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Abstract

In this article we prove a local Riemman-Hurwitz formula which compares the dimensions
of the spaces of vanishing cycles in a finite Galois cover of type (p, p, · · · , p) between formal
germs of p-adic curves and which generalises the formula proven in [Säıdi1] in the case of
Galois covers of degree p. We also investigate the problem of the existence of a torsor
structure for a finite Galois cover of type (p, p, · · · , p) between p-adic schemes.

§0. Introduction
Let K be a complete discrete valuation ring of mixed characteristic, R its valuation ring, and
k := R/πR the residue field of characteristic p > 0 which we assume to be algebraically closed.
We suppose that K contains a primitive p-th root of 1. In [Säıdi1] the first author proved a local
Riemman-Hurwitz formula which compares the dimensions of the spaces of vanishing cycles
in a finite Galois cover of degree p between formal germs of R-curves. This formula is quite
explicit and involves the (usual) “generic”different, which measures the ramification at the level
of generic fibres, and a certain “special”different which involves certain “conductors” attached
to the induced covers between the formal boundaries of the formal germs (cf. loc. cit. Theorem
3.4).

In this paper we generalise this formula to the setting of Galois covers of type (p, p, · · · , p),
i.e., with Galois group Z/pZ× · · · × Z/pZ. In principle one can apply the formula in the Galois
degree p case obtained in [Säıdi1] iteratively to derive such a formula. However, the difficulty
here lies in computing the conductors involved in the special different at the various degree p
intermediate covers; the possibility of having generically purely inseparable extensions at the
level of special fibres doesn’t allow the use of the standard ramification theory as in [Serre] in
order to compute these conductors. In this paper we are able to compute in §1 these conductors
at the various degree p intermediate levels via direct, rather tedious, computations (cf. Theorem
1.1). Although our main result computing these conductors is stated only in the case of Galois
covers of type (p, p) (cf. loc. cit.), it is quite straightforward to deduce from this result the
relevant value conductors as well as the corresponding Riemman-Hurwitz formula in the case
of general Galois covers of type (p, p, · · · , p) (cf. Example 1.7 for an illustration). In §2 we
derive an explicit local Riemman-Hurwitz formula which compares the dimensions of the spaces
of vanishing cycles in a finite Galois covers of type (p, p) between formal germs of R-curves, which
can be easily iterated to deduce a similar local Riemman-Hurwitz formula in the general case of
finite Galois covers of type (p, p, · · · , p).

In §3 we investigate the problem of the existence of a torsor structure for a finite Galois cover
of type (p, p, · · · , p) between R-(formal) schemes where we allow R to be of equal characteristic
p > 0. Let X be a normal flat and geometrically connected R-(formal) scheme with an integral
special fibre Xk := X ×R k, {fi : Yi → X}ni=1 torsors under finite and flat R-group scheme Gi
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which are generically pairwise disjoint, 1 ≤ i ≤ n, and f : Y → X the morphism of normalisation
of X in (the fibre product over XK := X ×R K)

∏n
i=1 Yi,K , where Yi,K := Yi ×R K. Assume

the special fibre Yk := Y ×R k is reduced. Our main result Theorem 3.4 gives necessary and
sufficient conditions for f to have the structure of a torsor under a finite and flat R-group
scheme (necessarily isomorphic to G1 ×R · · · ×R Gn). In the case where X is a relative curve
these conditions are equivalent to the condition that at least n− 1 of the group schemes Gi are
étale (cf. Theorem 3.5). This latter fact is false in relative dimension > 1 (cf. 3.8).

Notations

In this paper p ≥ 2 is a prime integer, K is (unless we specify otherwise) a complete discrete
valuation ring, char(K) = 0, R its valuation ring, π a uniformising parameter, vK will denote
the valuation of K which is normalised by vK(π) = 1, and k := R/πR the residue field of
characteristic p > 0 which we assume to be algebraically closed. We suppose R contains a
primitive p-th root of 1.

For an R-scheme X we will denote by XK := X×RK (resp. Xk := X×Rk) the generic (resp.
special) fibre of X. If X = SpfA is a formal affine R-scheme we will denote XK := Spec(A⊗RK)
and Xk := Spec(A/π) the special fibre of X.

A formal (resp. algebraic) R-curve is an R-formal scheme of finite type (resp. scheme of
finite type) flat, separated, and whose special fibre is equidimensional of dimension 1.

We will refer to a (generically separable) cover Y → X between normal connected (formal
R-)schemes which is Galois with Galois group Z/pZ× Z/pZ as a Galois cover of type (p, p).

Let X be a proper, normal, (formal) R-curve with Xk geometrically reduced. For x ∈ X a
closed point let Fx = Spf(ÔX,x) be the formal completion of X at x, which we will refer to as the

formal germ of X at x. Thus, ÔX,x is the completion of the local ring of (the algebraisation) of

X at x. Let {Pi}ni=1 be the minimal prime ideals of ÔX,x which contain π; they correspond to
the branches {ηi}ni=1 of the completion of Xk at x (i.e., closed points of the normalisation of Xk

above x), and Xi = Xx,i := Spf(Ôx,Pi) the formal completion of the localisation of Fx at Pi. The

local ring Ôx,Pi is a complete discrete valuation ring with uniformiser π. We refer to {Xi}ni=1 as
the set of boundaries of the formal germ Fx. We have a canonical morphism Xi → Fx of formal
schemes, 1 ≤ i ≤ n.

With the same notations as above, let x ∈ X be a closed point and X̃k the normalisation
of Xk. There is a one-to-one correspondence between the set of points of X̃k above x and the
set of boundaries of the formal germ at the point x. Let xi be the point of X̃k above x which
corresponds to the boundary Xi, 1 ≤ i ≤ n. Then the completion of X̃k at xi is isomorphic
to the spectrum of a ring of formal power series k[[ti]] over k, where ti is a local parameter at
xi. The complete local ring Ôx,Pi is a discrete valuation ring with uniformiser π, and residue

field isomorphic to k((ti)). Fix an isomorphism k((ti)) ' Ôx,Pi/π. Let Ti ∈ Ôx,Pi be an element

which lifts (the image in Ôx,Pi/π under the above isomorphism of) ti; we shall refer to such an

element Ti as a parameter of Ôx,Pi , or of the boundary Xi. Then there exists an isomorphism

R[[Ti]]{T−1
i } ' Ôx,Pi , where

R[[T ]]{T−1} :=
{ ∞∑
i=−∞

aiT
i, lim

i→−∞
|ai| = 0

}
and | | is a normalised absolute value of R (cf. [Bourbaki], §2, 5).
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Given a power series g ∈ k((z)) where z is an indeterminate we write

g(z) =
∑
i∈I⊂Z

aiz
i + higher order terms,

meaning all remaining monomial terms in z are of the form czt where c ∈ k and t > i for at least
one 0 6= i ∈ I. Also given a power series H(Z) ∈ R[[T ]]{T−1} we write

H(Z) = (F (Z))p +
∑
i∈I⊂Z

ciZ
i + higher order terms,

meaning all remaining monomial terms in Z are of the form dZt where either vK(d) > vK(ci)
for all i ∈ I or there exists at least one i ∈ I such that vK(d) = vK(ci) and t > i.

Background

In this section we collect/improve some background material form [Säıdi1] that will be used in
this paper. Let A := R[[T ]]{T−1} and f : Spf (B)→ Spf (A) a non-trivial Galois cover of degree
p. We assume that π (which is a uniformiser of A) is a unifomiser of B (this condition is satisfied
after possibly base changing to a finite extension of R, cf. [Epp]). Proposition 2.3 in [Saidi1]
shows that f has the structure of a torsor under one of the three group schemes, µp, Hn where
0 < n < vK(λ), or HvK(λ) (cf. loc. cit. 2.1 for the definition of these group schemes and the local
explicit description of torsors under these group schemes). To the torsor f are associated some
data: the acting group scheme as above, the degree of different δ, the conductor variable
m, and c = −m the conductor (cf. loc. cit. definition 2.4. The notation c is introduced in this
paper, only the conductor variable m was considered in loc. cit.). Adapting slightly the proof of
Proposition 2.3 in [Säıdi1] provides the following details in the three occurring cases:

(a) For the group scheme µp where δ = vK(p), the torsor equation is of the form

Zp = u

where u =
∑
i∈Z aiT

i ∈ A× is a unit such that its image ū modulo π is not a p-power. On the level
of special fibres the induced µp-torsor is given by an equation zp = ū where ū =

∑
i≥l āit

i ∈ k((t))
for some integer l with āl 6= 0 (here t equals T modulo π). There are two cases to consider:

(a1) gcd(l, p) = 1. We have ū = tl(
∑
i≥l āit

i−l) and v̄ :=
∑
i≥l āit

i−l ∈ k[[t]] is a unit.

Further, we can write u = T lv where v :=
∑
i≥l aiT

i−l ∈ R[[T ]]{T−1} is a unit whose reduction
modulo π equals v̄. After possibly multiplying u by a p-power we can assume 0 ≤ l < p. The
unit v ∈ A× admits an l-th root s ∈ A since l is coprime to p and k is algebraically closed. Thus,
sl = v in A and after replacing the parameter T by T ′ := T.s, which is also a parameter of A,
our µp-torsor f : Spf (B)→ Spf (A) is defined by the equation Zp = (T ′)l.

(a2) gcd(l, p) > 1, in which case l is divisible by p and ū =
∑
i≥l āit

i. After multiplying

u by T−l (which is a p-power) we can assume ū =
∑
i≥l āit

i−l =
∑
j≥0 ājt

j ∈ k[[t]]. Let
m := min{i | vK(ai) = 0, gcd(i − l, p) = 1} = min{j | gcd(j, p) = 1}. We can write ū =
ā0+ā1t

p+· · ·+ā[m/p]t
[m/p]p+āmt

m+higher order terms, and u = a0+a1T
p+· · ·+a[m/p]T

[m/p]p+∑
vK(ai)=0
i≥m

aiT
i +

∑
vK(ai)>0 aiT

i. If a ∈ A is a unit we can write a = bp + c with b ∈ A a unit

and vK(c) > 0. Thus, we can assume without loss of generality that u = ap0 + ap1T
p + · · · +

ap[m/p]T
[m/p]p+

∑
vK(ai)=0
i≥m

aiT
i+
∑
vK(ai)>0 aiT

i. Now ap0+ap1T
p+· · ·+ap[m/p]T

[m/p]p = (a0+a1T+

· · ·+a[m/p]T
[m/p])p−p(a0+a1T+· · ·+a[m/p]T

[m/p])+higher order terms, and after replacing u by
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u(a0+a1T+· · ·+a[m/p]T
[m/p])−p we can assume without loss of generality that the torsor equation

is: Zp = 1 + amT
m +

∑
vK(ai)=0
i>m

aiT
i +

∑
vK(ai)>0 aiT

i. Further, amT
m +

∑
vK(ai)=0
i>m

aiT
i +∑

vK(ai)>0 aiT
i = Tmv where v = am +

∑
vK(ai)=0
i>m

aiT
i−m +

∑
vK(ai)>0 aiT

i−m ∈ A is a unit

which admits an m-th root u ∈ A. Thus, um = v in A and after replacing the parameter T by
T ′ := T.u, which is also a parameter of A, our µp-torsor f : Spf (B)→ Spf (A) is defined by the
equation Zp = 1 + (T ′)m.

Simplified form: After a possible change of the parameter T of A, the torsor equation
Zp = u can be reduced to either the form

(a1) Zp = Th where h ∈ F×p ,

or of the form
(a2) Zp = 1 + Tm

where m is as defined above for these two cases. The conductor is given in both cases by
(a1) c = 0, and (a2) c = −m.

(b) For the group scheme Hn where 0 < n < vK(λ) and δ = vK(p)− n(p− 1), the torsor
equation is of the form

(1 + πnZ)p = 1 + πnpu

where u =
∑
i∈Z aiT

i ∈ A× is a unit such that modulo π it is not a p-power. Reducing modulo
π, on the special fibre the acting group scheme is αp and the torsor is given by an equation
zp = ū where ū =

∑
i≥l āit

i ∈ k((t)) for some integer l with āl 6= 0 and which is defined
up to addition of a p-power. We define m := min{i|vK(ai) = 0, gcd(i, p) = 1} ∈ Z. Then ū =
āl/pt

p.l/p+· · ·+ā[m/p]t
[m/p]p+āmt

m+higher order terms, and u = al/pT
p.l/p+· · ·+a[m/p]T

[m/p]p+∑
vK(ai)=0
i≥m

aiT
i +

∑
vK(ai)>0 aiT

i. If a ∈ A is a unit we can write a = bp + c with b ∈ A a unit

and vK(c) > 0. Thus, we can assume without loss of generality that u = apl/pT
p.l/p + · · · +

ap[m/p]T
[m/p]p+

∑
vK(ai)=0
i≥m

aiT
i+
∑
vK(ai)>0 aiT

i. Now 1+πnp(apl/pT
p.l/p+ · · ·+ap[m/p]T

[m/p]p) =

(1+πn(al/pT
l/p+ · · ·+a[m/p]T

[m/p]))p−pπn(al/pT
l/p+ · · ·+a[m/p]T

[m/p])+higher order terms.

Thus, since np < vK(p) +n, the torsor equation can be written (1 +πnZ)p = (1 +πn(al/pT
l/p +

· · · + a[m/p]T
[m/p]))p + πnp(

∑
vK(ai)=0
i≥m

aiT
i +

∑
vK(ai)>0 aiT

i) and after multiplying by (1 +

πn(al/pT
l/p + · · ·+ a[m/p]T

[m/p]))−p = 1− pπn(alT
l/p + · · ·+ a[m/p]T

[m/p]) + higher order terms,
we get an equation (1 + πnZ)p = 1 + πnp(

∑
vK(ai)=0
i≥m

aiT
i +

∑
vK(ai)>0 aiT

i) and can assume

u =
∑
vK(ai)=0
i≥m

aiT
i+
∑
vK(ai)>0 aiT

i. Further, amT
m+

∑
vK(ai)=0
i>m

aiT
i+
∑
vK(ai)>0 aiT

i = Tmv

where v ∈ A is a unit which admits anm-th root h ∈ A. Thus, hm = v in A and after replacing the
parameter T by T ′ := T.h, which is also a parameter of A, the Hn-torsor f : Spf (B)→ Spf (A)
is defined by the equation Zp = 1 + πnp(T ′)m.

Simplified form: After a change of the parameter T , the torsor equation can be reduced to
the form

Zp = 1 + πnpTm

where m is as defined above. The conductor is given by c = −m.
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(c) For the group scheme HvK(λ) where δ = 0, the torsor equation is of the form

(1 + λZ)p = 1 + λpu

where u =
∑
i∈Z aiT

i ∈ A× is a unit. On the special fibre the acting group scheme is Z/pZ and the
torsor is given by an equation zp− z = ū where ū =

∑
i≥l āit

i for some integer l with āl 6= 0 and
which is defined up to addition of an Artin-Schreier element of the form bp−b. In fact, after such
an Artin-Schreier transformation, ū can be represented as: ū = āmt

m+ām+1t
m+1+...+ā−1t

−1 =∑−1
i=m āit

i where ām 6= 0 andm < 0 is the conductor variable such that gcd(m, p) = 1. Indeed, for

f(t) =
∑
i≥0 ait

i ∈ k[[t]] we have f(t) = (f(t)+f(t)p+f(t)p
2

+· · · )−(f(t)+f(t)p+f(t)p
2

+· · · )p.
Moreover, ū = āmt

m+ ām+1t
m+1 + ...+ ā−1t

−1 = tmv̄ where v̄ = ām+ ām+1t+ ...+ ā−1t
−m−1 ∈

k[[t]] is a unit. Let v = am + am+1T + ... + a−1T
−m−1 ∈ R[[T ]] be an element which lifts v̄

and h an m-th root of v in R[[T ]]. Then after replacing the parameter T by T ′ := T.h, which
is also a parameter of A, our HvK(λ)-torsor f : Spf (B) → Spf (A) is defined by the equation
Zp = 1 + λp(T ′)m.

Simplified form: After a change of the parameter T , the torsor equation over R can be
simplified to the form

Zp = 1 + λpTm

where m is as defined above. The conductor is given by c = −m.

§1. The type (p, p) case

In this section A := R[[T ]]{T−1} and Xb := Spf (A). Let fi,K : (Xi,b)K → (Xb)K be two
(generically) disjoint non-trivial degree p Galois covers. We have the following diagram:

(Yb)K := (X1,b)K ×(Xb)K (X2,b)K

G′1,K

ww

G′2,K

''
G1,K×G2,K

��

(X1,b)K (X2,b)K

(Xb)K
((

G1,K

ww

G2,K

where Gi,K and G′i,K are the acting group schemes on the various covers and as char(K) = 0,
we have Gi,K = G′i,K ' Z/pZ ' µp is étale for i = 1, 2. For i = 1, 2, let fi : Xi,b → Xb be the
Galois covers of degree p where Xi,b is the normalisation of Xb in (Xi,b)K . Similarly, let Yb be
the normalisation of Xb in (Yb)K so that f : Yb → Xb is a non-trivial Galois cover of type (p, p).
We assume that (Yb)k is reduced. Note that in this case Xi,b is isomorphic to Spf

(
R[[Ti]]{T−1

i }
)
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for 1 ≤ i ≤ 2 (cf. [Bourbaki], §2, 5]). We have the diagram:

Yb = (X1,b ×Xb X2,b)
nor

c′2

G′2

##

c′1

G′1

{{

��
X1,b ×Xb X2,b

G2

ss

G1

++

��

X1,b = Spf(A1)

c1

G1

''

X2,b = Spf(A2)

c2

G2

ww
Xb = Spf(A)

where:

• Yb and Xi,b are normal for i = 1, 2, and Yb is the normalisation (X1,b ×Xb X2,b)
nor of the

fibre product (X1,b ×Xb X2,b).

• ci (respectively c′i) denotes the conductor of the torsor Xi,b → Xb (respectively Yb → Xi,b).
The conductor ci (respectively c′i) is dependent on the conductor variable mi (respectively
m′i) (cf. Background).

• Gi (respectively G′i) denotes the finite and flat (commutative) R-group scheme of the torsor
Xi,b → Xb (respectively Yb → Xi,b). We know Gi, G

′
i are among the R-group schemes

HvK(λ), µp, or Hn for 0 < n < vK(λ) (cf. loc. cit.).

On the level of special fibres over k we have a diagram:

(Yb)k

G′2,k

$$

G′1,k

zz

��
(X1,b)k ×(Xb)k (X2,b)k

G2,k

ss

G1,k

++

��

(X1,b)k ' Spec k((t1))

G1,k

((

(X2,b)k ' Spec k((t2))

G2,k

vv
(Xb)k = Spec k((t))

where:
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• (Yb)k and (Xi,b)k are reduced for i = 1, 2.

• k((t)) = A/(π) (respectively A1/π ' k((t1)), A2/π ' k((t2))) where t (respectively t1 and
t2) is the reduction modulo π of T (respectively T1, T2, where Ti is some suitable parameter
of Xi,b for i = 1, 2).

• Gi,k = Gi ×R k and G′i,k = G′i ×R k are the acting group schemes over k, a field with
characteristic p, so that these group schemes are necessarily isomorphic to either Z/pZ, µp
or αp.

We aim to express the conductor c′1 in terms of c1 and c2 for the various torsor combinations
and likewise for c′2. To achieve this, we express the conductor variables m′1 and m′2 in terms
of m1 and m2. We have six cases to consider by taking all possible pairs of the group schemes
HvK(λ), µp and Hn over R acting on X1,b, X2,b. The following is one of our main results.

Theorem 1.1. Let Xb = Spf (A) and suppose we have two (generically) disjoint non-trivial
degree p Galois covers fi,K : (Xi,b)K → (Xb)K , for i = 1, 2. Let (Yb)K be the compositum of
these covers.

For i = 1, 2, let fi : Xi,b → Xb be the Galois covers of degree p where Xi,b is the normalisation
of Xb in (Xi,b)K . Set Yb as the normalisation of Xb in (Yb)K so that f : Yb → Xb is a non-trivial
Galois cover of type (p, p). We assume that the ramification index of the corresponding extension
of DVR’s equals 1 and that the special fibre of Yb is reduced. Thus, fi is a non-trivial torsor
under a finite flat R-group scheme Gi of rank p with conductor variable mi for i = 1, 2. Let m′i
denote the conductor variable of the torsor Yb → Xi,b. Then, for all possible pairs of G1 and G2,
we can express the conductors m′i in terms of the mi conductor variables for i = 1, 2 as follows:

Yb

m′1

~~

m′2

  
X1,b X2,b

Xb

  

m1

~~

m2

1. For G1 = G2 = HvK(λ) we have that m′1 = m2 and m′2 = m1p−m2(p− 1) when m1 ≤ m2,
and m′1 = m2p−m1(p− 1) and m′2 = m1 when m1 > m2.

2. For G1 = HvK(λ) and G2 = µp we have that m′1 = m2p−m1(p− 1) and m′2 = m1.

3. For G1 = HvK(λ) and G2 = Hn we have that m′1 = m2p−m1(p− 1) and m′2 = m1.

4. For G1 = Hn and G2 = µp we have that m′1 = m2p−m1(p− 1) and m′2 = m1.

5. For G1 = G2 = µp we have that m′1 = m2 and m′2 = m1p−m2(p− 1) when m1 ≤ m2, and
m′1 = m2p −m1(p − 1) and m′2 = m1 when m1 > m2. In this case these results are only
valid when at least one of m1 and m2 is non-zero (cf. Proof and Remark 1.8).
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6. For G1 = Hn1 and G2 = Hn2 we have that m′1 = m2 and m′2 = m1p −m2(p − 1) when
n1 < n2, that m′1 = m2p − m1(p − 1) and m′2 = m1 when n1 > n2, that m′1 = m2 and
m′2 = m1p−m2(p− 1) when both n1 = n2 and m1 < m2, and m′1 = m2p−m1(p− 1) and
m′2 = m1 when both n1 = n2 and m1 ≥ m2, where 0 < n, n1, n2 < vK(λ).

§1.1 Proof of Theorem 1.1

Proof. We treat each of the six occurring cases individually. However, there is an important
distinction between the first three cases and the remaining cases.

In the first three cases, that is when at least one of the acting group schemes is the étale
group scheme HvK(λ), one can work modulo π at the level of special fibres for, in this case,
Yb = X1,b ×Xb X2,b which implies (Yb)k = (X1,b)k ×(Xb)k (X2,b)k. Indeed, suppose G1 = HvK(λ)

so that the torsor X1,b → Xb is étale. Then, by base change, the torsor X1,b ×X2,b → X2,b is
automatically étale. The special fibre of X2,b is reduced (because it is dominated by Yb whose
special fibre is reduced) but as X1,b × X2,b → X2,b is étale, this implies the special fibre of
X1,b ×X2,b is also reduced. Then, by Theorem 3.4 in this paper, X1,b ×Xb X2,b is normal and
equal to Yb, as required.

In the last three cases, we do not have this situation, which means one must work above
Xb over R without being permitted to reduce to the special fibre. However, we still proceed
in a similar fashion, even if the computations are more involved. In particular, we start with
the equation of Xi,b → Xb, base change it to Xj,b for j 6= i and make appropriate (Kummer)
transformations in order to find the torsor equations of Yb → Xj,b and read off the conductors
m′j for j = 1, 2. Note that in each case we can perform a change of the parameter T of A =

R[[T ]]{T−1} so that one of the two torsor equations above Xb = Spf (A) is in its simplified
form but we must assume the other equation remains in its original full power series form (cf.
Background).

1. (HvK(λ),HvK(λ)). Here m1,m2 < 0. The HvK(λ) torsor equation Xi,b → Xb is given by
(1+λZi)

p = 1+λpui where ui ∈ A×. Modulo π, these torsor equations reduce to zpi −zi = ūi on
the special fibre, i = 1, 2. We start by computing m′1. We can choose the parameter T so that

u1 = Tm1 , u2 =
∑
i∈Z aiT

i is a power series, accordingly, ū1 = tm1 and ū2 =
∑−1
i=m2

āit
i (cf. loc.

cit.) where ām2
6= 0. We can write t in terms of z1 in (X1,b)k: zp1 − z1 = tm1 ⇔ zp1

(
1− z1−p

1

)
=

tm1 ⇔ t =
(
z

1/m1

1

)p (
1− z1−p

1

)1/m1

. Thus a parameter of (X1,b)k is z
1/m1

1 and so by letting

z := z
1/m1

1 we can write t = zp
(
1− z−m1(p−1)

)1/m1
. We can now proceed to base change the

torsor equation of (X2,b)k → (Xb)k to (X1,b)k to obtain the torsor equation for (Yb)k → (X1,b)k:

zp2 − z2 =

−1∑
i=m2

āit
i =

−1∑
i=m2

āiz
ip
(

1− z−m1(p−1)
)i/m1

=

−1∑
i=m2

āiz
ip

(
1− i

m1
z−m1(p−1) + ...

)

= ām2
zm2p

(
1− m2

m1
z−m1(p−1) + ...

)
+ ām2+1z

(m2+1)p

(
1− m2 + 1

m1
z−m1(p−1) + ...

)
+ ...

= ām2
zm2p − m2ām2

m1
zm2p−m1(p−1) + higher order terms.

Expressing zip as zip−zi+zi gives rise (after an Artin-Schreier transformation) to an equation

of the form: zp2 − z2 = ām2z
m2 − m2ām2

m1
zm2p−m1(p−1) + higher order terms. The conductor

variable m′1 is the smallest power of z in the above expression which is coprime to p. The
expression above indicates there are two candidates, namely m2 and m2p − m1(p − 1). Note
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that m2p − m1(p − 1) ≤ m2 is equivalent to m1 ≥ m2. Therefore, when m1 ≥ m2 we have
m′1 = m2p−m1(p− 1) and when m1 < m2 we have m′1 = m2. The formula for m′2 is obtained
in a similar way as a consequence of the symmetry occurring in this case.

2. (HvK(λ), µp). Here m1 < 0 while m2 ≥ 0 hence m1 ≤ m2. The torsor equation for HvK(λ)

is given by (1 + λZ1)p = 1 + λpu1 and for µp by Zp2 = u2 where u1, u2 ∈ A×. Modulo π, these
torsor equations reduce to zp1 − z1 = ū1 and zp2 = ū2 with acting group schemes Z/pZ and µp
respectively on the special fibre.

We start by computing m′1. We can choose the parameter T so that u1 = Tm1 but u2 =∑
i∈Z aiT

i remains as a power series and therefore, accordingly, ū1 = tm1 and ū2 =
∑
i≥l āit

i for
some integer l where āl 6= 0. As in case 1 of this proof, we have that the parameter of (X1,b)k

is z := z
1/m1

1 and we can write t = zp
(
1− z−m1(p−1)

)1/m1
. We now have two cases to treat,

namely (a1) and (a2), depending on whether or not l is coprime to p.
(a1) In this case, gcd(l, p) = 1⇒ m2 = 0. We base change the torsor equation of (X2,b)k →

(Xb)k to (X1,b)K to obtain the torsor equation for (Yb)k → (X1,b)k:

zp2 =
∑
i≥l

āit
i =

∑
i≥l

āiz
ip(1− z−m1(p−1))i/m1 =

∑
i≥l

āiz
ip(1− i

m1
z−m1(p−1) + ...)

= ālz
lp(1− l

m1
z−m1(p−1) + ...) + āl+1z

(l+1)p(1− l + 1

m1
z−m1(p−1) + ...) + ...

As this is a µp-torsor equation, the factor ālz
lp can be eliminated by multiplication by a suitable

p-power to obtain an equation: zp2 = 1 − l
m1
z−m1(p−1) + higher order terms. So the conductor

variable is m′1 = −m1(p− 1), as this is the smallest power of z in the above expression which is
coprime to p.

(a2) In this case gcd(l, p) 6= 1. By the details outlined at the start of this paper (cf. Back-
ground), we know that the torsor equation of (X2,b)k → (Xb)k can be expressed as follows:
zp2 = 1 + ām2

tm2 +
∑
i>m2

āit
i = 1 +

∑
i≥m2

āit
i. By a suitable change of variables, we can

express this µp-torsor as: zp2 = 1 +
∑
i≥m2

āit
i ⇔ (z2 − 1)p =

∑
i≥m2

āit
i ⇒ zp2 =

∑
i≥m2

āit
i.

We can now proceed to base change the torsor equation of (X2,b)k → (Xb)k to (X1,b)k to obtain
the torsor equation for (Yb)k → (X1,b)k:

zp2 =
∑
i≥m2

āiz
pi
(

1− z−m1(p−1)
)i/m1

=
∑
i≥m2

āiz
pi

(
1− i

m1
z−m1(p−1) + ...

)

= ām2z
m2p

(
1− m2

m1
z−m1(p−1) + ...

)
+ ām2+1z

(m2+1)p

(
1− m2 + 1

m1
z−m1(p−1) + ...

)
+ ...

= ām2z
m2p − m2ām2

m1
zm2p−m1(p−1) + higher order terms.

So m′1 = m2p−m1(p− 1) as this is the smallest power of z in the above expression which is
not divisible by p.

We now determine m′2. We choose T so that u1 =
∑
i∈Z aiT

i and u2 is given by Th in the
case (a1) and by 1 + Tm2 in the case (a2). After reducing these equations modulo π, we have

zp1 − z1 =
∑−1
i=m1

āit
i and (a1) zp2 = th or (a2) zp2 = 1 + tm2 on the special fibre.

(a1) We can write t in terms of z2 in (X2,b)k since zp2 = th ⇔ t =
(
z

1/h
2

)p
. This implies

that z := z
1/h
2 is a parameter of (X2,b)k and we have that t = zp. We base change the equation
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of (X1,b)k → (Xb)k to (X2,b)k to obtain the torsor equation for (Yb)k → (X2,b)k: zp1 − z1 =∑−1
i=m1

āit
i =

∑−1
i=m1

āiz
ip = ām1z

m1p + higher order terms. The leading term zm1p (as well as

all the other terms zip) is a multiple of p but, as in case 1 of this proof, after an Artin-Schreier
transformation we obtain: zp1 − z1 = ām1

zm1 + higher order terms. Therefore, the conductor
variable m′2 = m1.

(a2) As above, we write t in terms of z2 in (X2,b)k: zp2 = 1+tm2 ⇔ zp2−1 = tm2 ⇔ (z2−1)p =

tm2 ⇔ t =
(
(z2 − 1)1/m2

)p
. This means that the parameter of (X2,b)k is z := (z2 − 1)1/m2

and so, from the above, we obtain t = zp. Now, we base change the equation of (X1,b)k →
(Xb)k to (X2,b)k to obtain the torsor equation for (Yb)k → (X2,b)k: zp1 − z1 =

∑−1
i=m1

āit
i =∑−1

i=m1
āiz

ip = ām1z
m1p+higher order terms. After an Artin-Schreier transformation we obtain:

zp1 − z1 = ām1
zm1 + higher order terms. Therefore, as in the (a1) case, the conductor variable

m′2 = m1.

3. (HvK(λ),Hn). Here m1 < 0 while m2 ∈ Z. The torsor equation for HvK(λ) is given by
(1 + λZ1)p = 1 + λpu1 and for Hn by (1 + πnZ2)p = 1 + πnpu2 where u1, u2 ∈ A×. Modulo π,
these torsor equations reduce to zp1 − z1 = ū1 and zp2 = ū2 with acting group schemes Z/pZ and
αp respectively on the special fibre.

We start by computing m′1. We can choose the parameter T so that u1 = Tm1 but u2 =∑
i∈Z aiT

i remains as a power series and therefore, accordingly, ū1 = tm1 and ū2 =
∑
i≥l āit

i

for some integer l where āl 6= 0. Recall that l = m2 here. As in case 1 of this proof, we have

that the parameter of (X1,b)k is z := z
1/m1

1 and we can write t = zp
(
1− z−m1(p−1)

)1/m1
. We

base change the torsor equation of (X2,b)k → (Xb)k to (X1,b)k to obtain the torsor equation for
(Yb)k → (X1,b)k:

zp2 =
∑
i≥l

āit
i =

∑
i≥l

āiz
pi
(

1− z−m1(p−1)
)i/m1

=
∑
i≥l

āiz
pi

(
1− i

m1
z−m1(p−1) + ...

)

= ālz
pl

(
1− l

m1
z−m1(p−1) + ...

)
+ āl+1z

p(l+1)

(
1− l + 1

m1
z−m1(p−1) + ...

)
+ ...

= ālz
pl − lāl

m1
zlp−m1(p−1) + higher order terms.

As this is an αp-torsor equation, the term ālz
pl can be removed and we can ignore the terms

involving i’s which are divisible by p. So the conductor variable m′1 = m2p−m1(p− 1), as this
would be the smallest power of z which is not divisible by p.

It remains to compute m′2 in this case. This time we choose the parameter T so that u1 =∑
i∈Z aiT

i is the power series and u2 = Tm2 . After reducing modulo π, we have ū1 =
∑−1
i=m1

āit
i

and ū2 = tm2 on the special fibre. We can write t in terms of z2 in (X2,b)k since zp2 = tm2 ⇔
t =

(
z

1/m2

2

)p
. This implies that z := z

1/m2

2 is the parameter of (X2,b)k and we have that t = zp.

We base change the equation of (X1,b)k → (Xb)k to (X2,b)k to obtain the torsor equation for

(Yb)k → (X2,b)k: zp1 − z1 =
∑−1
i=m1

āit
i =

∑−1
i=m1

āiz
ip = ām1

zm1p + higher order terms. After
an Artin-Schreier transformation we obtain: zp1 − z1 = ām1

zm1 + higher order terms. Therefore,
the conductor variable m′2 = m1.
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We remind the reader that in the remaining three cases, we cannot reduce modulo π and
work at the level of special fibres. Thus, the computations here are slightly more involved. It
will be useful to recall in advance here the following equality given by the Binomial Theorem

1 + (πnbZ)
p

= (1 + πnbZ)
p −

p−1∑
k=1

(
p

k

)
(πnbZ)

k
(∗)

which can be generalised to the Multimonomial Theorem (or Identity)

1 +
∑
i

(
πnbiZ

i
)p

=

(
1 +

∑
i

πnbiZ
i

)p
− p

∑
i

πnbiZ
i + higher order terms (∗∗).

We also mention here that to circumvent our inability to take, say, p-th roots of coefficients
belonging to the ring R, we can adopt the following technique for a given element ai where
vK(ai) = 0; namely, it can be expressed as ai = bpi + ci for some bi, ci ∈ R such that vK(bi) = 0
and vK(ci) > 0.

4. (Hn, µp). Here m1 ∈ Z while m2 ≥ 0. The torsor equation forHn is given by (1+πnZ1)p =
1 +πnpu1 and for µp by Zp2 = u2 where u1, u2 ∈ A×. We start by computing m′1. We can choose
the parameter T so that u1 = Tm1 but u2 =

∑
i∈Z aiT

i remains as a power series. We can
express T in terms of Z1 in order to read off the parameter for X1,b: (1 + πnZ1)p = 1 +

πnpTm1 ⇔ πnpZp1 +
∑p−1
k=1

(
p
k

)
πnkZk1 +1 = 1+πnpTm1 ⇔ πnpZp1 +

∑p−1
k=1

(
p
k

)
πnkZk1 = πnpTm1 ⇔

Zp1

(
πnp +

∑p−1
k=1

(
p
k

)
πnkZk−p1

)
= πnpTm1 ⇔ Zp1

(
1 +

∑p−1
k=1

(
p
k

)
πn(k−p)Zk−p1

)
= Tm1 ⇔ T =(

Z
1/m1

1

)p (
1 +

∑p−1
k=1

(
p
k

)
πn(k−p)Zk−p1

)1/m1

.

We know from the proof of case 3 that Z := Z
1/m1

1 is the parameter of X1,b modulo π (hence
it is a parameter of X1,b) and so we can write:

T = Zp

(
1 +

p−1∑
k=1

(
p

k

)
π−n(p−k)Z−m1(p−k)

)1/m1

.

For convenience, set B =
∑p−1
k=1

(
p
k

)
π−n(p−k)Z−m1(p−k) so that T = Zp (1 +B)

1/m1 . We now
have two cases to treat, namely (a1) and (a2), depending on whether or not l = min{i|vK(ai) = 0}
is coprime to p.

(a1) In this case, gcd(l, p) = 1⇒ m2 = 0. We base change the torsor equation of X2,b → Xb

to X1,b to obtain: Zp2 =
∑
i∈Z aiT

i =
∑
i∈Z aiZ

ip (1 +B)
i/m1 =

∑
i∈Z aiZ

ip
(

1 + i
m1
B + ...

)
=∑

i∈Z aiZ
ip +

∑
i∈Z

iai
m1
ZipB + ... =

∑
vK(ai)=0 aiZ

ip +
∑
vK(ai)>0 aiZ

ip +
∑
i∈Z

iai
m1
ZipB + ....

For the terms where vK(ai) = 0, we can express ai = bpi + ci for some bi, ci ∈ R with vK(bi) =
0 and vK(ci) > 0 to obtain: Zp2 =

∑
vK(bi)=0 b

p
iZ

ip +
∑
vK(ci)>0 ciZ

ip +
∑
vK(ai)>0 aiZ

ip +∑
i∈Z

iai
m1
ZipB + ... =

∑
vK(bi)=0

(
biZ

i
)p

+
∑
vK(di)>0 diZ

ip +
∑
i∈Z

iai
m1
ZipB + ..., where we set

di = ci if vK(ai) = 0 and di = ai if vK(ai) > 0. Now, as this is generically a µp-torsor we can
take the p-power term

(
blZ

l
)p

in the first summation into factor, so that we get a new equation:

Zp2 = 1 +
∑
vK(bi)=0

i6=l

(
b−1
l biZ

i−l)p +
∑
vK(di)>0 b

−p
l diZ

p(i−l) +
∑
i∈Z

ib−pl ai
m1

Zp(i−l)B + ..., which

can be rewritten using the identity (∗∗), and after multiplying by a suitable p-power, as: Zp2 =

1− p
∑
vK(bi)=0

i6=l
b−1
l biZ

i−l +
∑
vK(di)>0 b

−p
l diZ

p(i−l) +
∑
i∈Z

ib−pl ai
m1

Zp(i−l)B+ higher order terms.

The summation
∑
vK(di)>0 dib

−p
l Zp(i−l) does not contribute to the conductor variable since the
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powers of Z involved are p-powers so we can safely exclude it. Indeed, if the coefficient with small-
est K-valuation in the right hand side of the above equation occurs in the above summation say in
the term dib

−p
l Zp(i−l) then vK(di) is necessarily divisible by p (since (Yb)k is reduced), and we can

assume without loss of generality that this summation is of the form πpt(f(Z)p + πg(Z)), where

f(Z) ∈ A1 is a unit and g(Z) ∈ A1. Writing 1 +πptf(Z)p = (1 +πtf(Z))p−
∑p−1
k=1

(
p
k

)
(πtf(Z))

k

and multiplying the above equation by (1 + πtf(Z))−p we obtain an equation: Zp2 = 1 −
p
∑
vK(bi)=0

i 6=l
b−1
l biZ

i−l −
∑p−1
k=1

(
p
k

)
(πtf(Z))

k
+
∑
i∈Z

ib−pl ai
m1

Zp(i−l)B + higher order terms. Fur-

thermore the summation
∑p−1
k=1

(
p
k

)
(πtf(Z))

k
doesn’t contribute anymore towards the coefficient

with smallest possible valuation in the right hand side of the above equation. For the rest
of this proof we will automatically operate in this way and ignore such summations. Then,
up to multiplying the coefficients by units, we have: Zp2 = 1 − πvK(p)

∑
vK(bi)=0

i 6=l
b−1
l biZ

i−l +

πvK(p)−n(p−1)
∑
i∈Z

ib−pl ai
m1

Zp(i−l)−m1(p−1) + higher order terms.
Clearly the smallest power of π is vK(p)−n(p−1) and so we look to the summation with that

coefficient for the conductor variable. For zero valuation coefficients, the index of the summation
will start at the integer l, the index corresponding to the lowest zero valuation coefficient. As
m′1 is the smallest exponent appearing in the relevant summation which is coprime to p, we have
that m′1 = −m1(p− 1).

(a2) In this case gcd(l, p) 6= 1. Again, we take T = Zp (1 +B)
1/m1 where B is as de-

fined previously. We then base change the µp-torsor equation of X2,b → Xb to X1,b to obtain:

Zp2 =
∑
i∈Z aiT

i = 1 +
∑
vK(ai)=0
i≥m2

aiT
i +

∑
vK(ai)>0 aiT

i = 1 +
∑
vK(ai)=0
i≥m2

aiZ
ip (1 +B)

i/m1 +∑
vK(ai)>0 aiZ

ip (1 +B)
i/m1 . For the terms where vK(ai) = 0, we can express ai = bpi + ci for

some bi, ci ∈ R with vK(bi) = 0 and vK(ci) > 0 so that: Zp2 = 1 +
∑
vK(bi)=0 b

p
iZ

ip (1 +B)
i/m1 +∑

vK(ci)>0 ciZ
ip (1 +B)

i/m1 +
∑
vK(ai)>0 aiZ

ip (1 +B)
i/m1 = 1+

∑
vK(bi)=0 b

p
iZ

ip (1 +B)
i/m1 +∑

vK(di)>0 diZ
ip (1 +B)

i/m1 , where we again set di = ci if vK(ai) = 0 and di = ai if vK(ai) > 0.

Now we continue by expansion of the binomial terms: Zp2 = 1+
∑
vK(bi)=0 b

p
iZ

ip
(

1 + i
m1
B + ...

)
+∑

vK(di)>0 diZ
ip
(

1 + i
m1
B + ...

)
= 1 +

∑
vK(bi)=0

(
biZ

i
)p

+
∑
vK(bi)=0

i
m1
bpiZ

ipB

+
∑
vK(di)>0 diZ

ip +
∑
vK(di)>0

i
m1
diZ

ipB + higher order terms.

The summation
∑
vK(di)>0 diZ

ip does not contribute to the conductor variable since the

powers of Z involved are p-powers so we can safely exclude it (cf. Proof in case (a1)). Now
using the identity (∗∗), and after multiplying by a suitable p-power, we obtain an equation:
Zp2 = 1 − p

∑
vK(bi)=0 biZ

i +
∑
vK(bi)=0

i
m1
bpiZ

ipB + higher order terms = 1 − p
∑
i≥m2

biZ
i +∑

i≥m2

i
m1
bpiZ

ipB + higher order terms, which equals:

1− p
∑
i≥m2

biZ
i +
∑
i≥m2

i
m1
bpiZ

ip
(∑p−1

k=1

(
p
k

)
π−n(p−k)Z−m1(p−k)

)
+ higher order terms = 1−

πvK(p)
∑
i≥m2

biZ
i+πvK(p)−n(p−1)

∑
i≥m2

ibpi
m1
Zip−m1(p−1)+higher order terms; up to multiplying

the coefficients by units. The second summation has the smallest π valuation and so the conductor
variable is m′1 = m2p−m1(p− 1).

We now determine m′2. We choose the parameter T so that u1 =
∑
i∈Z aiT

i and u2 = Th in
the case (a1) while u2 = 1 + Tm2 in the case (a2).

(a1) In this case, m2 = 0. The parameter of X2,b is Z := Z
1/h
2 where T = Zp is obtained

from the torsor equation Zp2 = Th ⇔
(
Z

1/h
2

)p
= T . We base change the torsor equation

of X1,b → Xb to X2,b to obtain: (1 + πnZ1)p = 1 + πnp
∑
i∈Z aiT

i = 1 + πnp
∑
i∈Z aiZ

pi =
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1 + πnp
∑
vK(ai)=0 aiZ

pi + πnp
∑
vK(ai)>0 aiZ

pi. For the terms where vK(ai) = 0, we can ex-

press ai = bpi + ci for some bi, ci ∈ R with vK(bi) = 0 and vK(ci) > 0. Hence (1 + πnZ1)p =
1+πnp

∑
vK(bi)=0 b

p
iZ

pi+πnp
∑
vK(ci)>0 ciZ

pi+πnp
∑
vK(ai)>0 aiZ

pi = 1+
∑
vK(bi)=0

(
πnbiZ

i
)p

+∑
vK(ci)>0 π

npciZ
pi +

∑
vK(ai)>0 π

npaiZ
pi = 1 +

∑
vK(bi)=0

(
πnbiZ

i
)p

+
∑
vK(di)>0 π

npdiZ
pi,

where we again set di = ci if vK(ai) = 0 and di = ai if vK(ai) > 0. Using the identity (∗∗),
and after multiplying by a suitable p-power, we get: (1 + πnZ1)p = 1 − p

∑
vK(bi)=0 π

nbiZ
i +∑

vK(di)>0 π
npdiZ

pi+higher order terms = 1−πvK(p)+n
∑
i≥m1

biZ
i+higher order terms; up to

multiplying the coefficients by units. Now, m′2 is the smallest exponent appearing in this leading
summation which is coprime to p and so m′2 = m1.

(a2) In this case gcd(l, p) 6= 1. From the torsor equation Zp2 = 1 + Tm2 we can de-

duce: Zp2 = 1 + Tm2 ⇔ Zp2 − 1 = Tm2 ⇔ (Z2 − 1)p −
∑p−1
k=1

(
p
k

)
(−1)kZk2 = Tm2 ⇔ (Z2 −

1)p
(

1− (Z2 − 1)−p
∑p−1
k=1

(
p
k

)
(−1)kZk2

)
= Tm2 which implies:

T =
(

(Z2 − 1)
1
m2

)p (
1− (Z2 − 1)−p

∑p−1
k=1

(
p
k

)
(−1)kZk2

) 1
m2

, and so we take Z := (Z2 − 1)1/m2 ,

which we already know to be the parameter of X2,b by case 2 of this proof, in order to write: T =

Zp
(

1− Z−m2p
∑p−1
k=1

(
p
k

)
(−1)k(1 + Zm2)k

) 1
m2

. For simplicity, let us denote
∑p−1
k=1

(
p
k

)
(−1)k(1 +

Zm2)k by B so that we can write T = Zp (1− Z−m2pB)
1
m2 . We can now base change the

torsor equation of X1,b → Xb to X2,b to obtain: (1 + πnZ1)p = 1 + πnp
∑
i∈Z aiT

i = 1 +

πnp
∑
i∈Z aiZ

pi (1− Z−m2pB)
i
m2 = 1+πnp

∑
i∈Z aiZ

pi
(

1− i
m2
Z−m2pB + ...

)
= 1+πnp

∑
i∈Z aiZ

pi

−πnp
∑
i∈Z

iai
m2
Zp(i−m2)B+.... Partitioning any summation above over the index i into the terms

where vK(ai) = 0 and the terms where vK(ai) > 0 gives: (1+πnZ1)p = 1+πnp
∑
vK(ai)=0 aiZ

pi−
πnp

∑
vK(ai)=0

iai
m2
Zp(i−m2)B + πnp

∑
vK(ai)>0 aiZ

pi − πnp
∑
vK(ai)>0

iai
m2
Zp(i−m2)B + .... Again,

for the terms with vK(ai) = 0, we can express ai = bpi + ci for some bi, ci ∈ R with vK(bi) = 0
but vK(ci) > 0 and so we have:

(1+πnZ1)p = 1+πnp
∑
vK(bi)=0 b

p
iZ

pi+πnp
∑
vK(ci)>0 ciZ

pi−πnp
∑
vK(bi)=0

ibpi
m2
Zp(i−m2)B−

πnp
∑
vK(ci)>0

ici
m2
Zp(i−m2)B + πnp

∑
vK(ai)>0 aiZ

pi − πnp
∑
vK(ai)>0

iai
m2
Zp(i−m2)B

+higher order terms = 1+
∑
vK(bi)=0

(
πnbiZ

i
)p−πnp∑vK(bi)=0

ibpi
m2
Zp(i−m2)B+higher order terms;

excluding summations whose coefficients have positive valuation. Using the identity (∗∗), and
after multiplying by a suitable p-power, yields:

(1 +πnZ1)p = 1− p
∑
vK(bi)=0 π

nbiZ
i−πnp

∑
vK(bi)=0

ibpi
m2
Zp(i−m2)B+ higher order terms = 1−

πvK(p)+n
∑
i≥l biZ

i−πnp
∑
vK(bi)=0

ibi
m2
Zp(i−m2)

(∑p−1
k=1

(
p
k

)
(−1)k(1 + Zm2)k

)
+higher order terms

= 1− πvK(p)+n
∑
i≥l biZ

i + πvK(p)+np
∑
vK(bi)=0

ibi
m2
Zp(i−m2)(1 +Zm2) + higher order terms; up

to multiplying the coefficients by units. Since vK(p) + n is the smallest exponent of π and
l = min{i|vK(ai) = 0, gcd(i, p) = 1} = m1 is the starting index, we have that m′2 = m1 is the
conductor variable.

5. (µp, µp). Here m1,m2 ≥ 0. The first µp-torsor is given by the equation Zp1 = u1 and the
second µp-torsor by Zp2 = u2 where u1, u2 ∈ A×. Modulo π, these torsor equations reduce to
zp1 = ū1 and zp2 = ū2 with acting group schemes µp on the special fibre. On the special fibre the
reduced power series are of the form ū =

∑
i≥l āit

i for some integer l. Depending on whether
or not these l are coprime to p or not, there are three cases to consider. In particular, the pairs
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(a1, a1), (a1, a2) and (a2, a2). We only treat the cases (a1, a2) and (a2, a2), the case (a2, a1) is
treated in a similar way to the case (a1, a2). For the case (a1, a1) see Remark 1.8.

(a1,a2) Here m1 = 0 and m2 > 0. We start by computing m′1. We can choose the parameter
T so that u1 = Th but u2 = 1 +

∑
vK(ai)=0
i≥m2

aiT
i +

∑
vK(ai)>0 aiT

i remains as a power series.

From the torsor equation Zp1 = Th, we can write T = Zp where Z = Z
1/h
1 is the parame-

ter of X1,b. Then we can base change the torsor equation of X2,b → Xb to X1,b and obtain:
Zp2 = 1 +

∑
vK(ai)=0
i≥m2

aiT
i +

∑
vK(ai)>0 aiT

i = 1 +
∑
vK(ai)=0
i≥m2

aiZ
pi +

∑
vK(ai)>0 aiZ

pi. For the

terms with vK(ai) = 0, we can express ai = bpi + ci for some bi, ci ∈ R with vK(bi) = 0 and
vK(ci) > 0 and so we have: Zp2 = 1 +

∑
vK(bi)=0
i≥m2

bpiZ
pi +

∑
vK(ci)>0
i≥m2

ciZ
pi +

∑
vK(ai)>0 aiZ

pi =

1 +
∑
vK(bi)=0
i≥m2

(
biZ

i
)p

+
∑
vK(ci)>0
i≥m2

ciZ
pi +

∑
vK(ai)>0 aiZ

pi. Using the identity (∗∗), and af-

ter multiplying by a suitable p-power, we get: Zp2 = 1 − p
∑
vK(bi)=0
i≥m2

biZ
i +

∑
vK(ci)>0
i≥m2

ciZ
pi +∑

vK(ai)>0 aiZ
pi+higher order terms = 1−πvK(p)

∑
vK(bi)=0
i≥m2

biZ
i+
∑
vK(ci)>0
i≥m2

ciZ
pi+
∑
vK(ai)>0 aiZ

pi

+higher order terms, up to multiplying the coefficients by units. Therefore, m′1 = m2. Here we
ignored the last two summands in the above equality (cf. proof of case 4 computing m′1).

Now we want to determine m′2. We can choose the parameter T so that u1 =
∑
i∈Z aiT

i is
a power series and u2 = 1 + Tm2 is in simplified form. We know from case 4 that the torsor

equation Zp2 = 1 + Tm2 gives rise to: T = Zp
(

1− Z−m2p
∑p−1
k=1

(
p
k

)
(−1)k(1 + Zm2)k

) 1
m2

where

Z := (Z2 − 1)1/m2 is the parameter of X2,b. We have that Zp1 =
∑
i∈Z aiT

i =
∑
vK(ai)=0

i≥l
aiT

i +∑
vK(ai)>0 aiT

i where l is such that gcd(l, p) = 1. We can write T = Zp (1− Z−m2pB)
1
m2 by

letting B =
∑p−1
k=1

(
p
k

)
(−1)k(1+Zm2)k. Then we base change the torsor equation of X1,b → Xb to

X2,b and obtain: Zp1 =
∑
vK(ai)=0

i≥l
aiZ

ip (1− Z−m2pB)
i
m2 +

∑
vK(ai)>0 aiZ

ip (1− Z−m2pB)
i
m2 .

For the terms where vK(ai) = 0, we can express ai = bpi + ci for some bi, ci ∈ R with vK(bi) = 0
and vK(ci) > 0 and so we have:

Zp1 =
∑
vK(bi)=0

i≥l
bpiZ

ip (1− Z−m2pB)
i
m2 +

∑
vK(ci)>0

i≥l
ciZ

ip (1− Z−m2pB)
i
m2

+
∑
vK(ai)>0 aiZ

ip (1− Z−m2pB)
i
m2 =

∑
vK(bi)=0

i≥l
bpiZ

ip (1− Z−m2pB)
i
m2

+
∑
vK(di)>0 diZ

ip (1− Z−m2pB)
i
m2 , where di = ci if vK(ai) = 0 and di = ai for vK(ai) > 0.

Hence: Zp1 =
∑
vK(bi)=0

i≥l
bpiZ

ip
(

1− i
m2
Z−m2pB + ...

)
+
∑
vK(di)>0 diZ

ip
(

1− i
m2
Z−m2pB + ...

)
=∑

vK(bi)=0
i≥l

bpiZ
ip−

∑
vK(bi)=0

i≥l
bpiZ

ip i
m2
Z−m2pB+

∑
vK(di)>0 diZ

ip−
∑
vK(di)>0 diZ

ip i
m2
Z−m2pB+

higher order terms.
Taking into factor the p-power bpl Z

lp =
(
blZ

l
)p

we obtain: Zp1 = 1+
∑
vK(bi)=0

i≥l
b−pl bpiZ

p(i−l)−∑
vK(bi)=0

i≥l
b−pl bpiZ

p(i−l) i
m2
Z−m2pB+

∑
vK(di)>0 b

−p
l diZ

p(i−l)−
∑
vK(di)>0 b

−p
l diZ

p(i−l) i
m2
Z−m2pB+

higher order terms = 1 +
∑
vK(bi)=0

i≥l

(
b−1
l biZ

i−l)p −∑vK(bi)=0
i≥l

b−pl bpiZ
p(i−l) i

m2
Z−m2pB

+
∑
vK(di)>0 b

−p
l diZ

p(i−l) −
∑
vK(di)>0 b

−p
l diZ

p(i−l) i
m2
Z−m2pB + higher order terms. Using the

identity (∗∗), and after multiplying by a suitable p-power, we get Zp1 = 1−p
∑
vK(bi)=0

i>l

b−1
l biZ

i−l−
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∑
vK(bi)=0

i≥l
b−pl bpiZ

p(i−l) i
m2
Z−m2pB+

∑
vK(di)>0 b

−p
l diZ

p(i−l)−
∑
vK(di)>0 b

−p
l diZ

p(i−l) i
m2
Z−m2pB+

higher order terms = 1−p
∑
vK(bi)=0

i>l

b−1
l biZ

i−l−
∑
vK(bi)=0

i≥l
b−pl bpiZ

p(i−l) i
m2
Z−m2p

(∑p−1
k=1

(
p
k

)
(−1)k(1 + Zm2)k

)
+higher order terms = 1−πvk(p)

∑
vK(bi)=0

i>l

b−1
l biZ

i−l+πvk(p)
∑
vK(bi)=0

i≥l
b−pl bpi

i
m2
Zp(i−l)−m2p(1+

Zm2) + higher order terms, up to multiplying the coefficients by units. Then, clearly, m′2 =
−m2(p − 1) is the conductor variable. Here we ignored the term

∑
vK(di)>0 b

−p
l diZ

p(i−l) in the

above summation (cf. proof of case 4 computing m′1).
(a2,a2) Here both m1,m2 > 0 and we start by computing m′1. The parameter T can

be chosen so that u1 = 1 + Tm1 but u2 =
∑
i∈Z aiT

i remains as a power series. From
the torsor equation Zp1 = 1 + Tm1 , we know from case 4 that we can write T as: T =

Zp
(

1− Z−m1p
∑p−1
k=1

(
p
k

)
(−1)k(1 + Zm1)k

) 1
m1

where Z := (Z1 − 1)1/m1 is the parameter of

X1,b. As before, for purposes of convenience, we write T = Zp (1− Z−m1pB)
1
m1 where B =∑p−1

k=1

(
p
k

)
(−1)k(1 +Zm1)k. Then we can base change the torsor equation for X2,b → Xb to X1,b

and obtain: Zp2 = 1+
∑
vK(ai)=0
i≥m2

aiT
i+
∑
vK(ai)>0 aiT

i = 1+
∑
vK(ai)=0
i≥m2

aiZ
ip (1− Z−m1pB)

i
m1 +∑

vK(ai)>0 aiZ
ip (1− Z−m1pB)

i
m1 = 1 +

∑
vK(ai)=0
i≥m2

aiZ
ip
(

1− i
m1
Z−m1pB + ...

)
+
∑
vK(ai)>0 aiZ

ip
(

1− i
m1
Z−m1pB + ...

)
= 1+

∑
vK(ai)=0
i≥m2

aiZ
ip−

∑
vK(ai)=0
i≥m2

aiZ
ip i
m1
Z−m1pB+∑

vK(ai)>0 aiZ
ip−
∑
vK(ai)>0 aiZ

ip i
m1
Z−m1pB+higher order terms. For the terms where vK(ai) =

0, we can express ai = bpi +ci for some bi, ci ∈ R with vK(bi) = 0 and vK(ci) > 0 to obtain: Zp2 =
1+
∑
vK(bi)=0
i≥m2

bpiZ
ip−
∑
vK(bi)=0
i≥m2

bpiZ
ip i
m1
Z−m1pB+

∑
vK(ci)>0 ciZ

ip−
∑
vK(ci)>0 ciZ

ip i
m1
Z−m1pB+∑

vK(ai)>0 aiZ
ip −

∑
vK(ai)>0 aiZ

ip i
m1
Z−m1pB + higher order terms = 1 +

∑
vK(bi)=0
i≥m2

(
biZ

i
)p −∑

vK(bi)=0
i≥m2

bpiZ
ip i
m1
Z−m1pB+

∑
vK(di)>0 diZ

ip−
∑
vK(di)>0 diZ

ip i
m1
Z−m1pB+higher order terms,

where we take di = ci if vK(ai) = 0 and di = ai with vK(ai) > 0. Using the identity (∗∗), and af-
ter multiplying by a suitable p-power, we get: Zp2 = 1−p

∑
vK(bi)=0
i≥m2

biZ
i−
∑
vK(bi)=0
i≥m2

bpiZ
ip i
m1
Z−m1pB+

higher order terms = 1−p
∑
vK(bi)=0
i≥m2

biZ
i−
∑
vK(bi)=0
i≥m2

bpiZ
ip i
m1
Z−m1p

(∑p−1
k=1

(
p
k

)
(−1)k(1 + Zm1)k

)
+

higher order terms. Then up to multiplying the coefficients by units we have:
Zp2 = 1−πvK(p)

∑
vK(bi)=0
i≥m2

biZ
i+πvK(p)

∑
vK(bi)=0
i≥m2

bpi
i
m1
Z(i−m1)p(1+Zm1)+higher order terms.

In order to determine which is the smallest power of Z and hence the conductor variable
m′1, we need to compare m2 with m2p−m1(p− 1) since both summations have coefficients with
the same π valuation. Note that m2 ≤ m2p −m1(p − 1) is equivalent to m1 ≤ m2. Assuming
m1 ≤ m2, we have m′1 = m2 and, by symmetry, m′2 = m1p −m2(p − 1). The case m1 ≤ m2 is
entirely similar.

6. (Hn1
,Hn2

). Here m1,m2 ∈ Z and both are coprime to p. The Hn1
-torsor equation is

given by (πn1Z1 + 1)p = 1 + πpn1u1 and the Hn2
-torsor equation by (πn2Z2 + 1)p = 1 + πpn2u2

where u1, u2 ∈ A×. The two torsors have associated conductor variables m1,m2 respectively.
We begin by computing m′1. We can choose the parameter T so that u1 = Tm1 but

u2 =
∑
i∈Z aiT

i remains as a power series. By case 4, we can express T in terms of Z := Z
1/m1

1 ,
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the parameter for X1,b, as: T = Zp
(

1 +
∑p−1
k=1

(
p
k

)
π−n1(p−k)Z−m1(p−k)

) 1
m1

and, for convenience,

we set B =
∑p−1
k=1

(
p
k

)
π−n1(p−k)Z−m1(p−k) so that we can write T = Zp (1 +B)

1
m1 . Then we

base change the torsor equation for X2,b → Xb to X1,b to obtain: Zp2 = 1 + πpn2
∑
i∈Z aiT

i =

1 + πpn2
∑
vK(ai)=0
i≥m2

aiT
i + πpn2

∑
vK(ai)>0 aiT

i = 1 + πpn2
∑
vK(ai)=0
i≥m2

aiZ
ip (1 +B)

i
m1

+πpn2
∑
vK(ai)>0 aiZ

ip (1 +B)
i
m1 = 1 + πpn2

∑
vK(ai)=0
i≥m2

aiZ
ip
(

1 + i
m1
B + ...

)
+πpn2

∑
vK(ai)>0 aiZ

ip
(

1 + i
m1
B + ...

)
= 1+πpn2

∑
vK(ai)=0
i≥m2

aiZ
ip+πpn2

∑
vK(ai)=0
i≥m2

aiZ
ip i
m1
B+

πpn2
∑
vK(ai)>0 aiZ

ip + πpn2
∑
vK(ai)>0 aiZ

ip i
m1
B + higher order terms. For the terms where

vK(ai) = 0, we can express ai = bpi + ci for some bi, ci ∈ R with vK(bi) = 0 and vK(ci) > 0
to obtain: Zp2 = 1 + πpn2

∑
vK(bi)=0
i≥m2

bpiZ
ip + πpn2

∑
vK(bi)=0
i≥m2

bpiZ
ip i
m1
B + πpn2

∑
vK(ci)>0 ciZ

ip +

πpn2
∑
vK(ci)>0 ciZ

ip i
m1
B+πpn2

∑
vK(ai)>0 aiZ

ip+πpn2
∑
vK(ai)>0 aiZ

ip i
m1
B+higher order terms =

1+
∑
vK(bi)=0
i≥m2

(
πn2biZ

i
)p

+πpn2
∑
vK(bi)=0
i≥m2

bpiZ
ip i
m1
B+πpn2

∑
vK(di)>0 diZ

ip+πpn2
∑
vK(di)>0 diZ

ip i
m1
B+

higher order terms, where di = ci if vK(ai) = 0 and di = ai if vK(ai) > 0. Using the identity
(∗∗), and after multiplying by a suitable p-power, we get:

(πn2Z2+1)p = 1−p
∑
vK(bi)=0
i≥m2

πn2biZ
i+πpn2

∑
vK(bi)=0
i≥m2

bpiZ
ip i
m1
B+higher order terms = 1−

p
∑
vK(bi)=0
i≥m2

πn2biZ
i+πpn2

∑
vK(bi)=0
i≥m2

bpiZ
ip i
m1

(∑p−1
k=1

(
p
k

)
πn1(k−p)Z−m1(p−k)

)
+higher order terms.

Then up to multiplying the coefficients by units we have: Zp2 = 1− πvK(p)+n2
∑
vK(bi)=0
i≥m2

biZ
i +

πvK(p)+pn2−n1(p−1)
∑
vK(bi)=0
i≥m2

bpiZ
ip i
m1
Z−m1(p−1) + higher order terms.

We have to compare vK(p) + n2 with vK(p) + pn2 − n1(p − 1) in order to determine the
smallest power of π. Note that vK(p) + n2 < vK(p) + pn2 − n1(p − 1) is equivalent to n1 < n2

and so when this happens, m′1 = m2 and when n1 > n2, we have m′1 = m2p −m1(p − 1). We
also need to consider the case where n1 = n2. Comparing m2 with m2p −m1(p − 1) we have
that:

m′1 = min{m2,m2p−m1(p− 1)} =

{
m2 if m1 < m2

m2p−m1(p− 1) if m1 ≥ m2

Now we want to determine m′2 but by the symmetry present in this case this is entirely similar
to the above consideration. In particular, if n1 < n2 then m′2 = m1p −m2(p − 1), if n1 > n2

then m′2 = m1 and, finally, if n1 = n2 then:

m′2 = min{m2,m1p−m2(p− 1)} =

{
m1p−m2(p− 1) if m1 < m2

m1 if m1 ≥ m2

All six possible cases have now been treated.

We are also able to state when the Galois cover Yb → Xb has a torsor structure by taking
into account when base changing in the above proof without additional modification resulted in
the equation of the normalisation (see also Theorem 3.4).

Theorem 1.2. Let fi : Xi,b → Xb be non-trivial Galois covers of degree p above the formal
boundary Xb which are generically disjoint for i = 1, 2. Let Gi be the corresponding group
schemes for i = 1, 2 and let Yb be as defined in Theorem 1.1. Then Yb = X1,b×Xb X2,b, in which
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case Yb → Xb is a torsor under G1×SpecRG2, if and only if at least one of the two group schemes
Gi is the étale group scheme HvK(λ).

Proof. See Theorem 3.5.

Definition 1.3. For the extension B/A of DVR’s where Xb = Spf (A) and Yb = Spf (B) are as
in Theorem 1.1, we define the special different(s) by

ds1 = (c1 − 1)p(p− 1) + (c′1 − 1)(p− 1)

ds2 = (c2 − 1)p(p− 1) + (c′2 − 1)(p− 1)

Lemma 1.4. The above two special differents are in fact equal: ds1 = ds2 .

Proof. Follows immediately by substituting the possible values for c′1 and c′2 under each of the
six cases given in Corollary 1.2.

This dsi , i = 1, 2, coincides in fact with the term ϕ(s) which appears in Kato’s vanishing
cycles formula in the case of a Galois cover of type (p, p) (Theorem 6.7 in [Kato]). We will also
see this variable makes an appearance in our genus formula in Theorem 2.2.1 in the next section.

Corollary 1.5. We have the following relationship between conductors:

c′2 − c′1 = (c1 − c2)p.

Proof. Follows from rearranging the relationship between conductors given by ds1 = ds2 .

Had Corollary 1.5 been given, we would have only needed to perform half of the computations
in the proof of Theorem 1.1. In particular, with m′1 (or equivalently c′1) obtained, m′2 (or
equivalently c′2) would be determined by this relationship. In fact, this formula could have been
derived independently using the theory of higher ramification groups as per [Serre] but only
for the

(
HvK(λ),HvK(λ)

)
case, the first of the six cases in Theorem 1.1. This is because this

ramification theory only holds when the residue field extension is separable and so both group
schemes Gi, i = 1, 2, must be étale.

From the calculations in the proof of Theorem 1.1 it is also possible to compute the degree
of the different δ in the extension B/A. Since the ramification index of this extension e = 1, we
see easily that δ = δ1 + δ′1 = δ2 + δ′2 (cf. Theorem 1.6 for notations).

Yb
δ′1

}}
δ

��

aa
δ′2

X1,b X2,b

Xb

!!δ1 }} δ2

Theorem 1.6. With the situation described in Theorem 1.1, let δ′i (resp. δi) denote the degree
of the different corresponding to the extension Yb → Xi,b (resp. Xi,b → Xb), i = 1, 2. Then, for
all possible pairs (G1, G2), we can explicitly state the values for δ′i as follows:
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Table 1: Degree of the differents δ′1, δ′2

(G1, G2) δ′1 δ′2

HvK(λ),HvK(λ)
0 0

HvK(λ), µp vK(p) 0

HvK(λ),Hn vK(p)− n(p− 1) 0

Hn, µp vK(p)− vK(p)−n(p−1)
p

(p− 1) vK(p)− vK(p)+n
p

(p− 1)

µp, µp vK(p)− vK(p)
p

(p− 1) vK(p)− vK(p)
p

(p− 1)

Hn1 ,Hn2

If n1 ≤ n2 then δ′1 equals:

vK(p)− vK(p)+n2
p

(p− 1)

If n1 > n2 then δ′2 equals:

vK(p)− vK(p)+n2p−n1(p−1)
p

(p− 1)

If n1 ≤ n2 then δ′2 equals:

vK(p)− vK(p)+n1p−n2(p−1)
p

(p− 1)

If n1 > n2 then δ′2 equals:

vK(p)− vK(p)+n1
p

(p− 1)

Proof. For an arbitrary rank p torsor with conductor variable m and torsor equation Zp =
1 + πnpTm + higher terms, where 0 ≤ n ≤ vK(λ), the degree of the different is given by δ =
vK(p)− n(p− 1). This means that computing the degree of the different δ reduces to obtaining
n from the exponent of π in the coefficient of the term corresponding to the conductor variable
m. From our calculations obtained in the proof of Theorem 1.1, we can simply read off the n
value in each of the cases and substitute into the formula vK(p)− n(p− 1) to obtain the degree
of the different at that particular stage. Strictly speaking, we can only rely on this approach for
the last three cases because in the first three cases we worked modulo π on the special fibre. In
the first three cases to compute δ we use the fact that the degree of the different is preserved by
étale base change.

Example 1.7. With the type (p, p) case established it is possible to manually perform the same
calculations in the type (p, ..., p) setting. We illustrate this with a type (p, p, p) example, using
the (p, p)-type results in Theorem 1.1 and Corollary 1.2 iteratively at each stage to determine
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the conductors in terms of the base level conductors.

Y
c′′1

xx

c′′2

&&
(X1 ×X2)

nor

c′1yy c′2 %%

(X2 ×X3)nor

c′3yy c′4 %%
X1

c1

**

X2

c2

��

X3

c3

ttX

Suppose Xi → X are torsors under the R-group scheme Gi of rank p for i = 1, 2, 3 which are
pairwise generically disjoint, i.e Xi is generically disjoint from Xj for i 6= j. Write (X1 ×X2)nor

and (X2×X3)nor for the normalisation of X in X1,K×XKX2,K and X2,K×XKX3,K , respectively,
and Y for the normalisation of X in X1,K×XK X2,K×XK X3,K . For the purposes of an example,
let Gi = HvK(λ) for all i and assume c1 ≤ c2 ≤ c3 and c′2 ≤ c′3. Then, by applying the type (p, p)
formula iteratively we can compute the conductor c′′1 as follows (similarly one can compute c′′2):
c′′1 = c′3p− c′2(p− 1) = (c3p− c2(p− 1)) p− (c1) (p− 1) = c3p

2 − c2p(p− 1)− c1(p− 1).

Remark 1.8 We discuss an example which illustrates the case (a1,a1) occuring in the proof of
Theorem 1.1, the case (µp, µp). Here m1 = m2 = 0. In this case one can show that the group
schemes acting on the torsors Yb → Xi,b with conductor variablesm′i areHn′i with 0 < n′i < vK(λ)

for i = 1, 2. Moreover, one can show n′1 = n′2 and m′1 = m′2. Suppose u1 = Th and u2 = T l (v(T ))
where v(T ) =

∑
i≥0 aiT

i such that a0 ∈ R× is a unit. The conductor variables m′1,m
′
2 are in fact

encoded in v(T ). The proof is complicated to present in general. Instead, we treat an instructive
example to illustrate the computations involved.

Suppose p 6= 2, u1 = T and u2 = T + T 3 = T (1 + T 2). Then the µp-torsors above Xb

generically defined by Zp1 = T and Zp2 = T (1 +T 2) are linearly disjoint. We begin by computing
m′1. We can write T = Zp where Z = Z1 is the parameter of X1,b. Then we can base change
the torsor equation for X2,b → Xb to X1,b: Zp2 = T (1 + T 2) = Zp(1 + Z2p). Removing the
multiplicative factor Zp (which is a p-power) gives rise to an equation of the form: Zp2 = 1+Z2p =(
1 + Z2

)p−∑p−1
k=1

(
p
k

)
Z2k. Multiplying this equation by the p-power

(
1 + Z2

)−p
= 1− pZ2 + ...,

results in an equation of the form: Zp2 = 1 −
∑p−1
k=1

(
p
k

)
Z2k + higher order terms. The smallest

power of Z which is coprime to p is obtained when k = 1. Therefore, m′1 = 2.
Now we want to determine m′2. We have that Zp2 = T (1 + T 2) which we can write Zp2 =

T ′ ⇔ Zp = T ′ where the parameter of X2,b is Z = Z2, and the relation T ′ = T (1 + T 2) im-

plies: T = T ′
(
1 + T 2

)−1
= T ′

(
1− T 2 + T 4 − T 6 + ...

)
= T ′ +

(
−T ′T 2 + T ′T 4 − T ′T 6 + ...

)
.

From this we deduce that T can be expressed as T ′+ higher powers of T ′. In particular,
T = T ′ − T ′3 + T ′5 − T ′7 + .... We can now proceed to base change the torsor equation of
X1,b → Xb to X2,b: Zp1 = T = T ′ − T ′3 + T ′5 − T ′7 + higher order terms = Zp − Z3p +
Z5p − Z7p + higher order terms = Zp

(
1− Z2p + Z4p − Z6p + higher order terms

)
. Removing

the multiplicative factor Zp, gives rise to an equation of the form: Zp1 = 1 − Z2p + Z4p −
Z6p + higher order terms =

(
1− Z2 + Z4...

)p − p
∑

(Z2 + Z4 + ...) + higher order terms; by

using the formula (∗∗). Multiplying this equation by the inverse p-power
(
1− Z2 + Z4...

)−p
,

results in an equation of the form: Zp1 = 1 − p
∑

(Z2 + Z4 + ...) + higher order terms =
1 − πvK(p)

∑
(Z2 + Z4 + ...) + higher order terms; up to multiplying the coefficients by units.

Therefore, the conductor variable is m′2 = 2 = m′1 and n′2 = vK(p)
p = n′1.
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§2 Computation of vanishing cycles

§2.1 Computation of vanishing cycles in Galois cover of degree p

In this section we recall some results from [Säıdi1].

Definition 2.1.1. For an R-curve X and a closed point x ∈ X, we let X := SpfÔX,x denote
the formal spectrum of the completion of the local ring of X at x. Assume Xk is reduced. Then
the genus of the point x is given by:

gx := δx − rx + 1

where

• δx = dimk

(
Õx/Ox

)
,

• rx is the number of maximal ideals in Õx.

Here Ox := ÔX,x/π denotes the stalk of the special fibre Xk at x and Õx denotes its normalisation
in its total ring of fractions.

If gx = 0, the point x is either a smooth or an ordinary multiple point (where δx = rx−1). Here
is a result which provides an explicit formula—a local Riemann-Hurwitz formula—comparing the
(above) genus in a Galois cover of degree p.

Theorem 2.1.2. (cf. Theorem 3.4 in [Saidi1]) Let X := Spf
(
Ôx
)

be the formal germ of an

R-curve at a closed point x with Xk reduced (cf. Notations). Let f : Y → X be a Galois cover of
degree p with Y normal and local. Assume that the special fibre Yk of Y is reduced. Let {℘i}i∈I
be the minimal prime ideals of Ôx which contain π, and let Xbi := Spf

(
Ô℘i

)
be the formal

completion of the localisation of X at ℘i. For each i ∈ I the above cover f induces a torsor
fbi : Ybi → Xbi under a finite and flat R-group scheme Gi of rank p above the boundary Xbi with
conductor ci, we write ci = 1 in case this torsor is trivial. If y ∈ Y is the closed point of Y ,
then:

2gy − 2 = p(2gx − 2) + dη − ds
where gy (resp. gx) denotes the genus of y (resp. x), dη is the degree of the divisor of ramification
in the morphism fK : YK → XK induced by f on the generic fibre, and ds =

∑
i∈I(ci−1)(p−1).

We will refer to this formula simply as the genus formula. The following corollary is immediate
from Theorem 2.1.2.

§2.2 Computation of vanishing cycles in Galois covers of type (p, p)

In this section we prove that the degree p genus formula in Theorem 2.1.2 can be extended to
the case of Galois covers of type (p, p). Let f : Y → X be a Galois cover of type (p, p) where X
is a formal germ of an R-curve, Y is local and normal, and Yk is reduced. We can express f as
the compositum of two, generically disjoint, degree p Galois covers Yi → X with Yi normal and
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local for i = 1, 2 as follows:

y2 Y

��

��

��
y1

��

gy2

==

Y1

Z/pZ

��

Y2

Z/pZ

��
x
��

gy1

==

X

Let {xi}i ⊂ XK be the (finite) set of branched points in the cover fK : YK → XK between
generic fibres and {yij}i,j ⊂ YK the set of ramified points in fK with r = Card{{yij}i,j}. Thus,
for fixed i the {yij}i,j are the points of YK above xi.

We assume there are r1 points (⊂ Y1) ramified in Y1,K → XK and r2 ramified points (⊂ Y )
in YK → Y1,K . Because the Galois group G is of type (p, p) an inertia subgroup of G has at most
cardinality p since char(K) = 0 and so the inertia subgroups must be cyclic. Therefore, two
cases occur: at the first stage we have one point above a branched point then at the second stage
there must be p points which sit above it or at the first stage we have p points above a branched
point then at the second stage there is 1 point above each of these p points. In summary, for a
branched point x = xi, we have one of the two situations occurring:

y1

''

y2

��

... yp

ww

y1

��

y2

��

... yp

��
ỹ

��

ỹ1

''

ỹ2

��

... ỹp

ww
x x

The diagram on the left depicts ramification occurring at the first stage while the diagram on
the right depicts ramification occurring at the second stage. Since these two cases are disjoint,
this gives us that r = r1p+ r2 where:

• r1 = Card{ ramified points in Y1 → X }

• r2 = Card{ ramified points in Y → Y1 }

For the branched points {xi}i ⊂ XK in the cover fK : YK → XK , we can visualise the general
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picture, including decomposition groups, as follows:

{yi,j}i,j ⊂ YK

Dyi,j

��
fK

��

{ỹi,j}i,j ⊂ Y1.K

Dỹi,j

��
{xi}i ⊂ XK

where Dỹi,j ≤ Z/pZ and Dyi,j ≤ Z/pZ denote the decomposition groups of the point ỹi,j at the
first stage and the point yi,j above ỹi,j at the second stage respectively. If only one point sits
above xi in Y1 then the order of the decomposition group Dỹi,j (resp. Dyi,j ) will equal p (resp.
1) and, otherwise, the opposite is true. This means we have a natural test for ramification in the
first and second step as follows:

p = |Dỹi,j | ⇔ p 6= |Dyi,j | = 1⇔ xi ramifies at 1st stage

p 6= |Dỹi,j | = 1⇔ p = |Dyi,j | ⇔ xi ramifies at 2nd stage

Now we turn to address the decomposition above the boundaries. Let {Xbt}t denote the
boundaries of X. For each t, the Galois cover f : Y → X induces a Galois cover ft : Ybt → Xbt

above the boundary Xbt (note that Ybt is not necessarily connected). Unlike the degree p case,
the cover Ybt → Xbt is not a torsor under G1,t × G2,t unless at least one of the group schemes
G1,t and G2,t is étale (see Theorem 1.2 and Theorem 3.5). However, at each intermediate degree
p stage, the corresponding cover is indeed a torsor where c1,t and c2,t (respectively c′1,t and c′2,t)
are the conductors associated to the torsor under the finite flat R-group schemes G1,t and G2,t

respectively (respectively G′1,t and G′2,t). Below is the picture when Ybt is connected; the case
we refer to as being unibranched throughout.

Ybt

(G′1,t,c
′
1,t)

}}

(G′2,t,c
′
2,t)

!!
Y1,bt

(G1,t,c1,t)

!!

Y2,bt

(G2,t,c2,t)

}}
Xbt

Our main Theorem in this section compares the genus in a Galois cover of type (p, p).
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Theorem 2.2.1. Let X := Spf
(
Ôx
)

be the formal germ of an R-curve at a closed point x

with Xk reduced. Let f : Y → X be a Galois cover with group Z/pZ × Z/pZ—that is, of type
(p, p)—where Y is normal and local and the special fibre Yk of Y is reduced.

Let f1 : Y1 → X and f2 : Y2 → X be two generically disjoint degree p Galois covers such that
Y is the compositum of Y1 and Y2. Let {Xbt}t∈I denote the boundaries of X. The Galois cover
f1 induces a torsor Y1,bt → Xbt under a finite and flat R-group scheme of type p with conductor
c1,t for each t. Similarly, c′1,t denotes the conductor associated to the torsor Ybt → Y1,bt . In
cases these torsors are trivial we write c1,t = 1 and c′1,t = 1, respectively. We let r1 (resp. r2)
denote the number of ramified points in Y1,K → XK (resp. YK → Y1,K).

If y ∈ Y is the closed point of Y , then:

2gy − 2 = p2(2gx − 2) + dη − ds

where gy (resp. gx) denotes the genus of y (resp. x), dη := (r1 + r2)p(p− 1) is the degree of the
divisor of ramification in the morphism fK : YK → XK induced by f on the generic fibre and

ds =
∑

boundary unibranched

throughout

[
(c′1,t − 1)(p− 1) + (c1,t − 1)p(p− 1)

]
+

∑
boundary unibranched

then p-branched

(c1,t − 1)p(p− 1) +
∑

boundary p-branched

then unibranched

(c′1,t − 1)(p− 1).

Proof. By Theorem 2.1.2 we have the following genus formula for the degree p Galois cover
Y1 → X expressing gy1 in terms of gx where y1 is the point of Y1 above x: 2gy1 − 2 = p(2gx −
2) + r1(p− 1)−

∑
t∈I(c1,t − 1)(p− 1). Each boundary Xbt is either unibranched or p-branched

in Y1 and so we can break up the ds summation as follows:

2gy1 − 2 = p(2gx − 2) + r1(p− 1)−
∑
t∈I

Xbt unibranched

(c1,t − 1)(p− 1)−
∑
t∈I

Xbt p-branched

(c1,t − 1)(p− 1).

Also by Theorem 2.1.2 we have the following genus formula for the degree p Galois cover Y → Y1

expressing gy in terms of gy1 : 2gy − 2 = p (2gy1 − 2) + r2p(p− 1)−
∑
t∈I(c

′
1,t − 1)(p− 1). Again,

we rewrite the ds summation into unibranched or p-branched cases:

2gy−2 = p(2gy1−2)+r2p(p−1)−
∑
t∈I

Y1,bt unibranched

(c′1,t−1)(p−1)−
∑
t∈I

Y1,bt p-branched

(c′1,t−1)(p−1).

Tracing a boundary Xbt through the entire type (p, p) Galois cover f : Y → X, keeping in
mind that under the cover Y1 → X the boundary can be p-branched or unibranched and, likewise,
under the cover Y → Y1, we have four possible cases which can arise. In particular, the boundary
is unibranched throughout, unibranched and then p-branched p-branched and then unibranched
or finally p-branched throughout. Now, substituting, our first genus formula expressing gy1 in
terms of gx into the second genus formula expressing gy in terms of gy1 , will give us a genus
formula expressing gy in terms of gx, as required:

2gy − 2 = p(2gy1 − 2) + r2p(p− 1)−
∑

t∈I
Y1,bt uni.

(c′1,t − 1)(p− 1)−
∑

t∈I
Y1,bt p-b.

(c′1,t − 1)(p− 1)

= p

(
p(2gx − 2) + r1(p− 1)−

∑
t∈I

Xbt uni.
(c1,t − 1)(p− 1)−

∑
t∈I

Xbt p-b.
(c1,t − 1)(p− 1)

)
+ r2p(p −

1)−
∑

t∈I
Y1,bt uni.

(c′1,t − 1)(p− 1)−
∑

t∈I
Y1,bt p-b.

(c′1,t − 1)(p− 1) = p2(2gx − 2) + (r1 + r2) p(p− 1)−
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∑
t∈I

uni., uni.

[
(c1,t − 1)p(p− 1) + (c′1,t − 1)(p− 1)

]
−
∑

t∈I
uni., p-b.

(c1,t − 1)p(p− 1)−
∑

t∈I
p-b., uni.

(c′1,t −

1)(p− 1)−
∑

t∈I
p-b., p-b.

0.

So, we obtain a genus formula in the form 2gy − 2 = p2(2gx − 2) + dη − ds where dη and ds
are as expressed in the statement of the Theorem.

For illustration purposes, we explain this picture on the boundary in the case of a uni-
branched throughout cover above an open disc and, so in what follows X = SpfR[[T ]] and
Xbt = SpfR[[T ]]{ 1

T }.
Case: unibranched throughout. Write, as above, c1 for the conductor in the first stage

and c′1 for the conductor in the second stage above Xbt . By Corollary 2.1.3 we have that gy1 =
(r1−c1−1)(p−1)

2 and by the genus formula given in Theorem 2.1.2 we can write 2gy − 2 = p(2gy1 −
2)+r2p(p−1)−(c′1−1)(p−1) and so substituting the first equation into the second results in 2gy−
2 = p(2gy1−2)+r2p(p−1)−(c′1−1)(p−1) = p ((r1 − c1 − 1)(p− 1)− 2)+r2p(p−1)−(c′1−1)(p−
1) = −2p2 + 2p2︸ ︷︷ ︸

0

−2p+(r1+r2)p(p−1)−(p−1) (c′1 − 1 + p(c1 + 1)) = p2(0−2)+(r1+r2)p(p−1)−

(p− 1) (c′1 − 1 + p(c1 + 1)− 2p) = p2(0− 2) + (r1 + r2)p(p− 1)︸ ︷︷ ︸
dη

− (p− 1) ((c′1 − 1) + p(c1 − 1))︸ ︷︷ ︸
ds

.

The results from the above discussion are summarised in the above table.

Table 2: Values for dη and ds in the (p, p) setting above one boundary

1st step 2nd step dη ds
uni uni (r1 + r2)p(p− 1) (c′1 − 1)(p− 1) + (c1 − 1)p(p− 1)
uni p (r1 + r2)p(p− 1) p(p− 1)(c− 1)
p uni (r1 + r2)p(p− 1) (p− 1)(c− 1)
p p (r1 + r2)p(p− 1) 0

From this we can deduce that the general form for the genus formula for (p, p)-type covers in
case X = Spf(Ôx) has a unique boundary (or equivalently Xk is unibranch) is given by

2gy − 2 = p2(2gx − 2) + dη − ds

where dη = (r1 + r2)p(p− 1) and where

ds =


(c′1 − 1)(p− 1) + (c1 − 1)p(p− 1) boundary unibranched throughout

(c− 1)p(p− 1) boundary unibranched, then p-branched

(c− 1)(p− 1) boundary p-branched, then unibranched

0 boundary p-branched throughout

We can derive from the above formula some interesting results:

Proposition 2.2.2. Let X = Spf (R[[T ]]) be the formal germ of an R-curve at a smooth point
x and let f : Y → X be a Galois cover with group Z/pZ× Z/pZ. Assume Y is normal and local
and that the special fibre Yk of Y is reduced. Let Xb = Spf(R[[T ]]{T−1}) be the boundary of X
and fb : Yb → Xb the induced Galois cover on the boundaries. Let y be the unique closed point
of Yk and dη := (r1 + r2)p(p − 1) be the degree of the divisor of ramification in the morphism
fK : YK → XK induced by f on the generic fibre and c1 and c′1 are as in cases 2 and 3 below
and where c is the only acting conductor at the relevant unibranched stage. Then:
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1. If Yk is unibranched above x then gy =
(p(r1+r2−c1−1)−c′1−1)(p−1)

2 .

2. The morphism Yk → Xk is unibranched and then p-branched above x then

gy = (p(r1+r2−c−1)−2)(p−1)
2 .

3. The morphism Yk → Xk is p-branched and then unibranched above x then

gy = (p(r1+r2−2)−c−1)(p−1)
2 .

4. The morphism Yk is p2-branched above x then gy = (p(r1+r2−2)−2)(p−1)
2 .

Proof. Follows directly from rearranging the type (p, p) vanishing cycles formula with gx = 0.

In this situation, we have the following test for whether y is a smooth point or not.

Corollary 2.2.3. With the same assumptions as in Proposition 2.2.2, y is a smooth point if
and only if we are in the case 1 of loc. cit. and p(r1 + r2 − 1) = 1 + c′1 + c1p holds.

Proof. (⇒) Suppose y is a smooth point. Then δy = dimk(Õy/Oy) = 0 and ry = 1 since there is
one branch and so gy = δy−ry+1 = 0−1+1 = 0 . If gy = 0 in the unibranched case then, by the
previous proposition, p(r1+r2−c1−1)−c′1−1 = 0 which rearranges to p(r1+r2−1) = 1+c′1+c1p.

(⇐) Suppose that we are in case 1 and p(r1 + r2 − 1) = 1 + c′1 + c1p, then gy = 0. As there
is one branch ry = 1 and so we have that δy = gy + ry − 1 = 0 + 1− 1 which in turn implies y is
a smooth point.

§3. On the existence of a torsor structure

In this section we discuss the question of the existence of a torsor structure for a Galois cover
of type (p, p) between formal normal R-schemes. In addition to the notations set at the begin-
ning of this paper, in this section we allow R to be a complete discrete valuation ring of equal
characteristic p > 0 with algebraically closed residue field k. Let X be a (formal) R-scheme of
finite type which is normal, geometrically connected, and flat over R. We further assume that
the special fibre Xk of X is integral. Let fK : YK → XK be an étale torsor under a finite étale
K-group scheme G̃ of rank pt (t ≥ 1), with YK geometrically connected, and f : Y → X the
corresponding morphism of normalisation. (Thus, Y is the normalisation of X in YK .) We are
interested in the following question.

Question 3.1. When is f : Y → X a torsor under a finite and flat R-group scheme G which
extends G̃, i.e., with GK = G̃?

The following is well known.

Theorem 3.2. (Proposition 2.4 in [Säıdi2]; Theorem 5.1 in [Tossici]) If char(K) = 0 we assume
that X is locally factorial. Let η be the generic point of Xk and Oη the local ring of X at η, which
is a discrete valuation ring with fraction field K(X): the function field of X. Let fK : YK → XK

be an étale torsor under a finite étale K-group scheme G̃ of rank p, with YK connected, and let
K(X)→ L be the corresponding extension of function fields. Assume that the ramification index
above Oη in the field extension K(X)→ L equals 1. Then f : Y → X is a torsor under a finite

and flat R-group scheme G of rank p which extends G̃ (i.e., with GK = G̃).
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Strictly speaking the above references treat the case where char(K) = 0. For the equal
characteristic p > 0 case see [Säıdi3], Theorem 2.2.1. Theorem 3.2 also holds when X is the
formal spectrum of a complete discrete valuation ring (cf. [Säıdi1], Proposition 2.3, and the
references therein in the unequal characteristic case, as well as Proposition 2.3.1 in [Säıdi4] in
the equal characteristic p > 0 case). It is well known that the analog of Theorem 3.2 is false in

general. There are counterexamples to the statement in Theorem 3.2 where G̃ is cyclic of rank
p2, see [Tossici], Example 6.2.12, for instance.

Next, we describe the setting in this section. Let n ≥ 1, and for i ∈ {1, · · · , n} let

fi,K : Xi,K → XK

be an étale torsor under an étale finite commutative K-group scheme G̃i, with Xi,K geometri-
cally connected, such that the {fi,K}ni=1 are generically pairwise disjoint, i.e. fi,K and fj,K are
generically disjoint for i 6= j. Assume that fi,K : Xi,K → XK extends to a torsor

fi : Xi → X

under a finite and flat (necessarily commutative) R-group scheme Gi with (Gi)K = G̃i, and with
Xi normal, ∀i ∈ {1, · · · , n}. (Thus, Xi is the normalisation of X in Xi,K .) Let

X̃K := X1,K ×XK X2,K ×XK · · · ×XK Xn,K ,

and X̃ the normalisation of X in X̃K . Thus, X̃K is the generic fibre of X̃ and we have the
following commutative diagrams

X̃K

zz �� �� �� ##
X1,K

G̃1

$$

X2,K

G̃2

��

X3,K

��

...

��

Xn,K

G̃n

{{
XK

and

X̃

��
X1 ×X X2 ×X ...×X Xn

tt vv �� (( **
X1

G1

''

X2

G2

##

X3

G3

��

...

{{

Xn

Gn

ww
X
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where X1 ×X X2 ×X · · · ×X Xn denotes the fibre product of the {Xi}ni=1 over X, the morphism

X̃ → X1×XX2×X · · ·×XXn is birational and is induced by the natural finite morphisms X̃ →
Xi, ∀i ∈ {1, · · · , n}. Note that fK : X̃K → XK (resp. f̃ : X1×XX2×X · · ·×XXn → X) is a torsor

under the étale finite commutativeK-group scheme G̃ := G̃1×SpecKG̃2×SpecK · · ·×SpecKG̃n (resp.
a torsor under the finite and flat commutative R-group scheme G1×SpecRG2×SpecR· · ·×SpecRGn),
as follows easily from the various definitions. Note that (G1 ×SpecR G2 ×SpecR · · · ×SpecR Gn)K =

G̃.
In this setup Question 1 reads as follows.

Question 3.3. When is f : X̃ → X a torsor under a finite and flat (necessarily commutative)

R-group scheme G which extends G̃, i.e., with GK = G̃?

Our main result in this paper is the following.

Theorem 3.4. We use the same notations as above. Assume that X̃k is reduced. Then the
following three statements are equivalent.

1. f : X̃ → X is a torsor under a finite and flat commutative R-group scheme G, in which
case G = G1 ×SpecR · · · ×SpecR Gn necessarily.

2. X̃ = X1 ×X X2 ×X · · · ×X Xn, in other words X1 ×X X2 ×X · · · ×X Xn is normal.

3. (X1 ×X X2 ×X · · · ×X Xn)k is reduced.

Note that the above condition in Theorem 3.4 that X̃k is reduced is always satisfied after
possibly passing to a finite extension R′/R of R (cf. [Epp]). It implies that the (Xi)k are
reduced, ∀i ∈ {1, · · · , n}. Moreover, Theorem 3.2 and Theorem 3.4 provide a “complete” answer
to Question 1 in the case of Galois covers of type (p, · · · , p), i.e., the case where rank(Gi) =
p, ∀i ∈ {1, · · · , n}.

In the case of (relative) smooth curves one can prove the following more precise result when
rank(Gi) = p, ∀i ∈ {1, · · · , n}. .

Theorem 3.5. We use the same notations and assumptions as in Theorem 3.4. Assume further
that X is a (relative) smooth R-curve, n ≥ 2, and rank(Gi) = p for 1 ≤ i ≤ n. Then the three
(equivalent) conditions in Theorem 3.4 are equivalent to the following.

4. At least n-1 of the finite flat R-group schemes Gi acting on fi : Xi → X are étale, for
i ∈ {1, · · · , n}.

Remark 3.6. 1) Theorem 3.4 holds true if X is the formal spectrum of a complete discrete
valuation ring (cf. the details of the proof of Theorem 3.4 below which applies as it is in this
case).
2) In §3 we provide examples showing that Theorem 3.5 doesn’t hold in relative dimension > 1.

Proof of Theorem 3.4

Next, we prove Theorem 3.4. We start by the following.

Proposition 3.7. Let G be a finite and flat commutative R-group scheme whose generic fibre is
a product of group schemes of the form GK = G̃1×SpecK G̃2 · · ·×SpecK G̃n, where the {G̃i}ni=1 are
finite and flat commutative K-group schemes. Then G is a product of finite and flat commutative
R-group schemes {Gi}ni=1, i.e., G = G1 ×SpecR G2 ×SpecR · · · ×SpecR Gn, with (Gi)K = G̃i.
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Proof. First, we treat the case n = 2. Thus, we have GK = G̃1 ×SpecK G̃2 and need to show

G = G1 ×SpecR G2 where (Gi)K = G̃i, for i = 1, 2. Let Gi be the schematic closure of G̃i in G,
for i = 1, 2 (cf. [Raynaud], 2.1). Therefore, G1 and G2 are closed subgroup schemes of G which
are finite and flat over SpecR (cf. loc. cit.). We have a short exact sequence

1→ G1 → G→ G/G1 → 1,

and likewise
1→ G2 → G→ G/G2 → 1,

of finite and flat commutative R-group schemes (cf. loc. cit.). It remains for the proof to
show that the composite homomorphism G2 → G → G/G1 is an isomorphism. The morphism
G→ G/G1 is finite. The morphism G2 → G is a closed immersion, hence finite. The composite
G2 → G/G1 of the above morphisms is then finite. We will show it is an isomorphism. The
morphism G2 → G/G1 is a closed immersion since its kernel is trivial. Indeed, on the generic

fibre the kernel is trivial: (G1 ∩G2)K = G̃1 ∩ G̃2 = {1}. The map G2 → G/G1 is then an
isomorphism as both group schemes have the same rank. Similarly, the morphism G1 → G/G2

is an isomorphism. Therefore, G = G1 ×SpecR G2 as required. Now an easy devissage argument
along the above lines of thought, using induction on n, reduces immediately to the above case
n = 2.

Proof of Theorem 3.4

Proof. (1 ⇒ 2) Assume that f : X̃ → X is a torsor under a finite and flat R-group scheme

G. In particular, GK = G̃ and G is necessarily commutative. We will show that X̃ = X1 ×X
X2 ×X ... ×X Xn, i.e., show that X1 ×X X2 ×X ... ×X Xn is normal (this will imply that G =
G1×SpecR · · · ×SpecRGn necessarily, as G1×SpecR ...×SpecRGn is the group scheme of the torsor

f̃ : X1 ×X X2 ×X · · · ×X Xn → X). One reduces easily by a devissage argument to the case
n = 2 which we will treat below.

Assume n = 2. We have the following commutative diagrams of torsors

X̃K

G̃2

||

G̃1

""
X1,K

G̃1 ""

X2,K

G̃2||
XK

and
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X̃

��
G′1

��

G′2

��

X1 ×X X2

G2

yy

G1

%%
X1

G1

��

X2

G2

��
X

where X̃ → Xi is a torsor under a finite and flat R-group scheme G′j , for j 6= i. Moreover,

G′1 =
(
G̃1

)schematic closure

, and G′2 =
(
G̃2

)schematic closure

(where the schematic closure is taken

insideG) holds necessarily, so thatG = G′1×SpecRG
′
2 (cf. Proposition 1.1). Note that X̃/G′1 = X2

must hold as the quotient X̃/G′1 is normal: since
(
X̃/G′1

)
k

is reduced (as X̃k is reduced and X̃

dominates X̃/G′1), and
(
X̃/G′1

)
K

= X2,K is normal (cf. [Liu], 4.1.18). Similarly X̃/G′2 = X1

holds. We want to show that X̃ = X1×XX2, and we claim that this reduces to showing that the
natural morphism G→ G1×SpecRG2 (cf. the map φ below) is an isomorphism. Indeed, if one has

two torsors, in this case X̃ → X and X1×XX2 → X above the same X, under isomorphic group
schemes, which are isomorphic on the generic fibres, and if we have a morphism X̃ → X1×X X2

which is compatible with the torsor structure and the given identification of group schemes (cf.
above diagrams and the definition of φ below), then this morphism must be an isomorphism.
(This is a consequence of Lemma 4.1.2 in [Tossici]. In [Tossici] char(K) = 0 is assumed, the
same proof however applies if char(K) = p.) We have two short exact sequences of finite and flat
commutative R-group schemes (cf. above diagrams and discussion for the equalities G1 = G/G′2
and G2 = G/G′1)

1→ G′2 → G→ G1 = G/G′2 → 1,

and
1→ G′1 → G→ G2 = G/G′1 → 1.

The morphisms G→ G1, and G→ G2, are finite. Consider the following exact sequence

1→ Ker(φ)→ G→ G1 ×SpecR G2,

where φ : G → G1 ×SpecR G2 is the morphism induced by the above morphisms. We want to
show that the map φ : G → G1 ×SpecR G2 is an isomorphism. We have Ker(φ) = G′1 ∩ G′2
by construction. However, G′1 ∩ G′2 = {1} since G = G′1 ×SpecR G

′
2 by Proposition 1.1, and

therefore Ker(φ) = {1} which means φ : G → G1 ×SpecR G2 is a closed immersion. Finally, G
and G1 ×SpecR G2 have the same rank as group schemes which implies φ is an isomorphism, as
required.

(2 ⇒ 3) Clear.
(3 ⇒ 1) By assumption (X1 ×X X2 ×X ...×X Xn)k is reduced. Moreover, we have
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(X1 ×X X2 ×X ...×X Xn)K = X̃K is normal. Hence X1×XX2×X ...×XXn is normal (cf. [Liu],

4.1.18), and X̃ = X1 ×X X2 ×X ... ×X Xn. We know that f̃ : X1 ×X X2 ×X ... ×X Xn → X is

a torsor under the group scheme G1 ×SpecR G2 ×SpecR .... ×SpecR Gn, so f : X̃ → X is a torsor
under the same group scheme.

Proof of Theorem 3.5

Next, we prove Theorem 3.5.

Proof. (1 ⇒ 4) Suppose that f̃ : X̃ → X is a torsor under a finite and flat R-group scheme G;

in which case X̃ = X1×X X2×X ...×X Xn and G = G1×SpecR · · · ×SpecRGn (cf. Theorem 3.4).
We will show that at least n− 1 of the finite flat R-group schemes Gi (acting on fi : Xi → X)
are étale, for i ∈ {1, · · · , n}. We argue by induction on the rank of G.

Base case: The base case pertains to rank(G) = p2 and n = 2. Thus, rank(G1) = rank(G2) =

p. We assume X̃ = X1 ×X X2 and prove that at least one of the two group schemes G1 or G2 is
étale. We assume that X is a scheme, and not a formal scheme, in which case the argument of
proof is the same.

Let x ∈ X be a closed point of X and X the boundary of the formal germ of X at x, so X
is isomorphic to Spec

(
R[[T ]]{T−1}

)
(cf. Background). We have a natural morphism X → X of

schemes. Write X1 := X ×X X1, X2 := X ×X X2, and X̃ := X ×X X̃. Thus, by base change,
X̃ → X (resp. X1 → X , and X2 → X ) is a torsor under the group scheme G (resp. under G1,
and G2) and we have the following commutative diagram

X̃ = X1 ×X X2

G2

xx

G1

&&
X1

G1
&&

X2

G2
xxX

Note that X̃ is normal as (X̃ )k is reduced (recall (X̃)k is reduced) and (X̃ )K is normal (cf. [Liu],

4.1.18), hence X̃ = X1 ×X X2 holds (cf. Theorem 3.4 and Remarks 3.6, 1).
Assume now that G1 and G2 are both non-étale R-group schemes. Then we prove that

X̃ → X can not have the structure of a torsor under a finite and flat R-group scheme which
would then be a contradiction. More precisely, we will prove that X1 ×X X2 can not be normal
in this case, hence the above conclusion (cf. Theorem 3.4).

We will assume for simplicity that char(K) = 0 and K contains a primitive p-th root of 1. A

similar argument as the one used below holds in equal characteristic p > 0. First, X̃ is connected
as X̃k is unibranch (the finite morphism X̃k → Xk is radicial). As the group schemes G1 and
G2 are non étale, their special fibres (G1)k and (G2)k are radicial isomorphic to either µp or
αp. We treat the case (G1)k is isomorphic to µp := µp,k and (G2)k is isomorphic to αp := αp,k;
the remaining cases are treated similarly. Recall X is isomorphic to Spec

(
R[[T ]]{T−1}

)
. For a

suitable choice of the parameter T the torsor X2 → X is given by an equation Zp2 = 1 + πnpTm

where n is a positive integer (satisfying a certain condition) and m ∈ Z (cf. Background. Also
see Proposition 2.3.1 in [Säıdi4] for the equal characteristic case), and the torsor X1 → X is given
by an equation Zp1 = f(T ) where f(T ) ∈ R[[T ]]{T−1} is a unit whose reduction f(T ) modulo

π is not a p-power (cf. loc. cit.). We claim that X̃ = X1 ×X X2 can not hold. Indeed, by base
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change X1 ×X X2 → X2 is a G1-torsor which is generically given by an equation Zp = f(T ),
where f(T ) is viewed as a function on X2. But in X2 the function T becomes a p-power modulo
π as one easily deduces from the equation Zp2 = 1 + πnpTm defining the torsor X2 → X . Indeed,
after a change of variables we can write the above equation as (1 + πnZ ′2)p = 1 + πnpTm which

reduces, after an easy computation, to an equation z′p2 = tm hence ((z′2)
1
m )p = t. In particular,

the reduction f(T ) modulo π of f(T ), viewed as a function on (X2)k, is a p-power. This means

that (X1 ×X X2)k is not reduced and X̃ → X2 can not be a G1 ' µp,R-torsor (cf. the proof of

Proposition 2.3 in [Säıdi1]), and a fortiori X̃ 6= X1 ×X X2.
Inductive hypothesis: Given G, we assume that the (1 ⇒ 4) part in Theorem 3.5 holds true

for smaller values of n ≥ 2. Then X̃1 := X1 ×X X2 ×X ... ×X Xn−1 is normal (since its special

fibre is reduced (as it is dominated by X̃ whose special fibre is reduced) and its generic fibre is
normal (cf. [Liu], 4.1.18)), hence at least n− 2 of the corresponding Gi’s, for i ∈ {1, · · · , n− 1},
are étale by the induction hypothesis. We will assume, without loss of generality, that Gi is étale
for 1 ≤ i ≤ n− 2.

Inductive step: We have the following picture for our inductive step (the case for n):

X̃

X̃1

yy
X̃2

&&

X1

tt
X2

zz
... Xn−2

%%
Xn−1

** ��
Xn

&&

X
))

étale

&&

étale

��

étale

~~

Gn−1

ww

Gn

We argue by contradiction. Suppose that neither Gn−1 nor Gn is étale. This would mean

that X̃2 → X, where X̃2 is the normalisation of X in (Xn−1)K ×XK (Xn)K , does not have
the structure of a torsor (as this would contradict the induction hypothesis). This implies that

X̃ → X does not have the structure of a torsor since it factorises X̃ → X̃2 → X, for otherwise
X̃2 → X being a quotient of X̃ → X would be a torsor. Of course, X̃ → X is a torsor to start
with by assumption and so this is a contradiction. Therefore, at least one of Gn−1 and Gn is
étale, as required.

(1⇐ 4) Suppose that at least n−1 of the Gi are étale, say: G1, G2, · · · , Gn−1 are étale. Write

X̃1 := X1×XX2×X ...×XXn−1. Then X̃1 → X is a torsor under the finite étale R-group scheme

G′1 := G1×SpecRG2×SpecR · · ·×SpecRGn−1. Moreover, X1×XX2×X ...×XXn = X̃1×XXn, and
X1 ×X X2 ×X ...×X Xn → Xn is an étale torsor under the group scheme G′1 (by base change).

In particular, (X1 ×X X2 ×X ...×X Xn)k is reduced as (Xn)k is reduced. Indeed, X̃ dominates

Xn and X̃k is reduced. Hence X̃ = X1 ×X X2 ×X ...×X Xn (cf. Theorem 3.4) and X̃ → X is a
torsor under the group scheme G := G1 ×SpecR G2 ×SpecR · · · ×SpecR Gn.
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3.8. Counterexample to Theorem 3.5 in higher dimensions

Theorem 3.5 is not valid (under similar assumptions) for (formal) smooth R-schemes of relative
dimension ≥ 2. Here is a counterexample. Assume char(K) = 0 and K contains a primitive
p-th root of 1. Let X = Spf(A) where A := R < T1, T2 > is the free R-Tate algebra in the two
variables T1 and T2. Let G1 = G2 = µp := µp,R, neither being an étale R-group scheme. For
i = 1, 2, consider the Gi-torsor Xi → X which is generically defined by the equation

Zpi = Ti.

We have the following commutative diagram

X1 ×X2

(Z′2)p=T2

µp

{{

(Z′1)p=T1

µp

##
X1

µp

Zp1 =T1

""

X2

µp

Zp2 =T2

||
X = Spf (R < T1, T2 >)

The torsor X1 ×X X2 → X2 is a G1 = µp-torsor defined generically by the equation

(Z ′1)p = T1

where T1 is viewed as a function on X2. This function is not a p-power modulo π as follows
easily from the fact that the torsor X2 → X is defined generically by the equation Zp2 = T2. In
particular, X1×X X2 → X2 is a non trivial µp-torsor, and (X1×X X2)k → (X2)k is a non trivial
µp,k-torsor. Hence (X1×XX2)k is necessarily reduced (as (X2)k is reduced since (X2)k → (X1)k
is a non trivial µp,k-torsor). Thus, X1 ×X X2 is normal (cf. Theorem 3.4) and X1 ×X X2 = X̃,

where X̃ is the normalisation of X in (X1×XX2)K , which contradicts the statement of Theorem
3.5 in this case.
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