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In this article we present methods for measuring hindered Brownian motion in the confinement of complex
3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle
tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves,
we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies
and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly
heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on
measuring mean squared displacements are also discussed. The use of these methods was crucial for the
measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic
chip. The particles explored an array of parallel channels with different cross sections as well as the bulk
reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial
directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but
purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled
particles and particles driven by an external force, e.g. electrokinetic or dielectrophoretic forces.
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I. INTRODUCTION

In the past, the phenomenon of confined Brownian mo-
tion, sometimes also described as hindered diffusion (i.e.
the decrease of diffusion coefficients in proximity to con-
fining walls) has been studied in detail theoretically1–5,
numerically6 as well as experimentally7–15. For general
cases, the theoretical treatment is quite involved and
analytical predictions have been limited to very simple
confining geometries such as plane walls or cylindrical
channels with infinite extension. Past experiments have
mainly focused on confirming the analytical predictions
for a sphere diffusing in proximity of plane walls7–12.
Common to these experimental approaches is the use
of video microscopy observations of single micrometer
or even sub micrometer sized spherical colloids. Early
experiments for measuring confined Brownian motion
employed bright-field microscopy and were restricted to
tracking in 2D and the axial position was determined
from averaging over the accessible volume9. Later, it
became apparent that in bright-field microscopy images
the axial position of spherical colloids could be extracted
from comparing the radial intensity distribution of parti-
cles to prior calibration measurements on colloids stuck
to a glass slide and moved axially with a piezo stage16.
The achieved tracking accuracies using calibration mea-
surements on 15,000 images of colloids was 150 nm axi-
ally and 10 nm laterally for 300 nm colloidal spheres. The
same authors proposed the use of blinking optical tweez-
ers to allow controlled positioning of colloids for measur-
ing diffusion coefficients. Subsequently, this technique
was applied in the study of confined Brownian motion
of spherical colloids above one as well as in between two

parallel glass slides7. More recently, the measurement of
hindered diffusion close to a plane wall has been investi-
gated at even higher precision with digital holographymi-
croscopy and total internal reflection microscopy reach-
ing axial accuracies better than 50 nm8,10,11. For the
case of free diffusion in a homogeneous medium tracking
accuracies with digital holography microscopy as high as
1 nm in all three axial directions have been reported17,18

and hindered diffusion perpendicular to a plane wall was
measured with the same accuracy using total internal re-
flection microscopy. To our knowledge, so far only one
study investigates the spatial dependence of diffusion co-
efficients in hindered diffusion of colloidal particles in a
more complex geometry (in this case a closed cylinder)13.
Given the lack of video microscopy studies of hindered
diffusion in the presence of more complicated boundaries,
techniques for carrying out such experiments have not yet
been investigated in detail. This is somewhat surprising
as diffusion plays a major role for transport processes in
the biological world that exhibits a rich variety of shapes.
Mimicking these processes in vitro hence requires the re-
alization of similarly complicated geometries. A possible
practical application of knowledge of confined Brownian
motion is in designing drugs in order to maximize their
diffusive intake by target cells19. Especially for large and
hydrophobic molecules, diffusion through aqueous pro-
tein pores (facilitated transport) is a major transport
mechanism19. There have been sophisticated attempts to
rationalize the mechanisms of channel-facilitated trans-
port theoretically20,21 as well as experimentally22. These
models require knowledge of the functional form of hin-
dered diffusion coefficients along a bulk-channel-bulk ge-
ometry for which no analytical or experimental data ex-
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ists to date. The reason why it is important to discern
between diffusivity values in the bulk, the channel en-
trance region and the channel interior is that they gov-
ern different aspects of facilitated transport. While the
bulk diffusivity is responsible for transport of particles to-
wards the channel, the diffusivity in the channel entrance
region determines the particle in- and efflux to and from
the channel, and finally the average translocation time is
dominated by the channel interior diffusivity.
Out of this consideration we feel the need to discuss
methods for measuring hindered diffusion in complex
geometries thus enabling future studies in this area of
physical and biological importance. The methods pre-
sented here were crucial for studying the diffusion be-
havior of colloids in a microfluidic bulk-channel-bulk ge-
ometry which we observed using bright-field digital video
microscopy. While bright-field microscopy allows for less
resolution than the before mentioned techniques that em-
ploy optical trapping and detailed scattering analysis, it
is superior in the way that it is suitable for measure-
ments on entire particle ensembles with very low compu-
tational cost, thus reducing the experimental duration.
Using larger particle ensembles has the further benefit
that a large volume can be observed simultaneously.
In addition to the measurement of hindered Brownian
motion, the presented tracking algorithm is also applica-
ble to other phenomena such as sub-micrometer particles
under electrokinetic or dielectrophoretic forces observed
with fluorescence or phase contrast microscopy. Interest-
ingly, single particle tracking can increase the sensitiv-
ity of characterization of micro-organism subpopulations
by dielectrophoretic separation23. The obtained parti-
cle displacement-vs-time curves allow for a direct extrac-
tion of the dielectrophoretic force and a simultaneous
measurement of positive and negative dielectrophoresis
which has advantages over techniques that use a time-
dependent fluorescence intensity averaged over a large
volume24.
In this article we first describe the experimental setup
used for acquiring the microscopy videos of diffusing col-
loids. We then present our algorithm for automated par-
ticle tracking which yields colloid trajectories in 3D. In
the following, we describe how to optimally extract glob-
ally averaged colloid diffusivity and tracking accuracy
from these trajectories. Here we include a discussion of fi-
nite size effects of the tracking region on measuring mean
squared displacements (MSDs). Next, we describe the
simultaneous measurement of local diffusion coefficients
and tracking accuracies from the acquired trajectories for
which we introduce local MSD -vs-time curves. We then
discuss how to correct the MSDs for the influence of a
stationary drift field as well as how to measure the local
drift velocities. We conclude by presenting a method for
measuring the system geometry in situ and in 3D using
the tracking data.

II. EXPERIMENTAL SETUP

Our microfluidic chip equipped with sub-micrometer
channels was manufactured in the following way. First,
an array of Platinum wires, semi-elliptical in cross sec-
tion, was deposited on a Silicon substrate via focused
ion beam. Each wire cross section was measured in

situ by slicing the wire at one end, tilting the sam-
ple at 63 ◦C and imaging via an electron beam. Sec-
ond, conventional photolithography, replica molding and
Polydimethylsiloxane (PDMS) bonding to a glass slide
were carried out to define 16 µm thick reservoirs sepa-
rated by a PDMS barrier and connected by an array of
channels obtained as a negative replica of the Platinum
wires (Figure 1). Further details of the fabrication are
reported elsewhere22,25. The chip was filled with spheri-
cal polystyrene particles (Polysciences (Warrington, PA),
(505 ± 8) nm diameter) dispersed in a 5 mM KCl solu-
tion and continuously imaged through an oil immersion
objective (100×, 1.4 N.A., UPLSAPO, Olympus). Il-
lumination was provided from above by an LED light
(Thorlabs MWLED). The transmitted light was collected
by the objective and coupled to a CCD camera (frame
rate of 30 fps and magnification of 16.7 px/µm in x− and
14.7 px/µm in y-direction after video compression). Ex-
periments were automated by using a custom-made pro-
gram based on LabVIEW for positioning and video acqui-
sition as reported elsewhere22 and performed overnight in
order to reduce the noise level.

III. 3D PARTICLE TRACKING

In order to achieve automated 3D particle tracking
we developed a custom-written LabVIEW routine that
works in three steps. In the first step the particles are
distinguished from the background and exactly located
in the plane. Using these particle positions as an in-
put an independent algorithm determines the axial po-
sition. In the third and last step the 3D positions of
particles in subsequent video frames are linked into tra-
jectories. For homogeneous backgrounds the method of
choice is a cross-correlation and centroid algorithm. This
approach has been widely employed for particle track-
ing with different microscopy techniques26. In the case
of strongly inhomogeneous backgrounds, however, the
cross-correlation algorithm performs very badly. Inho-
mogeneous backgrounds can be due to microfluidic struc-
tures in the observed region, for instance the PDMS bar-
rier with the array of microchannels (Figure 2(a)). In
most of the previous studies, researchers focused on mea-
suring hindered diffusion of colloids either above a plane
wall or restricted to the interior of very long channels
thus leading to a homogeneous background. However,
for studying the diffusion behavior at the bulk-channel
interface it is necessary to track particles in the chan-
nels and bulk simultaneously. For this we have to deal
with inhomogeneous backgrounds at the structure edges.
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FIG. 1. Cartoon illustrating the measurement of diffusivity
in a microfluidic chip equipped with a complex 3D geometry.
(a) The chip (viewed from top) consists of two bulk reservoirs
of thickness 16 µm separated by a 5 µm long polydimethyl-
siloxane (PDMS) barrier and connected via an array of mi-
crochannels (width ≈ 1 µm). The chip is filled with a 5 mM
KCl suspension of spherical polystyrene particles (diameter =
505 nm). (b) In a side-view we see the particles freely diffusing
in 3D Brownian motion in the two bulk reservoirs while being
closely confined in the channels. The PDMS chip is bonded
to a glass cover slip and imaged through a 100× objective. (c)
Single particle tracking in x,y and z directions. We evaluate
the displacements of colloids between video frames that are
separated by a time lag ∆t.

There are mainly two reasons for the bad performance
of cross-correlation algorithms in inhomogeneous back-
grounds. Firstly, sharp contrasts at edges of background
structures in the image tend to get high cross-correlation
values. This would necessitate applying a high thresh-
old to the image in order to prevent these edges to be
mistaken for actual particles. Hereby the number of de-
tected particles in the regions distant from the edges is
dramatically reduced. Furthermore, the average light in-
tensities vary across different regions of the image. As the
same threshold is applied to the entire image, particles
in darker regions are less likely to be detected or might
not be detected at all. To circumvent these difficulties we
subtract a background image and directly apply a thresh-
old and centroid algorithm without computing the cross-
correlation (Figures 2 (a)-(c)). For removing background
noise we apply four 3×3 pixel erosions using the Lab-
VIEW IMAQ Remove Particle Routine. The threshold
and number of erosions is chosen by manually inspecting
the effect on different test images in the beginning of the
experiment analysis. Subtracting the background proves
essential as it allows the choice of a comparatively low
threshold and removes additional noise from the edges of
the background wall structure. Ideally, the background
image should not contain any colloids as using such a
background would impede the tracking of particles in re-
gions where the background contains colloids close to the
focal plane. Practically, it proves difficult to directly ac-
quire a colloid free background image as we would need to
fill the chip after it has been positioned under the micro-
scope or otherwise exactly reposition it after filling. In-
stead, a clever way to obtain an appropriate background
image from a microscopy video is to calculate it by av-
eraging the light-intensities over the entire course of the
video. In our case we use 100 images separated equally
throughout the video (Figure 2(b)). When tracking par-
ticles in fluorescence microscopy videos, however, there
is no benefit in subtracting a background image since
structures other than the particles themselves will not
fluoresce. Instead, noise in the image can be reduced
by convoluting the image with a Gaussian kernel which
corresponds to calculating the cross-correlation with the
Gaussian point-spread function of fluorescent beads27.

For determining the axial position from the 2D im-
ages we follow the approach of Crocker and Grier16 and
consider the moments of the radial light-intensity distri-
bution around the colloid center. To calibrate this mea-
surement we record images of several colloids stuck to a
glass slide and use a piezo stage to move them axially
through the focal plane. Rather than considering the
data-intensive 2D-distribution of two separate moments,
we find it sufficient to use the first moment (intensity av-
eraged particle radius) alone, achieving accuracies com-
parable to those reported in the original work16. The
calibration curve (Figure 3) shows a decreasing and an
increasing part separated by a single local minimum. As
the only distinguished axial position of a colloid is in
the focal plane, we define the minimum of this curve as



4

z = 0. In experiments the glass slide is brought into the
focal plane (Figure 1) so that negative axial positions are
physically prohibited and thus only the increasing part
on the right-hand side of the calibration curve is acces-
sible to the particles. Restriction to this increasing part
enables us to obtain continuous z-positions from piece-
wise linear fitting to the calibration curve.
After the particles are identified and located successfully,
their positions in successive frames are linked into tra-
jectories by placing boxes around the identified particle
centers in each frame. Candidates for subsequent particle
positions in the next frame are only searched for within
the box. If no candidate particle can be identified the
trajectory is terminated. In case more than one particle
is present in the box the one closest to the box center is
selected. The likelihood of this event depends on the box
size and particle concentrations used. In our experiment
we estimate that it is not uncommon and occurs in∼ 32%
of cases (see Supplemental Information28). The position
of the box is updated after each frame by centering it on
the last particle position and it is chosen large enough so
that the particles do not exit it between two consecutive
frames. Typical step sizes in between frames were on the
order of 200 nm ≈ 3 px. An adequate box size (in our
case 30×30 px2) can be chosen both by manual inspection
as well as a theoretical estimate on the expected parti-
cle displacements employing the theoretically expected
distribution of displacements from bulk diffusion. Our
theoretical analysis of the used linking algorithm shows
that it is very effective and works well even at very high
particle concentrations with linking mistakes occurring
only in extremely rare cases (see Supplemental Informa-
tion28). In cases where the motion is not predominantly
Brownian but rather has a large drift contribution, such
as in electrokinetic flows, the linking algorithm could be
modified slightly. In these cases it would be reasonable to
center the box not on the previous particle position but
rather on an assumed position in the next frame, extrap-
olated from the measured displacement between the last
two frames under the assumption of constant velocity.
Finally, combining all the mentioned steps, this algo-
rithm provides us with 3D particle trajectories and time
steps discretized by the time lag τ between consecutive
video frames: ~r(t), (t = 0, τ, 2τ, 3τ,Nτ) where N+1 de-
notes the number of data points recorded for the individ-
ual trajectories and τ = 33 ms in our experiments.

IV. MEASURING GLOBALLY AVERAGED DIFFUSIVITY

AND TRACKING ACCURACY

Let us first discuss the measurement of globally av-
eraged quantities describing Brownian motion. For this
purpose we will consider complete trajectories of indi-
vidual particles. To characterize Brownian motion, the
mean squared displacement (MSD) is the most widely
used quantity. In one dimension it is given by

MSDi(t) ≡
〈

∆r2i (t)
〉

=
〈

(ri(t)− ri(0))
2
〉

; i ∈ {x, y, z} .
(1)

In the limit of an infinite fluid, constant diffusion co-
efficient Di and assuming the absence of any net drift
(the effect of drift will be discussed in section VI), the
MSD is proportional to time, with the proportionality
constant 2Di. In practice, this linear behavior is a good
approximation if the space that is explored by the par-
ticle is small compared to the extension of the fluid and
the scales on which the diffusion coefficient varies. In
our experiment the latter assumption would be fulfilled
for particles exploring either only the bulk reservoirs or
only the channels. In the statistical analysis these events
need to be treated separately. For the time scales for
which we could track particles, the explored space in x-
direction was always small compared to our field of view
and thus the former assumption justified. For movement
in y- and z-direction, however, the presence of bound-
aries (channel walls and glass slide) leads to a saturation
of the MSDs at large times. While for these short times
the proportional relationship holds true for the actual
particle positions, it needs to be modified for the mea-
sured positions in order to include systematic error con-
tributions originating from finite tracking accuracy and
image acquisition time29. Denoting the finite image ac-
quisition time with θ and the variances on the position
measurements with σ2

i , the corrected relation is given by

MSDi(t) = 2Dit+

{

2σ2
i −

2

3
Diθ

}

. (2)

The diffusion coefficients Di and localization uncer-
tainties σi for each trajectory can then be obtained from
a linear fit to the MSD -vs-t curves. This yields a dis-
tribution of diffusion coefficients and tracking accuracies
around the true values due to the limited statistical ac-
curacy caused by finite trajectory lengths. Assuming
that all particles diffuse at the same speed (i.e. they are
monodisperse) the true values can be determined from
the mean and its standard error. For polydisperse par-
ticles the different diffusion coefficients can be evaluated
from Gaussian fits to the separate peaks of the distribu-
tion of diffusion coefficients corresponding to the differ-
ent particle sizes. The optimal number of MSD points
to be included in the linear fit depends on the ratio of
the static MSD -contribution (

{

2σ2
i − 2

3
Diθ

}

) to the dy-
namic one (2Dit). This ratio is known as the reduced
error30. In our case the reduced error was smaller than
0.6 in the bulk and even smaller than 0.06 in the chan-
nels, suggesting that fitting to only the first two points of
the MSD curve is optimal. The reason for the existence
of an optimal number of fitting points is as follows. On
the one hand the statistical accuracy of the MSD values
decreases with increasing time because less data points
become available for averaging. On the other hand if the
reduced error is large, the slope arising from the diffusive
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FIG. 2. Image processing and particle tracking presented for a typical video frame. (a) shows a single frame from a video
acquired with bright field microscopy. (b) Averaging the light intensity over 100 frames spread throughout the video yields
an appropriate background image. (c) Subtracting the background image and applying a threshold first and then two 3×3
pixel erosions allows to identify the individual particles and their positions. To determine the exact particle center positions,
in a first step the center of mass of the white discs in (c) is calculated and then this estimate is refined by averaging the light
intensity from the image (a) in a 3×3 pixel2 box around this estimated position. Particles are marked by the numbered red
circles in (a) and (c). The contours of the channels are superimposed on the transformed image by green lines for illustration.

motion will be comparatively small and longer time inter-
vals are needed to determine it accurately. For example
for a reduced error equal to three, it would be optimal
to use the first six points of the MSD curve. While of
course a priori this reduced error is not known exactly,
an educated estimate of tracking accuracy and diffusion
coefficient is often sufficient to determine an adequate
number of fitting points. Following the analysis, the re-
duced error can be recalculated and if necessary the anal-
ysis repeated with a different number of fitting points30.
For theoretical expressions for the reduced errors we refer
to the work of Michalet31.

A. Determining the MSD-vs-time curves

Calculating the MSD values for a trajectory consisting
of N+1 recorded positions is normally done by taking
into account all available displacements that are sepa-
rated by the desired time lag30:

MSDi(nτ) =
1

N + 1− n

N−n
∑

k=0

[ri((k + n)τ) − ri(kτ)]
2 .

(3)
For estimating the errors on the measured MSD curves

we use the theoretical variation that arises from the

stochastic nature of the process. For this purpose we
define the expected relative error q:

q1D(n) =

√

V ar(MSDi(nτ))

〈MSDi(nτ)〉
. (4)

To calculate q, it is necessary to take into account
the statistical dependence between different terms in the
sum of Equation (3). These dependencies arise because
the different terms contain overlapping parts of the tra-
jectory (red box in Figure 4). For the special case of
isotropic diffusion and 2D-MSDs this calculation was
done by Qian et al.32. From this we can easily deduce
the expected error for the 1D case. Assuming isotropic
diffusion, the 2DMSDs can be expressed as a simple sum
of 1D MSDs :

MSD2D(nτ) = 〈∆x2(nτ) + ∆y2(nτ)〉
= MSDx(nτ) +MSDy(nτ)

= 2MSD1D(nτ). (5)

This directly gives us the relationship

q1D =
√
2q2D. (6)
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FIG. 3. Calibration curve for determining axial positions for
3D particle tracking. Particles stuck to the glass slide are
moved axially through the focal plane in 50 nm steps with
help of a piezo stage. This is depicted by the illustration in the
bottom right corner. The intensity averaged radius 〈r〉 of the
colloids increases almost monotonously for z-positions above
the focal plane. The few outliers at larger distances from the
focal plane where the averaged radius decreased were excluded
thus enforcing a monotonous curve. Piecewise linear fitting
of the measured average radius to this calibration curve then
allows continuous axial tracking. The insets show the raw
microscopy images at different heights of one of the colloids
used for calibration.

Into Equation (6) we can insert the expression for q2D
derived by Qian et al.32, giving:

qn,1D =
√
2

√

2n2 + 1

3n(N + 1− n)
. (7)

V. FINITE SIZE EFFECTS ON MSDS

While for (infinitely) large tracking regions the MSD

values are best determined using Equation (3), naively
counting all observed displacements will lead to a bias of
the MSDs towards lower values in the case of a limited
tracking region. The reason for this effect is that when a
particle is located close to the boundary of the tracking
region, the observable displacements towards the bound-
ary are truncated at the distance of the particle center
from the boundary. Particles experiencing larger jumps
will exit the tracking region and thus be lost from track-
ing (Figure 5). The boundary of the tracking region we
consider here can be either the boundary of the field of
view in the plane or the limited working depth in axial
tracking. The latter is typically a lot smaller than the
former and thus the problem occurs more severely in ax-
ial direction.
In order to solve the problem of the biasedMSD measure-
ments we introduce an excluded volume and only sample

Δ
x
i

0 400 800

0

100

200

x
(n
m
)

t(ms)

Δt=167ms

Δ
x
j Δ
x
k

Δt

Δt

Δt

FIG. 4. Scheme of the measurement of MSDs for individual
trajectories according to Equation (3). The position-vs-time
data points of a complete particle trajectory are analyzed in
the following way: for a fixed time lag, all displacements in the
trajectory, at different time intervals, are averaged to give the
MSD value for that time lag. Some time intervals used in the
sampling will have overlapping parts (marked by the red box)
and thus contain the same data points. This leads to statisti-
cal dependencies between the different displacements sampled
and thus a reduced information content of these samples as
compared to statistically independent ones. We need to con-
sider this effect when calculating the expected error on the
MSD values which will be larger than the ∼ 1/

√
N standard

error of the mean of uncorrelated samples.

displacements of particles located in a region where the
initial particle position is sufficiently far from the bound-
ary so that the probability to exit the tracking region
becomes negligible. For quantifying sufficiently far and
negligible, we can use the propagator of free diffusion.
Provided with the diffusion coefficient Di it is straight-
forward to give a threshold on the displacements that
will not be exceeded with any desired certainty (1 − α).
The easiest option is to choose the bulk diffusion coeffi-
cient D0 = kBT/6πηa. For the confidence level we take
the widely used convention for statistical significance,
α = 5 %, which is comparable to the statistical fluctua-
tions of the MSD measurements. For the bulk diffusivity
we get D0 = 0.8 µm2/s. Using these values gives a dis-
tance of 450 nm per frame.
To summarise, we avoid sampling displacements of par-
ticles close the tracking region boundary because of a
sampling bias that occurs through the loss of tracking at
the edges.
Naturally, the number of data points for evaluating the

MSD values will decrease with larger excluded volumes
at the boundaries and therefore decrease the statistical
accuracy. It is therefore of interest to find an optimized
excluded volume at the boundaries that prevents mea-
suring biased values but does not exclude too many data
points from the analysis. This can be achieved iteratively
by starting the analysis with the excluded region derived
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from the bulk diffusion coefficient and using the com-
puted D for updating the excluded region for the next
iteration of the analysis.

VI. MEASURING LOCAL DIFFUSIVITY AND

TRACKING ACCURACY

The global measurements described above give an ac-
curate value of the average diffusivity and tracking accu-
racy in the system. However, for strongly heterogeneous
systems, like our complex 3D geometry or geometries in-
volving largely different dimensions, such an average is
not very informative. It gives only a coarse-grained view
of the system. Therefore, we measured diffusivity and
tracking accuracy locally.
The main idea to achieve this is to assign measured par-
ticle displacements to positions as done e.g. in the work
of Eral et al.13. In order to do this we need to bin
the coordinates in our system. Subsequently, we take
all recorded particle trajectories, choose a fixed time lag
(t = nτ, n ∈ N). Then we assign every displacement ∆r
separated by this time lag to the bin closest to center be-
tween the consecutive particle positions. Averaging over
the displacements for each time lag yields localized mean
squared displacements:

MSDi(~r, t) ≡ 〈∆r2i 〉(~r, t). (8)

Allowing for the spatial variance of diffusion coeffi-
cients and tracking accuracies the time-dependence of the
MSD values, Equation (2) generalizes to:

MSDi(~r, t) = 2Di(~r)t+

{

2σ2
i (~r)−

2

3
Di(~r)θ

}

. (9)

From this relationship we can deduce the local diffusion
coefficients and tracking accuracies by a linear fit as for
the individual trajectory measurements (Figure 6). As
with the tracking accuracy σi(~r) and diffusion coefficient
Di(~r) we have two spatially varying unknowns in Equa-
tion (9), the second point of the MSD curve is required
for evaluating both tracking accuracy and diffusion coeffi-
cient. This is opposed to the common practice of directly
relating the first point MSD(~r, τ) to the diffusion coeffi-
cient by either completely neglecting the systematic error
contribution in Equation (9) or at least using an averaged
tracking error σi determined by global measurements or
tracking of immobilized particles. This is only justifiable
for high tracking accuracies and short exposure times.
In contrast to the statistical dependence found in

global measurements (Figure 4), different displacements
contributing to the local MSD values will be uncorre-
lated as a particle will in general not stay in a single bin
for more than one video frame. For this reason the er-
ror on MSD values can be determined directly from the
standard error of the mean and simple error propagation
leads to the errors for the quantities derived from the lin-
ear fit. By using Equation (9) we implicitly assume that

FIG. 5. Illustration of finite size effects on MSDs. Gener-
ally, the region in which particles are observed is finite, e.g.
limited by the finite CCD chip size. The finite size of the
tracking region can bias the measurement of MSDs towards
smaller values. Shown here are three scenarios that differ in
the distance of the particle from the boundary of this region
(red line) at time t. The probability density for finding a
particle at a position x at time t+∆t is plotted in blue. De-
pending on the distance from the boundary there is a finite
probability that the particle will exit the observable region
and thus be lost from tracking at time t+∆t (the green area
under the curve). If this happens, the displacement of the
particle will not enter the sample set for averaging the MSD

value for ∆t. In this way the true displacement distribution is
artificially truncated by the finite size of the tracking region.
To avoid a sampling bias, recorded displacements of parti-
cles are only sampled for the MSD values if the probability
to exit the observable region is below a chosen threshold (we
used 5 %). Practically, this means that the particle needs to
be sufficiently far from the boundary (cases i) and ii)). On
the other hand, if the particle is very close to the boundary
(case iii)), there is a significant probability that it will exit
the tracking region and the real distribution will be severly
truncated. Therefore, we discard displacements starting from
these positions.
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the length scales over which displacements are collected
for a certain bin is small compared to the length scales
on which the diffusion coefficients and tracking accura-
cies vary. However, this does not pose a fundamental
problem as the variations on smaller length scales will
simply be averaged out but become measurable when us-
ing a higher video frame rate. The spatial resolution
with which the diffusion coefficients and tracking accu-
racies can be measured can easily be deduced from the
data. It is determined by the distance that a particle
travels within the observed time lag:

Resi(~r) ≈
√

MSDi(~r, t). (10)

This is because the traveled distance is a measure for the
volume over which displacements are sampled for the dif-
ferent bins. Naturally, the resolution must be limited by
the finite extension of the sampling volume. Simultane-
ously determining local diffusion coefficients and tracking
accuracies requires the first two data points so t = 2τ .
In case the tracking accuracy found by the linear fit to
the MSDs does prove to be homogeneous, the resolution
can be further increased by inserting the average track-
ing accuracy into Equation (9) and then only using the
first MSD point to determine the diffusion coefficients,
i.e. choosing t = τ .
For our experiment, the measured tracking accuracies

are presented in Figure 7 and the diffusion coefficients
in x-direction in Figure 8. The tracking accuracy in-
deed proved to be non-uniform with the tracking error
being twice as large in the bulk reservoirs as compared
to the channels (∼ 100 nm vs. ∼ 50 nm, see Fig-
ure 7). While we can report the diffusivity Dx parallel to
the channel axis, the diffusivity in perpendicular direc-
tion (Dy or Dz) could not be measured at the used low
frame rate. The reason for this is that after a time lag of
two frames (2τ = 66 ms), the average traveled distance
of the particles was on the order of the channel width
and thus the perpendicular MSDs (in y- or z-direction)
must therefore be expected to saturate rather than show-
ing a linear behavior. This does not significantly effect
the certainty in establishing the perpendicular tracking
accuracy, however, because its estimation relies on the
MSD -vs-t behavior on timescales shorter than the frame
distance (t ≤ τ). In any case, influences of the chan-
nel confinement on the extracted tracking accuracies can
only lead to an overestimation of their values due to a
possible underestimation of the linear contribution from
diffusive motion to the MSDs at shorter timescales. For
the diffusion parallel to the channel axis (Dx) we find that
the diffusion coefficients are significantly reduced inside
the channels (0.2 µm2/s, red in Figure 8) as compared to
the value found in the bulk reservoirs (0.5 µm2/s, blue
in Figure 8). These two different areas are separated
by a transition region of intermediate diffusivity (white
in Figure 8). The data shows that neglecting the finite
tracking accuracy would have been permissible only in-
side the channels due to the small reduced error in that
region. In the bulk region, naively using the single step

MSD values and neglecting the tracking accuracy would
have lead to a measured diffusivity of 0.7 µm2/s rather
than the actual value of 0.5 µm2/s. Therefore, a correct
simultaneous treatment of these two regions is not possi-
ble with only the first MSD point by either neglecting the
static error or using a global one. This of course means
that the interesting channel-bulk interface could not have
been characterized correctly without using the second
MSD point. Analysis of the raw MSD values accord-
ing to Equation (10) revealed the achieved sampling vol-
ume and thus the spatial resolution were approximately
2 pixel≈130 nm. This value should not be confused with
the tracking accuracy that was around 1 px.

FIG. 6. Illustration of the method for measuring local diffu-
sion coefficients. Many different particles are tracked over a
long period of time and the recorded displacements after time
lags of one video frame (a) and two frames (b) are assigned
to the bin into which the midpoint of the displacement vec-
tor falls (marked by the box). For clarity the displacement
analysis is only shown for diffusion along the channel axis (x-
direction). (c) This procedure yields the first two points of
the local MSD-vs-t-curve for each bin. By performing a lin-
ear fit to these two points we obtain the diffusion coefficient
from the slope and the tracking accuracy from the offset of
the line.

VII. CORRECTING THE MSD FOR DRIFT AND

DETERMINING LOCAL DRIFT VELOCITIES

So far we have assumed the absence of any drift. Ad-
ditionally allowing for a net drift of a stationary velocity
~v(~r), there is a contribution to the MSDs, quadratic in
time. In that case we can decompose the MSDs into a
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purely diffusive part and a drift part.

MSDi(~r, t) = MSDi,Diff (~r, t)+MSDi,Drift(~r, t) (11)

where we can identify

MSDi,Drift(~r, t) = v2i (~r)t
2. (12)

All our previous considerations can then be applied to the
purely diffusive part MSDi,Diff (~r, t). To determine the
drift contribution and thus correct the MSDs for the ef-
fect of drift, we need to measure the local velocities vi(~r).
This can be done by using the sampled displacements to
calculate the local mean displacements (MDs):

MD(~r, t) ≡ 〈∆ri〉(~r, t) (13)

For determining the local drift velocities from the MDs,
we need to account for the influence of systematic errors
to the MDs. Under the assumption that the tracking
uncertainty is not biased, i.e. it has zero mean, it will
not influence the MDs. On the other hand we do need
to take into account the finite image acquisition time θ.

Let us denote the actual particle positions with ~̂r(t) as
opposed to the measured positions ~r(t) which are subject
to tracking errors. Assuming the particle to move with
constant velocity ~v, the actual positions will be described
by r̂i(t) = r̂i(0)+ vit and the observed positions ri(t) for
t ≥ θ are therefore given by

ri(t) =
1

θ

∫ θ

0

r̂i(t− s)ds (14)

= vi

(

t− θ

2

)

+ r̂i(0). (15)

The local velocities can thus be extracted by using the
following relation:

vi(~r) =
〈∆ri〉(~r, t)
t− θ/2

(16)

and their experimental error can easily be deduced from
the standard error of the mean of the measured displace-
ments. The calculated drift field for our experiment is
shown in Figure 9. In our case, flow was negligible within

measurement accuracy
(√

〈v2x,y〉 = (0.5± 0.6) µm/s
)

.

The estimated drift contributions to the first two MSD

points remained below 4% and was thus negligible com-
pared to the undirected Brownian motion.

VIII. MAPPING THE CHANNEL PROFILE IN 3D

Determining the channel profile of the PDMS chan-
nels in situ is a difficult task. The in-plane profile can
be estimated from the bright-field images (Figure 10(a))
but not least due to the poor optical contrast it is hard
to accurately identify the channel edges. One reason for
this weak contrast is that PDMS is largely transparent

to visible light. Instead we propose a different technique
to achieve in situ mapping of the PDMS channel profile
in 3D.
In addition to calculating the local MSD -vs-time we can
assign all tracked particle positions to the correspond-
ing bin. By counting the total number of assigned data
points for each bin, we arrive at a position histogram
N(~r) of the particle center positions. This provides a map
of the system volume that is accessible to the particle
centers. This can be done in the plane (Figure 10(b)) as
well as in cross-section (Figure 11(b)). The color scaled
map for the plane (Figure 10(b)) obviously provides a
much stronger contrast than the bright-field image (Fig-
ure 10(a)). The cross-sectional profile of the channels
cannot be imaged directly via the bright-field images so
the only option is to estimate the cross-section based on
SEM images of the Platinum wires of the replica. How-
ever, since the PDMS structures relax after molding and
bonding to the glass slide, their cross-section does not
correspond exactly to that of the Platinum wires. So to
get the cross-section of the PDMS channels itself it seems
more reasonable to consider the position histograms as
we have done in Figure 11(b).

IX. CONCLUSIONS

In this work we have presented methods for parti-
cle tracking and data analysis that allow simultaneous
measurements of the spatial dependence of diffusion co-
efficients, tracking accuracies and drift velocities in the
context of hindered diffusion in complex geometries. In
our experiment we reported the measurement of local
tracking accuracies in all three axial directions as well
as the diffusion coefficients parallel to the channel axes.
Significant flows were not observed. The importance
of measuring these quantities locally rather than using
global averaging methods is exemplified in Figures 7 and
8 where we see a strong spatial variation implying that
a global average cannot be informative for any particu-
lar region of the system. Generally, our methods enable
fast and easy measurements of hindered diffusion coeffi-
cients in complex geometries without the need for spe-
cialized experimental equipment. 2D tracking requires
solely a simple bright-field microscope with a CCD cam-
era which should be available in most laboratories. The
integration of a piezo stage is already sufficient to al-
low for full 3D resolution. As microfluidic techniques are
well-developed, many different geometries can easily be
created and the hindered diffusion coefficients measured
within a few hours using the techniques presented here.
Subsequently, the geometries found to exhibit an inter-
esting spatial dependence of diffusion coefficients could
be investigated at a higher resolution with single particle
experiments using optical trapping and digital hologra-
phy or total internal reflection microscopy as has been
done for the simple geometry of spheres close to plane
walls. While the particle tracking algorithms will differ
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FIG. 7. Color maps of local tracking accuracies. The color maps show lateral (σx and σy) and axial (σz) accuracies on
the position measurement which where determined from the local MSD-vs-time curves. The accuracy decreases in the bulk
reservoirs as a larger axial region is accessible to the particles and accurate tracking becomes more difficult with increasing
distance from the focal plane. The best accuracy is achieved within the channels because the particles are confined close to the
focal plane, giving tracking accuracies of ∼60 nm in x-, ∼40 nm in y- and ∼60 nm in z-direction. The apparent roughness of
the third channel from the top is due to the statistical uncertainty arising from the small number of recorded particle positions
(compare Figure 10(b)).

from the one described in this work, our methods for sta-

FIG. 8. Color map of the local diffusion coefficients paral-
lel to the channel axis (Dx). The local diffusion coefficients
were determined from a linear fit to the local MSD-vs-time
curves. The diffusivity inside the channels is significantly re-
duced as compared to the value in the bulk reservoirs. The
low (red) diffusivity in the channels and high (blue) diffusivity
in the bulk are separated by a transition region of intermedi-
ate (white) diffusivity that runs parallel to the PDMS barrier
walls. The apparent roughness of the third channel from the
top is due to the statistical uncertainty arising from the small
number of recorded particle positions (compare Figure 10(b)).

tistical analysis of the trajectories will also be applicable
to those experiments. On the other hand, the tracking al-
gorithm can also be used for single particle tracking in flu-
orescence microscopy videos of motion that is not purely
Brownian, such as colloids experiencing dielectrophoretic
or electrokinetic forces.
To conclude, we have provided the experimenter with
essential tools for single particle tracking studies of phe-
nomena such as hindered Brownian motion in complex
geometries or dielectrophoresis. We hope that these tools
will help to build a better understanding of biological
transport processes and be useful in technical applica-
tions such as the dielectrophoretic separation and char-
acterization of micro-organisms.
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FIG. 9. Mapping of local drift velocities. The local drift
velocities were calculated from the local mean displacements
(MDs) according to Equation (16). The arrows indicate the
direction of the local drift velocity and the flow magnitude
is encoded by the color scale. Within measurement accu-
racy there was no significant drift which is shown by both
the small measured drift magnitude and the disorder of the
arrows. Comparing the MSDs associated with these drift ve-
locities with the ones associated with the undirected Brown-
ian motion, we find that the total MSD and thus the particle
movement is dominated by purely Brownian motion.

FIG. 10. Mapping the system geometry in the plane by parti-
cle counting. (a) shows a bright-field image of the microfluidic
channels. We mapped the space accessible to the particles by
the following procedure. First, we divided the total area into
position bins. Second, we tracked particles for 6 h of video,
totaling 2.7 million recorded particle positions. Third, from
all recorded particle trajectories each particle center position
point was assigned to the corresponding position bin. Finally,
we counted the number of these particle occurrences for each
bin and assigned a color scale value to it. (b) presents this
map for the region shown in (a). The map clearly visualizes
the contours of the channels in the plane and shows a far
stronger contrast than the bright-field image (a). The chan-
nels appear longer and thinner in (b) because it maps the
region that is accessible to the particle centers and the finite
particle radius separates this region from the PDMS walls.

FIG. 11. Mapping the channel cross-section by particle count-
ing. (a) shows a scanning electron microscopy image of a typi-
cal Platinum wire which is used for creating the PDMS mold.
The image was acquired at a tilt angle of 63◦ so that the
scaling in z-direction is compressed by a factor of cos(63◦).
(b) The cross-section of the channel molded in PDMS from
the Platinum wire (topmost channel in Figure 10) is visu-
alized by mapping the number of recorded positions by the
same method as described in Figure 10. Due to the limited
tracking accuracy, counts also occur outside of the physically
accessible region. We assume that these events are less fre-
quent than tracked positions inside the physically accessible
region (represented by the darker blue color in the map). By
investigating the contour of higher counts (light blue, green,
yellow and red) we recover the semi-elliptical cross-section
of the Platinum wires. The bottom edge corresponds to the
colloid touching the glass surface, i.e. the particle center at
z = 0.25 µm. Adding the finite particle radius to the region,
we arrive at a channel cross-section of 800× 800 nm2.



12

1T. Benesch, S. Yiacoumi, and C. Tsouris, Physical Review E 68,
021401 (2003).

2L. Lobry and N. Ostrowsky, Physical Review B 53, 12050 (1996).
3P. Bungay and H. Brenner, International Journal of Multiphase
Flow1, 25 (1973).

4H. Brenner, Chemical Engineering Science 16, 242 (1961).
5A. Goldman, R. Cox, and H. Brenner, Chemical Engineering
Science 22, 637 (1967).

6C. Jun, X. Peng, and D. Lee, Journal of Colloid and Interface
Science 296, 737 (2006).

7B. Lin, J. Yu, and S. Rice, Physical Review E 62, 3909 (2000).
8P. Sharma, S. Ghosh, and S. Bhattacharya, Applied Physics
Letters 97, 104101 (2010).

9L. Faucheux and A. Libchaber, Physical Review E 49, 5158
(1994).

10C. K. Choi, C. H. Margraves, and K. D. Kihm, Physics of Fluids
19, 103305 (2007).

11A. Banerjee and K. Kihm, Physical Review E 72, 042101 (2005).
12M. Bevan and D. Prieve, Journal of Chemical Physics 113, 1228
(2000).

13H. B. Eral, J. M. Oh, D. van den Ende, F. Mugele, and M. H. G.
Duits, Langmuir 26, 16722 (2010).

14J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco,
J. M. Cooper, and M. J. Padgett, Physical Review E 79, 026301
(2009).

15C. Ha, H. Ou-Yang, and H. Pak, Physics A-Statistical Mechanics
and its Applications 392, 3497 (2013).

16J. Crocker and D. Grier, Journal of Colloid and Interface Science
179, 298 (1996).

17F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, Optics Ex-
press 18, 13563 (2010).

18L. Dixon, F. C. Cheong, and D. G. Grier, Optics Express 19,
16410 (2011).

19K. Sugano, M. Kansy, P. Artursson, A. Avdeef, S. Bendels, L. Di,
G. F. Ecker, B. Faller, H. Fischer, G. Gerebtzoff, H. Lennernaes,
and F. Senner, Nature Reviews Drug Discovery 9, 597 (2010).

20S. Bezrukov, A. Berezhkovskii, M. Pustovoit, and A. Szabo,
Journal of Chemical Physics 113, 8206 (2000).

21A. Berezhkovskii and S. Bezrukov, Biophysical Journal 88, L17
(2005).

22S. Pagliara, C. Schwall, and U. F. Keyser, Advanced Materials
25, 844 (2013).

23Y.-H. Su, M. Tsegaye, W. Varhue, K.-T. Liao, L. S. Abebe, J. A.
Smith, R. L. Guerrant, and N. S. Swami, Analyst 139, 66 (2014).

24D. J. Bakewel and H. Morgan, Measurement Science and Tech-
nology 15, 254 (2004).

25S. Pagliara, C. Chimerel, R. Langford, D. G. A. L. Aarts, and
U. F. Keyser, Lab on a chip 11, 3365 (2011).

26B. Carter, G. Shubeita, and S. Gross, Physical Biology 2, 60
(2005).

27I. Smal, M. Loog, W. Niessen, and E. Meijering, IEEE Transac-
tions on Medical Imaging 29, 282 (2010).

28See Supplemental material for a theoretical analysis of the linking
algorithm.

29T. Savin and P. Doyle, Biophysical Journal 88, 623 (2005).
30X. Michalet, Physical Review E 82, 041914 (2010).
31X. Michalet and A. J. Berglund, Physical Review E 85, 061916
(2012).

32H. Qian, M. Sheetz, and E. Elson, Biophysical Journal 60, 910
(1991).


