel edge detection (E), followed by 5. dilation operations, 6. filling of holes, and 7.
removal of blobs touching the image border. Only the largest blob is kept, and Gaussian smoothing is applied to generate a binary mask covering the
embryo (F). Whole-embryo masks are used to crop bright field (A), DAPI (B) and DIC (C) images, which are then rotated and flipped to orient them
anterior to the left and dorsal to the top (G–J). The midline of the embryo is identified by using the skeleton of the whole-embryo mask, which is then
approximated by a spline curve for smoothing and pruning of superfluous skeleton branches (K). We establish a band of 10% mask height along the
midline of the embryo (K), which is overlain on the bright-field image (H) as shown in (L). A raw expression profile is extracted from this band (M),
which shows high and irregular non-specific background. To eliminate this background, profiles are manually annotated and expression boundaries
are approximated by cubic spline curves (M). We calculate the median position of extracted boundary positions for each expression profile per time
stage and normalise the data (N: boundaries from individual embryos in black, median boundary in red). Median boundaries from multiple time
classes are integrated to create an expression profile along the A–P axis though developmental time (O: contour plot with interpolated data between
time classes). See main text for details.
doi:10.1371/journal.pcbi.1002589.g002
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with the abdominal kni domain positioned accurately while still

only measuring relative levels of protein concentration [46,48–50].

In this study, we present a simplified reverse-engineering

protocol and apply it to a new, quantitative data set of gap gene

mRNA expression in Drosophila. We demonstrate how mRNA

expression data derived from a colorimetric (enzymatic) protocol

for in situ hybridisation can be used to infer the regulatory structure

and dynamics of the gap gene network. We compare our results

with those obtained in previous studies based on protein

expression data, and show that they predict equivalent regulatory

mechanisms that are consistent with experimental evidence. In

addition, we show that our simplified data set can be reduced even

further while still yielding correct predictions. In this way, we

define a set of minimal requirements for the successful inference of

gap gene regulatory network structure and dynamics. These

minimal requirements suggest that the adapted gene circuit

method can be applied to a variety of developmental systems

with a reasonable amount of effort. Such wider application of

reverse-engineering methods will enable us to carry out systematic

and comparative analyses of developmental gene regulatory

networks.

Materials and Methods

In Situ Hybridisation
cDNA clones were ordered from the Drosophila Genomics

Resource Center (DGRC; dgrc.cgb.indiana.edu) and used to make

riboprobes labelled with DIG and/or FITC. Wild-type blasto-

derm-stage Drosophila embryos were collected after 4 hrs of egg

laying and stained with a colorimetric in situ hybridisation protocol

adapted from [52] and [53]. In brief, fixed and dehydrated

embryos were re-hydrated by washing 1x in PBT/methanol

(embryos are allowed to sink before the solution is removed), 2x in

PBT, and 165 min in PBT. Embryos were incubated in PBT

containing 0.179U proteinase K for 1 hr on ice, then washed 2x in

ice-cold PBT. Embryos were post-fixed for 25 min with 5%

formaldehyde in PBT with mild shaking, then washed 1x followed

by 265 min in PBT. Embryos were pre-hybridised by washing

1610 min in equal volumes PBT and hybridisation buffer (50%

formamide, 5xSSC, 5 mg/ml yeast tRNA, 100 mg/ml salmon-

sperm DNA, 50 mg/ml heparin, 0.1% tween-20 in DEPC-treated

water), 162 min in hybridisation buffer, and 161 hr in hybrid-

isation buffer at 56uC. Hybridisation was carried out overnight:

0.5–1 ng/ml of probe(s) were added after heating at 80uC in a

small amount of hybridisation buffer for 3 minutes. Post-hybrid-

isation, the embryos were washed 1615 min and 2630 min in

hybridisation buffer, 1615 min in equal volumes of PBT and

hybridisation buffer, and 4615 min in PBT. Blocking steps were

carried out using 5% heat-treated goat serum in PBT for 30 min,

followed by incubation with anti-DIG or anti-FITC antibodies

conjugated with alkaline phosphatase (Roche) at 1:2000 in 5%

heat-treated goat serum in PBT for 1 hr. Unbound antibody was

removed with washes of 3x followed by washes of 4615 min in

PBT. To prepare for staining, embryos were washed 265 min in

AP buffer (100 mM NaCl, 50 mM MgCl, 100 mM Tris pH 9.5,

0.1% tween-20). Staining was carried out in the dark by the

addition of AP buffer containing 0.1 mg/ml NBT and 0.05 mg/

ml BCIP. Staining was stopped with 3x washes in PBT. For single

staining (one probe), embryos were washed a further 3610 min

then counter-stained (see below). For double staining (two probes),

alkaline phosphatase was inactivated by washing 161 min, then

1610 min in glycine buffer (0.1 M glycine 0.1% tween pH 2)

followed by 3610 min in PBT. Blocking, antibody incubation and

washing steps were carried out as described above. To prepare for

staining, embryos were washed 265 min in Fast Red buffer

(100 mM Tris pH 8.2, 0.1% tween-20). Staining was carried out

in the dark by the addition of Fast Red solution (1 Fast Red tablet

(Roche) dissolved in 2 ml Fast Red buffer). Staining was stopped

with 361 min followed by 3610 min washes in PBT. Nuclei were

counter-stained by a 10-min incubation in PBT containing 0.3 mM

DAPI, followed by washes of 3x followed by 3610 min in PBT.

Embryos were cleared through a series into 70% glycerol:PBT, of

which 30 ml were mounted per slide. All washes were done on a

nutator, except for those in proteinase K.

Image Acquisition and Processing
An overview of image acquisition and processing steps is shown in

Figure 2. For each embryo, four images were acquired using a

compound, wide-field, fluorescence microscope: (A) a bright-field

image (Figure 2A), (B) a fluorescent image of the DAPI nuclear

counter-stain (Figure 2B), (C) a differential interference contrast

(DIC) image (Figure 2C), and (D) a DIC image of membrane

morphology on the dorsal side of the embryo (Figure 2D). Images

A–C were acquired using a 10x objective, image D using a 40x

objective. Images A and B are focused on the surface, images C and

D on the sagittal plane of the embryo. All images were taken at 8-bit

accuracy, thus setting the range per RGB channel to [0,255].

Only laterally oriented embryos were selected for processing.

Gene expression patterns were extracted from embryo images as

follows. Binary masks covering the whole embryo are calculated

using a sequence of image segmentation steps on the DIC image

(Figure 2C). Intermediate steps are shown in Figure 2E/F: 1. the

RGB image is converted to gray-scale, 2. gamma correction is

applied to increase contrast, 3. the image is inverted, 4. Sobel edge

detection is carried out, 5. dilation operations are applied to the

resulting binary image, and 6. holes are filled [54,55]. This results

in a number of contiguous binary blobs in the mask image. All

blobs touching the image border are removed, and only the largest

blob is retained. Finally, a smooth whole-embryo mask is created

by applying a Gaussian filter to the remaining blob. This mask and

all raw images (A–C) were rotated and cropped as described in

[56] such that the embryo’s major, or antero-posterior (A–P) axis is

horizontal. If necessary, embryo images were flipped manually to a

canonical orientation such that anterior is to the left, and dorsal is

up (Figure 2G–J).

To extract gene expression profiles from an embryo, a smooth

cubic spline was generated with five equidistant knots through the

main branch of the skeleton of the embryo mask (Figure 2K;

[55,57]). Along the spline, we extract average RGB-values over a

band of 10% mask height (5% above and below the spline curve),

resulting in raw profiles for each RGB channel of the bright-field

image (Figure 2H) along the A–P axis (Figure 2K,L). Values for

FastRed or NBT/BCIP staining were then calculated as follows:

FastRed = green 2 red, and NBT/BCIP = red, where ‘red’ and

‘green’ refer to inverted RGB colour channels extracted from the

bright-field image. Inspecting 1D-graphs of the resulting profiles

(Figure 2M), boundaries for gene expression domains were

extracted manually for each embryo: each boundary was labelled

with a unique identification number (see Supplementary Material),

and two points (x0, y0) and (x2, y2) were determined that indicate

the beginning and end of the boundary, where staining levels

approach background and maximum levels respectively. A middle,

third control point (x1, y1) was automatically calculated from the

other two points by taking the average for x, and locating the

corresponding expression level y. Hence x0,1,2[ 0, 100½ Þ represent

relative position along the A–P axis (in percent, where 0% is the

anterior pole), and y0,1,2[ 0, 256½ Þ represent the relative intensity

level of the staining. Points x0,2 and y0,2 were used as anchor points

Efficient Reverse-Engineering of a Gene Network
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for cubic splines with fixed zero-derivatives at their end knots.

Finally, splines were normalised such that the expression level at

the starting point was 0, and the expression level at the end point

was 1 (Figure 2N).

Integrated time-series of gene expression were prepared as

follows. Embryos were staged into separate cleavage cycles (defined

as the period between mitotic divisions n-1 and n; e.g. cycle 13 spans

the time between mitoses 12 and 13) based on nuclear density and

number of nuclei in images showing DAPI nuclear counter-stains

(Figure 2B; time classification for early embryos was described

previously in [40]). C14A was further subdivided into eight equally

spaced time classes (T1–8) based on membrane morphology from

high-resolution DIC images (Figure 2D; time classification for late

embryos as described in [44]). Expression domain boundaries were

grouped by gene, stage and boundary identification number (see

above). Average boundary positions were determined by calculating

separately the median start and end points for each group, which

were then used for fitting a median-boundary spline as described for

individual boundaries above. Finally, we combined different

domain boundaries for each gene at each time class into an

integrated, normalised expression profile along the A–P axis

(Figure 2O). Spatial registration of domains was performed by

checking the integrated expression profiles against double stained

embryos (i.e. embryos stained for two gap genes, for instance hb and

Kr) to verify the relative spatial order of gap gene expression

domains (data not shown).

Additional Data Processing for Model Fitting and
Comparison

The following post-processing steps had to be applied to our data

to make them suitable for model fitting and comparison (see Results,

and Figure S1 of the online Supporting Information): (1) We

collected our normalised, integrated mRNA expression data into 50

(C13) or 100 (C14A) bins to reflect the approximate number of

nuclei along the A–P axis [46,48,49]. (2) We scaled the intensity of

our expression data linearly along the A–P axis from 50% A–P

position (mid-embryo; 61.0) to both termini (poles of the embryo;

60.5) to reflect the higher intensity of central versus more terminal

gap domains [43]. For Drosophila expression data, this is a reasonable

assumption, but not an essential requirement. Omitting this post-

processing step resulted in qualitatively equivalent results (data not

shown). (3) We also scaled our expression data along the time axis by

a second-degree spline with a peak of expression during early C14A,

to capture the gradual accumulation (during C12, C13 and early

C14A) and degradation (during late C14A) of gap gene mRNA

([40,43], and our unpublished data). Normalised boundaries were

scaled to 0.1 at the onset of expression (early C13, t = 0.0 min), 1.0 at

around T5 (t = 48.0 min), and 0.7 at gastrulation time (t = 71.1 min),

which is the final time point. (4) We multiplied our mRNA

expression data by a constant factor of 200. This makes the scale of

both mRNA and protein data match as closely as possible, and

therefore facilitates comparison to models obtained with Drosophila

protein data [46–51].

The posterior Kr domain, which arises in late C14A, was

removed from the data used for model fitting to avoid modelling

artefacts. This domain is known to be under regulatory control of

the terminal gap genes with additional inputs from the Forkhead

(Fkh) transcription factor (not included in this study), and it does

not participate in segment determination [58].

Fitting models using a weighted least squares (WLS) protocol

(see below) requires a weight for each data point indicating its

associated variation. As our mRNA expression data do not provide

such information, weights were created from normalised, inte-

grated mRNA expression data according to the formula:

v~1:0{0:9y with y[ 0, 1½ � being the normalised staining intensity

and v the corresponding weight. This proportionality of variation

with expression level reflects the fact that gap domains (showing

high levels of expression) show more variation than those regions

of the embryo in which a gene is not expressed [40,43].

Gene circuits used for model fitting require external inputs

based on data for maternal gradients (Bcd and Cad) as well as

terminal gap genes (Tll and Hkb). Depending on the scenario we

wanted to test (see Results), expression profiles for these inputs

were taken from previously published quantitative protein data

[43,49], or were approximated as follows. Bcd: a time-independent

(i.e. constant) anterior gradient was created by fitting an

exponential curve to all available Bcd data across time and space.

Cad: an artificial posterior morphogen gradient was created using

2D thin-plate splines [59] based on the following minimal set of

features of the Cad protein gradient: (1) the gradient should be

complementary to the anterior (Bcd) gradient; (2) as development

progresses, there should be increasing repression in the abdominal

region (,50–80% A–P position); and (3) a posterior stripe should

develop from time class 6 in C14A onwards at around 80% A–P

position. Tll/Hkb: we replaced protein expression data with

mRNA expression data for some of our reverse-engineering runs

(see Results). Due to the relative constancy of tll and hkb expression

patterns over time [43,49], we created time-invariant expression

profiles for these genes by averaging boundary positions across all

cleavage cycles and time classes.

Mathematical Models: Gene Circuits
We use gene circuits for model fitting (reverse engineering) as

described in [1,38,39,46–51]. In brief, a gene circuit is a hybrid

dynamical model incorporating discrete mitotic divisions of nuclei,

as well as continuous gene regulatory dynamics within each

nucleus. Each cleavage cycle consists of interphase, mitosis and

division. During interphase, the change in gene product concen-

tration ga
i (representing mRNA or protein, depending on the

simulation) for gene a in nucleus i over time t is governed by the

following of ordinary differential equation (ODE)

d ga
i

d t
~RaW uað ÞzDa nð Þ ga

i{1zga
iz1{2ga

i

� �
{laga

i ð1Þ

The three terms on the right-hand side of the equation define

regulated gene product synthesis, diffusion and decay respectively.

Ra is the maximum synthesis rate; Da nð Þ the diffusion rate

(dependent on the distance between nuclei, which halves at every

cleavage division: n defines the number of previous divisions); la is

the decay rate for the product of gene a. The sigmoid regulation-

expression function W uað Þ captures the basic regulatory dynamics,

and is defined as follows:

W uað Þ~ 1

2

uaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uað Þ2z1

q z1

0
B@

1
CA ð2Þ

where

ua~
X
b[G

W bagb
i z

X
m[M

E
ma

gm
i zha ð3Þ

with the set of trunk gap genes defined as G~ hb, Kr, gt, knif g,
and the set of external inputs as M~ Bcd, Cad, Tll, Hkbf g.
Matrices W and E define the interactions between, respectively,

the trunk gap genes themselves, and between the external inputs
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and trunk gap genes. The elements of these matrices, wba and ema,

are called regulatory weights. These weights define the effect of b

on a (or m to a) which can be (1) positive (activating gene product

synthesis), (2) negative (inhibiting synthesis), or (3) (close to) zero

(no regulatory interaction). ha is a threshold parameter represent-

ing uniformly distributed maternal factors. During mitosis, gene

product synthesis is set to zero. After mitosis follows division,

which is instantaneous. At division, gene product concentrations

are copied equally to both daughter nuclei. Finally, diffusion is

implemented with no-flux boundary conditions.

Our models cover the trunk region of the embryo, from 35 to

87% A–P position. This region is somewhat reduced compared to

35 to 92% for earlier protein models [46–51], but covers the same

set of gap domains, due to the slightly more anterior position of

mRNA vs. protein domains. This results in gene circuits consisting

of systems of 108 ODEs at C13, and 212 ODEs at C14A. Gap

gene circuits were solved numerically from the beginning of C13

(t = 0 min) when gap proteins reach detectable levels, to the onset of

gastrulation and the end of C14A (t = 71.100 min). We use the

same division schedule as in [46,48,49]: mitosis occurs from

16.0 min to 21.0 min. At the end of mitosis, nuclear division takes

place. Initial conditions for gap genes were calculated by

interpolation between data points at C12 (t = 26.200 min) and

C13 (t = 10.550 min) using the same temporal scaling scheme as

described in the previous section. Initial conditions of the external

inputs were taken from [49]. Time classes in C14A correspond to

the following time points (in minutes): T1, t = 24.225; T2,

t = 30.475; T3, t = 36.725; T4, t = 42.975; T5, t = 49.225; T6,

t = 55.475; T7, t = 61.725; T8, t = 67.975 (see Figure 2 in [48]).

Model Fitting
We follow a reverse engineering protocol as described in

[46,48,49]. To estimate the values for parameters W, E, R, h, D

and l of the gene circuit model we performed global optimisation

by means of parallel Lam Simulated Annealing (pLSA) [60–62] on

the Mare Nostrum supercomputer at the Barcelona Computing

Center (BSC; http://www.bsc.es). Per optimisation run we used

50 processor cores for an average duration of about 7 hours.

Simulated Annealing requires that candidate solutions have an

associated cost (or energy) function that is minimised during the

optimisation. We adapt the cost function from [49] as follows:

cost~
X
a[G

X
t[T

X
i[Nc nð Þ

va
i tð Þ ga

i tð Þ{dataa
i tð Þ

� �2 ð4Þ

with T the set of time points (C13, C14A: T1–8) at which

expression data is available, Nc(n) the number of nuclei after n

divisions (50 at C13, 100 at C14A), va
i tð Þ representing positive

weights associated with each data point, and dataa
i tð Þ referring to

the expression level of gene product a at nucleus I and time t as

derived from the experiments. If weights va
i tð Þ are all set to 1.0, the

‘cost’ equation represents a fit by ordinary least squares (OLS),

which is the cost function previously used with gene circuit models

[46–51,63]. For fitting by weighted least squares (WLS), we use

variable weights, which are inversely related to the level of

expression (calculated as described in ‘Additional Data Processing

for Model Fitting and Comparison’). This penalises ectopic gap

gene expression, and improves frequency and quality of good

fitting solutions as reported in [49].

Based on previous studies using gap gene circuit models, we fix certain

parameters without negatively affecting the quality of the fits [46,48,49].

In the gene interaction matrix E we fix interactions of Hkb to zero, with

the exception of HkbRhb. Furthermore, we take ha = 22.5, for all gap

genes a[G, and Da~ 0:237, 0:300, 0:115, 0:300ð Þ for

a~ hb, Kr, gt, knið Þ respectively [49].

To report the goodness of a fit, we use the root mean square

(RMS), defined by

RMS~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ndata

X
a[G

X
t[T

X
i[Nc nð Þ

ga
i tð Þ{dataa

i tð Þ
� �2

s
ð5Þ

with Ndata~1804 the total number of data points in our data set.

Since the RMS is independent of weights va
i tð Þ and the number of

nuclei (data points) in the model, it allows us to compare WLS and

OLS, as well as mRNA- and protein-based solutions. Solutions

were selected for further analysis by several tests. Firstly, gene

circuits were tested for numerical stability with respect to the solver

(also known as solver sensitivity) and with respect to minute

changes in parameter values (or the ‘brittleness’ of a solution).

Subsequently, gene circuits were checked for visible gene

expression patterning defects by means of visual inspection (see

Text S1 for a categorisation of commonly encountered defects).

Statistical Analysis of Parameter Estimates
Statistical analysis of parameter estimates was performed as

described in [49,64]. Here we only provide a short description of

the calculation of parameter confidence intervals.

Reverse engineering results in a vector of estimates

ĥh~ W , E, R, h, D, lð Þ. Once the parameter vector ĥh is found, a

posteriori identifiability analysis [65–67] reveals how reliable the

obtained estimate is. The ellipsoidal region around ĥh in which the

true parameter vector h� lies with a certain probability 1:0{a (we

set a~0:05) is defined by

h�{ĥh
� �T

JT ĥh
� �

J ĥh
� �� �

h�{ĥh
� �

ƒr2
s ð6Þ

where

r2
s~

Np

Nd{Np

cost ĥh
� �

Fa Np,Nd{Np

� �
ð7Þ

and Np~37 and Nd~1804 the number of parameters and data

points, respectively. Fa Np, Nd{Np

� �
is the upper a part of

Fisher’s distribution with Np and Nd{Np degrees of freedom. J is

the Jacobian matrix of size Nd|Np defined as J hð Þ~ LY hð Þ
Lh

,

where Y hð Þ is the vector of weighted discrepancies between model

output and data. From equation 6 one can derive dependent and

independent confidence intervals for each parameter estimate

ĥhi, i~1, 2, K, Np. These are, respectively,

hi : Dhi{ĥhi Dƒ
rsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V ĥh
� �

S2 ĥh
� �

VT ĥh
� �� �

ii

r
8>><
>>:

9>>=
>>; ð8Þ

and

hi : Dhi{ĥhi Dƒrs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ĥh
� �

S{2 ĥh
� �

VT ĥh
� �� �

ii

r� �
ð9Þ

HereV ĥh
� �

and
P

ĥh
� �

are obtained from the singular value

decomposition of J ĥh
� �

. It is well known that in the presence of
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strong correlations between parameters, the dependent confidence

intervals underestimate the confidence region while the indepen-

dent confidence intervals overestimate it. For detailed explanations

of these statistical quantities and their derivations we refer the

reader to [49,64], and references therein.

Database and Code Implementation
Image processing and extraction of expression domain bound-

aries were performed using a custom-made processing pipeline

with a graphical user interface developed in Java (using the ImageJ

API; http://rsbweb.nih.gov/ij). Intermediate processing steps and

domain boundary positions were stored in a MySQL database,

with a web interface (SuperFly) developed by the CRG

Bioinformatics Core Facility. SuperFly is available online at:

http://superfly.crg.es. We used scripts written in Python, Perl and

R for the preparation of integrated data sets, for the generation of

artificial external inputs, and for analysis of gene circuit models.

Code for numerical solution and optimisation of gene circuits by

pLSA [39,45–49,51,62] is implemented in C, using the GNU

Scientific Library (GSL, www.gnu.org/software/gsl), the Sundials

ODE Solver Library [68], and the Open MPI message-passing

interface (www.open-mpi.org). For numerical integration of

ODEs, we use an implicit variable-order, adaptive-stepsize,

multi-step method; a band-direct solver calculates the set of

equations that is generated at each integration step [68].

Results

Gap Gene Expression Patterns: mRNA vs. Protein
Over the last two decades, the potential of reverse engineering

has been demonstrated by a pioneering case study—led by John

Reinitz and colleagues—where gene circuits have been used to

characterise and analyse the gap gene network in Drosophila

melanogaster [40,45–51]. Despite this, the gene circuit method has

not yet been applied more widely. One reason for this is that it

took many years to establish the required quantitative data set of

spatial gap protein expression patterns [41–43].

We have developed a simplified protocol for data acquisition

and processing, which allows us to create a quantitative data set of

spatial gene expression patterns in a time span of months rather

than years. Instead of using protein expression data, we have

quantified mRNA expression patterns by colorimetric (enzymatic)

in situ hybridisation, imaged using a wide-field, compound

fluorescence microscope. The resulting data set is of reduced

quality compared to the original protein data. Here, we address

the question whether it can still be used to reconstruct the

regulatory structure and dynamics of the gap gene system in a

manner which is consistent with previous efforts based on

modelling, as well as genetic and molecular approaches to study

gap gene regulation.

Before we present our modelling results, we provide a

quantitative characterisation of our mRNA data, and compare

them to the gap gene protein expression data described in [43].

Table 1 shows the number of embryos on which our mRNA data

are based. Figure 3 illustrates the quality and resolution of embryo

images underlying the two data sets. It shows time series of mRNA

expression patterns for the trunk gap genes hb, gt, Kr, and kni

produced with a colorimetric (enzymatic) in situ hybridisation

protocol (columns 1–4 on the left), in comparison to protein

expression data for Gt, Kni and the pair-rule protein Even-skipped

(Eve) from the FlyEx database (http://urchin.spbcas.ru/flyex;

[69,70]; column 5 to the right). We used images such as the ones

shown in columns 1–4 of Figure 3 to quantify the position of gap

gene domain boundaries across space and time. This was done by

applying the image-processing pipeline as described in Materials

and Methods. In brief, we used texture-based image segmentation

to create whole-embryo masks, which were used to rotate and crop

embryo images. The developmental stage of each embryo was

determined based on numbers of nuclei and membrane morphol-

ogy as previously described [44] (see also Materials and Methods).

We then extracted raw profiles of gene expression within a 10%

strip along the embryo’s lateral midline, and we determined the

position of expression domain boundaries. The results of this

analysis are shown in Table 2 and Figure 4. A detailed description

of gap gene mRNA patterns can be found in Text S2.

As mentioned in the Introduction, we are mainly interested in

the dynamics of gap domain boundary positions across space and

time. Figure 4 compares those dynamics between mRNA and

protein data. It is evident that mRNA expression patterns

resemble those of proteins closely. The relative position of all

domains with respect to each other is preserved at all time points.

Anterior shifts in domain positions over time also mirror each

Table 1. Overview of the full mRNA data set.

Time class Domain and Boundary

hb anterior gt anterior Kr central kni abdominal gt posterior hb posterior

P A P A P A P A P A P

C13 31 8 8 9 6 16 14 11 - 1 -

T1 15 14 14 10 7 15 13 11 10 5 -

T2 13 8 10 6 5 19 16 8 9 8 1

T3 16 11 15 9 5 17 15 14 17 11 6

T4 7 11 12 10 4 18 17 9 13 10 7

T5 12 16 17 16 11 18 17 14 14 10 8

T6 9 14 14 17 15 15 15 14 12 11 14

T7 5 8 8 11 11 5 5 8 6 10 9

T8 8 12 12 6 6 6 6 7 6 9 8

The number of embryos used to calculate median positions for each expression boundary at each time point is shown. A: indicates anterior, P: posterior boundary of a
domain. T1–8 indicate time classes subdividing C14A. See Materials and Methods for details.
doi:10.1371/journal.pcbi.1002589.t001
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other between mRNA and protein data: while mRNA domains are

always more anterior than protein domains at equivalent stages (as

reported in [46], Figure 3), the extent of the domain shifts is similar

between the two data sets (see Table S1). Finally, domain sizes are

similar as well (see Table S2), although protein domains of the gap

genes are slightly larger than those of their transcripts.

However, there are also notable differences between mRNA and

protein data. First, all mRNA patterns arise earlier than those of

their corresponding proteins: mRNA expression of all gap genes is

initiated before C13 ([40], and references therein), and gap mRNA

domains are well established at early cycle 13. In contrast, protein

levels have only just begun to be detectable, and increase rapidly,

during that stage [43]. This is due to the delay caused by mRNA

processing, nuclear export, and translation. Similarly, there is an

evident lag between shifting positions of gap domains (see also

Figure 3 in [46]), again indicating a significant delay between the

dynamics of mRNA and protein patterns. In summary, while

overall expression dynamics are similar between mRNA and

protein, both the timing of expression and the absolute positions of

gap domain boundaries differ between the two data sets.

Gap Gene Circuits from mRNA Expression Data
The main aim of this study is to show that the gene circuit

method—originally developed for protein expression data—can

be adapted to work successfully with expression profiles derived

from mRNA. To achieve this, gene circuit models were fit to

mRNA expression patterns derived from our data set of boundary

positions for hb, gt, Kr, and kni. External inputs to the model—

regulatory contributions from maternal gradients Bcd and Cad, as

well as terminal gap genes tll and hkb, which are not themselves

regulated by trunk gap genes—were calculated based on protein

data as described in Materials and Methods.

Our models run from early cleavage cycle 13 (C13), when gap

proteins start to accumulate, to the end of C14A, when

gastrulation starts. They span the trunk region of the embryo

from 35 to 87% A–P position. This region is located slightly more

anteriorly and is somewhat smaller than that used previously for

protein models (35–92% A–P position [46,48–50]). However, it

covers the equivalent set of gap gene expression patterns, since

mRNA domains are located more anteriorly and are slightly less

wide than their corresponding protein domains (see Figure 4, and

Tables 2 and S2). Fitting gap genes to the original range of 35–

92% A–P position yielded equivalent results to those reported

below (data not shown).

The quality of a gene circuit depends crucially on the relative

position and dynamics of gap domain boundaries, while levels of

expression are of secondary importance (see Introduction).

However, there are two problems with the loss of information

on gap gene product concentrations due to the way our data were

processed. The first is that, after data normalisation, boundaries in

our data set appear suddenly, without gradual build-up of gene

product levels (see, for example, Figure 2O). This is clearly

unrealistic, and leads to problems with the numerical stability of

our gene circuit models, since very short time scales (and hence,

Figure 3. Comparison of mRNA and protein expression data: embryo images. Columns 1–4: time series of mRNA expression patterns of the
trunk gap genes hb, gt, Kr and kni at cleavage cycle 14A (C14A) visualised by colorimetric (enzymatic) in situ hybridisation using wide-field
microscopy. Column 5: time series of protein expression patterns of Gt, Kni and the pair-rule gene Even-skipped (Eve) at the equivalent
developmental stages visualised by immunofluorescence using confocal laser scanning microscopy. Early stages at the top, time progresses
downwards. Embryos are arranged anterior to the left, dorsal up. Embryos in column 5 are from the FlyEx database: http://urchin.spbcas.ru/flyex
[69,70]. T1–8 indicate time classes subdividing C14A (see Materials and Methods for details).
doi:10.1371/journal.pcbi.1002589.g003
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very high production rates) will be favoured by the model-fitting

procedure (data not shown). We have addressed this problem by re-

scaling the data over time using a second-degree spline with a peak

of expression at early C14A, capturing the gradual accumulation of

mRNA during C13 and early C14A, as well as its degradation

during late C14A ([40,43], and our unpublished data). The second

problem concerns the relative timing and intensity of expression in

different gap gene domains. While central gap domains arise early,

and show intense staining levels by C14A, more terminal ones arise

later, and show less intense staining [43]. For instance, the anterior

mRNA domain of hb arises at C9 or C10 from the maternal Hb

gradient, while the posterior hb domain only appears at C13, with

much lower intensity of expression [71–74]. We have addressed this

problem by re-scaling the data along the A–P axis, using a scaling

factor of 1.0 in the middle of the embryo (at 50% A–P position) that

linearly decreases to 0.5 at the poles (0 and 100% A–P position).

Note that this scaling step is justified by our prior knowledge of the

gap gene system, but is not strictly required to generate the results

we present below (see Discussion). Finally, data were multiplied by a

factor of 200, and collected into 50 bins (at C13) and 100 bins (at

C14A) along the A–P axis to facilitate comparison with models

based on protein data (see Materials and Methods and Figure S1 for

details).

We used both ordinary (OLS) and weighted least-squares (WLS)

fits to our full mRNA data set (see Materials and Methods). On

one hand, the WLS method has the advantage of penalising

ectopic expression outside the observed gap domains, and has

been shown to be more effective than OLS for protein-based

circuits [49]. On the other, it requires us to calculate the variance

of each data point in our data set, which is not an obvious task

given our data-processing methods. For this reason, we had to

estimate weight values for the WLS cost function based on the

observation that variance is higher in regions with high levels of

gene expression than in those that show low, or now expression at

all (see Materials and Methods for details).

We performed 150 fitting runs each with OLS and WLS cost

functions respectively. Because of potential artefacts caused by

overfitting, one cannot simply select those circuits with the lowest

residual scores for further analysis. Instead, we inspected all

solutions visually to detect obvious patterning defects (observed

defects are described in Text S1). Only solutions without defects

were selected. Using the WLS cost function resulted in a much

higher fraction of runs with good fits to the mRNA expression data

compared to OLS. For OLS solutions, only 10/150 (6.7%) were

suitable for further analysis (Figure S2). Their residual errors—as

measured by the RMS score (defined in Materials and Methods)—

range from 16.6 to 20.9, with a median value of 17.453. For WLS

solutions, 52/150 (34.7%) could be retained (Figure 5A). As is

usual for WLS fitting [49], they show slightly higher RMS

scores—between 20.0 and 21.7, with a median value of 21.052.

Equivalence of mRNA- and Protein-Based Circuits
Overall, the selected gene circuits are extremely similar for both

OLS and WLS (compare Figure 5A to Figure S3). Both show

correct relative timing and positioning of gap domains, and

reproduce the positional shifts of posterior domains towards the

Table 2. Comparison of mRNA and protein expression data: gap domain boundary positions.

Time class Domain and Boundary

hb anterior gt anterior Kr central kni abdominal gt posterior hb posterior

P A P A P A P A P A P

C13 45.8 19.3 39.8 46.7 59.4 58.3 72.0 74.0 - 89.5 -

–– –– –– –– –– –– –– –– –– –– -

T1 43.8 20.7 39.3 45.3 57.8 56.5 70.1 69.8 82.2 85.0 -

45.9 16.9 38.0 44.3 62.4 58.8 74.0 72.7 90.1 –– -

T2 44.4 20.0 38.2 44.3 57.3 57.9 70.1 69.8 79.4 81.2 92.2

45.0 18.4 37.9 43.8 61.3 58.6 71.4 71.0 86.0 –– ––

T3 45.1 18.7 37.8 45.5 59.8 58.0 70.0 67.5 76.9 80.1 89.3

45.8 18.2 38.0 44.2 60.2 59.0 70.7 69.3 82.3 80.7 93.0

T4 47.0 18.2 37.7 44.0 57.8 56.9 67.1 67.0 77.0 78.9 88.0

47.2 18.0 38.1 44.2 60.1 58.8 69.8 68.7 79.8 80.2 92.4

T5 45.9 18.3 37.7 43.9 56.7 56.0 66.0 66.8 76.5 76.9 87.7

46.8 18.1 38.3 43.9 59.6 58.4 69.4 68.0 78.5 79.5 91.3

T6 45.8 18.8 37.3 43.5 56.4 54.5 64.8 65.6 75.1 75.0 86.6

47.2 17.5 37.9 43.6 59.2 58.4 69.0 67.3 77.5 79.7 91.0

T7 45.8 19.7 37.6 43.0 52.5 54.5 63.0 64.5 72.1 75.6 86.1

47.1 18.2 37.6 43.2 57.9 57.9 68.3 66.8 76.4 79.3 89.5

T8 45.0 20.5 37.2 42.7 52.5 54.7 63.6 65.3 72.8 75.5 85.8

46.8 18.3 37.9 43.3 57.2 57.2 67.7 66.3 74.9 78.7 88.9

This table shows mRNA (grey rows) and protein (white rows) boundary locations through developmental time in percent A—P position (where 0% is the anterior pole).
A: indicates anterior, P: posterior boundary of a domain. T1—8 indicate time classes subdividing C14A. Boundary positions for mRNA domains correspond to the
starting points of approximating splines as described in Materials and Methods. Boundary positions for protein domains are taken from [43], and correspond to the
position where the level of gene expression reaches a threshold of 50% maximum fluorescence intensity. Single dashes indicate boundaries that are not present at a
give time point. Double dashes indicate boundaries that are observable, but were not measured in [43].
doi:10.1371/journal.pcbi.1002589.t002
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anterior. However, there are slight inaccuracies concerning the

appearance and placement of domain boundaries. The formation of

all gap domains, but particularly the posterior hb domain, is slightly

delayed (Figure 5A, T1), and several boundaries are offset by 1–3

nuclei at specific points in time compared to the data (see, for

example, the anterior boundary of kni at T1, and its posterior

boundary at T3 in Figure 5A). These slight defects result in patterns

that reproduce the data less faithfully than those obtained by WLS

fits to protein data (Figure 5B; models from [49]). This is reflected in

the corresponding RMS scores: 10.5 for protein data versus 16.6,

the best score from our mRNA fits. In addition, our mRNA-based

circuits show increased variability in model output between

solutions compared to protein-based models (Figure 5, Figure S3).

Apart from these minor differences, however, there is significant

agreement between all three sets of gene circuits. This similarity in

expression patterns is reflected in the parameter values of our

models. Distributions of estimated parameter values for regulatory

weights of WLS-mRNA and WLS-protein solutions are shown as

scatter plots in Figure 6A. Corresponding genetic interconnectivity

matrices are compared in Figure 6B. It is clear from inspecting

these matrices that a large majority of interactions are qualitatively

the same in mRNA- and protein-based circuits (although increased

variability in model output is reflected in increased variability of

estimated parameter values for mRNA circuits). Repression

corresponds to repression, and activation to activation, for a

majority of circuits in both cases. Only six gap-gap cross-

interactions are predicted to be different (emphasised by black

frames in Figure 6B, and discussed in detail in Box 1), while all

external inputs (bcd, cad, tll and hkb) interact with gap genes in the

same manner for both data sets.

In summary, none of the differences between mRNA- and

protein-based circuits shown in Figure 6B are inconsistent with

regulatory mechanisms for gap gene regulation postulated

previously [46,48–50] (see Box 1). The network recovered from

both data sets is essentially equivalent. Our models—just as those

obtained with protein data—predict that gap genes are regulated

by (1) broad activation by maternal gradients, (2) auto-activation

terms, which are non-essential, but serve to maintain sharply

defined domain boundaries [50], (3) strong mutual repression

between non-overlapping gap genes (hb and kni, Kr and gt; we call

this mechanism ‘alternating cushions’ for reasons explained in

[35]), (4) weak repression between overlapping gap domains

showing posterior dominance which leads to dynamic anterior

shifts in domain position, and (5) additional repression of gap

genes at the posterior pole by terminal gap genes tll and hkb

(Figure 6D; see [35] for review).

Figure 4. Comparison of mRNA and protein expression data: quantitative graphs. Space-time plots are shown indicating gap domain
boundary positions based on mRNA (solid lines, shaded background) and protein data (dashed lines). Boundary positions for mRNA domains were
determined as described for Table 2 (see also Materials and Methods). Boundary positions for gap protein domains are taken from [43]. Light shaded
background indicates domains (the anterior domain of Kni, the anterior and posterior domains of Kr, and the head patch of Gt), which do not play a
role in segment determination [35], and where not quantified from protein data in [43]. See also Table 2, and Tables S1 and S2.
doi:10.1371/journal.pcbi.1002589.g004
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Determinability of Gene Circuit Parameters
Sets of parameter estimates based on reduced-quality mRNA

data show increased variability compared to protein-based

circuits—both in terms of the distribution of parameter values

(Figure 6A), and the regulatory categories they fall into (Figure 6B).

Nevertheless, we have shown that we can recover consistent

regulatory mechanisms from these estimates, if we consider the

consensus network structure, that is, those regulatory categories

into which a majority of the estimated parameter values fall into.

In this section, we examine if our parameter estimates are also

determinable in the statistical sense defined by Ashyraliyev et al.

[49,64]. This is also known as practical parameter determinability

analysis. It is achieved by assuming that our fitting problem has a

single optimal solution, which we call the ‘true’ solution. We can

then calculate confidence intervals around each one of our

parameter estimates. These intervals determine a range of

parameter values, which include—with a given probability of

95%—the true solution to the problem. A parameter is

determinable, if its confidence interval lies entirely within one of

our three regulatory categories: repression (parameter value less

than 20.005), no interaction (between 20.005 and 0.005), or

activation (greater than 0.005). It is weakly determinable if its

interval intersects two of these categories, but excludes the third.

There are two different ways to calculate these confidence

intervals: dependent intervals tend to underestimate the extent of

the confidence region, while independent intervals have the

tendency to overestimate it (see Materials and Methods for details).

As in previous studies [49,64], we use independent intervals to

estimate the determinability of a parameter.

Under specific conditions, gap gene circuits fit to protein data

can yield parameter estimates, which are very well determined

(Table 3, top row). Specifically, estimates from WLS fits are much

more determinable than those obtained by OLS, if parameter

values for diffusion rates (D), threshold parameters (h), and certain

regulatory weights (the effect of Hkb on gt, Kr, and kni) are fixed

during optimisation [49]. In contrast, determinability of parameter

estimates is poor in both OLS and WLS fits to mRNA data (Table 3,

rows 5 and 6). This loss of determinability could be due to three

reasons: (1) the use of mRNA instead of protein data; (2) our data

processing method (and approximation of variances for WLS); and

(3) the smaller embryo region covered by mRNA-based circuits.

To distinguish between these three possibilities, we performed

several series of optimisation runs. First, we used the original

protein data set with approximated variances that only depend on

expression level (as described for our mRNA data in Materials and

Methods). This yielded a level of parameter determinability, which

was somewhat worse, but still comparable to the original protein

data set (Table 3, row 2). We then approximated expression

boundaries in the integrated protein data set by our spline-based

method, to emulate domain and boundary shapes equivalent to

the mRNA-based data. Again, this yielded decreased but still

reasonable parameter determinability (Table 3, row 3). Based on

this, we conclude that neither the use of approximated weights,

nor the use of approximated boundaries can account for all the

loss of determinability observed in mRNA-based circuits. Finally,

we performed fits to mRNA data on an extended region of 58

nuclei, equivalent to the region used for protein-based gene

circuits. As for other mRNA-based solutions, determinability was

poor, significantly decreased compared to any of the protein fits

(Table 3, row 4). Taken together, the above evidence indicates that

the most relevant factor for the loss of statistical determinability is

the use of mRNA- instead of protein-based expression data.

Figure 5. Gene circuit fits: model output versus data. Plots show model output (solid lines) versus expression data (dashed lines). (A) Gene
circuits fit with WLS to mRNA data. All 52 selected gene circuits are shown. (B) Gene circuits fit with WLS to protein data (from [49]). All 66 selected
gene circuits are shown. Horizontal axes represent A–P position (where 0% is the anterior pole). Relative mRNA and protein concentrations are in
arbitrary units (au). T1/3/5/7 represent time classes during C14A; time progresses downwards.
doi:10.1371/journal.pcbi.1002589.g005
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Reverse Engineering with Reduced Data Sets
In the previous sections, we have established that it is possible to

reverse-engineer a developmental gene regulatory network from

mRNA expression profiles. Even though these mRNA-based

networks lack statistical determinability, the observation that we

consistently recover a qualitatively equivalent network generates a

Figure 6. Gene circuit analysis: mRNA- versus protein-based models. (A) Distribution of estimated parameter values (shown as scatter plots)
for regulatory weights. Horizontal bars indicate the strength and type of interaction between regulators (indicated along the x-axes of the plots) and
their target genes (sorted into separate plots). Blue represents parameter values from mRNA-based circuits, orange parameter values from protein-
based circuits. (B) Genetic interconnectivity matrices indicating repressive (red), activating (green), or no (blue) interactions for WLS mRNA- (top) and
protein-based gene circuits (bottom). Number triplets indicate the number of solutions with repressive/no/activating interactions. As in earlier studies
[48,49] a cut-off of 0.005 was used below which an interaction was considered to be absent. In cases where all gene circuits show identical behaviour,
a dark colour is used; otherwise a lighter shade is applied. A black border highlights differences in interactions between the mRNA and protein
circuits. (C) Regulatory contributions (calculated as regulator concentrations ga

i multiplied by regulatory weights wba or eba see equation 3) of gap
genes and external inputs on gt (upper panel) and hb (lower panel) along the A–P axis (0% is the anterior pole). The horizontal dashed lines indicate
threshold values (parameter ha in equation 3). The sum of positive contributions (above dashed line) is plotted separately from the sum of negative
ones (below dashed line). The black curve indicates total regulatory effect: it is activating above the dashed line, and repressing below the dashed
line. The posterior area of overlap (between vertical dashed lines) indicates where gt and hb have overlapping expression domains (the anterior
overlap is omitted for clarity). To calculate the net interaction between gt and hb, the respective regulatory contributions are integrated over this area
and the difference is calculated. The size of the coloured areas indicates a stronger repressive effect of Hb on gt than the other way around. (D)
Consensus gap gene network recovered by both mRNA- and protein-based circuits. The position of gap domains is shown schematically along the A–
P axis (coloured boxes). Background colour indicates predominant maternal activators. Circular arrows indicate auto-activation, T-bar connectors
represent major repressive interactions, and dashed T-bar connectors show asymmetric repressive interactions determined by net effect (see panel
C). See text for details.
doi:10.1371/journal.pcbi.1002589.g006
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certain confidence in the methodology. Next, we wanted to define

the minimal requirements for gap gene circuits in terms of

experimental data. As mentioned in the Introduction, the most

time-consuming and hence limiting step involved in this method is

the acquisition and processing of the quantitative experimental

data required for model fitting. Thus, we would like to reduce and

simplify our data as much as possible. To this end, we have

performed a series of model fitting runs with reduced data sets

(either by decreasing the number of boundaries, or the number of

time classes), or with artificially generated data for external inputs

(to simulate the case where quantitative protein data on maternal

gradients and terminal gap genes would be unavailable). Table 4

presents an overview of the distinct data sets used for model fitting,

while the analysis of the resulting gene circuits is summarised in

Figure 7 (based on interconnectivity matrices shown in Text S3).

Our results show that a smaller fraction of solutions obtained by

fitting to reduced data sets are usable for analysis. This applies to

both reduction of the number of boundaries and time points

present in a data set (Figure 7, 2nd column). In contrast, the

optimum and median RMS scores of these fits do not show any

clear trend, although RMS scores slightly increase as boundaries

are removed (Figure 7, 4th column). Using artificial external inputs

did not significantly affect the number of usable solutions or the

RMS score. We conclude that our approach is surprisingly robust

to the reduction in quality of our data set. Only in one case—

reduction of the number of boundaries to 20%—did we

completely fail to get any solutions suitable for further analysis.

While a good fit to the data is important, it is even more crucial

that gene circuits represent consistent gene network structures and

regulatory mechanisms. For this reason, we examined whether

models fit to reduced or artificial data incorporate the five basic

mechanisms of gap gene expression described in the previous

section.

First, we looked at mutual repression of non-overlapping gap

genes (alternating cushions). This mechanism is recovered

extremely robustly: it is present in all selected solutions (Figure 7,

blue column). In agreement with previous analyses [50], we

conclude that it lies at the core of gap gene regulation.

With respect to auto-activation, we observe that all mRNA-

based circuits behaved similarly, with the exception of the gene

circuits from fits with artificial maternal gradients (Table 4, and

Figure 7, green columns). In general, hb, gt and kni were auto-

activating, while Kr was not (or not consistently, at least). In

addition fits with artificial maternal gradients show reduced

presence of gt auto-activation. The variability in these results can

be explained by the fact that auto-activation is not essential for

positioning gap domains in gene circuit models [50].

To analyse the presence or absence of the domain shift

mechanism [46], we examined net effects of repression between

overlapping gap domains as described in the previous section

(Figure 7, red columns; see also Figure 6C). We observed that two

domain interactions were consistently present in our models: the

net repression of Kr by Kni, and that of kni by Gt. However, net

repression of gt by Hb was only recovered in about 10–50% of

solutions. In those circuits that do not show this effect, Gt represses

hb in the anterior to reproduce the peak of hb expression in the

middle of the embryo. We have shown elsewhere that this is a

modelling artefact [48]. Repression of hb in the posterior is

overcome in these circuits by strong activation of hb by Tll (data

not shown), an interaction which is likely to be indirect, and

therefore not supported by experimental evidence [75].

Unlike the interactions described above, mutual repression

between the overlapping domains of hb and Kr does not contribute

to gap domain shifts [46–48]. If we consider the net effect of these

reciprocal interactions, hb is repressed by Kr in the majority of

cases (Figure 7, orange column). In contrast, most protein-based

circuits show net repression of Kr by Hb. We explain this as

follows: the border between hb and Kr is maintained at the same

Box 1. Detailed Analysis of Differences
Between mRNA- and Protein-Based Circuits.

We analysed the differences between mRNA- and protein-
based gene circuits in detail. Surprisingly, one of the
differences is an improvement: our mRNA circuits predict
repression of hb by Kr, which is in accordance with the
experimental literature [77,95–97]. This interaction had
been missing in protein-based circuits. On the other hand,
the two differences affecting the auto-regulatory terms of
Kr and gt are of no functional significance, since auto-
regulation is dispensable for correct gap gene expression
[50].
The final three differences require more explanation:
mRNA circuits predict Kr to inhibit kni, Kni to not interact
with gt, and Gt to repress hb, while protein-based circuits
predict no interaction for Kr on kni, and activation in the
other two cases (Figure 6B). Of the mRNA interactions, only
the model outcome of no interaction between Kni and gt
is supported by experimental evidence, as the anterior
boundary of the posterior gt domain is not affected in kni
mutants [98–100]. With respect to the other two interac-
tions, we know the effect of Kr on kni is an indirect one via
the de-repression of gt. Also, the posterior hb domain
appears normal in embryos over-expressing or mutant for
gt [99,101,102]. In accordance with this, both mRNA- and
protein-based circuits predict that the effect of Kr on kni,
Kni on gt, as well as that of Gt on hb, is extremely weak
(Figure 6A, and [48,49]). Note that about 40% of mRNA-
based circuits show an inhibitory effect of Kni on gt
(Figure 6B). This suggests that it does not matter too much
whether these interactions are activating or repressing as
long as their strength is severely limited.
Interactions between overlapping gap domains are
involved in regulating the dynamic anterior shifts of
posterior expression boundaries over time. Jaeger et al.
[46] suggested that the observed shifts are due to
asymmetric repressive interactions, where the neighbour-
ing domain at the posterior represses its adjacent domain
at the anterior, but not vice versa. Therefore, repression of
posterior by anterior neighbours (gt by Kni, and hb by Gt)
poses a problem for this postulated mechanism. Still, our
mRNA circuits exhibit correct shifting dynamics of poste-
rior gap gene expression (Figure 5A). Graphical analysis of
our mRNA-based models (Figure 6C) reveals the following
relaxed condition for the shift mechanism: instead of
complete absence of anterior-to-posterior repression it
only requires an asymmetry in repressive strength. To be
more precise, we define the net effect of an interaction as
its regulatory weight multiplied by the concentration of
the regulator integrated over the relevant region of the
embryo (Figure 6C). Anterior shifts occur as long as the net
effect of the anterior-to-posterior interaction is less
repressive than the reciprocal posterior-to-anterior effect.
This implies that the anterior-to-posterior interaction can
be either activating or repressing, as long as it does not
cancel out repression by the posterior neighbour. This
allows the posterior repressor to become expressed in the
posterior region of its anterior neighbour’s domain, down-
regulating the latter, and thus leading to the observed
anterior shift of the latter’s boundary.
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A–P position over time (Figure 4; see also [43,46]). There are

several regulatory mechanisms that can accomplish this. Protein-

based circuits exhibit auto-activation on both sides plus a minimal

net repressive effect of Hb on Kr, while mRNA-based circuits

favour auto-activation of hb only, plus stabilisation of the hb/Kr

border by a slight net repression of Kr on hb (Figure 7, green and

orange columns). The experimental evidence on which of these

alternative mechanisms applies in the embryo remains inconclu-

sive: while the potential presence of Kr auto-activation [76] favours

the first, the absence of any defect in the posterior hb boundary in

Kr mutants supports the second mechanism [77,78].

Next, we looked at activation of gap genes by the maternal

factors Bcd and Cad. This mechanism is recovered very robustly

(Figure 7, purple column), in agreement with previous studies

Table 3. Parameter determinability in mRNA- and protein-based gene circuits.

Description of Scenario Data Scoring Function Weights for WLS
Trunk Region
(Nuclei)

Independent
Confidence Intervals Determinability

Gene circuits using protein
data from [49]

protein WLS derived from
protein data

58 20/5/4 good

Gene circuits using protein
data and mRNA-style
weights

protein WLS mRNA-style 58 16/6/7 reasonable

Gene circuits using protein
data approximated by
mRNA-style boundary
extraction

protein WLS mRNA-style 58 11/3/15 reasonable

Gene circuits from mRNA
and WLS, with 58 nuclei

mRNA WLS mRNA-style 58 0/3/26 poor

Gene circuits from mRNA
and WLS

mRNA WLS mRNA-style 53 0/2/27 poor

Gene circuits from mRNA
and OLS

mRNA OLS not used 53 0/1/28 poor

Each row represents the results of a series of optimisation runs to data described in columns 2–5: mRNA- or protein-based fits, OLS or WLS cost function, variance-based
or approximated (mRNA-style) weights for WLS, and region covered by models (53 or 58 nuclei). Column 6 (‘Independent Confidence Intervals’) shows triplets, which
represent the number of regulatory parameters in fitted models that are determinable/weakly determinable/non-determinable. Determinable parameters are those
whose confidence intervals fall exclusively into one regulatory category (activating, no interaction, or repressing). Weakly determinable parameters are those where one
regulatory category is excluded from the confidence interval (‘not repressing’, or ‘not activating’). Confidence intervals for regulatory weights in all scenarios are shown
in Text S4. Overall determinability of parameters is summarised in column 7.
doi:10.1371/journal.pcbi.1002589.t003

Figure 7. Summary of gene circuit performance under various scenarios of data availability. Scenario names are described in Table 4.
Column 1–4: for each scenario, the number of selected/total runs is given; the minimum and median RMS score of the selected runs is indicated. The
horizontal bar graphs to the right represent fractions of the selected runs in which specific regulatory mechanisms were found to be present. Smaller
bars correspond to single interactions, larger to summaries of multiple interactions. Blue column: alternating cushions refers to the inhibiting
interactions of hb and kni, as well as gt and Kr. Green columns: auto-activation is defined as a gene having an activating interaction with itself. Red
columns: shifting domains are defined in terms of the following net effects between overlapping gap domains (see main text for the definition of net
effects): posterior hb represses posterior gt, gt represses kni, and kni represses Kr (cf. Figure 6C). Orange column: the net repressive interaction
between hb and Kr, as calculated for other overlapping gag domains above. Bars indicate net repression of Kr by Hb, which is the standard situation
in protein-based circuits, while most mRNA-based circuits show net repression of hb by Kr. Purple column: Bcd and Cad activation is defined as the
fraction of gene circuits in which Bcd activates all four gap genes and Cad activates gt and kni. Brown column: Tll and Hkb inhibition is defined as Hkb
inhibiting hb, while Tll inhibits the other three gap genes. See text for details. The results summarised here are based on the interconnectivity
matrices shown in Text S3.
doi:10.1371/journal.pcbi.1002589.g007
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[46,48–50]. Note that the summary bar graphs of Figure 7 (purple

column) omit the effect of Cad on hb and Kr, as these interactions

are an artifactual aspect of the model ([48], and references

therein).

Finally, the terminal gap genes Tll and Hkb repress gap genes at

the posterior pole of the embryo. In general, we recover this

mechanism robustly (Figure 7, brown column). However, if Tll

and Hkb protein gradients are substituted by mRNA profiles (see

Table 4), about 20% of the solutions fail to show repression of Tll

on gt. In these circuits, repression of gt by Hb is sufficient for the

retraction of its posterior domain from the pole (data not shown).

Interestingly, recovery of this interaction is rescued in those fits in

which both maternal and terminal external inputs were replaced

by ‘artificial’ patterns (see Figure 7).

In summary, we have managed to recover surprisingly correct

and accurate gap gene regulatory mechanisms even with data sets

of severely reduced coverage and/or quality. This does not imply

that we can reconstitute specific gene networks with arbitrary data.

On the contrary, successful network inference requires very

specific conditions for the data used in model fitting. We will revisit

this important point in the Discussion.

Discussion

Earlier studies using reverse-engineering approaches were based

on quantitative protein expression data [46,48–50]. These protein

data capture the precise shape of each expression domain, as well

as differences and changes in relative protein levels both between

domains of the same gene, and specific gap domains over time. In

this paper, we have demonstrated that we can correctly infer the

regulatory structure and dynamics of the gap gene network in

Drosophila melanogaster using spatial mRNA-based expression data of

reduced quality and coverage. Our mRNA data only capture the

dynamics of boundary positions, and even that at a reduced spatial

resolution. Furthermore, our simplified data processing pipeline

leads to a loss of information on relative expression levels, which

need to be approximated based on straightforward biological

assumptions on transcriptional regulation and gene expression

(gradual increase and decrease of levels over time).

On the other hand, this type of mRNA data can be acquired

and processed within a fraction of the time and effort it takes to

obtain high-quality protein-based expression patterns: instead of

years, it now only takes a few months to establish quantitative

expression profiles for a complete set of genes involved in a

developmental process. Our approach avoids having to raise

antibodies against regulators, which is both technically challenging

and expensive. It uses a robust colorimetric (enzymatic) staining

protocol instead of fluorescence. It avoids laborious scanning of

embryo images using confocal microscopy (which is not available

everywhere). In addition, we show that much fewer embryos need

to be processed and stained, and fewer developmental stages need

to be represented in the data than previously thought. And finally,

our approach simplifies data processing, further reducing the effort

required for data quantification.

Minimal Data Requirements for Reverse Engineering
Does the fact that we still recover the correct gap gene network

using mRNA data imply that our method lacks specificity? Would

it infer the same network with any kind of data? The following

evidence demonstrates that the answer to these questions is a clear

no, and suggests minimal conditions for the expression data that

must be met for inference to be specific and consistent.

First of all, gap gene circuit models fail to correctly predict gap

gene expression in the head region of the embryo (anterior of 35%

A–P position) [45,48]. In this region, additional regulators (the

head gap genes which are not included in our models; see [35] for

review) are required for correct regulation and expression. This

implies that the model-fitting procedure is specific: it fails when

relevant regulatory factors or mechanisms are missing.

In contrast, we have mentioned earlier that accurate measure-

ments of absolute expression levels do not seem to be crucial for

correct network inference (see Introduction). Our results suggest

that we can recover the structure of the gap gene network even if

relative levels are only approximated in the data. This confirms

Table 4. Data sets used for model fitting.

Scenario name Description

OLS Default settings (full data set), using the ordinary least squares cost function.

WLS Default settings (full data set), using the weighted least squares cost function.

80%, 60%, 40%, 20% data Individual boundaries were eliminated randomly from the full data set such that only a fraction of 80% (or 60, 40, 20%) is used to
calculate median boundary positions. For each identified boundary and time point, at least one individual data point is retained, to
avoid artifactual fusion or ectopic extension of domains. For each fraction we generated 5 different data sets, on which we ran 20
optimisation runs each, resulting in a total of 100 runs. See Figure S4.

7, 5 and 3 time classes Intermediate time classes were eliminated randomly such that only 7 (or 5, or 3) of a total of 9 time classes are present. The initial and
final time classes are never removed from the data. Again, we generated 5 different data sets per time class reduction, on which we
ran 20 optimisation runs each, resulting in a total of 100 runs. See Figure S5.

maternal An artificial Bcd protein gradient is generated by fitting an exponential curve to expression data across all time points. The resulting
profile is constant in time. The artificial Cad protein gradient is created by splines maintaining 3 salient features of the original pattern:
(1) gradient in the central region of the embryo, constant high level of protein in the posterior, (2) abdominal expression levels decay
over time, and (3) a posterior stripe is formed between T6 and T8. See Materials and Methods, and Figure S6.

terminal Tll and Hkb protein expression data are replaced by time-invariant data based on integrating mRNA expression profiles (see Materials
and Methods).

materminal Combines the maternal and terminal data sets, such that all external inputs (Bcd, Cad, Tll and Hkb) are replaced by artificial variants as
described.

This table lists reduced or artificial data sets which were tested and compared to fits to the full data set, and protein data (see Figure 7). Fits to full mRNA data were
done using both OLS and WLS cost functions. Fits to reduced/artificial data sets were only performed with WLS. Names of data sets correspond to those used in Figure 7
and the main text.
doi:10.1371/journal.pcbi.1002589.t004
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that the most important expression feature for network inference is

the dynamic positioning of expression boundaries.

This is further corroborated by the following: early attempts at

reverse-engineering the gap gene system using gene circuits

exhibited various patterning defects and showed inconsistent

network structures between independent model fits [45]. In

contrast, we are able to infer correct network structure using data

sets with spatial and temporal resolution similar to that used in

[45] (Figure 7). Moreover, our data sets approximate gap protein

domain positions with mRNA data (Figure 4). This suggests that

the failure of inference in the earlier study was not caused by a lack

of accuracy or resolution, but rather by qualitative errors

regarding the relative placement of domains in the data used for

model fitting. As mentioned in the Introduction, the abdominal kni

domain was placed too far anterior in those data, leading to an

exaggerated overlap with the central Kr domain, and an

artefactual gap between the domains of kni and hb in the posterior

of the embryo (see Figure 1 in [45]). Similar problems affected an

early study of the eve gene: in the data used for fitting, the position

of the fifth expression stripe was shifted compared to the domains

of its gap gene regulators, which led to inaccurate prediction of the

regulatory mechanism underlying its expression [39].

What differs between these early attempts and more recent

reverse-engineering studies is that both protein- [43] and mRNA-

based data used in the latter capture the relative arrangement and

timing of gap domains correctly. Both data sets show qualitatively

equivalent expression patterns (see Results, Figures 3 and 4). The

order in which gap domains are arranged along the A–P axis, as

well as the order in which they appear relative to one another are

the same for mRNA and protein data. Evidently, this temporal

and spatial order is determined by the specific regulatory structure

of the network (given suitable kinetic parameters). This, in turn,

allows us to robustly recover the specific regulatory structure of the

gap gene network as long as our data capture their particular kind

of spatio-temporal dynamics.

Obviously, there are limits to the amount of inaccuracy the data

can contain with regard to absolute positions and variability of the

patterns. This is shown by the fact that we were unable to recover

any usable gap gene circuits with data sets reduced to 20% of the

original number of measured domain boundaries (Figure 7). These

data sets only contain about 1–3 embryos per boundary per time

class, while the smallest successful data set (40% data) has about 1–

7 embryos on average.

In general, the number of embryos that need to be processed

will depend on the natural variability of the patterns and the

quality of the experimental protocols: noisy expression data

require larger sample sizes. Similarly, temporal resolution will

depend on the time scale of patterning dynamics. In our case, only

3 time classes (each about 25 min apart) were sufficient to recover

a correct regulatory network. This is probably due to the fact that

gap domains shift and develop smoothly over time (see Figure 4).

Systems with more abrupt or uneven changes in expression

patterns will require a higher temporal resolution.

Our investigation of minimal data requirements for model

fitting is of an empirical nature. It should be corroborated and

extended in the future by more systematic and rigorous

approaches based on methods for optimal experimental design

(OED, reviewed in [79]). OED uses algorithms for global

optimisation and calculation of confidence intervals similar to

those used here to predict which measurements in a data set are

most relevant to accurately estimate parameter values (see, for

example, [80,81]). This could be used for a more rational design of

data sets used for reverse-engineering by guiding the choice of

observables and time points that are most informative to infer

network structure and dynamics. However, applying OED to real-

world, complex, non-linear systems remains challenging, and has

only be achieved in exceptional cases (see [82]). Therefore, it is

beyond the aim and scope of our current study.

In summary, our results demonstrate that the amount of data

required for reverse engineering is much lower than previously

thought. The necessary data sets can be acquired and processed by

a single researcher within a few months, without the need for

expensive equipment. The precise number of embryos to be

processed, and the required temporal resolution need to be

adapted according to the features of the system under study, the

main condition being that the data capture the relative timing and

spatial arrangement of expression domains correctly.

Weighted Least Squares and Artificial Variances
The results reported in this study—together with earlier

evidence from protein-based circuits [49]—indicate that weighted

least squares (WLS) fits perform much better than ordinary least

squares (OLS). In principle, however, WLS fits require the

accurate measurement of variances in expression levels to calculate

the weights for the sum of squares. This is not possible in our

current data quantification framework. Moreover, in general it

increases the amount of work required for data acquisition and

processing considerably. First, methods that measure the relative

level of expression accurately are technically more challenging and

require more work than those presented here (see previous

section). And second, enough individual expression patterns need

to be quantified for the measured variance to be reliable.

We avoid this complication by using approximated weights for

WLS, which are simply proportional to the expression level of a

gene. This assumption is mainly based on methodological

reasoning (although it is also supported by experimental evidence

on protein expression patterns [40,43]). It is crucial to avoid small

ectopic expression domains in non-expressing regions that can

exert significant regulatory effects if interaction weights are

sufficiently large. Several such ectopic domains have been

observed in fits using OLS (our data and [47,49,51]). WLS fits

effectively suppress these modelling artefacts, as long as the penalty

for ectopic expression imposed by small variances in non-

expressing regions are sufficiently high. This suggests that our

choice of approximated variances is justified for practical reasons,

since it emphasises the importance of boundary positions during

the fitting process.

Variability of Predictions: mRNA vs. Protein
Although we do recover the same network from our mRNA-

based models as that predicted by protein-based circuits, there is

much increased variability in the estimated parameter values

(Figure 6A,B). This is also reflected in the loss of parameter

determinability we observe in our results (Table 3). In practice,

both of these phenomena imply that our mRNA-based models do

not predict one, but rather a small set of possible network

structures, while protein-based models predicted a specific, single

network (see Figure 6B). This is not surprising, since the quality of

a gene circuit model reflects the quality of the data it was fit to. But

of course it is a problem, although, we would argue, not a

fundamental one. It can easily be addressed by combining the

reverse-engineering approach with experimental (genetic and

molecular) verification.

Let us illustrate this with an example: there are several

alternative network variants that occur in our circuits. They are

all minor in that they differ from each other in one or two

interactions at most. One of these variants occurs in models in
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which the posterior domain of hb arises due to strong and direct

activation by Tll, rather than the absence of repression by Gt, its

immediate anterior neighbour (see Results). This alternative

mechanism is a plausible explanation for the observed expression

dynamics. However, it is not compatible with experimental

evidence, which enabled us to classify it as an artefact of the

model.

Note that both the experimental evidence (reviewed in [35]) and

predictions based on gene circuits [48,49] contain such ambiguities.

Fortunately, these unresolved (and potentially not resolvable) cases

have only a limited overlap, since genetic and reverse-engineering

approaches are complementary to each other: one inferring

regulatory interactions from mutants, the other from wild-type

expression patterns [48]. In other words, interactions which are not

clearly supported by experimental evidence are mostly unambig-

uous in our gene circuits, while others that are ambiguous in our

models (as, for example, the repression of hb by Gt), are clearly

supported (or excluded) based on experimental evidence.

But what about systems which have been less well studied than

Drosophila? In such systems, we do not have a comprehensive

experimental literature to compare our results to. Instead, model

predictions will have to be tested using genetic approaches such as

mutant analysis, over-expression assays, or gene knock-down by

RNA interference (RNAi). Again, the reverse-engineering method

is most powerful when used in conjunction with complementary

experimental approaches.

Limitations and Future Potential of the Method
By minimising the amount of quantitative data required for

reverse-engineering a developmental gene regulatory network, we

have removed a major bottleneck for applying the method more

widely. Still, this method is unlikely to be scalable to systems that

are orders of magnitude larger than the one studied here.

Microscopy and image acquisition remain labour-intensive, and

our quantification pipeline still requires a series of manual

interventions, such as positioning the splines that are fit to

expression boundaries, or time classification of embryos. It

remains a major challenge to fully automate these steps.

Therefore, the effort required to quantify hundreds or thousands

of spatial gene expression patterns is still considerable, even if

robust and fast methods are used (see, for example, [83,84]).

Moreover, global non-linear optimisation is computationally

intensive, and may not yield unique solutions in large regulatory

systems.

On the other hand, many pattern-forming networks are similar

in complexity and nature to the gap gene system. One example in

Drosophila is the dorso-ventral patterning system in the early

embryo [85–87]. Other developmental networks occur in the

context of cellularised tissues and often involve more than just one

spatial dimension. It is straightforward to extend the gene circuit

method to such systems. Complicating factors, such as post-

transcriptional regulation, cell-to-cell signalling, or tissue move-

ments and growth, can readily be accommodated in the gene

circuit modelling formalism [38]. There are several examples of

tractable cellular patterning systems in Drosophila: mesoderm and

heart development [88,89], morphogen-based patterning in wing

imaginal discs [87,90], or the thoracic bristle patterning system

[91,92]. Examples beyond Drosophila include vulval induction in

the roundworm Caenorhabditis elegans (see, for example, [93]), or the

dorso-ventral patterning system of the vertebrate neural tube [94].

Generalisation of the method is further facilitated by the fact

that the approximations we have used are based on straightfor-

ward assumptions that do not require any in-depth understanding

of the system under study. Our approximation of relative gene

expression levels assumes smooth increase and decrease of gene

product levels. The scaling of expression levels from the centre to

the terminal ends of the embryo is a reasonable assumption in the

case of Drosophila, but may be omitted in any other system as it is

not strictly required for inferring the correct network structure.

Approximated variances simply assume low levels of variability in

non-expressing regions. Artificial external inputs were based on

qualitative inspection of maternal gradients and expression of

terminal gap genes. All of these assumptions can be applied to

systems other than the gap gene network. The only potentially

problematic assumption concerns the use of mRNA expression

profiles. Obviously, one should have some qualitative evidence

that mRNA patterns indeed resemble protein profiles before

relying on such data.

Application of reverse engineering to a large number of

developmental systems in different organisms would allow us to

investigate the dynamics of pattern-forming gene networks in a

quantitative and systematic manner [26]. Our simplification of the

method indicates that this is achievable within a reasonable

amount of effort. The potential benefits of such a research

programme are significant. Only through quantitative investiga-

tion of specific, experimentally accessible, gene networks will we be

able to better understand the principles that govern development

and pattern formation.

A particularly interesting application of the gene circuit method

is the comparative analysis of homologous gene networks across

different species [26]. Such a comparative analysis allows us to

identify conserved and divergent regulatory interactions in an

evolving network. Moreover, changes in regulatory mechanisms

can be mapped—rigorously and unambiguously—to observable

differences in gene expression between species. We are currently

performing such an analysis between gap genes in Drosophila and

other dipteran species. It will allow us, for the first time, to study

the evolution of a real developmental gene regulatory network in a

detailed and quantitative manner. This is a crucial step towards a

more general investigation into the causal relation between

evolution at the genotypic and the phenotypic level.

Supporting Information

Figure S1 Post-processing steps. (A) Our data quantifica-

tion method results in normalised mRNA expression data. All

boundaries are approximated by splines, and all domains have the

same standard expression level. (B) Relative mRNA concentra-

tions are scaled along the A-P axis to reflect higher expression

levels in the middle of the embryo. (C) Relative concentrations are

also scaled over time, taking the basic biological assumption that

mRNA levels are low at the start of C13, peak at C14-T5 and have

diminished by C14-T7. (D) To easily compare the protein and

mRNA gene circuits concentration levels are scaled by a factor

200. Horizontal axes represent A–P position, where 0% is the

anterior pole. Relative mRNA concentrations are in arbitrary

units (au). C13 is cleavage cycle 13, T3/7 represent time classes

during C14A. Time progresses downwards. Our models only

include the trunk region of the embryo, ranging from 35% to 87%

(grey background in D).

(PDF)

Figure S2 Model fitting solutions selected for further
analysis. Histograms show root-mean-square (RMS) scores for

solutions obtained using OLS (A) and WLS (B) cost functions.

White bars constitute the histogram of 150 total runs performed in

each setting. Blue bars indicate solutions selected for further

analysis (based on visual inspection): 10 for OLS and 52 for WLS.

Note that selection of sub-optimal runs in (A) indicates over-fitting
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of the data. This effect is greatly reduced in (B). See main text for

details.

(PDF)

Figure S3 OLS mRNA fits: model output versus data.
Plots show model output (solid lines) versus expression data

(dashed lines). All 10 selected gene circuits fit with OLS to mRNA

data are shown. Horizontal axes represent AP position, where 0%

is the anterior pole. Relative mRNA concentrations are in

arbitrary units (au). T1/3/5/7 represent time classes during

C14A. Time progresses downwards.

(PDF)

Figure S4 Data sets based on reduced numbers of
boundaries. The first column shows the full data set at three

time classes (T1/4/7) during C14A. This reference data set is also

represented by dashed lines in the middle and right column to

facilitate comparison. The two other columns show reduced data

sets based on 60% (middle) and 20% (right) of randomly selected

individual boundaries (at least one data point was always retained

for each boundary position). Increasing deviations from the full

data set can be observed as the number of boundaries is reduced.

Horizontal axes represent A–P position, where 0% is the anterior

pole. Only the trunk region of the embryo included in our models

is shown. Relative mRNA concentrations are in arbitrary units

(au). Time progresses downwards.

(PDF)

Figure S5 Examples of mRNA gene expression data sets
with reduced numbers of time classes. The first column

shows the full data set, followed by three columns of reduced data.

We randomly select time classes in the range T1–T7 for

elimination, which maintains the starting (C13) and end point

(T8) of the time series. Random se- lection of time classes was

performed 5 times, resulting in 5620 optimisation runs for each

category. Horizontal axes represent A–P position, where 0% is the

anterior pole. Only the trunk region of the embryo included in our

models is shown. Relative mRNA concentrations are in arbitrary

units (au). See Materials and Methods for definition of time classes.

Time progresses downwards.

(PDF)

Figure S6 Measured and artificial maternal inputs. Plots

show a comparison of protein-based expression (data) and

approximated, artificial expression profiles (art) for the maternal

gradients of Bcd and Cad. (A) Quantitative Bcd data (solid) was

approximated using a (time-invariant) exponential function

(dashed line). (B) Cad data (solid) was approximated using splines

(dashed line; see Materials and Methods for details). Horizontal

axes represent A–P position, where 0% is the anterior pole. Only

the trunk region of the embryo included in our models is

shown. Relative protein concentrations are in arbitrary units (au).

T1/4/7 represent time classes during C14A. Time progresses

downwards.

(PDF)

Table S1 Drosophila mRNA vs. protein expression:
boundary shifts. This table shows shifts in boundary positions

from a starting point at T1, or, from the earliest appearance

of the boundary domain. Numbers are in % A–P position. mRNA

expression is shown in black, protein expression in grey. (2)

indicates a shift to the anterior (+) a shift to the posterior. Drosophila

values are calculated from [43]. Single dashes indicate boundaries

that are not present at a given time point. Double dashes indicate

boundaries that are observable, but were not measured in [43].

(PDF)

Table S2 Drosophila mRNA versus protein expression:
domain width. This table shows domain widths for trunk gap

genes. Numbers are given in % egg length. mRNA expression is

shown in black, protein expression in grey. Drosophila values are

calculated from [43]. Single dashes indicate boundaries that are

not present at a given time point. Double dashes indicate

boundaries that are observable, but were not measured in [43].

(PDF)

Text S1 Common patterning defects in Gap Gene
Circuits.
(PDF)

Text S2 Drosophila Segmentation Gene Expression.
(PDF)

Text S3 Genetic Interconnectivity Matrices.
(PDF)

Text S4 Dependent and independent parameter confi-
dence intervals.
(PDF)
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