
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

ExCCC-DCN: A Highly Scalable, Cost-Effective
and Energy-Efficient Data Center Structure

Zhen Zhang, Yuhui Deng, Member, IEEE, Geyong Min, Member, IEEE, Junjie Xie, and Shuqiang Huang

Abstract—Over the past few years, a lot of data centers have been constructed around the world due to the explosive growth of data. The
cost and energy consumption have become the most important challenges of building those data centers. Data centers today use commodity
computers and switches instead of high-end servers and interconnections for cost-effectiveness. In this paper, we propose a new type of
interconnection networks called Exchanged Cube-Connected Cycles (ExCCC). The ExCCC network is an extension of Exchanged
Hypercube (EH) network by replacing each node with a cycle. The EH network is based on link removal from a Hypercube network, which
makes the EH network more cost-effective as it scales up. After analyzing the topological properties of ExCCC, we employ commodity
switches to construct a new class of data center network models named ExCCC-DCN by leveraging the advantages of the ExCCC
architecture. The analysis and experimental results demonstrate that the proposed ExCCC-DCN models significantly outperform four
state-of-the-art data center network models in terms of the total cost, power consumption, scalability and other static characteristics. It
achieves the goals of low cost, low energy consumption, high network throughput and high scalability simultaneously.

Index Terms—Data center, Interconnection, Topology, Cost-effectiveness, Scalability.

F

1 Introduction

A s a service-oriented platform, data centers form the core
of cloud computing over Internet. The data center network

entails the design of both the network structure and the associ-
ated protocols to interconnect thousands of or even hundreds of
thousands of servers within a data center, with low cost, high
and balanced network capacity, and strong scalability [1], [2],
[3], [4]. Such data centers are essential to offer numerous online
applications, such as search, gaming and Web mail. They also
provide infrastructure services, such as GFS [5], Map-reduce [6]
and Dryad [7].

The data center architectures can be divided into two cat-
egories: switch-centric and server-centric [3]. A switch-centric
network typically consists of multi-level trees of switches to
connect the servers. The switch-centric networks are able to
support communications between tens of thousands of servers. In
switch-centric designs, the interconnection intelligence depends
on switches, while servers do not need to be modified for the
interconnection purpose. Fat-Tree [8] network belongs to this
category. However, the data centers are growing large and the
number of servers is increasing at an exponential rate. In order to
cope with these challenges, the bandwidth of the switches in the
core level is increasing, and the cost of the switches is also getting
higher and higher. Then the server-centric data center network
models were proposed to reduce the cost and improve the network
bandwidth. In server-centric designs, interconnection intelligence
is integrated in servers so that they can act as both computing
nodes and packet relay nodes. These designs generate overhead
of packet relay on the servers. DCell [9], BCube [10] and FiConn

• Z. Zhang, Y. Deng and J. Xie are are with the Department of Com-
puter Science, Jinan University, Guangzhou, Guangdong, China. E-
mail:zzhang@jnu.edu.cn, tyhdeng@jnu.edu.cn,xiejunjiejnu@126.com.

• G. Min is with the College of Engineering, Mathematicsand Physical
Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom. E-mail:
g.min@exeter.ac.uk.

• S. Huang is with theNetwork and Educational Technology Center, Jinan
University, Guangzhou, Guangdong, China. E-mail:hsq@jnu.edu.cn.

[11] fall into this category.
In recent years, a lot of data centers have been constructed

around the world due to the explosive growth of data. Many
companies, such as Microsoft, Google, Facebook, Yahoo and
Amazon, have spent billions of dollars to establish data centers.
Huge volumes of hardware, software, and database resources in
these large-scale data centers can be allocated dynamically to
millions of Internet users simultaneously. Meanwhile, the cost
and energy consumption have become the most important chal-
lenges of building such data centers [12], [13], [14], [15], [16].
Therefore, data centers today normally use commodity computers
and switches instead of high-end servers and interconnections to
achieve cost-effectiveness.

In order to construct highly scalable date center network
models involving huge quantity of servers, we should reduce the
number of switches and network ports as much as possible. By
doing so, we not only can save energy by reducing the power
consumed by the network devices, but also can decrease the cost of
those switches. Based on this idea, this paper attempts to propose
a new data center network model which is scalable, cost-effective
and power-saving .

Network topology has a significant impact on the performance
of data centers. Therefore, the interconnection network designed
to construct data centers, must have the properties of low degree,
low diameter and high scalability. Hypercube-type networks have
received much attention over the past few years since they offer
a rich interconnection structure with high bandwidth and loga-
rithmic diameter [17], [18], [19], [20]. However, the degree of
each processor element in Hypercube-type networks grows with
its dimension. This makes the Hypercube-type networks not well
suitable for massively parallel systems. An Exchanged Hyper-
cube(EH) is constructed by removing links from a Hypercube,
which makes the network topology more cost-effective when it
scales up [21].

The Cube-Connected Cycles (CCC) type network is an exten-
sion of hypercube network by replacing each node with a cycle

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

[22]. The CCC architecture is an attractive parallel computation
network, because it is suitable for massively parallel systems while
preserving all desired features of hypercube. Some variations of
CCC structures including Folded cube-connected cycles (FCCC)
[23] and Extended Cube-Connected Cycles (ECCC) [24] have
been proposed to enhance its properties

Based on EH, we propose a new type of interconnection
network called Exchanged Cube-Connected Cycles (ExCCC) with
good topological properties. After analyzing the topological prop-
erties of ExCCC, we construct a new type of data center network
model named ExCCC-DCN based on ExCCC. The ExCCC-DCN
models are constructed by using commodity switches. The pro-
posed ExCCC-DCN is highly scalable, cost-effective and energy-
efficient.

The major contributions of this paper include:
(1) We propose a new type of interconnection network ExCCC.

The ExCCC network is an extension of EH network by replacing
each node with a cycle. The EH network is based on link removal
from a Hypercube network, which makes the network more cost-
effective as it scales up.

(2) We construct a new type of data center network model
named ExCCC-DCN based on the proposed ExCCC. The pro-
posed ExCCC-DCN model outperforms four typical data center
models including Fat-Tree, BCube, DCell and FiConn in terms
of a number of performance criteria. For example, the number
of ports per switch is a small constant, the servers used in the
data center require only two ports, the total number of switches
is O(N/ log N), and the diameter of the data center network is
O(log N), where N is the number of the servers.

(3) We analyze the static characteristics including diameter,
bisection width, number of switches, number of ports, number of
wires of the above five different data center models. Furthermore,
the cost and power consumption of the models are also investigat-
ed. The analysis results demonstrate that ExCCC-DCN is a very
good candidate for building large-scale data centers.

(4) We design a simulator and build five different network
structures including Fat-Tree, DCell, BCube, FiConn and ExCCC-
DCN in the simulator to evaluate the throughput. The simulator
considers the data center network as a graph. The capacity of
each edge is customized. The simulator formalizes the flows with
four tuples including source host, destination host, start time and
flow size. Moreover, it estimates the delay caused by forwarding,
queuing, transmission and processing by assigning a fixed RTT
to each flow. Experimental results depict that the performance
of ExCCC-DCN outperforms that of FiConn to a certain degree.
Although the highest throughput of the ExCCC-DCN and FiConn
are both about 110Gbps, ExCCC-DCN takes less time to complete
the data transmission.

This paper is organized as follows. Section 2 introduces the
related work of data centers. Section 3 presents the definition
of ExCCC and analyzes the topological properties of ExCCC.
In Section 4, we propose the ExCCC-DCN based on ExCCC
network, and compare the ExCCC-DCN against other four state-
of-the-art DCN models. Finally, Section 5 concludes the paper.

2 RelatedWork
This section introduces four important data center network

structures including Fat-Tree [8], DCell [9], BCube [10] and
FiConn [11]. The Fat-Tree is a switch-centric structure. It has been
widely used in practice by companies like Google [25], Microsoft

[26], IBM [27], HP [28], SGI [29], SUN [30], and etc. The other
three structures belong to server-centric. Those networks have
been widely studied in the existing literature for data centers and
have been very popular, as demonstrated by their large number of
citations received so far. All the four network structures employ
commodity switches to build data centers.

Fat-Tree: Fat-Tree [8] normally has three levels of switches.
It normally consists of n pods. Each pod contains two levels (i.e.,
the edge level and the aggregation level) of n/2 switches. Each n-
port switch at the edge level uses n/2 ports to connect n/2 servers,
while using the remaining n/2 ports to connect the n/2 aggregation
level switches in the pod. There are n2/4 n-port switches at the
core level. Each switch at the core level has one port connecting
to one pod. Therefore, the total number of servers supported by
the Fat-Tree network structure is n3/4, and the total number of
switches is 5n2/4. Fig. 1 illustrates the topology of a Fat-Tree
structure with n = 4.

Pod

Core level

Aggregation level

Edge level

Fig. 1: Fat-Tree structure with n = 4.

DCell: DCell [9] is a level-based and recursively defined
network structure. In DCell0, n servers are connected to an n-
port commodity switch. Given t servers in a DCellk, t + 1 DCellks
are used to build a DCellk+1. The t servers in a DCellk connect to
the other t DCellks, respectively. DCell has a high bisection width.
Fig. 2 shows the topology of a DCell1.

DCell0[0]

DCell0[1]

DCell0[2]DCell0[3]

DCell0[4]

Fig. 2: DCell1 structure with n = 4.

FiConn: FiConn [11] uses a recursive scheme that is similar
to DCell to construct a data center network structure. FiConn0 is
composed of multiple servers and an n-port commodity switch
connecting the servers. Typically, n is an even number such as 8,
16, 32, or 48. Every server in FiConn0 has one port connected
to the switch in FiConn0. FiConnk is constructed by using b/2 +
1 FiConnk−1, where b is the total number of available backup
ports in FiConnk−1. In each FiConnk−1, b/2 servers out of the b
servers with available backup ports are selected to connect the b/2
other FiConnk−1s using their backup ports. Each backup port is
connected to one FiConnk−1. Fig. 3 depicts a FiConn1 with n = 4.

BCube: BCube [10] is also a server-centric interconnection
topology. However, it is targeted for shipping-container-sized data
centers containing 1 − 2K servers. It is also a level-based network
structure. A BCube0 is composed of n servers connecting to an
n-port switch. A BCube1 is constructed by employing n BCube0

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

FiConn0[0]

FiConn0[2] FiConn0

Fig. 3: FiConn1 with n = 4.

and n-port switches. By analogy, a BCubek is constructed by using
n BCubek−1 and nk n-port switches. Each server in a BCubek has
k + 1 ports. Fig. 4 illustrates a BCube1 with n = 4.

Fig. 4: BCube1 structure with n = 4.

3 EXCHANGED CUBE-CONNECTED CYCLES
An interconnection network is usually represented by a graph

where the nodes stand for processors and the edges stand for links
between the processors. A graph Γ = (V, E) is defined by a set V
of nodes and a set E of directed edges. The set E is a subset of
elements (u, v) of V × V . E is considered symmetric, if (u, v) ∈ E,
(v, u) ∈ E, in which case these two opposite arcs (u, v) and (v, u)
are denoted as an undirected edge (u, v).

3.1 Definition of ExCCC

Definition 1. The s+ t+1 dimension Exchanged Hypercube is
defined as an undirected graph EH(s, t) = (V, E)(s ≥ 1, t ≥ 1). V
is the set of nodes V = {as−1...a0bt−1...b0c|ai, b j, c ∈ {0, 1} f or i ∈
[0, s), j ∈ [0, t)}, and E is the set of edges E = {(v1, v2) ∈ V × V}.
E consists of three types of edges (i.e., E1, E2 and E3) which are
described as follows:

1) E1: v1 ⊕ v2 = 1 or,
2) E2: v1[0] = v2[0] = 1, v1[s + t : t + 1] = v2[s + t :

t + 1],H(v1[t : 1], v2[t : 1]) = 1 or,
3) E3: v1[0] = v2[0] = 0, v1[t : 1] = v2[t : 1],H(v1[s + t :

t + 1], v2[s + t : t + 1]) = 1.

where ⊕ denotes the exclusive-OR operator, v[x : y] indicates the
bit pattern of v between dimensions y and x inclusive, and H(x, y)
implies the Hamming distance between nodes x and y.

Fig. 5 shows an example of EH(1, 2).
The EH(s, t) contains two kinds of hypercubes denoted as

H(s : yt−1...y0c) with s dimensions and H(t : xs−1...x0c) with t
dimensions. In EH(1, 2), the node set {(0001), (1001)} construct
hypercube H(1 : 001) and nodes {(0001), (0011), (0101), (0111)}
construct hypercube H(2 : 01). The EH(s, t) is constructed by
using total 2t H(s : yt − 1...y0c) and 2s H(t : xs − 1...x0c).

Definition 2. The s + t + 1 dimension ExCCC(s, t) network is
an extension of EH by replacing each node in EH with a cycle.
The node set of ExCCC(s, t) is:

1000

0000

1100

0100

0001

0101

1001

1101

0011

0111

1011

1111

1010

0010

1110

0110

Fig. 5: EH(1, 2).

V = {(xs...x1yt...y10; p)|xi, y j ∈ Z2, i ∈ [1, s], j ∈ [1, t] and
p ∈ [0, s]} ∪ (ws...w1ut...u11; q)|wi, u j ∈ Z2, i ∈ [1, s], j ∈ [1, t] and
q ∈ [0, t]}.

The edges of ExCCC(s, t) are defined as follows:
e1 : (xs...x1yt...y10; p) → (xs...xp+1xp ⊕

1xp−1...x1yt...y10; p), p ∈ [1, s];
e2 : (xs...x1yt...y10; p)→ (xs...x1yt...y10; p± 1 mod (s+ 1), p ∈

[0, s];
e3 : (xs...x1yt...y10; 0)→ (xs...x1yt...y11; 0);
e4 : (xs...x1yt...y11; q)→ (xs...x1yt...yq+1yq⊕1yq−1...y11; q), q ∈

[1, t];
e5 : (xs...x1yt...y11; q) → (xs...x1yt...y11; q ± 1 mod (t + 1), q ∈

[0, t];
e6 : (xs...x1yt...y11; 0)→ (xs...x1yt...y10; 0).
The edges e2 and e5, e1 and e4, and e3 and e6 in Definition

2 are defined as cycle-edges, cube-edges, and exchanged-edges,
respectively.

The ExCCC(1, 2) is shown in Fig. 6.

1000;1

0000;1

0001;1

1000;0

0000;0

1100;1

0100;1

1100;0

0100;0

0001;0 0001;2

0101;1

0101;0 0101;2

0011;1

0011;2 0011;0

0011;1

0011;2 0011;0
1001;1

1001;0 1001;2

1101;1

1101;0 1101;2

1011;1

1011;2 1011;0

1111;1

1111;2 1111;0

1010;0

0010;0

1010;1

0010;1

1110;0

0110;0

1110;1

0110;1

Fig. 6: ExCCC(1, 2).

3.2 Topological Properties

In this section, we investigate different topological properties
of ExCCC.

Theorem 1. ExCCC(s, t) is isomorphic to ExCCC(t, s).
Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic,

if given any edge (u, v) ∈ E1, there exists a bijection f : V1 → V2

such that if (u, v) ∈ E1 then (f (u), f (v)) ∈ E2. According to the
definition of ExCCC, we have ExCCC(t, s) = (V1, E1), where

V1 = {(xs...x1yt...y10; p)|xi, y j ∈ Z2, i ∈ [1, s], j ∈ [1, t] and
p ∈ [0, s]} ∪ (ws...w1ut...u11; q)|wi, u j ∈ Z2, i ∈ [1, s], j ∈ [1, t] and
q ∈ [0, t]}, and ExCCC(s, t) = (V2, E2), where

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

V2 = {(xt...x1ys...y10; p)|xi, y j ∈ Z2, i ∈ [1, t], j ∈ [1, s] and
p ∈ [0, t]} ∪ (wt...w1us...u11; q)|wi, u j ∈ Z2, i ∈ [1, t], j ∈ [1, s] and
q ∈ [0, s]}.

Considering an arbitrary node u = (xs...x1yt...y1c; p) in ExCC-
C(t, s), we can define a bijection f : V1 → V2 as

f : (xs...x1yt...y1c; p)→ (yt...y1xs...x1c ⊕ 1; p)

.
In ExCCC(s, t), the node u = (xs...x1yt...y1c; p) connects two

nodes: u′ and u′′.

• Case 1. If c = 0, then c ⊕ 1 = 1, we have:
u′ = (xs...x1yt...y10; p ± 1 mod (s + 1)).

u′′ =

(xs...xp+1xp ⊕ 1xp−1...x1yt...y10; p) , if p , 0;
(xs...x1yt...y11; p) , if p = 0.

In ExCCC(t, s), the node v = f (u) = (yt...y1xs...x11; p)
connects two nodes of v′ and v′′:
v′ = (yt...y1xs...x11; p ± 1 mod (s + 1))

v′′ =

(yt...y1xs...xp+1xp ⊕ 1xp−1...x10; p) , if p , 0;
(yt...y1xs...x10; p) , if p = 0.

It is obvious that v′ = f (u′) and v′′ = f (u′′). Then we have
(f (u), f (u′)) ∈ E2 and (f (u), f (u′′)) ∈ E2

• Case 2. If c = 1, then c ⊕ 1 = 0, we have:
u′ = (xs...x1yt1; p ± 1 mod (s + 1));

u′′ =

(xs...y1yt...yp+1yp ⊕ 1yp−1...y11; p) , if p , 0;
(xs...x1yt...y10; p) , if p = 0.

In ExCCC(t, s), the node v = f (u) = (yt...y1xs...x10; p) con-
nects two nodes v′ and v′′:

v′ = (yt...y1xs...x10; p ± 1 mod (s + 1));

v′′ =

(yt...yp+1yp ⊕ 1yp−1...y1xs...x10; p) , if p , 0;
(yt...y1xs...x11; p) , if p = 0.

It is obvious that v′ = f (u′) and v′′ = f (u′′). Then we have
(f (u), f (u′)) ∈ E2 and (f (u), f (u′′)) ∈ E2.

Thus, the networks ExCCC(s, t) and ExCCC(t, s) are
isomorphic.�

For simplicity, we only analyze the ExCCC(s, t) network,
where t ≥ s.

Theorem 2. The ExCCC(s, t) network contains 2s+t cycles
with length of s + 1, and contains 2s+t cycles with length of t + 1.

Proof. As aforementioned, EH(s, t) contains 2t H(s :
yt−1...y0c) and 2s H(t : xs−1...x0c). The number of nodes in
H(s : yt−1...y0c) is 2s and the number nodes in H(t : xs−1...x0c)
is 2t. According to the definition of ExCCC, the ExCCC(s, t) can
be obtained by replacing (1) each node in H(s : yt−1...y0c) with
a circle of length t + 1; (2) each node in H(t : xs−1...x0c) with a
circle of length s + 1.�

Since each circle contains only one node as (xs...x1yt...y1c; 0),
the xs...x1yt...y1c is called circle-identifier. We use the circle-
identifier to denote each cycle in ExCCC(s, t). Two cir-
cles as...a1bt...b1c1 and cs...c1dt...d1c2 are called connected, if
there exist two nodes (as...a1bt...b1c1; p) ∈ as...a1bt...b1c1 and
(cs...c1dt...d1c2; q) ∈ cs...c1dt...d1c2, and these two nodes are
connected by cube-edge or exchanged-edge. If we condense each
cycle into a single node and connect them through cube-edges and
exchanged-edges, we get an Exchanged hypercube network.

The degree of a node in a graph is defined as the total number
of edges connected to the node. The degree of a network is defined
as the largest degree of all the nodes in its graph representation.
For any graph Γ, let V(Γ) and E(Γ) denote the node set and edge
set of Γ, respectively, and d(Γ) denote the degree of Γ.

Theorem 3. For the Γ =ExCCC(s, t), we have:

1) d(Γ) = 2, if s = 1 and t = 1;
2) d(Γ) = 3, if t ≥ 2.

Proof. According to the definition of ExCCC, we have

• Case 1. s = 1 and t = 1.

The degrees of node (x1y10; p) and node (x1y11; p) in
ExCCC(1, 1) are both 2. Thus, ExCCC(1, 1) is regular and
d(ExCCC(1, 1)) = 2.

• Case 2. t ≥ 2.

– Case 2.1. s = 1 and t ≥ 2.
The degree of the node (x1yt...y10; p) in Ex-
CCC(1, t) is 2, and the degree of the node
(x1yt...y11; p) is 3. Thus, ExCCC(1, t) is irregular
and d(ExCCC(1, t)) = 3.

– Case 2.2. s ≥ 2 and t ≥ 2.
The degree of the node (xs...x1yt...y10; p) in Ex-
CCC(s, t) is 3, and the degree of the node
(xs...x1yt...y11; p) is 3. Thus, ExCCC(s, t) is regular
and d(ExCCC(s, t)) = 3.�

Theorem 4. For the graph Γ =ExCCC(s, t), we have:
|V(Γ)| = 2t+1(t + 3) and |E(Γ)| = 2t(3t + 7), when s = 1 and

t ≥ 1;
|V(Γ)| = 2s+t(s + t + 2) and |E(Γ)| = 3 ∗ 2s+t−1(s + t + 2), when

s ≥ 2 and t ≥ s.
Let ∆T represent the smallest change in the number of the

network components (nodes or edges) needed to increase the
existing number of components T in a network while retaining
its topological characteristics. We use IE = ∆T/T to measure
the incremental expand ability of the interconnection network. Let
IEnode and IEedge denote the node expand ability and the edge
expand ability, respectively.

Theorem 5. For ExCCC(s, t), we have IEnode → 1 and
IEedge → 1 asymptotically.

Proof. According to Theorem 4, we have

1) Case 1. s = 1.
Since ExCCC(1, t) has 2t+1(t + 3) nodes and 2t(3t + 7)
edges, and ExCCC(s, t) has 2s+t(s + t + 2) nodes and 3 ∗
2s+t−1(s + t + 2) edges, we have

IEvertex(1, t) =
∆Tvertex(1, t)
Tvertex(1, t)

=
2t+2(t + 4) − 2t+1(t + 3)

2t+1(t + 3)

=1 +
2

t + 3
,

and

IEedge(1, t) =
∆Tedge(1, t)
Tedge(1, t)

=
2t+1(3(t + 1) + 7) − 2t(st + 7)

2t(3t + 7)

=1 +
6

3t + 7
,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

or

IEedge(1, t) =
∆Tedge(1, t)
Tedge(1, t)

=
3 ∗ 2t+1(t + 4) − 2t(3t + 7)

2t(3t + 7)

=1 +
10

3t + 7
.

Thus, IEnode(1, t) and IEedge(1, t) are both approaching 1
as t → +∞.

2) Case 2. t ≥ s ≥ 2. Since ExCCC(s, t) has 2s+t(s + t + 2)
nodes and 3 ∗ 2s+t−1(s + t + 2) edges, we have

IEvertex(s, t) =
∆Tvertex(s, t)
Tvertex(s, t)

=
2s+t+1(s + t + 3) − 2s+t(s + t + 2)

2s+t(s + t + 2)

=1 +
2

s + t + 2
,

and

IEedge(s, t) =
∆Tedge(s, t)
Tedge(s, t)

=
3 ∗ 2s+t(s + t + 3) − 3 ∗ 2s+t−1(s + t + 2)

s ∗ 2s+t−1(s + t + 2)

= 1 +
2

s + t + 2
.

Thus, IEnode(s, t) and IEedge(s, t) are both approaching 1
as s→ +∞ and/or t → +∞.

Theorem 5 shows that a ExCCC(s, t) has very small hardware
cost when it is expanded into ExCCC(s + 1, t) or ExCCC(s, t + 1).

Bisection width denotes the minimal number of edges to be
removed to partition a network into two parts which are equal in
size. A large bisection width implies a high network capacity and
a more resilient structure against failures.

Theorem 6. The bisection width of ExCCC(s, t) is 2s+t−1.
Proof.

• Case 1. s = t = 1 Obviously, the ExCCC(1, 1) contains 16
nodes and its bisection is 2.

• Case 2. t ≥ 2.
The node set {(xs...x1yt...y11; p)|p ∈ [0, t]} can be divided
into two node sets V1 and V2, where
V1 = {(xs...x1yt...y201; p)|p ∈ [0, t]} and
V2 = {(xs...x1yt...y211; p)|p ∈ [0, t]}.
It is obvious that |V1| = |V2|.
The nodes (xs...x1yt...y201; 0) in V1 connect the n-
odes (xs...x1yt...y200; 0) which are in node set V3 =

{(xs...x1yt...y200; q)|q ∈ [0, s]}.
The nodes (xs...x1yt...y211; 0) in V2 connect the n-
odes (xs...x1yt...y210; 0) which are in node set V4 =

{(xs...x1yt...y210; q)|q ∈ [0, s]}.
It is obvious that |V3| = |V4|.
The nodes set of ExCCC(s, t) is constructed by V1, V2, V3

and V4, and |V1 ∪ V2| = |V3 ∪ V4|. The number of edges
between V1 ∪ V2 and V3 ∪ V4 is 2s+t−1.�

3.3 One-to-One routing algorithm in ExCCC

An optimal one-to-one routing algorithm is to find the shortest
path between a source and destination pair, where the source
sends a message to the destination. Suppose the source node

is u = (xs...x1yt...y1c1; p) and the destination node is v =
(ms...m1nt...n1c2; q) in ExCCC(s, t). Here, we define a binary string
ws...w1zt...z1, where

wi = xi ⊕ mi, if 1 ≤ i ≤ s;
z j = y j ⊕ n j, if 1 ≤ j ≤ t.
Thus, every bit in ws...w1zt...z1 is 0, if the corresponding bits

in xs...x1yt...y1 and ms...m1nt...n1 are identical. Otherwise, every
bit in ws...w1zt...z1 is 1.

Example 1. For two nodes u = (101001010110; 2)
and v = (100111101011; 5) in ExCCC(5, 6), we have
(w5w4w3w2w1u6u5u4u3u2u10; 2) = (001110111100; 2).

In ExCCC(s, t), the shortest path from (xs...x1yt...y1c1; p)
to (ms...m1nt...n1c2; q) can be transformed to the path from
(ws...w1ut...u1c1, p) to (0s+tc2, q). Here, 0n denotes 0’s sub-
sequence of length n. For example, the path between u =
(101001010110; 2) and v = (100111101011; 5) in ExCCC(5, 6)
can be transformed to the path from (001110111100; 2) to
(000000000001, 5). The shortest path can be constructed as fol-
lows:

(001110111100; 2)⇒ (001010111100; 2)→
(001010111100; 3)⇒ (000010111100; 3)→
(000010111100; 2)→ (000010111100; 1)⇒
(000000111100; 1)→ (000000111100; 0)
(000000111101; 0)→ (000000111101; 1)⇒
(000000111101; 2)⇒ (000000111001; 2)⇒
(000000111001; 3)⇒ (000000110001; 3)⇒
(000000110001; 4)⇒ (000000100001; 4)⇒
(000000100001; 5)⇒ (000000000001; 5),
where each⇒,→ and represents a hypercube-edge, a cycle-

edge and an exchanged edge, respectively.
To construct such a path from (ws...w1ut...u1c1, p) to

(0s+tc2, q), all bits with value 1 in sequence ws...w1ut...u1 must be
transformed to 0 through cube-edges. Simultaneously, c1 must be
transformed to c2 through exchanged-edges and p must be trans-
formed to q through circle-edges. According to the definition of
ExCCC, the bit sequence ws...w1 can be transformed to 0s through
cube-edge when c1 = 0, while the bit sequence ut...u1 remains
fixed. Similarly, the bit sequence ut...u1 can be transformed to 0t

through cube-edge when c1 = 1, while the bit sequence ws...w1

remains fixed. It is obvious that the number of cube-edges in the
shortest path is equal to the number of 1 bit in ws...w1ut...u1. The
number of exchanged-edge in the shortest path is 0 or 2 when
c1 = c2. The number will become 1 when c1 , c2.

0

1

p=2

3

4

50
1

1
1
0

0

Fig. 7: Cycle Representation (CR).

Since the numbers of cube-edges and exchanged-edges in the
shortest path are fixed, we only need to minimize the number of
cycle-edges. In order to simplify the analysis, we only consider
the bit sequence ws...w1c1 and c1 = 0. Then, we propose a Circle
Representation (CR) for the bit sequence ws...w10. In Fig. 7, we
show the CR for (w5w4w3w2w10; 2) = (001110; 2) in Example 1.

Now, we define a procedure named path(ws...w10, p, q). This
procedure can construct the shortest path from p to q on the CR of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

p p
(a) (b)

Fig. 8: The path in Case of p = q.

p

0s

Fig. 9: The path in Case of p = q with 0’s subsequence in D.

p p
(a) (b)
q q

D2 D2

Fig. 10: The path in Case of p = q − 1.

ws...w10, and the path must pass through each 1 bit at least once.
The length of this shortest path is d. Then, we can construct the
shortest path according to the following three cases.

• Case 1. p = q, the node set (except p) on CR are defined
as D.

– Case 1.1. If there exists 1’s bit in D, two paths can
be constructed according to the methods as shown
in Fig. 8. The p can be increased or decreased to
itself, while these two paths can pass all bits in
ws...w10. The lengths of the two paths are both s+1.

– Case 1.2. If there exists 0’s subsequence in D, a
path can be constructed according to the method as
shown in Fig. 9. Here, we only consider the longest
0’s subsequence in D. If there are more than one 0’s
subsequence with the longest length, we can choose
anyone of them. The choice may be arbitrary, and
it does not affect the result. Let Z be the length of
this 0’s subsequence, then the length of this shortest
path is 2s − 2Z, where Z ≥ 0.

According to Case 1.1 and Case 1.2, we can get d =
min{s + 1, 2s − 2Z}, where Z ≥ 0.

• Case 2. p = q ± 1 (mod s + 1), the nodes p and q divide
the CR into two parts: D1 and D2, where |D1| = 0 and
|D2| = s− 1. Since the analysis of case p = q+ 1 is similar
to that of case p = q − 1, we only analyze the case of
p = q − 1.

– Case 2.1. A path can be constructed according to
the method shown in Fig. 10a when all bits in D2

are 0s. The length of this path is 1. Otherwise, the
path can be constructed as shown in Fig. 10b. The
path length is s.

p

D2

q D1

Fig. 11: The path in Case of p = q−1 with 0’s subsequence in D2.

(a) (b)

p

qq-1

p

q q+1

D1 D1D2 D2

Fig. 12: The paths in Case of p = q + τ.

– Case 2.2. If there exists 0’s subsequence in D2, a
path can be constructed according to the method
shown in Fig. 11. Here, we only consider the
longest 0’s subsequence in D2. If there is more than
one 0’s subsequence with longest length, we can
choose anyone of them, and it does not affect the
result. Let Z be the length of this 0’s subsequence,
and the length of this path is 2s − 2Z − 1, where
Z ≥ 0.

According to Case 2.1 and Case 2.2, we can get d =
min{s, 2s − 2Z − 1}, where Z ≥ 0.

• Case 3. p = q±τ (mod s+1) where τ ≥ 2, then the CR can
be divided into two parts: D1 and D2, where |D1| = τ − 1,
and |D2| = s − τ. Since the analysis of case p = q + τ is
similar to that of case p = q − τ, we only analyze the case
of p = q − τ.

– Case 3.1. Two paths can be constructed as shown in
Fig. 12. The length of the path in Fig. 12a is s+τ−1
and the other in Fig. 12b is 2s − τ.

– Case 3.2. If there exists 0’s subsequence in D1,
another path can be constructed according to the
method shown in Fig. 13. Here, we only consider
the longest 0’s subsequence in D1. If there is more
than one 0’s subsequence with the longest length,
we can choose anyone of them, and it does not
affect the result. Let Z1 be the length of this 0’s
subsequence, and the length of this shortest path is
s + τ − 2Z1 − 1, where Z1 ≥ 1.

– Case 3.3. If there exists 0’s subsequence in D2,
another path can be constructed according to the
method shown in Fig. 14. Similar to Case 3.2, we
only consider the longest 0’s subsequence in D2.
Let Z2 be the length of this 0’s subsequence, and
the length of this shortest path is 2s−τ−2Z2, where
Z2 ≥ 1.

According to the analysis, we can get d = min{s+τ−2Z1−
1, 2s − τ − 2Z2}, where Z1 ≥ 0 and Z2 ≥ 0.

Now, we construct the shortest path from node
(ws...w1ut...u1c1, p) to node (0s0tc2, q).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

p

D2

q

D1

Fig. 13: The path in Case of p = q− τ with 0s subsequence in D1.

p

D2

q

D1

Fig. 14: The path in Case of p = q − τ with 0s subsequence in D2

• Case 1. c1 = c2.

– Case 1.1. c1 = c2 = 0 and ut...u1 = 0t, the shortest
path can be constructed as following:

(ws...w10t+1; p)
path(ws...w10,p,q)
−−−−−−−−−−−−−→ (0s+t+1, q).

– Case 1.2. c1 = c2 = 0 and ut...u1 , 0t, the shortest
path can be constructed as following:

(ws...w1ut...u10; p)
path(ws ...w1,p,0)
−−−−−−−−−−−−→ (0sut...u11; 0)

path(ut ...u11,0,0)
−−−−−−−−−−−−→ (0s+t+1; 0)

path(0s+1,0,1)
−−−−−−−−−−→ (0s+t+1; q).

– Case 1.3. c1 = c2 = 1 and ws...w1 = 0s, the shortest
path can be constructed as following:

(0sut...u11; p)
path(ut ...u10,p,q)
−−−−−−−−−−−−→ (0s+t1, q).

– Case 1.4. c1 = c2 = 1 and ws...w1 , 0s, the shortest
path can be constructed as following:

(ws...w1ut...u11; p)
path(ut ...u11,q,0)
−−−−−−−−−−−−→ (ws...w10t+1; 0)

path(ws ...w11,0,0)
−−−−−−−−−−−−→ (0s+t1; 0)

path(0t−1 ,0,q)
−−−−−−−−−→ (0s+t1; q)

• Case 2. c1 , c2.

– Case 2.1 c1 = 0 and c2 = 1, the shortest path can be
constructed as following:

(ws...w1ut...u10; p)
path(ws ...w11,p,0)
−−−−−−−−−−−−−→ (0sut...u11; 0)

path(ut ...u10,0,q)
−−−−−−−−−−−−→ (0s+t1; q).

– Case 2.2 c1 = 1 and c2 = 0, the shortest path can be
constructed as following:

(ws...w1ut...u11; p)
path(ut ...u11,p,0)
−−−−−−−−−−−−→ (ws...w10t+1; 0)

path(ws ...w10,0,q)
−−−−−−−−−−−−→ (0s+t+1; q).

Example 2. We give some examples in ExCCC(4, 5) which
conform to the cases in the routing algorithm.

• Case 1.1: u = (1001000000; 1) and v = (0000000000; 4),
the shortest path between u and v can be constructed as
follows:
(1001000000; 1)⇒ (1000000000; 1)→ (1000000000; 0)
→ (1000000000; 4)⇒ (0000000000; 4).

• Case 1.2: u = (1001110010; 1) and v = (0000000000; 4),
the shortest path between u and v can be constructed as
follows:
(1001110010; 1)⇒ (1000110010; 1)
→ (1000110010; 0)→ (1000110010; 4)

⇒ (0000110010; 4)→ (0000110010; 0)
 (0000110011; 0)→ (0000110011; 1)
⇒ (0000110001; 1)→ (0000110001; 0)
→ (0000110001; 5)⇒ (0000010001; 5)
→ (0000010001; 4)⇒ (0000000001; 4)
→ (0000000001; 5)→ (0000000001; 0)
 (0000000000; 0)→ (0000000000; 4).

• Case 1.3: u = (0000100101; 1) and v = (0000000001; 4),
the shortest path between u and v can be constructed as
follows:
(0000100101; 1)→ (0000100101; 2)
⇒ (0000100001; 2)→ (0000100001; 1)
→ (0000100001; 0)→ (0000100001; 5)
⇒ (0000000001; 5)→ (0000000001; 4).

• Case 1.4: u = (1001100101; 1) and v = (0000000001; 4),
the shortest path between u and v can be constructed as
follows:
(1001100101; 1)→ (1001100101; 2)
⇒ (1001100001; 2)→ (1001100001; 1)
→ (1001100001; 0)→ (1001100001; 5)
⇒ (1001000001; 5)→ (1001000001; 0)
 (1001000000; 0)→ (1001000000; 1)
⇒ (1000000000; 1)→ (1000000000; 0)
→ (1000000000; 4)⇒ (0000000000; 4)
→ (0000000000; 0) (0000000001; 0)
→ (0000000001; 5)→ (0000000001; 4).

• Case 2.1: u = (1001100100; 1) and v = (0000000001; 4),
the shortest path between u and v can be constructed as
follows:
(1001110010; 1)⇒ (1000110010; 1)
→ (1000110010; 0)→ (1000110010; 4)
⇒ (0000110010; 4)→ (0000110010; 0)
 (0000110011; 0)→ (0000110011; 1)
⇒ (0000110001; 1)→ (0000110001; 0)
→ (0000110001; 5)⇒ (0000010001; 5)
→ (0000010001; 4)⇒ (0000000001; 4).

• Case 2.2: u = (1001100101; 1) and v = (0000000000; 4),
the shortest path between u and v can be constructed as
follows:
(1001100101; 1)→ (1001100101; 2)
⇒ (1001100001; 2)→ (1001100001; 1)
→ (1001100001; 0)→ (1001100001; 5)
⇒ (1001000001; 5)→ (1001000001; 0)
 (1001000000; 0)→ (1001000000; 1)
⇒ (1000000000; 1)→ (1000000000; 0)
→ (1000000000; 4)⇒ (0000000000; 4).

The diameter of graph Γ, denoted by diam(Γ), is defined as the
maximum distance for all pairs of distinct nodes in Γ. Diameter is
an important topological property of an interconnection network,
because it can be used to estimate the communication latency of
the network. Low diameter is one of the desirable proper-ties of
an interconnection network.

Theorem 7. For ExCCC(s, t), we have:

diam(ExCCC(s, t)) = 2(s + t + 1) + ⌊(s + 1)/2⌋ + ⌈(t/2)⌉.

Proof. According to the shortest path procedure, the longest
path can be constructed between (1s+t0; ⌈s/2⌉) and (0s+t+1; ⌈t/2⌉).
This path can be constructed as follows:

(1s+t0; ⌈s/2⌉)
path(1s+1 ,⌈s/2⌉,0)
−−−−−−−−−−−−→ (0s11+t; 0)

path(11+t ,0,0)
−−−−−−−−−→

(0s+t+1; 0)
path(0s+1,0,⌈t/2⌉)
−−−−−−−−−−−−→ (0s+t+1; ⌈t/2⌉).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

The length of this path is:

d =2s + 1 + ⌊(s − 1)/2⌋ + 2(t + 1) + ⌈t/2⌉
=2(s + t + 1) + ⌊(s − 1)/2⌋ + ⌈t/2⌉ + 1.

It is obvious that ⌊(s − 1)/2⌋ + 1 = ⌊(s + 1)/2⌋, then we have

d = 2(s + t + 1) + ⌊(s + 1)/2⌋ + ⌈t/2⌉.�

Since the number of nodes in ExCCC(s, t) is 2s+t(s + t + 2),
then we have the diameter of ExCCC is O(log N), where N is the
number of nodes in ExCCC.

Example 3. According to the Theorem 6, we can get
diam(ExCCC(4, 5)) = 25, which equals to the length of the short-
est path between nodes (1111111110; 2) and (0000000000; 3). The
shortest path is:

(1111111110; 2)⇒ (1101111110; 2)→ (1101111110; 1)⇒
(1100111110; 1)→ (1100111110; 2)→ (1100111110; 3)⇒
(1000111110; 3)→ (1000111110; 4)⇒ (0000111110; 4)→
(0000111110; 0) (0000111111; 0)→ (0000111111; 1)⇒
(0000111101; 1)→ (0000111101; 2)⇒ (0000111001; 2)→
(0000111001; 3)⇒ (0000110001; 3)→ (0000110001; 4)⇒
(0000100001; 4)→ (0000100001; 5)⇒ (0000000001; 5)→
(0000000001; 0) (0000000000; 0)→ (0000000000; 1)→
(0000000000; 2)→ (0000000000; 3).

3.4 Comparison with other CCC type networks

In this section, we give some comparisons of ExCCC and other
CCC-type networks.

Theorem 8. The number of nodes and edges in ExCCC(s, t)
will be about half of that in CCCs+t+1 as s and t are increased.

Proof. An (s + t + 1)-dimension Cube-Connected Cycles,
denoted CCCs+t+1, has (s+ t+1)2s+t+1 nodes and 3 ∗ (s+ t+1)2s+t

edges.

• Case 1. s = 1.
The ExCCC(1, t) has 2t+1(t+3) nodes and 2t(3t+7) edges,
then we have

2t+1(t + 3)
2t+2(t + 2)

=
t + 3

2(t + 2)
=

1
2
+

1
2(t + 2)

and
2t(3t + 7)

3 ∗ 2t+1(t + 2)
=

3t + 7
6(t + 2)

=
1
2
+

1
6(t + 2)

Both the two equations approach 1/2 as t → +∞.
• Case 2. t ≥ s ≥ 2.

The ExCCC(s, t) has 2s+t(s+ t+2) nodes and 3 ∗2s+t−1(s+
t + 2) edges, then we have

(s + t + 2)2s+t

(s + t + 1)2s+t+1 =
s + t + 2

2 ∗ (s + t + 1)
=

1
2
+

1
2(s + t + 1)

It approaches 1/2 as s→ +∞ and/or t → +∞.
Fig. 15 shows the comparison of the topological properties of

the CCC, FCCC and ExCCC in terms of the number of nodes and
the number of edges. As shown in Fig. 15, the number of nodes
and edges in CCC and FCCC are almost equal, and the numbers
of nodes and edges in ExCCC are about half of that in CCC and
FCCC.

In [31], I. Fris̆ et al. calculated the diameter of CCCn, and they
deduced the following lemma.

Lemma 1.
diam(CCC3) = 6
diam(CCCn) = 2n + ⌊n/2⌋ − 2 i f n ≥ 4

0 5 10 15

0

10

20

N
um

be
r o

f n
od

es
 (1

04)

Dimension

 CCCn
 FCCCn
 ExCCC(x, y)

0 5 10 15

0

20

40

N
um

be
r o

f e
dg

es
 (1

04)

Dimension

 CCCn
 FCCCn
 ExCCC(s,t)

Fig. 15: Comparing the numbers of nodes and edges of the CCCn,
FCCCn and ExCCC(s, t).

Theorem 9. For the s + t + 1 dimension ExCCC(s, t) and
CCCs+t+1, we have:

diam(ExCCC(s, t)) = diam(CCCs+t+1) + 2 or 3.

Proof.

• Case 1. s = t = 1.
We have diam(ExCCC(1, 1)) = 8 and diam(CCC3) = 6.
That is diam(ExCCC(1, 1)) = diam(CCC3) + 2.

• Case 2. s + t > 2.
We analyze the diameters of ExCCC(s, t) and CCCs+t+1

according to the following four cases.

– Case 2.1. If s is odd, t is odd, then s + t + 1 is odd,
we can get

diam(ExCCC(s, t)) =2(s + t + 1) + ⌊(s + 1)/2⌋
+ ⌈t/2⌉
=2(s + t + 1) + (s + 1)/2

+ (t + 1)/2

=2(s + t + 1) + (s + t)/2 + 1;

diam(CCCs+t+1) =2(s + t + 1) + ⌊(s + t + 1)/2⌋ − 2

=2(s + t + 1) + (s + t)/2 − 2.

Thus, diam(ExCCC(s, t)) = diam(CCCs+t+1) + 3.
– Case 2.2. If s is odd, t is even, then s+ t+1 is even,

we can get

diam(ExCCC(s, t)) =2(s + t + 1) + ⌊(s + 1)/2⌋
+ ⌈t/2⌉
=2(s + t + 1) + (s + 1)/2 + t/2

=2(s + t + 1) + (s + t + 1)/2;

diam(CCCs+t+1) =2(s + t + 1) + ⌊(s + t + 1)/2⌋ − 2

=2(s + t + 1) + (s + t + 1)/2 − 2.

Thus, diam(ExCCC(s, t)) = diam(CCCs+t+1) + 2.
– Case 2.3. If s is even, t is odd, then s+t+1 is odd,

we can get

diam(ExCCC(s, t)) =2(s + t + 1) + ⌊(s + 1)/2⌋
+ ⌈t/2⌉
=2(s + t + 1) + s/2 + (t + 1)/2

=2(s + t + 1) + (s + t + 1)/2;

diam(CCCs+t+1) =2(s + t + 1) + ⌊(s + t + 1)/2⌋ − 2

=2(s + t + 1) + (s + t + 1)/2 − 2.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

TABLE 1: Comparison of CCC-type networks.

Topology Number of
Nodes

Number of
Edges

Degree Diameter

CCCn n2n 3n2n−1 3 6, if n = 3.
2n + ⌊n/2⌋ − 2, if n ≥ 4

k-ECCCr 2k 2k−r(2r + k − r) 4 2r + k − r − 2
FCCCn (n + 1)2n 3(n + 1)2n−1 3 2n − 3 + n mod 2

ExCCC(1, t) (t + 3)2t+1 (3t + 7)2t 2 or 3 2t + ⌈t/2⌉ + 5
ExCCC(s, t) t ≥ s > 1 (s + t + 2)2s+t 3(s+ t+2)2s+t−1 3 2(s+ t+1)+ ⌊(s+1)/2⌋+ ⌈t/2⌉

0 6 12

10

20

30

40

D
ia
m
et
er

Dimension

 CCCn
 FCCCn
 ExCCC(s, t)

Fig. 16: Comparing the diameters of the CCCn, FCCCn and
ExCCC(s, t).

Thus, diam(ExCCC(s, t)) = diam(CCCs+t+1) + 2.
– Case 2.4. If s is even, t is even, then s+ t+1 is odd,

we can get

diam(ExCCC(s, t)) =2(s + t + 1) + ⌊(s + 1)/2⌋ + ⌈t/2⌉
=2(s + t + 1) + s/2 + t/2

=2(s + t + 1) + (s + t)/2;

diam(CCCs+t+1) =2(s + t + 1) + ⌊(s + t + 1)/2⌋ − 2

=2(s + t + 1) + (s + t)/2 − 2.

Thus, diam(ExCCC(s, t)) = diam(CCCs+t+1) + 2.�

Fig. 16 shows the comparison of the CCC, FCCC and ExCCC
in terms of diameter. As shown in Fig. 16, the diameter of ExCCC
is slightly larger than that of the other two kinds of networks.

Table 1 presents a comparison among CCC-type networks in
terms of the total number of nodes and edges, node degree and
diameter, which have significant impacts on the performance of a
parallel computing system.

4 DATA CENTER NETWORK EXCCC-DCN
Based on the ExCCC architecture, we build a new class of

data center network models named ExCCC-DCN. Our models are
suitable for building large-scale data center networks. The number
of ports per switch is a small constant, and the servers need only
two ports. The total number of switches is O(N/ log N), and the
diameter is O(log N), where N is the number of servers deployed
in the data center. Furthermore, it also tends to produce better
scalability, low cost and low power consumption.

4.1 Definiton of ExCCC-DCN

Let M and N denote the numbers of switches and servers in the
data center network model, respectively. The ExCCC-DCN model
can be constructed as follows.

Fig. 17: ExCCC-DCN(1, 2).

• Case 1. ExCCC − DCN(1, t), t ≥ 2.
The ExCCC(1, t) constructs a subnetwork of switches.
Then, we add a parallel edge for every circle-edge, and
t + 2 servers are linked by each parallel edge.
Thus, we have:

M = 2t+1(t + 3),

N = 2t+1(t + 2)2.

• Case 2. ExCCC − DCN(s, t), t ≥ s ≥ 2
Same as Case 1, ExCCC(s, t) constructs the subnetwork
of switches. We add a parallel edge for every circle-edge.
Then, s + t + 2 servers are linked by each parallel edge.
Thus, we have:

M = 2s+t(s + t + 2),

N = 2s+t(s + t + 2)2.

According to the definition of ExCCC-DCN, we can calculate
the number of edges in ExCCC-DCN. Then we have:

|E(ExCCC−DCN(s, t)| = 2t+1(t+2)(t+3)+2t(3t+7), when s = 1;

|E(ExCCC−DCN(s, t)| = 2s+t(s+t+2)(s+t+3)+3∗2s+t−1(s+t+2),

when s > 1.
In the ExCCC-DCN, the number of ports per switch is a small

constant, the servers need only two ports, and the total number of
switches is linear with the server size. In order to achieve low cost
and low energy consumption, we connect the servers by a chain.
If we replace the chain of servers by using a network of switches
and connect each server to only one switch, this will increase the
cost and power consumption due to the added network devices.
Furthermore, this will make the architecture more complex, and
the routing algorithm is difficult to be established. The overall cost
and power consumption would be higher than that of other four

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

TABLE 2: The characteristics of Fat-Tree, DCell, BCube, FiConn and ExCCC-DCN.

Fat-Tree DCell BCube FiConn ExCCC-DCN

Diameter 2log2N ≤ 2k+1 − 1 k + 1 ≤ 2k+1 − 1 < 3log2N
Bisection Width N/2 > N/(4lognN) N/2 > N/(4 × 2k) > N/2(log2N)2

Scalability limited by server ports (number
of ports)

No(≤ 2) Yes(k + 1) Yes(k + 1) No(≤ 2) No(2)

Scalability limited by switch ports (number
of ports)

Yes (n) No(n) No(n) No(n) No(5)

Number of switches 5N/n N/n (k + 1)N/n N/n N/ log N

1000;0;0

1000;0;1

1000;0;21000;0;3

1000;0;4

1001;0;0

1001;1;0 1011;1;0

1011;2;0

1111;2;0 1111;0;0

1110;0;0 1110;1;0

1110;0;4

1110;0;31110;0;2

1110;0;1

1000;1;1 11

1 11

11 1111

Fig. 18: Addressing and routing in ExCCC-DCN(1, 2).

typical data center network structures. Fig. 17 shows the ExCCC−
DCN(1, 2).

Node addressing in ExCCC-DCN is as follows.

1) The switch node addressing is the same to that in ExCCC,
but it includes an extra dimension that is assigned a value
of 0. For example, (1000; 1) in ExCCC(1, 2) becomes
(1000; 1; 0) in ExCCC-DCN(1, 2).

2) For each parallel edge, we give a direction from
the switch (xs...x1yt...y1c; p; 0) to the switch
(xs...x1yt...y1c; p + 1; 0). Then, the server addressing
between two switches is determined by the address
of its preceding switch node P. The preceding two
dimensions of address are the same as those of P. The
final dimension begins from 1 and increases by 1 for
each additional server.

For example, the addresses of servers between (1000; 0; 0)
and (1000; 1; 0) are (1000; 0; 1), (1000; 0; 2), (1000; 0; 3) and
(1000; 0; 4) as shown in Fig. 18.

Intuitively, routing scheme is done as follows. Assume that
the source node is server A and the destination node is server
B. Server A sends a message to its nearest switch C, then the
message finds its way to the switch D which is the nearest one to
the destination B. Finally, D forwards the message to the server B
along the parallel edge.

Example 4. In Fig. 18, routing from (1000; 0; 3) to (1110; 0; 2)
is denoted by dashed arrows:

(1000; 0; 3)→ (1000; 0; 4)→ (1000; 1; 0)→ (1000; 0; 0)→
(1001; 0; 0)→ ((1001; 1; 0)→ (1011; 1; 0)→ (1011; 2; 0)→
(1111; 2; 0)→ (1111; 0; 0)→ (1110; 0; 0)→ (1110; 0; 1)→
(1110; 0; 2).
Based on the routing scheme, we can calculate the diameter

of the ExCCC-DCN. Let diam denote the diameter of ExCCC-

DCN(s, t) network and d denote the diameter of the ExCCC(s, t)
network. Then we have:

• Case 1. ExCCC-DCN(1, t), t ≥ 2.

diam =d + t + 1 + (t + 1) mod 2

=2(t + 2) + 1 + ⌈ t
2
⌉ + t + (t + 1) mod 2

=3(t + 2) + ⌈ t
2
⌉ + (t + 1) mod 2.

• Case 2. ExCCC-DCN(s, t), t ≥ s ≥ 2.

diam =d + s + t + 1 + (s + t + 1) mod 2

=2(s + t + 1) + ⌊ s + 1
2
⌋ + ⌈ t

2
⌉ + s

+ t + 1 + (s + t + 1) mod 2

=3(s + t + 1) + ⌊ s + 1
2
⌋ + ⌈ t

2
⌉

+ (s + t + 1) mod 2.

It is clear that the diameter of ExCCC-DCNis O(log N),
where N is the number of servers in the network.

4.2 Comparision with other DCN models

For simplicity, we only consider ExCCC-DCN(s, t), where
t ≥ s ≥ 2. Table 2 compares ExCCC-DCN against other four
important data center networks including Fat-Tree, DCell, BCube
and FiConn in terms of diameter, bisection width, scalability, and
number of switches, where parameter N represents the number of
servers in a data center network, n indicates the number of switch
ports. Because FiConn, DCell and BCube are all recursively de-
fined structures, the levels of the network structure are defined as k.
All the characteristics have significant impacts on the performance
of a data center network structure.

4.2.1 Diameter

Diameter is normally used to evaluate the communication
latency of a network. Theoretically, communication delay grows
with the increase of the network diameter. Therefore, low diameter
is one of the desirable properties of an interconnection network
structure. The diameter of Fat-Tree is 2log2N. The exact diameters
of DCell and FiConn are still unknown. However, the upper
bounds of the diameters of the two structures are both 2k+1 − 1.
The diameter of BCube is k + 1. As analyzed above, the diameter
of ExCCC-DCN is only O(log N). Through further calculations,
we can determine that the diameter of ExCCC-DCN is less than
3log2N.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

TABLE 3: Price and Power Consumption of Switch and NICs.

Product Ports Price($) Power(W)

Switch D-Link DGS-1008D 8 40 3

NIC
Intel EXPI9400PT 1 96 5
Intel EXPI9402PT 2 148 7
Intel EXPI9404PT 4 427 10

4.2.2 Scalability
A typical way to expand a data center is adding more new

components including servers and switches to the system rather
than replacing old ones. Therefore, the scalability of the data
center network is crucial to the overall system performance.

All the five data center network models shown in Table 2
can be expanded to a very large scale. However, the scalability
of DCell and BCube are limited by the server ports, and the
scalability of Fat-Tree is limited by the switch ports. This means, if
some new switches and servers are added into the three data center
network models, some additional ports have to be added into the
original switches or servers to establish the link connections. In
contrast to DCell, BCube and Fat-Tree, ExCCC-DCN and FiConn
can be expanded without adding additional server ports or switch
ports.

FiConn is a kind of recursively defined network structure,
which means that the k-level structure is constructed by busing
several (k-1)-level structures. This feature results in a rapidly
increase of the system scale when the level is increased from level
k to level (k+1). For example, when we use 8-port switches to
construct a FiConn, the number of servers in FiConn2 is 440, and
the number of servers in FiConn3 will be increased to 24640. In
order to solve this problem, incomplete FiConn was proposed. An
incomplete FiConnk is constructed by employing a small number
of complete FiConnk−1, and the FiConnk−1 are fully connected.
However, the bisection widths of some Incomplete FiConns are
extremely low. The reason behind this will be explained in the
next subsection.

The scalability of ExCCC-DCN is much better than FiConn.
An incomplete ExCCC-DCN network can be constructed firstly.
This means we do not add parallel edges which contain servers for
some circle edges. When the ExCCC-DCN is required to expand,
we can dynamically add those parallel edges into the incomplete
ExCCC-DCN network to increase the system scale. Additionally,
the routing algorithm of the incomplete ExCCC-DCN network is
the same to the routing algorithm developed in section 4.1.

4.2.3 Bisection width
Large bisection width implies a high network capacity and a

more resilient structure against failures. As shown in Table 2, the
bisection widths of Fat-Tree and BCube are both N/2. The exact
bisection widths of DCell and FiConn are unknown. However, the
lower bounds of DCell and FiConn are N/(4lognN) and N/(4 ×
2k), respectively. The bisection of ExCCC-DCN(s, t) is the same
as that of ExCCC(s, t). It is 2s+t−1. Since the number of servers
in ExCCC-DCN is N = 2s+t(s + t + 2)2, then the bisection of
ExCCC-DCN is O(N/(log N)2). Through further calculations, we
can determine that the bisection width of ExCCC-DCN is larger
than N/2(log2N)2.

As shown in Table 2, the bisection widths of FiConn and
ExCCC-DCN are lower than that of other three data center net-
work models. This is mainly because FatTree, BCube and DCell

FiConn1[0]

FiConn [1]

Fig. 19: Incomplete FiConn2

use more switches and links to construct the data center structures.
Unfortunately, this approach will increase the cost and energy
consumption of building the corresponding data center networks.

As aforementioned, both ExCCC-DCN and FiConn can scale
without adding additional server ports or switch ports. However,
the bisection widths of some incomplete FiConn models are
extremely low. For example, if there are only two FiConnk−1s
in an incomplete FiConnk, the two FiConnk−1s will be connected
through a single link. The bisection width of this structure is 1.
When we use 4-port switches to construct a FiConn, an incomplete
FiConn2 is shown in Fig. 19. The bisection width of this structure
is only 1. In order to solve this problem, some additional links
have to be added into the incomplete FiConn to obtain a higher
bisection width. This implies that the connection model of the
incomplete FiConn is different to that of complete one. Then, the
routing algorithm for the incomplete FiConn must be changed.

4.2.4 Cost and energy consumption
This section compares the cost and energy consumption of

ExCCC-DCN against Fat-Tree, DCell, BCube and FiConn. In
order to explore the impacts of different system scales on the cost
and energy consumption, we construct two different scales of data
centers containing 2048 servers and 24640 servers respectively,
by using the five different network models. Since the number of
servers in the five different data center networks is identical (2048
servers or 24640 servers), the total cost and energy consumption of
the servers are the same. Therefore, we only analyze and evaluate
the cost and energy consumption incurred by the switches and
NICs in the data centers. Table 3 shows the price and power
consumption of switch and NICs used in the data centers [10],
[32]. Because the data center networks must be laid out with wires
and cables, the number of wires used in different networks is also
evaluated.

Table 4 summarizes the cost, power consumption and the
number of wires incurred by the five different network structures
for a data center containing 2048 servers. Table 5 describes the
same statistics when the data center is expanded from 2048 servers
to 24640 severs. Both the two tables demonstrate that the costs
and power consumptions of DCell and BCube are much higher
than that of Fat-Tree, FiConn and ExCCC-DCN. Additionally, the
cost of Fat-Tree is the lowest one among the above three network
structures, and the power consumption of Fat-Tree is higher than

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

TABLE 4: Cost, power and wiring comparison of a data center with 2048 servers.

Cost(k$) Power(kw)
Number of wires

switch NIC total switch NIC total

FiConn 10.2 303.1 313.3 0.8 14.3 15.1 2841
Fat-Tree 92.2 196.6 288.8 6.9 10.2 17.1 10240
BCube 51.2 874.5 925.7 3.8 20.5 24.3 8192
DCell 10.2 874.5 884.7 0.8 20.5 20.3 3538

ExCCC-DCN 10.2 303.1 313.3 0.8 14.3 15.1 2672

TABLE 5: Cost, power and wiring comparison of a data center with 24640 servers.

Cost(k$) Power(kw)
Number of wires

switch NIC total switch NIC total

FiConn 123.2 3646.7 3769.9 9.2 172.5 181.7 35420
Fat-Tree 843.2 2365.4 3208.6 63.2 123.2 186.4 95136
BCube 642.6 10521.3 11163.9 48.2 246.4 294.6 123072
DCell 123.2 10521.3 10644.5 9.2 246.4 255.6 52570

ExCCC-DCN 98.6 3646.7 3745.3 7.4 172.5 179.9 30800

FiCo
nn

FatT
ree

ExCC
C-DC

N
BCub

e DCe
ll

0

300

600

900

C
os

t(k
$)

Different DCN Structures

FiCo
nn

FatT
ree

ExCC
C-DC

N
BCub

e DCe
ll

0

9

18

Po
w
er
(k
s)

Different DCN Structures

Fig. 20: Cost and power comparison of a data center with 2048
servers.

that of FiConn and ExCCC-DCN. However, the scalability of
Fat-Tree is limited by the number of switch ports. Therefore, it
is not suitable for constructing large-scale data centers. Neither
BCube nor DCell is suitable for large-scale data centers from
the perspective of cost and power consumption in terms of the
statistics in Table 4 and Table 5. Fig. 20 and Fig. 21 confirm this
conclusion. Although the prices vary in the market, they do not
affect the results summarized in Table 4, Table 5, Fig. 20 and Fig.
21. When different models are used to build data center networks,
if the number of servers in the data center networks is identified,
then the number of switches and the number of NICs are both
determined. The prices of the switch and the NICs will affect the
total cost of the data center network, but not affect the comparison
results in terms of cost. This is because the total costs of the data
center networks change along with the changes of the prices of the
switch and NICs. The above analysis indicate that both FiConn
and ExCCC-DCN would be suitable for constructing large-scale
data centers.

Table 4 and Table 5 also list the number of wires when we
use the five different network structures to construct data centers
containing different number of servers (2048 servers or 20460
servers). Table 4 shows that the number of wires used by Fat-
Tree is the smallest one, and ExCCC-DCN takes the second place.
However, when the data center is expanded from 2048 servers to
20460 servers, ExCCC-DCN takes the minimal number of wires. It

FiCo
nn

FatT
ree

ExCC
C-DC

N
BCub

e DCe
ll

0

4000

8000

12000

C
os

t(k
$)

Different DCN Structures

Ficon
n

Fat-T
ree

ExCC
C-DC

N
BCub

e DCe
ll

0

100

200

300

Po
w

er
 (k

W
)

Different DCN Structures

Fig. 21: Cost and power comparison of a data center with 24640
servers.

is only one third of the wires employed by Fat-Tree. Additionally,
the wires used by ExCCC-DCN is still less than that of FiConn.
From this point of view, ExCCC-DCN is a better candidate than
FiConn due to the decreased complexity, when constructing large-
scale data centers.

Now, we consider the number of switches used in FiConn and
ExCCC-DCN when building large-scale data centers containing
roughly the same number of servers. Switches with 48 ports are
employed to construct the above two network structures. Due to
the requirement of ExCCC-DCN, a 48-port switch is virtualized to
nine 5-port switches to construct ExCCC-DCN. For the ExCCC-
DCN(s, t), the number of servers is 2s+t(s + t + 2)2, and the total
number of switch ports is 5 × 2s+t(s + t + 2). Then, we need M1 =

2s+t(s+t+2)/9 48-port switches to construct the network structure.
If we use FiConn to construct such a data center, the number
of 48-port switches is M2 = 2s+t(s + t + 2)2/48. Then we have
M1/M2 = 16/(3s+ 3t+ 6). If we construct large-scale data centers
containing tens of thousands of servers, the value of s + t must be
big enough. For example, if the number of servers is 25600, then
s + t = 8. Thus, M1/M2 = 8/15. This means that the number of
switches in ExCCC-DCN is about half of that in FiConn.

4.2.5 Throughput

In order to evaluate the throughput of five different network
structures, we design a flow-level simulator based on the approach

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

0 100 200 300 400 500
0

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (G

bp
s)

Time (sec)

 FatTree
 DCell
 BCube
 FiConn
 ExCCC

Fig. 22: Throughput Comparison of DCNs.

proposed in [33]. The simulator employs a discrete time model and
considers the data center network as a graph. This time model up-
dates the rates of all active flows every microsecond. The capacity
of each edge in the graph is customized. The simulator formalizes
the flows with four tuples including source host, destination host,
start time and flow size. The Maximum Segment Size (MSS) is
determined as 1500 Byte. Moreover, the simulator estimates the
delay caused by forwarding, queuing, transmission and processing
by assigning a fixed Round Trip Time (RTT) to each flow. In
current data center networks, the intra-rack RTT is approximately
100 µs [34]. Therefore, if a specific flow goes through a number
of switches, the RTT of this flow is the number of switches times
100 µs. Consequently, the simulator performs the flow scheduling
for a specific flow every RTT time. If a flow is scheduled, it
will be transferred to an inactive state during the next RTT time.
Additionally, the switches in the simulation are assumed to be
capable of using all ports at once.

We build five different network structures including Fat-Tree,
DCell, BCube, FiConn and ExCCC-DCN in the simulator to
evaluate the throughput. In the simulation, we use 8-port switches
to construct DCell, BCube, FiConn and ExCCC-DCN, while each
switch used in Fat-Tree has 26 ports. All the structures contain
4096 servers. The data rates of the links in the experiment are
all determined as 1Gbps. Benson et al. [35] conduct an empirical
study on the network traffic pattern across ten different data cen-
ters. They collect and analyze the data center network topologies,
flow-level and packet-level statistics. They report that 80% of flow
sizes are smaller than 10KB and the top 10% of large flows cover
most of bytes in data centers. Therefore, we generate a synthetic
flow workload according to the characteristics summarized in [35].
The workload contains 80000 flows with a total size of 4TB.
The maximum flow size is 1GB while the minimum size is 1KB.
Furthermore, the source and destination hosts ranging from 0 to
4096 for each flow are chosen randomly.

The experimental results of throughput are demonstrated in
Fig. 22. It shows that the performance behaviour of FatTree,
BCube and DCell are comparable. They achieve about 250 Gbps
throughput and all the data transmissions are completed within 150
seconds. The reason behind this is that the above three network
structures employ a large number of switches and abundant links
to connect servers, thus achieving very high throughput. Fig. 22
depicts that the performance of ExCCC-DCN outperforms that of
FiConn to a certain degree. Although the highest throughput of the
ExCCC-DCN and FiConn are both about 110Gbps, ExCCC-DCN
takes less time to complete the data transmission.

5 Conclusion
In this paper, we present a new type of Exchanged Cube-

Connected Cycle (ExCCC) network. Based on the proposed ExC-
CC, we introduce a data center network structure named ExCCC-
DCN by leveraging the advantages of ExCCC. In order to explore
the performance behaviour of ExCCC-DCN, we compare ExCCC-
DCN against other four typical data center network structures
including Fat-Tree, DCell, BCube and FiConn. According to the
analysis in this paper, the scalability of DCell and BCube are
limited by server ports, while the scalability of Fat-Tree is limited
by switch ports. However, both the ExCCC-DCN and FiConn can
scale without adding additional server ports or switch ports. In
contrast to ExCCC-DCN, the number of servers in FiConn is
increased rapidly when the level is increased from k to k+1. This
feature brings challenging to designing incrementally scalable data
centers when using FiConn. The network structure of ExCCC-
DCN does not have this problem. The additional servers can be
incrementally and dynamically added to the system.

The cost, power consumption and number of wires are eval-
uated when using the five different network structures to build
data centers. The experimental results demonstrate that ExCCC-
DCN is the best candidate for building large-scale data centers.
A simulator is also designed to evaluate the throughput of the
five network structures. The experimental results demonstrate that
the performance of ExCCC-DCN outperforms that of FiConn to
a certain degree. Although the highest throughput of the ExCCC-
DCN and FiConn are both about 110Gbps, ExCCC-DCN takes
less time to complete the data transmission. Additionally, in con-
trast to Fat-Tree, DCell, BCube and FiConn, ExCCC-DCN strikes
a very good balance among low cost, low energy consumption,
high network throughput and high scalability. It achieves these
goals simultaneously. Therefore, we believe that ExCCC-DCN is
a highly scalable, cost-effective and energy-efficient data center
network structure.

Acknowledgments
The authors would like to thank the anonymous reviewers

for their constructive comments and suggestions. This work is
supported by the National Natural Science Foundation (NSF) of
China under Grant (No. 61572232, and No. 61272073), the key
program of Natural Science Foundation of Guangdong Province
(No.S2013020012865), and the Fundamental Research Funds for
the Central Universities.

References
[1] T. Hoff, “Google architecture,” July2007 [Online]. Available:

http://highscalability.com/google-architecture, 2007.
[2] L. Rabbe, “Powering the yahoo! network,” Nov, 2006.
[3] Y. Zhang and N. Ansari, “On architecture design, congestion notification,

tcp incast and power consumption in data centers,” Communications
Surveys & Tutorials, IEEE, vol. 15, no. 1, pp. 39–64, 2013.

[4] A. Carter, “Do it green: Media interview with michael manos,” Dec. 2007
[Online]. Available: htt p://edge. technet. com/Media/Doing-ITGreen,
2007.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in
ACM SIGOPS operating systems review, vol. 37, no. 5. ACM, 2003,
pp. 29–43.

[6] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[7] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed
data-parallel programs from sequential building blocks,” in ACM SIGOP-
S Operating Systems Review, vol. 41, no. 3. ACM, 2007, pp. 59–72.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

[8] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Computer Communica-
tion Review, vol. 38, no. 4, pp. 63–74, 2008.

[9] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a scalable
and fault-tolerant network structure for data centers,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 4, pp. 75–86, 2008.

[10] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: a high performance, server-centric network architecture
for modular data centers,” ACM SIGCOMM Computer Communication
Review, vol. 39, no. 4, pp. 63–74, 2009.

[11] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, and S. Lu, “Ficonn: Using
backup port for server interconnection in data centers,” in INFOCOM
2009, IEEE. IEEE, 2009, pp. 2276–2285.

[12] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: research problems in data center networks,” ACM SIGCOMM
computer communication review, vol. 39, no. 1, pp. 68–73, 2008.

[13] K. Wu, J. Xiao, and L. M. Ni, “Rethinking the architecture design of
data center networks,” Frontiers of Computer Science, vol. 6, no. 5, pp.
596–603, 2012.

[14] H. Xu, C. Feng, and B. Li, “Temperature aware workload managementin
geo-distributed data centers,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 26, no. 6, pp. 1743–1753, 2015.

[15] L. Yu, T. Jiang, and Y. Cao, “Energy cost minimization for distributed
internet data centers in smart microgrids considering power outages,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 26, no. 1,
pp. 120–130, 2015.

[16] A. M. Al-Qawasmeh, S. Pasricha, A. A. Maciejewski, and H. J. Siegel,
“Power and thermal-aware workload allocation in heterogeneous data
centers,” Computers, IEEE Transactions on, vol. 64, no. 2, pp. 477–491,
2015.

[17] L. N. Bhuyan and D. P. Agrawal, “Generalized hypercube and hyperbus
structures for a computer network,” Computers, IEEE Transactions on,
vol. 100, no. 4, pp. 323–333, 1984.

[18] A. H. Esfahanian, L. M. Ni, and B. E. Sagan, “The twisted n-cube
with application to multiprocessing,” Computers, IEEE Transactions on,
vol. 40, no. 1, pp. 88–93, 1991.

[19] K. Efe, “The crossed cube architecture for parallel computation,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 3, no. 5, pp. 513–
524, 1992.

[20] A. El-Amawy and S. Latifi, “Properties and performance of folded
hypercubes,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 2, no. 1, pp. 31–42, 1991.

[21] P. K. Loh, W. J. Hsu, and Y. Pan, “The exchanged hypercube,” IEEE
Transactions on Parallel & Distributed Systems, no. 9, pp. 866–874,
2005.

[22] F. P. Preparata and J. Vuillemin, “The cube-connected cycles: a versatile
network for parallel computation,” Communications of the ACM, vol. 24,
no. 5, pp. 300–309, 1981.

[23] M. Sebastian, P. N. Rao, and L. Jenkins, “Properties and performance of
folded cube-connected cycles,” Journal of systems architecture, vol. 44,
no. 5, pp. 359–374, 1998.

[24] R. A. Ayoubi, Q. M. Malluhi, and M. A. Bayoumi, “The extended
cube connected cycles: An efficient interconnection for massively parallel
systems,” Computers, IEEE Transactions on, vol. 45, no. 5, pp. 609–614,
1996.

[25] A. Singh, J. Ong, A. Agarwal et al., “Jupiter rising: A decade of clos
topologies and centralized control in google’s datacenter network,” in
ACM SIGCOMM Computer Communication Review. ACM, 2015, pp.
183–197.

[26] “Inside microsoft’s $550 million mega data centers,”
http://www.informationweek.com/news/hardware/data centers/
showArticle.jhtml?articleID=208403723, 2009.

[27] B. Canney, “Ibm portable modular data center overview,”
http://www-05.ibm.com/se/news/events/datacenter/pdf/PMDC
Introducion - Brian Canney.pdf, 2009.

[28] HP, “Hp performance optimized datacenter,” ftp://ftp.hp.com/pub/
c-products/servers/pod/north america pod datasheet 041509.pdf,
2016.

[29] SGI, “Sgi ice cube,” http://www.sgi.com/pdfs/4160.pdf, 2016.
[30] O. Sun, “Sun modular datacenter,” http://www.sun.com/service/sunmd,

2016.
[31] I. Friš, I. Havel, and P. Liebl, “The diameter of the cube-connected

cycles,” Information processing letters, vol. 61, no. 3, pp. 157–160, 1997.
[32] ZOL, “Online,” http://www.zol.com.cn, 2016.
[33] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,

“Hedera: Dynamic flow scheduling for data center networks.” in NSDI,
vol. 10, 2010, pp. 19–19.

[34] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” ACM
SIGCOMM computer communication review, vol. 41, no. 4, pp. 63–74,
2011.

[35] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 2010, pp. 267–280.

PLACE
PHOTO
HERE

Zhen Zhang received the BS and MS degrees
in computer science from Jilin University, China,
in 1999 and 2003, and PhD degree in College
of Computer Science and Engineering from South
China University of Technology, China, in 2011.
He became a lecturer and an associate professor
in 2003 and 2012, respectively, in the department
of computer science at Jinan University. His re-
search interests include graph theory, parallel and
distributed processing and complex networks.

PLACE
PHOTO
HERE

Yuhui Deng is a professor at the Computer Sci-
ence Department of Jinan University. Before joining
Jinan University, Dr. Yuhui Deng worked at EMC
Corporation as a senior research scientist from
2008 to 2009. He worked as a research officer at
Cranfield University in the United Kingdom from
2005 to 2008. He received his Ph.D. degree in com-
puter science from Huazhong University of Science
and Technology in 2004. His research interests
cover green computing, cloud computing, informa-
tion storage, computer architecture, performance

evaluation, etc.

PLACE
PHOTO
HERE

Geyong Min is a Professor of High Performance
Computing and Networking in the Department of
Mathematics and Computer Science within the Col-
lege of Engineering, Mathematics and Physical
Sciences at the University of Exeter, United King-
dom. He received the PhD degree in Computing
Science from the University of Glasgow, United K-
ingdom, in 2003, and the B.Sc. degree in Computer
Science from Huazhong University of Science and
Technology, China, in 1995. His research interests
include Next Generation Internet, Wireless Com-

munications, Multimedia Systems, Information Security, Ubiquitous Comput-
ing, Modelling and Performance Engineering.

PLACE
PHOTO
HERE

Junjie Xie received the B.E. degree in software en-
gineering from Jinan University, Guangzhou, Chi-
na, in 2013. He is currently a Research Studen-
t with the Department of Computer Science, Ji-
nan University. His research interests include net-
work interconnection, data center architecture, and
cloud computing.

PLACE
PHOTO
HERE

Shuqiang Huang received the PhD degree in Col-
lege of Computer Science and Engineering from
South China University of Technology, China, in
2009. He is currently an advanced engineer in the
Educational Technology Center, Jinan University.
His research interests include graph theory, parallel
and distributed processing and wireless networks.

