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Abstract 

Substantial anthropogenic change of the Earth’s climate is modifying patterns of 

rainfall, river flow, glacial melt and groundwater recharge rates across the 

planet, undermining many of the stationarity assumptions upon which water 

resources infrastructure has been historically managed. This hydrological 

uncertainty is creating a potentially vast range of possible futures that could 

threaten the dependability of vital regional water supplies. This, combined with 

increased urbanisation and rapidly growing regional populations, is putting 

pressures on finite water resources. One of the greatest international 

challenges facing decision makers in the water industry is the increasing 

influences of these “deep” climate change and population growth uncertainties 

affecting the long-term balance of supply and demand and necessitating the 

need for adaptive action. Water companies and utilities worldwide are now 

under pressure to modernise their management frameworks and approaches to 

decision making in order to identify more sustainable and cost-effective water 

management adaptations that are reliable in the face of uncertainty.  

The aim of this thesis is to compare and contrast a range of existing Decision 

Making Methods (DMMs) for possible application to Water Resources 

Management (WRM) problems, critically analyse on real-life case studies their 

suitability for handling uncertainties relating to climate change and population 

growth and then use the knowledge generated this way to develop a new, 

resilience-based WRM planning methodology. This involves a critical evaluation 

of the advantages and disadvantages of a range of methods and metrics 

developed to improve on current engineering practice, to ultimately compile a 

list of suitable recommendations for a future framework for WRM adaptation 

planning under deep uncertainty. 

This thesis contributes to the growing vital research and literature in this area in 

several distinct ways. Firstly, it qualitatively reviews a range of DMMs for 

potential application to WRM adaptation problems using a set of developed 

criteria. Secondly, it quantitatively assesses two promising and contrasting 

DMMs on two suitable real-world case studies to compare highlighted aspects 

derived from the qualitative review and evaluate the adaptation outputs on a 
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practical engineering level. Thirdly, it develops and reviews a range of new 

potential performance metrics that could be used to quantitatively define system 

resilience to help answer the water industries question of how best to build in 

more resilience in future water resource adaptation planning. This leads to the 

creation and testing of a novel resilience driven methodology for optimal water 

resource planning, combining optimal aspects derived from the quantitative 

case study work with the optimal metric derived from the resilience metric 

investigation. Ultimately, based on the results obtained, a list of suitable 

recommendations is compiled on how to improve the existing methodologies for 

future WRM planning under deep uncertainty. These recommendations include 

the incorporation of more complex simulation models into the planning process, 

utilisation of multi-objective optimisation algorithms, improved uncertainty 

characterisation and assessments, an explicit robustness examination and the 

incorporation of additional performance metrics to increase the clarity of the 

strategy assessment process.    
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Chapter 1. Introduction 

1.1 Background and motivation of research 

Water is arguably the most essential resource for all life on the planet and has 

shaped human civilisations since the beginning of humankind. Since early 

hunters and gatherers realised the benefits of securing long-term supplies of 

fresh water for drinking and agriculture, a rudimentary form of water resources 

management (WRM) has existed. Modern WRM involves the planning, 

developing, distributing and managing of vital regional water resources and its 

mastery has been imperative to ensuring populations can grow and thrive. 

For as long as water resources management has existed so too has the 

economic understanding of the value of water supplies. The Ancient Egyptians, 

knowing how crucial the spring floods were to the quality of the summer 

harvest, used the spring time water level in the river Nile to determine the 

amount of tax to charge the farmers that year. If the level was high they would 

tax more as the projected crops would be larger than usual (Popper, 1951). In 

contrast, an extremely low spring level in the Nile would indicate impending 

drought and, as a result, severe nationwide famine, rendering the taxation issue 

near arbitrary. Since the use of these early “nilometers”, all advanced 

civilisations have realised the importance of measuring and projecting water 

supply levels and the negative effects of an unmet demand.  

Over the centuries, advances in engineering technology for the movement, 

storage and treatment of water has allowed city populations to grow to 

seemingly unlimited sizes. The downside however, is that these highly 

populated or heavily industrial/agricultural regions now rely on a constant 

uninterrupted supply of water, with potentially catastrophic consequences if 

disrupted. Modern day WRM approaches not only face the concerns of an 

uncertain rising global demand for water but also a widening range of 

uncertainty in how the natural climate will provide this water. Climate Change, 

as of 2016, is being viewed by leading scientific experts as the biggest potential 

threat to the global economy, and to water supplies, the world over 

(Environment Agency, 2013a; WEF, 2016). The World Economic Forum’s 
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recent Global Risk Report (WEF, 2016) registered the two projected global risks 

of greatest concern over the next 10 years as ‘water crises’ and the ‘the failure 

of climate change mitigation and adaptation’, placing them above the likes of 

‘weapons of mass destruction’ and ‘failure of national governance’. This risk 

assessment registered the increasingly high likelihood and high impact of these 

events and highlighted the importance of ensuring modern WRM adaptation 

approaches are fully prepared for the increasingly uncertain future ahead. 

The central issue with current and traditional WRM practices, employed by most 

economically-advanced countries the world over, is that for years they have 

relied on the assumption that natural hydrology is relatively stationary (Kiang et 

al., 2011; Milly et al., 2008), inferring that the probability distribution of 

hydrologic events is unchanging over time. This has been an ideal assumption 

for water resource planners; as stationary hydrologic processes allow the use of 

statistical characterisation of the past behaviour of hydrologic variables to 

estimate the frequency of future events. However, the changing hydrological 

conditions, brought about by anthropogenic climate change, as well as concepts 

of multidecadal climate variability, presents a challenge to this long-lived 

assumption of stationarity. 

It is highly likely that ongoing climate change will generate situations that have 

not been historically encountered. As a result, new WRM approaches must be 

implemented that can provide greater consideration of these future uncertainties 

and ensure an appropriate level of adaptation is prepared for all water 

resources systems at threat. The consequences of poor WRM adaptation 

planning range from an increase in undesirable restrictions on customer water 

use (via temporary use bans) through to complete system failure (i.e. a water 

shortage creating a social, environmental and economic disaster). However, the 

modern water resources planner must also maintain balance with investment; 

determining adequate resources are in place without overspending on 

expensive and potential unnecessary infrastructure. 

To overcome these issues extensive international research is being carried out 

to test and evaluate a wide range of prospective methods for decision making 

under uncertainty, here termed decision making methods (DMMs), i.e. 

frameworks and approaches, which demonstrate notable potential in handling 
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uncertainties, specifically “deep” uncertainties, in regard to WRM adaptive 

planning. In a WRM context, this denotes any method that can help a decision 

maker identify the “best” or “optimal” adaptation strategy(ies) to implement over 

a long-term planning horizon that accounts for uncertain increases or decreases 

in supply and demand attributed to uncertain levels of future climate change 

and population growth. 

The research presented here is carried out as part of an Engineering Doctorate 

(EngD) project funded by the EPSRC under the STREAM Industrial Doctorate 

Centre and supported by HR Wallingford. Climate change adaptation is an 

increasingly important market sector for HR Wallingford. They have undertaken 

many consultancy studies relating to providing advice on climate change 

adaptation and recently have led the UK’s first climate change risk assessment 

(CCRA, 2012). With experience gained on these projects it has become 

increasingly apparent that there is currently no clear guidance on which 

decision making methods are most appropriate for these types of problems, 

especially in terms of evaluating practical demonstrations of their application on 

real-world complex WRM adaptation problems. This research aims to derive 

new knowledge providing clearer insight into the pros and cons of the different 

approaches (via qualitative and quantitative research); to identify existing 

knowledge gaps and ultimately help fill those gaps to assist in answering the 

water industries need to improve adaptation planning; to further develop some 

of the methods and quantitatively examine/define some of the more common 

but ambiguous terminology in WRM planning. 

The terminology of particular interest is that of “resilience”. Numerous recent 

government and industry reports have highlighted the desire to increase system 

“resilience” in water resources management without clearly defining it; as stated 

by the World Economic Forum (WEF, 2016) in their future goals: “adaptation 

and resilience will be crucial to address the upcoming global challenges”; and 

by the UK Environment Agency (Environment Agency, 2013a): “(we need) to 

build resilience into the current water supply systems to drive economic growth 

and protect water bodies and to facilitate adaptation to the ever changing water 

supply, technological and social conditions”. 
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Given all of these issues, this research aims to investigate: the range of DMMs 

currently available for application to WRM; how they handle the uncertainties 

inherent to modern WRM problems; how they handle and quantitatively define 

key planning terminology and how their various contrasting key aspects can 

improve on current engineering practice.  

1.2 Overall aim and objectives 

The overall aim of this research is to compare and contrast a range of existing 

DMMs for possible application to WRM problems, critically analyse on real-life 

case studies their suitability for handling uncertainties relating to climate change 

and population growth and then use the knowledge generated this way to 

develop a new, resilience-based WRM planning methodology. This involves a 

critical evaluation of the advantages and disadvantages of a range of methods 

and metrics developed to improve on the existing EBSD methodology, to 

ultimately compile a list of suitable recommendations for a future framework for 

WRM adaptation planning under deep uncertainty. 

The specific objectives of this research are as follows: 

1. To undertake a critical review of a wide range of existing DMMs and related 

approaches. This review will identify and qualitatively evaluate DMMs that 

can be implemented to solve problems relating to decision making under 

uncertainty in the context of long-term water resources management, in 

particular associated with climate change adaptation, utilising an 

appropriate set of evaluation criteria. 

2. To select a number of DMMs for WRM and perform their qualitative 

comparison. Based on the literature review, a number of promising DMMs 

will be analysed and compared using a set of criteria developed for this, all 

with the aim to short list a small number of most promising DMMs for further 

quantitative study in the context of WRM.  

3. To develop a methodology for quantitative evaluation and comparison of 

selected DMMs for WRM. This methodology will start by defining in more 

detail the challenge of WRM under uncertainty to be analysed, followed by 

the definition of uncertain scenarios of supply and demand and a detailed 
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description of the DMM methods to be evaluated and compared. These 

methods (identified in objective 2) will be implemented in a software tool and 

if necessary/possible, further improved/customised in the process. An 

integral part of this methodology will be the definition and development of a 

dynamic water resources simulation model and tool that will be used for 

comparison on case studies. The software tool will be generic in a sense 

that it can be applied to various case studies, i.e. that it is capable of 

interacting with a range of water resources networks/system models.  

4. To perform quantitative comparison of selected DMMs on real-life case 

studies. The selected DMMs for WRM under uncertainty will be evaluated 

and compared on real-life case studies / pilot sites based on real systems of 

regional water supply by using the objective 3 methodology. This will involve 

defining in detail suitable real-life case studies that will also be used for 

other work in the thesis. The results obtained will be examined to see if 

selected DMMs yield similar or markedly contrasting results, and in the latter 

case exploration of the reasons for the differences will take place. 

Recommendations will be made on the suitability of the methods tested for 

decision making under uncertainty given the climate change adaptation 

problem, with particular regard to their individual processes and underlining 

assumptions. Additional essential WRM adaptation planning aspects will be 

identified for further examination and investigative work, with particular 

regard to alternative performance metrics.  

5. To investigate resilience aspects of adaptation planning in the context of 

water resources management. Important WRM adaptation planning aspects 

identified from objective 4 as warranting further research are examined 

more in-depth in order to complete an ensemble of recommended 

procedures for water resources adaptation planning under uncertainty. This 

includes an investigation of performance metrics in order to identify a 

suitable indicator to quantify water system resilience.    

6. To develop a novel resilience-based methodology for optimal WRM under 

uncertainty combing optimal aspects derived from each stage of research. 

This method is then tested on an appropriate case study model produced as 

part of objective 4. 
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7. Consolidate a “minimum standard” list of aspects that should ideally be 

considered when approaching WRM adaptation problems under uncertainty 

in the future. The results obtained from all previous objectives are discussed 

and considerations for a future WRM framework in terms of potential 

“minimum” aspects of adaptation that should be considered when 

approaching WRM adaptation under uncertainty in the future are presented. 

Additional important planning aspects for improving adaptation will be also 

discussed. 

8. Derive recommendations for further research. Conclusions are drawn from 

the results obtained and a WRM planning framework of the future 

discussed. Conclusions and further work is summarised as well as 

discussion on additional key planning techniques, from engineering 

solutions to hybrid decision methods that could be essential for insuring an 

appropriate level of future adaptation is implemented in the water industry, 

both in the UK and internationally. 

1.3 Thesis Structure  

This thesis contains nine chapters including this introductory chapter. An 

overview of the nine chapters is given below in Table 1.1, including a list of all 

published journal or conference papers relating to the respective chapters. A full 

list of publications produced during this study is given below Table 1.1. 
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Table 1.1: Outline of thesis chapters 

Objective 
addressed 

Overview of chapter Related papers 

Objective 1 Chapter 2: This chapter provides an overview of the core topics and most pertinent research 

literature related to this study in order to frame the research objectives and justify the work 

carried out within this thesis. It addresses objective 1 by reviewing a wide range of potential 

methods and approaches for decision making under uncertainty, then shortlisting key DMMs for 

a more in-depth qualitative review, including the selection of a suitable set of criteria for 

evaluating/reviewing the various methods. This qualitative review is then carried out in Chapter 3. 

 

Objective 2 Chapter 3: This chapter is structured as a comparative qualitative assessment of the most 

promising DMMs identified based on a detailed literature review presented in Chapter 2. The 

methods are reviewed using a set of criteria developed for this purpose in order to identify key 

DMMs for further quantitative assessment in Chapters 4 and 5. 

 

Objective 3 Chapter 4: This chapter introduces the methodology for the quantitative evaluation and 

comparison of two DMMs selected in Chapter 3. It details the WRM under uncertainty problem 

analysed, the dynamic water resources simulation model developed, the uncertain scenarios of 

supply and demand and provides a detailed description of the two DMMs analysed (IG and RO 

methods). 
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Objective 
addressed 

Overview of chapter Related papers 

Objective 4 Chapter 5: This chapter presents two real-world WRM case studies (Sussex North and Bristol 

Water). The selected DMMs are then applied to these case studies using the methodology 

described in Chapter 4 in order to analyse the issues highlighted in Chapter 3. The in-depth 

examination of the DMMs on the case studies results in recommendations for further 

investigative work addressed by objective 5. 

 

Section 5.3: Case study 1. Journal 

paper (Roach et al., 2016b) published 

by J. Water Resour. Plann. Manage; 

Conference paper (Roach et al., 2014) 

published by CUNY Academic Works. 

Section 5.4: Case study 2. Conference 

paper (Roach et al., 2015a) published 

by Procedia Engineering. 

Objective 5 Chapter 6: In this chapter an investigation is carried out on a group of newly developed 

performance metrics that could be utilised to quantitatively define resilience in future water 

resources adaptation guidelines. This performs a more in-depth examination of aspects identified 

from Chapter 5 as warranting further research and completes an ensemble of recommended 

procedures for WRM adaptation planning under uncertainty, addressing objective 7. 

Conference abstract and presentation 

(Roach et al., 2015b) published in book 

of abstracts by Deltares Research 

Institute from the Third Annual 

Workshop on Decision Making Under 

Deep Uncertainty 

Objective 6 Chapter 7: This chapter presents a novel resilience-based methodology for optimal water 

resources planning utilising key processes highlighted from the previous chapters and the 

optimal resilience metric derived from Chapter 6 to address objective 6. The optimal adaptation 

strategy results are then compared with results produced using a ‘current practice’ methodology.  

Journal paper (Roach et al., 2016a) 

under review by Water Resour. Res. 
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Objective 
addressed 

Overview of chapter Related papers 

Objective 7 Chapter 8: This chapter discusses the relative importance of the various metrics and methods 

investigated, presenting a potential “minimum standard” of aspects of adaptation that should be 

considered when approaching WRM adaptation problems under uncertainty in the future. 

Additional important planning aspects for improving adaptation are also discussed. 

 

Objective 8 Chapter 9: This chapter summarises the conclusions of each chapter and discusses their 

significance and limitations, including recommendations for further research. 

 

Papers presented by the candidate: 

Roach, T., Kapelan, Z., Ledbetter, M., Gouldby, B., and Ledbetter, R. (2014). Evaluation of decision making methods for integrated water 
resource management under uncertainty. CUNY Academic Works. http://academicworks.cuny.edu/cc_conf_hic/58 

Roach, T., Kapelan, Z., and Ledbetter, R. (2015a). Comparison of info-gap and robust optimisation methods for integrated water resource 
management under severe uncertainty. Procedia Engineering, 119, 874–883.  

Roach, T., Kapelan, Z., and Ledbetter, R. (2015b). Evaluating the resilience and robustness paradigms for water resource systems adaptation. 
Third Annual Workshop on Decision Making Under Deep Uncertainty. Deltares, Delft. 

Roach, T., Kapelan, Z., and Ledbetter, R.  (2016a). A comparative assessment of a resilience-based methodology for optimal water resource 
adaptation planning under deep uncertainty against conventional engineering practice in the UK. Water Resour. Res. (Under Review). 

Roach, T., Kapelan, Z., Ledbetter, R., and Ledbetter, M. (2016b). Comparison of robust optimization and info-gap methods for water resource 
management under deep uncertainty. J. Water Resour. Plann. Manage., 04016028. 
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Chapter 2. Literature Review 

2.1 Introduction 

This chapter provides an overview of the core topics and most pertinent 

research literature related to this study in order to identify the current state-of-

the-art in the field and justify the work carried out within this thesis. The 

literature review is split into five distinct sections: 

(1) Section 2.2 – Overview of water resources management (WRM) 

problem. 

(2) Section 2.3 – The history, evolution and current practice of WRM in the 

UK (with references to international similarities/variations), highlighting 

the timeliness and necessity of the research. 

(3) Section 2.4 – The projected future uncertainties, namely increasing 

climate change and urbanisation effects and their projected impacts on 

current planning approaches. 

(4) Section 2.5 – Definitions of key terminology utilised throughout this study 

including discussion of specific metrics and examples of their use in 

recent literature. 

(5) Section 2.6 – Typical and emerging approaches for WRM planning under 

uncertainty, leading to a full qualitative review of some of the most 

prominent decision making methods being promoted for use in the water 

industry (Chapter 3). 

The literature study and follow-on qualitative review in Chapter 3 aims to detail 

the core subject information for WRM planning under uncertainty, identify the 

current knowledge gaps in the science and thus identify matters of further 

research interest. The qualitative findings detailed (see section 3.5) then 

substantiate the selection of quantitative work carried out in Chapters 4-7. 

2.2 Overview of water resource management (WRM) problem  

Water resources management (WRM) systems worldwide have undergone a 

series of significant evolutions over the past century. Advancements in the 

treatment and supply of clean potable water as well as the hygienic removal 
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and treatment of wastewater have been responsible for reducing worldwide 

disease and facilitating an increase in agriculture, industries and populations 

whilst simultaneously improving life expectancy and the quality of life for billions 

of people across the planet (Sultana, 2013). Water is, in many regards, the 

world’s most precious resource (Defra, 2011a). The advancements in water 

engineering technologies have allowed populations to rise across the planet, 

even in arid regions, such as in the Middle East, where processes such as 

seawater desalination have provided substantial water supplies in regions that 

frequently go extended periods without significant rainfall (Dawoud, 2005). 

However, improvements in technology have been partnered with an increase in 

man-made atmospheric pollution, most notably the rising emissions of carbon 

dioxide and methane levels into the Earth’s troposphere from large scale 

modern industry and agriculture (Lu et al., 2007; Stevenson et al., 2000). This 

has led to increasingly significant levels of climate change and with it, rapidly 

growing uncertainties in the behaviour and reliability of many regional sources 

of water supply. This combined with increased urbanisation and rapidly growing 

regional populations is putting pressures on finite water resources (Environment 

Agency, 2013a). Water companies and utilities worldwide are now under 

pressure to modernise their management frameworks and approaches to 

decision making in order to identify more sustainable and cost-effective water 

management adaptations that are reliable in the face of uncertainty.   

2.3 The history, evolution and current practice of WRM (in the 

UK) 

The real-life case study work examined in the later chapters of this thesis are all 

situated in the UK and explore comparisons with current UK industry practice. In 

order to facilitate this later examination, and understand the issues of present 

day WRM, a review of the history, evolution and current practice of WRM in the 

UK is conducted first. 

2.3.1 WRM in the UK (1940-1980) 

Water management, from the management of water resources and supply of 

water, to the control of flooding and the treatment of sewage, was largely an 

uncoordinated activity around the globe until the second half of the twentieth 
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century (Ofwat, 2006). Prior to this water management was a highly fragmented 

and localised activity. For example, over 1,000 individual rudimentary bodies 

were involved in the supply of regional clean water in England and Wales alone 

in 1945 and over 1,400 separate bodies were operating to control sewerage. 

Following the end of the Second World War the focus of government legislation 

within the UK water industry was to consolidate the local authorities to enable 

each supplier to profit from improved arrangements for the shared supply of 

resources across regional bodies (Ofwat, 2006). Post-war rising populations 

and a boom in both industry and agriculture, coupled with largely unregulated 

abstractions and use of water resources, led to multiple drought events 

occurring in the late 50’s with a particularly severe national drought occurring in 

1959 (Marsh et al., 2007). This was in turn followed by devastating flooding 

events in 1960 prompting the formation of The Water Resources Act 1963 

(HMSO, 1963).  The act introduced water abstraction permits and a fully 

administrative system approach for water resource planning, recognising the 

benefits of a co-ordinated approach to management. This was advanced to the 

Water Act 1973 (HMSO, 1973), which established 10 new regional water 

authorities that would manage both water resources and sewerage services on 

a fully integrated basis. This act set in place a cost-recovery system whereby 

each new water authority would borrow investment capital from the government, 

which in turn would be paid back by revenue from the services provided. 

However, due to instabilities in the economy and growing debts in the water 

authorities this led to largely insufficient annual expenditure occurring in both 

system maintenance and investment throughout the 1970s and 1980s. 

2.3.2 WRM in the UK (1980-2015) 

In response to growing debts an updated Water Act was brought out in 1983 

(HMSO, 1983). This led to significant constitutional changes reducing the role of 

local government in decision making in the water industry and opening the door 

to private capital markets, advancing to full privatisation of the water industry in 

1989 (HMSO, 1989). Privatisation involved the transfer of all assets and 

personnel of the 10 water authorities (previously managed by the government) 

over to private limited companies. This triggered an immediate boost in capital 

investment cash as the newly formed national water companies were floated on 

the stock exchange in a one-off public capital injection process. In order to 
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ensure rising pollution threats were managed and new national/European 

legislations were upheld a further restructuring was performed. This involved 

the establishment of three independent controlling bodies to regulate the 

activities of the new water companies in both clean water supply and sewerage 

control within the UK. These were: the National Rivers Authority (now 

succeeded by the Environment Agency (EA)), acting as the environmental 

regulator; the Drinking Water Inspectorate (DWI – a sector of the Department 

for Environment, Food and Rural Affairs (Defra)), acting as the water quality and 

policy regulator, and the Office of Water Services (Ofwat), acting as the 

economic regulator. 

The turn of the millennium also saw several European directives issued to all 

member states of the European Union (EU) including the ‘Water Framework 

Directive’ (European Union, 2000), which required all EU water bodies to reach 

a ‘good status’ over time and provided a framework of how to reach this specific 

standard. Further UK water acts; from the Water Act 2003 (HMSO, 2003) 

through to the Water Act 2014 (HMSO, 2014), have continued to tighten 

regulations on the water companies and improve planning and inter-regional 

cooperation. 

2.3.3 WRM in the UK (2016 and beyond) 

As of 2016 there are currently 12 water companies operating in the UK that 

handle water supply and sewerage across wide regions and several smaller 

“water-only” companies existing to provide water to local cities/communities or 

regions segregated from the major companies. Since the formation of the 

independent water companies substantial improvements have been made to 

the quality of drinking water, rivers and bathing water as well as attracting over 

£108 Billion in investments to meet rising demands and 

environmental/treatment obligations (Ofwat, 2016). The increased capital and 

operational funding has led to an industry that is far more efficient then pre-

privatisation times. However, the rise in investment is induced by rising 

customer bills that have seen a steady increase since privatisation was first 

established. Substantial improvements in data quality have allowed companies 

to target their expenditure where it is most needed, however all investment 
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decisions require significant validity and proof of requirement in order to be 

accepted by the regulators. 

Recent Water Acts (HMSO, 2014; 2016) have further improved the regulatory 

boards and encouraged competition of performance between the companies in 

order to continue to deliver more efficient and stable services, especially in light 

of the latest significant challenge; rising uncertainties. The most recent Water 

Act (HMSO, 2016) also acknowledged these rising uncertainty issues by calling 

for a combining of company water resources management plans (WRMPs) with 

their company drought plans in the future in order to syndicate these two 

important facets of WRM adaptation planning. The rising uncertainties, 

especially those exacerbated by climate change effects and population growth, 

have been highlighted in recent government reports as ‘the’ growing threat to 

the efficient planning and operation of UK and world-wide water systems (Defra, 

2009, 2011b; 2013; Environment Agency et al., 2012; Environment Agency, 

2013a; HMSO, 2014). Water UK's (2016) report on the long term water 

resources planning framework highlighted these threats further and examined 

the case for adopting a consistent national minimum level of resilience and 

taking a more national view on water resources, future climate change and 

drought risk. The water industries, both UK based and international, must now 

continue their tradition of evolution and innovation within their management 

frameworks and planning approaches, if water companies and national water 

services are to ensure stable and affordable water supplies and sewerage 

services in a future of rising uncertainties.    

2.3.4 Current WRM planning approaches (UK and international) 

Water management regulatory frameworks differ around the world but in many 

countries similar plans are developed under the auspices of Integrated Water 

Resources Management (IWRM) or simply WRM programmes. For instance, 

water utilities in the UK are required to produce Water Resources Management 

Plans (WRMPs) every five years that outline their long-term strategies for 

maintaining a secure water supply to meet anticipated demand levels. These 

plans justify any new demand management or water supply infrastructure 

needed and validate management decisions (Environment Agency et al., 2012). 

Similar WRM planning is fostered around the world as recommended by the 
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Global Water Partnership (GWP) with the vision of a water secure world 

(Falkenmark and Folke, 2000), including increasing regard given to sustainable 

water planning and policy in developing countries (Bjrklund, 2001). Modern day 

WRM planning is a multi-objective problem where decision makers are required 

to develop strategic adaptation plans to maximise the security of water supplies 

to future multiple uncertainties, whilst minimising costs, resource usage, energy 

requirements and environmental impact (Charlton and Arnell, 2011; 

Environment Agency, 2013a). 

The projected increases in climate change have lead governments and water 

industries worldwide to question the suitability of their current managerial 

approaches to water resources management. Recent WRM case studies in 

highly water stressed regions, including: Vietnam (Khoi and Suetsugi, 2012), 

Indonesia (Santikayasa et al., 2015), Turkey (Fujihara et al., 2008), South 

Korea (Bae et al., 2008), India (Narsimlu et al., 2013), Australia (Keremane, 

2015; WSAA, 2012), Kenya (Mango et al., 2011), Bhutan (Chhopel et al., 2011), 

Mexico (Oswald Spring, 2015), South Africa (Mukheibir, 2008), the United Arab 

Emirates (Murad, 2010), California in the US (Purkey et al., 2007) and studies in 

the developing world (Adger et al., 2003; UNFCCC, 2007), have all projected 

high levels of climate change uncertainty, potentially disastrous future scenarios 

and have highlighted the weaknesses in the outputs of current approaches 

when a wider range of uncertainty is considered. This has led to the generally 

resounding international recommendation of advancing current WRM practices 

and/or policies and providing more data and computational tools to aid water 

resource planners in preparing for an uncertain future.  

The current water supply planning approach in the UK is to ensure a regional 

water system maintains a designated “level of service” to its customers, as 

stated in the Environment Agency’s (EAs) Water Resources Planning Guideline 

(WRPG) for England and Wales (Environment Agency et al., 2012) and the 

Economics of Balancing Supply and Demand (EBSD) (NERA, 2002). The term 

“level of service” is essentially an agreement between a water company and its 

customers describing the average frequency that a company will implement 

temporary restrictions on water use. A water system is designed to never reach 

a point of complete water shortage (i.e. an unfulfilled demand or complete 

system failure); however, a company is anticipated to occasionally introduce 
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temporary water restrictions, such as temporary use bans to manage water 

demand during periods of drought. However, this “level of service” calculation 

lacks transparency and is often presented as a general target (e.g. a target 

system performance of no more than 1 in 10 or 1 in 15 years enforced 

restrictions (Bristol Water, 2014; Southern Water, 2014)). It is also calculated 

irrespective of the duration of each projected restriction. Further to this it relies 

on an assumption that a drought event can be assigned a probability of 

occurrence and associated return period which are known to be poorly 

understood and misrepresentative for drought events (Turner et al., 2014a). 

Especially in light of increasing climate change effects where the impacts on 

hydrology are likely to be non-linear and felt most at the extremes (Allen and 

Ingram, 2002). 

The EBSD approach is to produce a “best estimate” of future deployable output 

(or system yield) for a given water resources network. Using climate change 

projections and regional population forecasts, the aim is then to deliver an 

acceptable (i.e. target) “level of service” for the least cost given the projected 

changes in supply and demand. This produces a single best estimate of the 

future supply-demand balance over time and encourages a “predict and 

provide” type approach to WRM over a single projected future or pathway 

(Lempert and Groves, 2010). Target Headroom (Environment Agency et al., 

2012) is then added as a “safety margin”, defined as “the minimum buffer that a 

prudent water company should allow between supply and demand to cater for 

specified uncertainties in the overall supply-demand resource balance” 

(UKWIR, 1998) and is calculated by applying probability density functions (pdfs) 

to all sources of uncertainty in supply and demand (Hall et al., 2012b). 

The current EBSD approach does not fully explore the wider range of possible 

futures, the so called “deep” uncertainties (Walker et al., 2013b), or the full 

range of potential solutions and trade-offs. Nor does it promote examination and 

security against the more extreme projected scenarios; such as severe changes 

in individual supply source availability at peak demand periods (Environment 

Agency et al., 2012) or highly unexpected events (the so called black swans) 

(Bryant and Lempert, 2010). It does not encourage the most robust or flexible 

strategies to be derived, but instead satisfies a single projected supply-demand 

balance over a short timescale of 25 years. 
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A recent revised and updated guidance report by UKWIR (2016a) has outlined 

a range of feasible techniques for improving on the current decision making 

framework; however, the current EBSD approach still remains the benchmark 

methodology for water resource planners. The report indicates that industry 

methods are ready to evolve; however, the level of modelling complexity and 

the choice of decision tools utilised are left open to planner preference and are 

currently designated as non-compulsory ‘extended’ additions to traditional 

adaptation planning. 

The current UK water industry is also plagued by conservative decision-making 

(Gober, 2013). Companies are averse to public scrutiny and gauge success by 

the absence of public debate and public attention. This favours small 

infrastructure solutions and a strategy of low cost “maintenance” over larger 

scale “robustness”. It is also understandable for governments and authorities to 

delay on making very costly strategic adaptation decision when there are 

significant uncertainties to the level of predicted adaptation required, i.e. the 

need to avoid further “white elephants” in the water industry is paramount 

(Hansard, 2009). A decision is very difficult to make when the very parameters 

of the problem are uncertain and especially as the climate and resulting 

weather, with all its pressure changes, temperature differentials, wind speeds, 

jet streams, moisture contents, oceanic gas absorption, cyclic variables, and 

unexpected accumulation of cloudy fronts, is in itself, extremely unpredictable. 

However, in the words of John Quiggin, noted Economist and fellow of the 

Australian Research Council Federation, “either way, uncertainty about the 

future does not justify inaction in the present” (Quiggin, 2008). Especially 

relevant when overwhelming scientific data projects us towards future scenarios 

where inaction, both in mitigation and adaptation, could prove very costly if not 

catastrophic. Particularly for countries situated in the northern tropics where 

future climate change induced water stresses are projected at their most prolific 

(IPCC, 2007a). 
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2.4 Key future uncertainties for WRM 

2.4.1 Future supply uncertainties 

Current water management systems work under the assumption that natural 

systems fluctuate within an unchanged envelope of variability (Milly et al., 

2008). That is to say the probability distribution of hydrologic events is 

unchanging over time and that any hydrologic variable (e.g. the peak flow rates 

of a river etc.) has a time-invariant and 1 year periodic probability density 

function (pdf – a likelihood measurement), whose property can be estimated 

within some level of accuracy from accurate instrument records (Kiang et al., 

2011). The estimate errors in probability density functions are acknowledged 

but are assumed to be easily reducible by additional time observations, i.e. 

patterns in the climate will generally repeat and can be estimated within an 

acceptable level of error. However, substantial anthropogenic change of the 

Earth’s climate is modifying patterns of rainfall, river flow, glacial melt and 

groundwater recharge rates across the planet, undermining many of the 

stationarity assumptions upon which water resources infrastructure has been 

historically managed (IPCC, 2007b). This is creating a potentially vast range of 

possible climate futures that could threaten the reliability of vital regional water 

supplies across the planet. 

Current planetary global warming and climate change is primarily attributed to 

increasing emissions of CO2 and other greenhouse gases into the Earth’s 

atmosphere from anthropogenic sources, particularly the burning of fossil fuels 

and deforestation (Etheridge et al., 1996). Multiple lines of scientific evidence 

show that Earth’s climate system is warming (EPA, 2013; Hartmann et al., 

2013). This warming effect is anticipated to lead to large reductions in the 

world’s cryosphere (Fitzharris et al., 1996; IPCC, 2007a), leading to rising sea 

levels, changing precipitation patterns and an expansion of deserts and 

subtropics (Lu et al., 2007). Other projected changes include more frequent 

extreme weather events worldwide, such as heat waves, droughts, severe 

snowfall and heavy rainfall with floods (Held and Soden, 2006). Although 

warming effects, such as increased glacial melt-water, does temporarily 

enhance water availability in mountainous regions it eventually diminishes all 

nearby natural storage levels as snow-pack losses are not being replaced 
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(Barnett et al., 2005). Expansion of the subtropical dry zone (desertification) and 

an increase in humidity related precipitation encourages the drought-flood reflex 

of the planet and means water companies need to be more prepared for 

increased bouts of both. A number of global surface water sources, including 

regions in the southern UK, are predicted to diminish in output over the coming 

century, particularly in the sun intensive equatorial and northern tropic regions 

of North Africa, Southern Europe, Central America and Central Asia, regions 

often already suffering from severe water stresses (IPCC, 2007b). 

The year 2015 has seen numerous weather records broken, which include; the 

highest level of ocean warming on record, the most extensive melting of winter 

sea ice in the Arctic, an unprecedented killer heat wave in South Asia and 

several heat records broken across Europe (WMO, 2016). The global average 

surface temperature in 2015 broke all previous records by a wide margin, at 

about 0.76° Celsius above the 1961-1990 average because of a powerful El 

Niño combined with human-caused global warming. The record breaking trend 

has continued into 2016 and new heat records are already being set, with 

average global air temperatures for January, February and March being the 

highest recorded for those months (WMO, 2016). 

Despite numerous worldwide mitigation efforts, a certain amount of continued 

climate change is now unavoidable and requires timely adaptation decisions in 

water resources management. However, projections of local climate change 

impacts are plagued with substantial uncertainties, making supply projections, 

and anticipatory adaptation, extremely difficult. As the climate is shifting across 

the planet, so too are stream flows, the frequency and duration of extreme 

events, and as such, the practice of water modelling and management (Lins 

and Cohn, 2011; Milly et al., 2008). Traditional methods for assessing expected 

climate change typically work on the use of three climate scenarios, “low”, “mid” 

and “high”, sometimes written as “dry”, “mid” and “wet”, based on data from six 

different global circulation models (GCMs) often termed as global climate 

models (Environment Agency et al., 2012; IPCC, 2007b). These three scenarios 

typically represent the mean projections as well as the 5th and 95th percentile 

extreme projections. This allows triangular distributions to be created from the 

averages to the extremes in order to represent the scale of uncertainty. 

However, due to weaknesses in the catchment and groundwater models, this 
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method when applied to water resources management decisions is largely 

reduced to a less reliable single estimate “factoring” method. The extremes are 

considered allowable if only occurring for brief periods (extreme droughts etc., 

which can be managed should they arise for a short time) and so management 

plans are often made in accordance to the mean estimate of climate change 

manipulated to varying levels throughout the different seasonal periods. This 

has proven reliable enough in the past but is now recognised as no longer being 

sufficient to cope with the more irregular projected future changes in the 

hydrological systems (Milly et al., 2008). In UK Water Industry Research 

(UKWIR) (1997) the use of factoring historic data to project river flows etc. was 

viewed as a short-term response to the lack of catchment hydrological models. 

However, many years later, “flow factors” are still the most widely used 

approach for climate change consideration in water resources management 

plans. 

2.4.2 Future demand uncertainties 

The growing non-stationarity of hydrological variables affecting water supply 

projections is also being replicated in the demand side of projections. Increased 

urbanisation and accelerated population growth are the main contributing 

factors, however changes in land use, water use and unpredictable 

weather/climate change are all drivers that bring about non-stationarity to the 

water demands of a region (Kiang et al., 2011). This combination of drivers is 

increasing demand uncertainties and making it difficult for water companies to 

form reliable long term projections. The Office for National Statistics (ONS) 

forecasts population growth for England and Wales of between 6 and 16 million 

by 2040, and between 12 and 32 million by 2065 (ONS, 2014a), marking 

population growth as one of the largest uncertainties in the future 

supply/demand balance.  

Larger populations increase the demands on individual water resources and 

growing populations in vulnerable areas means floods and droughts are 

becoming far more commonplace and far more expensive and disruptive. If 

demand projections are significantly misjudged or modelers lack sufficient 

foresight to incorporate potential prolonged periods of high demand, and/or 

potential threats and interruptions to supplies, then highly populated regions 
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could suffer severe and prolonged periods of water stress, which can be socially 

and ecologically damaging and, at worst, potentially life threatening. Factors 

that need to be considered include the possible increases in household and 

non-household demands due to population growth, population migration, 

agricultural and industrial increases, and the changes in general individual 

requirements, especially in the developing world (Environment Agency et al., 

2012). Demand uncertainties would also include the potential changes in 

leakage levels as leakage should be considered as an outgoing factor, as water 

supply is being consumed by the leak. Climate change also impacts directly on 

water demand, hotter temperatures will increase demand for water, both in 

domestic use and, most significantly, in agricultural use, as enhanced irrigation 

will be required. Although these are small compared with the climate change 

impacts on supply (UKWIR, 2012). 

2.5 Definitions of key terminology in WRM adaptation 

planning 

Before new and emerging planning methodologies/approaches are discussed it 

is important to first clarify the explicit WRM adaptation problem being solved 

here and establish the definition of several key terms in WRM adaptation 

planning. 

2.5.1 WRM Problem definition 

The WRM adaptation problem being solved here is defined as the long-term 

water resources planning problem of ensuring a regional water supply system 

meets future demand. The solution/aim is to, for a given long-term planning 

horizon (typically 25 years used in current UK water industry practice), 

determine the best adaptation strategy(ies) (i.e. set of interventions scheduled 

across the planning horizon) that are required to upgrade the existing water 

resources system so that it maintains a target level of system performance over 

a range of uncertain future conditions/scenarios. The term decision making 

methods, i.e. the methods that can be applied to solve this WRM problem, are 

now explained below, including a more detailed explanation of adaptation 

strategies, deep uncertainties, scenarios, robustness and other important 

pieces of terminology explored within this study.  
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2.5.2 Decision Making Methods (DMMs) 

To overcome the issues mentioned in sections 2.3 and 2.4 extensive 

international research is being carried out to test and evaluate a wide range of 

prospective Decision Making Methods (DMMs), i.e. frameworks and 

approaches, which demonstrate notable potential in handling uncertainties, 

specifically “deep” uncertainties (see section 2.5.3), in regard to WRM adaptive 

planning. A DMM, in a WRM context, denotes any method that helps a decision 

maker identify the “best” adaptation strategy(ies) (see section 2.5.4) over a long 

term planning horizon that are either automatically generated or selected from a 

range of pre-defined solutions. Section 2.6 gives a thorough review of existing 

and potential DMMs for application to WRM adaptation problems. 

2.5.3 Deep uncertainty 

One of the greatest challenges facing decision makers in the UK water industry 

are the increasing influences of “deep” climate change, population growth and 

urbanisation uncertainties affecting the long-term balance of supply and 

demand and necessitating the need for adaptive action (Charlton and Arnell, 

2011; Environment Agency, 2013a). As a consequence the above uncertainties 

are now widely acknowledged but it is important to be clear on the definition of 

uncertainty. Knight (1921) was the first to distinguish between risk and 

uncertainty, declaring uncertainty as the risks that were incalculable and 

uncontrollable. Deep uncertainty has since evolved from this concept to 

encompass all uncertainties where no specific level of probability can be 

attached (Lempert et al., 2003; Morgan and Henrion, 1990; Quade, 1989). 

Lempert et al., (2003) defines a condition of “deep” uncertainty as one in which 

the parties to a decision do not know or cannot agree on the system models 

relating actions to consequences, or on the prior probability distributions for the 

key input parameters to those models. Walker et al. (2013b) simplifies this to 

define the point at which uncertainties become “deep” as when one can 

enumerate multiple plausible alternatives of the future but cannot rank the 

alternatives in terms of perceived likelihood. 

Under Walker’s definition uncertainties are often categorised by the generation 

of multiple future scenarios that represent alternative plausible conditions under 

different assumptions (Mahmoud et al., 2009). Combining these scenarios with 
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a suitable metric to measure system sensitivity to changing conditions (i.e. 

robustness) can then facilitate the examination of the potential benefits of 

alternative system configurations (i.e. adaptation strategies) across a range of 

deep uncertainties. The interaction of deep uncertainty, scenarios, robustness 

and adaptation is discussed in detail by Maier et al. (2016). 

 “Deep” uncertainty is also well known under a number of other guises 

including, but not limited to: “strict”, “severe”, “extreme”, “wild”, “vast”, “true” or 

even “Knightian” uncertainty (Knight, 1921). However the most predominant 

term “deep” will be used throughout this study. 

2.5.4 Adaptation strategy 

Any change in a natural environment will cause consequential changes to the 

organisms living in that environment. That change comes in the form of an 

adaptation mechanism, where a species adopts new processes and procedures 

to cope with its new surroundings. Adaptation strategies are so named in this 

context and denote a set of procedures to ensure a water system can cope with 

a projected single, or array of, future event(s). Thus in this study an adaptation 

strategy is defined as a set of  intervention options (such as options to provide 

additional water resources, or options to reduce water losses or consumption) 

scheduled across a planning horizon that are required to upgrade an existing 

regional water resources system to satisfy a range of deep uncertainties and 

multiple objectives. 

2.5.5 Future scenarios (of supply and demand) 

Scenarios are possible future states of the world that represent alternative 

plausible conditions under different assumptions (Mahmoud et al., 2009). They 

are defined by the IPCC (2008) as; ‘‘a coherent, internally consistent and 

plausible description of a possible future state of the world. It is not a forecast; 

rather, each scenario is one alternative image of how the future can unfold”. As 

illustrated by the conceptual “scenario funnel” in Figure 2.1, scenarios provide a 

dynamic view of future uncertainties by exploring various trajectories of change 

and system disruption leading to a broad range of plausible alternative futures. 
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Figure 2.1: The “scenario funnel” – conceptual drawing. Adapted from Timpe 
and Scheeper (2003) 

Scenarios describe an entire sequence of events over a given planning horizon 

and should not be confused with a sensitivity analysis (e.g. Demaria et al., 

2007; Tang et al., 2007), which examines how changes in a single specific 

factor or parameter (e.g. temperature, precipitation rate etc.) can affect the 

output of a specific water resource. Scenarios are considered better suited for 

modern day planning and management of complex systems due to their ability 

to challenge conventional thinking and accepted assumptions when producing 

possible futures (Mahmoud et al., 2009). When developing scenarios, the 

objective is to produce a small collection of vastly different but still highly 

plausible futures of a whole range of system factors, whereas a sensitivity 

analysis tends to produce a large number of simulations following gradual 

variations in one single factor.  

The main disadvantage of using scenarios is in a probabilistic manner in that it 

can become difficult to assign a likelihood to a set of fluctuating and complex 

changing conditions, in turn making it difficult to assign a level of probability to 

such an uncertain set of outcomes (Mason, 1998). However, this issue is easily 

reducible when dealing with “deep” uncertainties as a level of likelihood 

generally becomes un-assignable (Walker et al., 2013b). Utilising likelihood 

assumptions will also heavily weight, and thus generally favour, strategies that 

design to the “most-likely” conditions, which cause the more unexpected future 
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events to be ignored (a drawback of current engineering practice) and 

encourage the selection of a less “overall” robust system. For this reason a wide 

range of plausible supply and demand scenarios deemed “equally likely” have 

been generated for this study.   

There are various state-of-the art methods for producing supply scenarios to 

represent alternative plausible future conditions of a system. Mahmoud et al., 

(2009) broke-down the various methods into a tree of scenario types (Figure 

2.2).  

 

Figure 2.2: Tree of main scenario types found in literature. Adapted from 
Mahmoud et al. (2009) 

Exploratory future trend scenarios are based on extrapolation and alteration of 

past trends and patterns and either project forward in time using trends 

experienced in the past (projective) or anticipate upcoming change and apply 

significant variations to past trends (prospective). Anticipatory policy responsive 

scenarios are based on planning for critical issues identified by either expert 

decision makers within water resources management (expert judgement) or by 

relevant stakeholder needs (stakeholder defined). Anticipatory scenarios tend to 

be highly subjective and may contain bias towards particular scenarios that 

benefit companies and stakeholders (Hulse et al., 2004; IPCC, 2007a). 

Projective scenarios were commonly used in historic planning methods when 

climate stationarity was an accepted assumption (Hulse et al., 2004; Milly et al., 

2008); however, their simplicity does not permit the identification of all potential 

futures under rising uncertainties. For these reasons a prospective scenario 
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type is more suitable for problems under “deep” uncertainty and is therefore the 

scenario type selected for later quantitative work in this study (see Figure 2.2). 

Under this approach future supply scenarios can be generated utilising 

plausible climate projections combined with randomised variations in the timing 

and frequency of future drought periods in order to produce a wide array of 

different scenarios that avoid directly copying historic patterns of events. 

2.5.6 Robustness 

Robustness has many definitions. In general systems analysis it refers to the 

ability of a system to tolerate perturbations and changes without adapting its 

initial stable configuration (Wieland and Wallenburg, 2014), or in computer 

science as the degree to which a system or component can function correctly in 

the presence of invalid inputs or stressful environmental conditions (IEEE, 

1990) and in biological science as the persistence of a certain characteristic or 

trait in a system under perturbations or conditions of uncertainty (Félix and 

Wagner, 2008). 

Robustness is commonly described in WRM literature as the degree to which a 

water supply system performs at a satisfactory level across a broad range of 

plausible future conditions or scenarios (Groves et al., 2008; Matrosov et al., 

2013; Moody and Brown, 2013). Alternative definitions of system robustness 

have been discussed in recent WRM literature that branch away from the 

common satisficing calculations, including regret-based measures and 

sensitivity controls (Herman et al., 2015), exploratory modelling and analysis 

(Kwakkel and Pruyt, 2013), applied forms of Maximin or Minimax theory 

(Giuliani and Castelletti, 2016) and alternative satisficing practices incorporating 

decision scaling and Monte Carlo analysis (Asefa et al., 2014; Steinschneider et 

al., 2015). In the quantitative assessment work carried out in Chapters 4-7 

robustness of long-term water supply is specifically defined as the fraction (i.e. 

percentage) of future supply and demand scenarios that result in an acceptable 

system performance, as it elicits a transparent quantified calculation of 

robustness that is suitable when examining a wide range of highly variable 

discrete future scenarios and has been successfully employed in numerous 

recent WRM studies (Beh et al., 2015a; Herman et al., 2014; Paton et al., 

2014a; 2014b). 
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Numerous individual and comparative DMM studies have been conducted 

within the context of WRM adaptive planning with specific attention to a 

measure of robustness  (Ghile et al., 2014; Haasnoot et al., 2013; Jeuland and 

Whittington, 2014; Kwakkel et al., 2015; Lempert and Groves, 2010; Li et al., 

2009; Moody and Brown, 2013; Paton et al., 2014a; Tingstad et al., 2014; 

Turner et al., 2014b; Whateley et al., 2014). Walker et al., (2013a) produced a 

review of conceptual approaches for handling deep uncertainties and concluded 

that further work needed to be done on the systematic comparison of 

approaches and computational tools for handling robust planning to better 

derive the potential strengths and weaknesses of the various approaches. 

2.5.7 Performance metrics – resilience, reliability and vulnerability 

Where the term “robustness” defines the performance of a water system across 

a broad range of future conditions, a performance metric (or indicator/criterion) 

defines the performance of a system to a single future scenario or set of 

conditions. The more well-known performance metrics often cited within WRM 

literature are those of Hashimoto et al. (1982) who were among the first to 

propose the use of the terms; reliability, vulnerability and resilience for water 

resource system performance evaluation. These performance criteria, in 

general, refer to how likely a system is to fail (its reliability), how severe the 

consequences of failure might be (its vulnerability) and how quickly it can 

bounce back, which is the recovery from a failure (its resilience). The EBSD 

‘levels of service’ method used in current UK engineering practice can be most 

closely equated to a performance criterion of reliability, as it’s the likelihood of 

temporary restrictions being enforced that describes the ‘level of service’. The 

vulnerability of the system is also implicitly included in the control rules and 

triggers used to define each ‘level of service’ event for a given resource system, 

however current practice does not explicitly consider the resilience of the 

system. For instance, a water system may be projected to maintain its target 

reliability level of a 1 in 15 year probability of water deficit occurring, however 

this assessment does not explore the length of time these deficit periods may 

last. A prolonged single water deficit period may be as detrimental to the system 

and its customers as a higher frequency of smaller deficit periods. However, the 

latest investigation by the EA into water resources planning methods of the 

future (Environment Agency, 2013a), called for a review of the EBSD ‘levels of 
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service’ method and for the advancement of incorporating more resilience into 

water resources system planning, indicating it will support adaptation strategies 

that are aimed at improving system resilience. Recent UK government reports 

(Defra, 2011b; 2016a; Water UK, 2016) have recognised the importance of 

system resilience and highlighted the desire to increase it in water resources 

management. However, there is still no quantitative definition of resilience 

(Environment Agency, 2013a) and resilience remains generally poorly defined 

in practice to date. 

The application of resilience as a criterion for measuring the performance of a 

water resources or water distribution system has been explored (Jung, 2013; 

Linkov et al., 2014). Lansey (2012) defined resilience as a system’s ability to 

“gracefully degrade and subsequently recover from” a failure event. Holling 

(1986) defines resilience as the ability of a system to return to an equilibrium or 

steady-state after a disturbance, to absorb shocks but still maintain function. 

Ofwat’s Resilience Task and Finish Group (Ofwat, 2015) recently defined 

resilience as “the ability to cope with, and recover from, disruption, and 

anticipate trends and variability in order to maintain services for people and 

protect the natural environment now and in the future". For WRM, resilience has 

generally been quantified as the duration of time (maximum or average) 

temporary restrictions are in place due to low supply availability; although its 

calculation is highly varied throughout the literature. Several examples of 

resilience being used as a performance criterion/metric include Matrosov et al., 

(2012) and Paton et al., (2014a) who calculated resilience as the average 

duration of time a system is under a temporary restriction. Fowler et al., (2003) 

calculated it as a fraction of the total future time a system is under an 

unsatisfactory state. Loucks (1997) calculated it as the probability of a system 

recovering once it enters an unsatisfactory state. Yazdani et al., (2011) 

characterised resilience as a more complex combined metric of four 

infrastructural qualities of robustness, redundancy, resourcefulness and rapidity. 

Kjeldsen and Rosbjerg, (2004) calculated resilience in three alternative ways: 

the inverse of the mean value of the time the system spends in an 

unsatisfactory state, the maximum duration of an unsatisfactory state and the 

duration of the 90th fractile of observed unsatisfactory periods. They concluded 

that the maximum duration metric provided the most accurate and 
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comprehensible estimation of performance. A direct maximum duration 

calculation was also the resilience metric of choice by Moy et al. (1986) who 

selected it to enable and simplify the quantification of resilience and its 

incorporation into a mathematical programming model. Kundzewicz and Kindler 

(1995) also argued that a resilience definition based on maximum value is 

better than one based on a mean value, as the presence of small insignificant 

events may lower the mean value and present an inaccurate picture of actual 

overall system performance. 

Using resilience as a performance criterion has also been investigated within 

several other areas of human, social and ecological systems science, from 

natural resource investigations (Tompkins and Adger, 2004), to coral reef 

surveys (Hughes et al., 2003) and within adaptive policy making (Adger et al., 

2007), with a detailed review of cross sector resilience measures conducted by 

Hosseini et al. (2016). It has generally been concluded that building resilience 

into systems is an effective way to cope with environmental change 

characterised by future surprises or unknowable risks. 

Despite several investigations involving resilience criteria (see above), few to 

date have applied the metric to a complex real-world WRM adaptation case 

study under deep uncertainty to identify optimal adaptation strategies from a 

wide range of potential supply and demand intervention options. Nor has a 

comparative analysis been conducted with results from current UK engineering 

practice, utilising the more conventional reliability metric (frequency of 

temporary water restrictions). 

2.5.8 Flexibility  

Flexibility is defined by Smit et al. (2000) as the degree to which a system is 

pliable or compliant. For WRM adaptation planning this generally translates to 

the planning objectives of identifying strategies that are ‘pliable’ enough to be 

easily altered or updated in the future as uncertainties diminish. Techniques and 

tools such as Real Options Analysis (Copeland and Antikarov, 2001), 

Adaptation Tipping Points (Walker et al., 2013a) and Dynamic Adaptive Policy 

Pathways (Kwakkel et al., 2015), have been developed as cost-benefit valuation 

tools to evaluate the benefits of incorporating more flexibility in planning. This 

involves identifying and comparing strategies that have a greater capacity to 



45 

 

‘branch’ and be cost-effectively altered in the future as more information 

becomes available and incorporates concepts such as expanding (Yeo and Qiu, 

2003; Majd and Pindyck, 1987), deferring (Mcdonald and Siegel, 1986), 

contracting (Trigeorgis and Mason, 1996) or even abandoning assets (Myers 

and Majd, 1990) at a predetermined cost before a predetermined point in time 

to allow for adaptive decision making. 

2.5.9 Risk-based planning 

There are many formal methods used to measure risk. Often the probability of a 

negative event is estimated by using the frequency of past similar events 

(Stamatis, 2014), which is then multiplied by the severity of those events in 

order to calculate a level of risk. Knight (1921) established the distinction 

between risk and uncertainty, whereby risk is deemed a measurable quantity 

and uncertainty is immeasurable and not possible to directly quantify. When 

uncertainties increase the risks of events become increasingly harder to 

quantify as past trends are expected to change thus making probabilities of 

events difficult to predict. However, risk-based planning can still be utilised 

within problems under uncertainty. For example, in WRM planning, projecting 

the likelihood of drought events occurring by analysing historic data may no 

longer be a suitable practice under rising future uncertainties, however by 

analysing multiple future scenarios of supply and demand and then calculating 

the frequency and severity of detrimental events that are recorded can then be 

used to project an estimate of future system risks. Numerous investigations 

utilising risk-based metrics for analysing adaptation strategy performance have 

been conducted (Borgomeo et al., 2014; Brown and Baroang, 2011; Hall et al., 

2012b; Kasprzyk et al., 2012b; Turner et al., 2014a) and the UK water industry 

recently produced guidance which is starting to introduce the concept of risk 

more formally in the planning process (UKWIR, 2016b). 

2.6 Approaches for WRM adaptation planning under deep 

uncertainty 

The emerging climate change adaptation agenda has motivated the academic 

community to develop and investigate a range of decision making methods for 

dealing with "deep” uncertainties in water resources system planning. The 
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hydrological community is beginning to acknowledge that an overhaul is 

required in long-term water planning and policy (Gober, 2013) and the water 

industry must now face up to the reality of deep uncertainty. The question is 

whether the various approaches can help solve the problems at hand and can 

turn theory into engineering practice.  

Recent international WRM literature includes a wide array of contrasting 

approaches, such as: Robust Decision Making  (Groves et al., 2015; Lempert 

and Collins, 2007; Matrosov et al., 2009; 2013), Info-Gap decision theory (Ben-

Haim, 2006; Korteling et al., 2013; Woods et al., 2011), Decision Scaling 

(Brown et al., 2012; Brown, 2010; Ghile et al., 2014; Turner et al., 2014b) and 

Robust Optimisation (Giuliani et al., 2014; Kwakkel et al., 2015; Ray et al., 

2013; Watkins and Mckinney, 1997). The majority of established DMMs are 

developed to evaluate the robustness of a system, strategy or decision, which is 

the term commonly used to described the degree to which a water supply 

system performs at a satisfactory level across a broad range of plausible future 

conditions (Groves et al., 2008).  

Alternative approaches include methods that incorporate a flexibility analysis 

within the adaptive planning process (e.g. Real Options analysis (Jeuland and 

Whittington, 2014), Adaptation Tipping Points (Walker et al., 2013a), Dynamic 

Adaptive Policy Pathways (Kwakkel et al., 2015) or methods that concentrate 

on characterising the risks of a decision and develop risk-based metrics for 

water resources planning (Borgomeo et al., 2014; Brown and Baroang, 2011; 

Hall et al., 2012b; Kasprzyk et al., 2012b; Turner et al., 2014a). There are also 

scenario-based frameworks for discovering, ordering and mapping the 

uncertainties within modern WRM problems (Beh et al., 2015b; Kang and 

Lansey, 2013; 2014; Lempert et al., 2008; Nazemi et al., 2013; Singh et al., 

2014; Weng et al., 2010) and a range of advanced methods for developing the 

scenarios to represent alternative plausible future conditions of a system as 

reviewed by Mahmoud et al. (2009).  

A number of these approaches incorporate state-of-the-art optimisation 

algorithms, with the most popular typically being Genetic Algorithms, often 

termed Multi-Objective Evolutionary Algorithms (MOEAs) (Deb and Pratap, 

2002; Hadka and Reed, 2013; Kasprzyk et al., 2012b; Kollat and Reed, 2006; 
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Paton et al., 2014b; Wang et al., 2014), which has led to combined processes 

that merge MOEAs, DMMs and specific visualisation tools, such as: Many-

Objective Robust Decision Making (MORDM) (Herman et al., 2014), Many-

Objective Visual Analytics (MOVA) (Fu et al., 2013) or Visually Interactive 

Decision-making and Design using Evolutionary multi-objective Optimisation 

(VIDEO) (Kollat and Reed, 2007). 

Table 2.1 presents a diverse list of existing DMMs and other related decision 

tools/approaches. The table gives key details of each methodology, their 

general methodology type (see below) and identifies key references, either for 

the methodology descriptions or examples where the methods have been 

applied to WRM problems/case studies. 

The methodologies are each indicated as one of the following types: a ‘base 

decision making method’ indicating it is a complete framework or algorithm 

approach for decision making under uncertainty with a clear set of unique 

procedural steps; a ‘decision making method evolution’ indicating it is an 

advancement on an existing base DMM; a ‘decision making tool’ indicating it is 

a method/computational tool for analysing or ranking strategies/decisions or a 

‘classical decision rule’ indicating it is classical mathematical theory used to 

rank strategies/decisions.   

An in-depth comparative study of all available methods is not practical given the 

length of this thesis and the number of approaches. In order to narrow the range 

of methods explored and compared five prominent but contrasting ‘base DMMs’ 

are selected for further, more detailed, qualitative analysis (see Chapter 3). 

However, several of the decision making tools and classical decision rules are 

also discussed where appropriate. 

The five base DMMs (Info-Gap decision theory; Robust Optimisation; Robust 

Decision Making; Decision Scaling and Multi-Criteria Decision Analysis) are 

selected for further investigation as they are the more complete framework 

approaches for decision making under uncertainty. The base DMMs underpin 

the DMM evolutions and can be combined with the DMM tools and the classical 

decision rules in various interchanging ways. Analysing the base DMMs allows 

a more clinical review of the primary aspects of decision making under deep 
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uncertainty and how the features of the different base DMMs handle the various 

components of the decision process. 
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Table 2.1: Decision making methods and alternative approaches / tools for application to WRM adaptation problems under deep uncertainty 

Decision Making 

Method (DMM) / 

Decision Tool 

Key references Key methodological details DMM type 

Selected for 

detailed qualitative 

DMM review 

Robust Optimisation 

(RO) 

(Ben-Tal and Nemirovski, 2000; 

Chung et al., 2009; Deb and Gupta, 

2006; Hamarat et al., 2014; Kwakkel 

et al., 2015; Perelman et al., 2013; 

Ray et al., 2013; Watkins and 

McKinney, 1995; 1997) 

This method involves the application of appropriate 

optimisation algorithms to solve problems in which a 

specific measure of robustness is sought against 

uncertainty. 

Base decision 

making method  

Yes 

Robust Decision 

Making (RDM) 

(Bryant and Lempert, 2010; Groves 

et al., 2015; Kim and Chung, 2014; 

Lempert and Collins, 2007; Lempert 

and Groves, 2010; Matrosov et al., 

2013, 2009; Tingstad et al., 2014) 

This is an analytic framework that helps identify potential 

robust strategies, characterise the vulnerabilities of such 

strategies, and then evaluate trade-offs among them. 

Base decision 

making method 

Yes 

Info-Gap decision 

theory  (IG) 

(Ben-Haim, 2006; 2010; Hall et al., 

2012a; Hine and Hall, 2010; 

Korteling et al., 2013; Matrosov et 

al., 2013; Woods et al., 2011) 

This is non-probabilistic decision theory that seeks to 

optimise robustness to failure, calculated as the maximum 

radius of localised uncertainty that can be negotiated while 

maintaining specified performance requirements. 

Base decision 

making method 

Yes 
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Decision Making 

Method (DMM) / 

Decision Tool 

Key references Key methodological details DMM type 

Selected for 

detailed qualitative 

DMM review 

Decision Scaling 

(DS) 

(Brown et al., 2012; Brown, 2010; 

Ghile et al., 2014; Li et al., 2014; 

Moody and Brown, 2013; Poff et al., 

2015; Steinschneider et al., 2015; 

Turner et al., 2014b)  

This is a bottom-up analysis approach to decision making 

beginning with a vulnerability analysis of the system or 

decision. A decision analytic framework and sensitivity 

analysis is used to categorise key conditions that will 

influence planning. Future projections are then used to 

characterise the relative likelihood of conditions occurring. 

A strategy is then devised to minimise detected risks. 

Base decision 

making method 

Yes 

Many-Objective 

Robust Decision 

Making (MORDM) 

(Herman et al., 2014; Kasprzyk et 

al., 2013) 

The MORDM framework builds on the RDM framework to 

identify potential vulnerabilities in a system blended with a 

many-objective search operation.   

Decision making 

method evolution 

No 

Adaptation Tipping 

Points (ATP) 

(Haasnoot et al., 2015; Kwadijk et 

al., 2010; Walker et al., 2013a) 

ATPs are the physical boundary conditions where 

acceptable technical, environmental, societal or economic 

standards may be compromised. These tipping points are 

projected and then used to sequence an adaptive strategy. 

Decision making 

tool 

No 

Dynamic Adaptive 

Policy Pathways 

(DAPP) 

(Haasnoot et al., 2013; Kwakkel et 

al., 2015; Walker et al., 2013a) 

This method provides an analytical approach for exploring 

and sequencing a set of possible actions based on 

alternative external developments over time and is an add-

on and advancement to the ATP methodology. 

Decision making 

tool / evolution 

No 
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Decision Making 

Method (DMM) / 

Decision Tool 

Key references Key methodological details DMM type 

Selected for 

detailed qualitative 

DMM review 

Multi-Criteria 

Decision Analysis 

(MCDA) 

(Belton and Stewart, 2002; Dorini et 

al., 2011; Figueira et al., 2005; Hyde 

et al., 2004; 2005; Hyde and Maier, 

2006; Kim and Chung, 2014; Liu et 

al., 2013; Weng et al., 2010) 

Strategies are evaluated against a range of criteria and 

assigned scores according to each criterion performance 

to produce an overall aggregated score, or the criteria are 

weighted into one criterion or utility function. 

Base decision 

making method 

Yes 

Real Options 

Analysis (ROA) 

(Deng et al., 2013; Jeuland and 

Whittington, 2014; NERA, 2012; 

Trigeorgis and Mason, 1996; 

Woodward et al., 2014; Yeo and 

Qiu, 2003) 

ROA is a mechanism for valuating flexibility by evaluating 

concepts such as expanding or deferring; allowing decision 

makers to make changes to a strategy as new information 

arises in the future. 

Decision making 

tool 

No 

Many-Objective 

Visual Analytics 

(MOVA) 

(Fu et al., 2013; Matrosov et al., 

2015; Reed and Kollat, 2013; 

Woodruff et al., 2013) 

This approach blends improved high-dimensional multi-

objective optimisation with highly interactive visual decision 

support. 

Decision making 

tool / evolution 

No 

Visually Interactive 

Decision-making and 

Design using 

Evolutionary multi-

objective 

Optimisation (VIDEO) 

(Kollat and Reed, 2007) This method is a visualisation framework intended to 

provide an innovative exploration tool for examining high-

order Pareto-optimal solution sets. 

Decision making 

tool / evolution 

No 
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Decision Making 

Method (DMM) / 

Decision Tool 

Key references Key methodological details DMM type 

Selected for 

detailed qualitative 

DMM review 

Linear Programming 

(LP) 

(Beh et al., 2014a; Ben-Tal and 

Nemirovski, 2000; Liu et al., 2011; 

Moy et al., 1986; Ray et al., 2012) 

This is a method to achieve the best outcome (such as 

minimum cost of a strategy) in a mathematical model 

whose requirements are represented by linear 

relationships. To incorporating uncertain variables this 

requires pre-specifying a set of ‘known’ parameters. 

Decision making 

tool 

No 

Minimax Regret (MR) (Eldar et al., 2004; Giuliani and 

Castelletti, 2016; Kim and Chung, 

2014; Li et al., 2009; Savage, 1951) 

This method aims to minimise the worst-case regrets. 

Regrets are the losses created from selecting one strategy 

over another, under an isolated or set of future scenarios. 

Classical 

decision rule 

No 

Wald’s Maximin 

Theory (WMT) 

(Giuliani and Castelletti, 2016; 

Ranger et al., 2010b; Wald, 1945) 

In Maximin theory decisions/strategies are ranked on their 

worst-case outcomes within a bounded space.  

Classical 

decision rule 

No 

The Laplace Principle 

(LAP) 

(Giuliani and Castelletti, 2016; 

Keynes, 1921; Laplace, 1951) 

LAP is a decision rule/philosophy which asserts that equal 

probabilities should be assigned to each future 

event/scenario, if there is an absence of positive ground or 

reasoning for providing unequal ones. This makes it a risk 

neutral equal likelihood approach to decision making 

where the best average performing solution is deemed 

most favourable. 

Classical 

decision rule 

No 
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2.7 Summary 

This literature review highlights the need for continued evolution and innovation 

in the planning approaches for water resources management in the UK (and 

worldwide) to better prepare the industry for a future of rising uncertainties. The 

main uncertainties highlighted are the increasing levels of climate change 

leading to rapidly growing uncertainties in the behaviour and reliability of many 

regional sources of water supply, as well as increased urbanisation and rapidly 

growing regional populations leading to rising demand uncertainties. A number 

of modern decision making methods for handling “deep” uncertainties are 

discussed and the need for further comparative studies of the various methods 

and metrics is highlighted, including additional testing on complex real-world 

case studies. The review reveals the pertinent timing of this work for the water 

industry and derives numerous areas for further qualitative and quantitative 

research. 

The following chapter (Chapter 3) has been structured as a qualitative review 

and comparative assessment of the most predominant base DMMs in recent 

literature, selected from this literature review (see Table 2.1), that exhibit a 

diverse range of varied underlying processes and principles. The five methods 

selected are: (i) Info-Gap decision theory; (ii) Robust Optimisation; (iii) Robust 

Decision Making; (iv) Decision Scaling and (v) Multi-Criteria Decision Analysis, 

which are examined to the following criteria: (1) the handling of planning 

objectives; (2) the handling of adaptation strategies; (3) scenario construction 

and the handling of uncertainties; (4) the selection mechanisms employed; (5) 

the computational requirements of the methods; and (6) the final output formats. 

The aim of the review is to break-down and examine the differences between 

methodologies; act as a research aid to assist decision makers in selecting a 

problem appropriate DMM; and to isolate key criteria for further detailed 

quantitative analysis. The review highlights the knowledge gaps and 

comparative areas deemed of most research interest before linking them to the 

quantitative work carried out in Chapters 4-7. 
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Chapter 3. Qualitative Comparison of Existing 

DMMs for WRM Under Uncertainty 

3.1 Introduction 

This work qualitatively assesses a range of Decision Making Methodologies 

(DMMs) for the long-term Water Resources Management (WRM) planning 

problem of supply meeting demand under future climate change, population 

growth/migration, urbanisation and other uncertainties. Each DMM aims to, for a 

given long-term planning horizon, determine the best adaptation strategy (i.e. 

set of interventions scheduled across the planning horizon) that are required to 

upgrade an existing regional WRM system that will satisfy singular or multiple 

objectives of maximising some applicable performance criteria or planning 

objective (e.g. robustness/resilience) whilst minimising others (e.g. 

cost/pollution). This chapter has been structured as a comparative assessment 

of the most predominant base decision making methods (DMMs), identified 

based on a detailed literature review presented in Chapter 2, in order to: break-

down and examine the differences between methodologies; act as a research 

aid to assist decision makers in selecting a problem appropriate DMM; and to 

identify key criteria for further quantitative assessment. Five established DMMs 

are reviewed to six assessment criteria selected to evaluate the various aspects 

considered most important to the WRM problem in question (see Chapter 2). 

Each methods specific implementation is detailed and discussed in relation to 

each criterion in order to derive knowledge gaps and areas for further 

quantitative analysis and comparison. 

3.2 Decision making methods under review 

A number of DMMs have been developed to incorporate a wide range of “deep” 

uncertainties in the planning process but still deliver a logical “best” strategy(ies) 

to ensure a sustainable future whilst adhering to the needs of multiple-

objectives. Difficulties arise when attempting to compare a wide range of 

contrasting DMMs which are often considered non-mutually exclusive or not 

entirely independent of one another. For example, Robust Decision Making 
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(RDM) could be coupled with a form of multi/many-objective Robust 

Optimisation (RO) techniques (Herman et al., 2014) or with Real Options 

Analysis (ROA) decision tools (Jeuland and Whittington, 2014). The principle 

characteristics of each individual DMM can become diluted making it difficult to 

differentiate between them, hence this chapter seeks to break-down and 

discuss the various features of each in order to better facilitate appropriate 

DMM selection in tackling future WRM problems under uncertainty.  

The following material gives a brief description of each method under review in 

the context of WRM adaptation planning. The DMMs selected are the base 

decision frameworks and algorithm approaches that appear most frequently in 

recent WRM literature as well as discussion on several classical decision rules 

and decision making tools to explore the full scope of decision theory under 

uncertainty. A number of state-of-the-art experimental methods, such as: 

stochastic risk-based approaches (Borgomeo et al., 2014; Hall et al., 2012b; 

Turner et al., 2014a), vulnerability mapping methodologies (Nazemi et al., 2013; 

Singh et al., 2014) and adaptive pathway methodologies (Haasnoot et al., 2013; 

Kwakkel et al., 2015) are currently being developed, however this section 

focuses on the more established frameworks/approaches. 

3.2.1 (i) Info-Gap decision theory (IG)  

Info-Gap (IG) decision theory is a non-probabilistic decision theory that seeks to 

optimise robustness to failure, or opportunity for windfall success, under deep 

(or “severe”) uncertainty (Ben-Haim, 2001). This addresses two contrasting 

consequences of uncertainty, the threat of failure and the possibility of 

unimagined success (Ben-Haim, 2006). IG favours robustness of satisficing in 

its approach to decision making. A strategy of satisficing robustness can be 

described as one that will satisfy the minimum performance requirements 

(performing adequately rather than optimally) over a wide range of potential 

scenarios even under future conditions that deviate from the best estimate 

(Ben-Haim, 2001; 2010). IG evaluates the robustness of an adaptation strategy 

as the maximum radius of localised uncertainty that can be negotiated while 

maintaining these specified performance requirements (Hipel and Ben-Haim, 

1999). Figure 3.1 gives a diagrammatic representation of the unbounded 

assessment of Info-Gap from a “most likely” scenario (ũ), exploring two 
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uncertain parameters (U1 and U2) in staged expansions (ߙ), until an 

unacceptable level of system performance is reached (ݎ௖), known as the critical 

reward level. Opportuneness is also displayed, calculated as the shortest 

distance of uncertainty traversed to reach a highly desirable outcome (ݎ௪), 

known as the windfall reward level. 

 

 

 

 

 

 

Figure 3.1: Info-gap robustness and opportuneness models 

The IG analysis can thus visualise the robustness and opportuneness of 

different actions or strategies as a function of the level of uncertainty (Ben-

Haim, 2012; Walker et al., 2013a), allowing the decision maker to analyse the 

trade-off between both characteristics for alternative strategies. 

Examples of the application of IG decision theory in the development of long-

term water management strategies can be found in Hipel and Ben-Haim (1999), 

Woods et al. (2011), Korteling et al. (2013), Matrosov et al. (2013), in 

application to flood risk analysis in Hine and Hall, (2010) and in the 

development of robust climate policies in Hall et al. (2012a). IG was found to 

resolve a lot of the weaknesses in current WRM predictive target headroom 

approaches by analysing multiple plausible representations of the future and 

establishing a suitable robustness measure to uncertainty; however it was not 

clear how the local assessment method itself impacted on the differing solutions 

produced in regard to alternative methods, nor is it clear as to the impact 

attributed to the origin of the IG analysis. 
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3.2.2 (ii) Robust Optimisation (RO) 

Robust Optimisation (RO) involves the application of appropriate optimisation 

algorithms to solve problems in which a specific measure of robustness is 

sought against uncertainty, combining aspects from the fields of robust control, 

robust statistics, machine learning and robust linear and convex optimisation 

(Ben-Tal et al., 2009). Optimisation can be defined as trying to find the best 

solution among a set of possible alternatives without violating certain 

constraints (Walker et al., 2013a). It is mostly employed to identify a single best 

estimate solution to a singular objective problem (Bai et al., 1997). However, 

when dealing with multiple-objectives and deep uncertainties this predictive 

approach cannot be used, since often a theoretically “optimum” solution does 

not exist (Bankes, 2011; Rosenhead et al., 1972). RO can overcome this 

difficulty by finding the best solutions as a set of global Pareto-optimal robust 

solutions across the range of objectives (Coello, 1999; Deb and Gupta, 2006), 

leaving trade-offs among the various objectives out of the optimisation process 

and in the hands of the final decision maker (Kouvalis and Yu, 1997; Ben-Tal et 

al., 1998; 2000; Bertsimas and Sim, 2004). Detailed reviews of different aspects 

of optimisation within the WRM context have been conducted by Maier et al. 

(2014), Nicklow et al. (2010) and Reed et al. (2013). 

A wide range of optimisation techniques are available for RO including, but not 

limited to: Genetic Algorithms (Deb and Pratap, 2002; Kollat and Reed, 2006), 

Particle Swarm Optimisation (Kennedy and Eberhart, 1995; Zarghami and 

Hajykazemian, 2013), Ant Colony Optimisation (Dorigo et al., 1996), Shuffled 

Frog Leaping Algorithms (Eusuff and Lansey, 2003) Generalised Reduced 

Gradient Algorithms (Frank and Wolfe, 1956), Linear Programing Techniques 

(Borgwardt, 1987) or combined process approaches such as Many-Objective 

Visual Analytics (Fu et al., 2013) or Many-Objective Robust Decision Making 

(MORDM) (Kasprzyk et al., 2013), which blend many-objective optimisation 

algorithms and visualisation tools with uncertainty analysis tools, such as those 

in RDM, to evaluate system sensitivities to uncertainties outside of those 

calibrated during traditional direct RO approaches. 

Examples of the application of RO in the development of long-term water 

management strategies can be found in Kwakkel et al. (2015), Giuliani et al. 



58 

 

(2014), Herman et al. (2014), Kang and  Lansey (2013) and Beh et al. (2015a) 

and for adaptive policymaking in Hamarat et al. (2013). Within this research it 

was found that RO could handle complex, deeply uncertain problems with large 

numbers of possible solutions. It was also able to derive candidate strategies of 

more precise sequencing over the planning horizon than more traditional 

approaches. 

3.2.3 (iii) Robust Decision Making (RDM) 

Robust Decision Making (RDM) is an analytic framework that helps identify 

potential robust strategies, characterise the vulnerabilities of such strategies, 

and then evaluate trade-offs among them (Lempert and Collins, 2007). The 

framework uses multiple scenarios of the future to identify the potential 

vulnerable sets of uncertain conditions for the candidate strategy(ies), known 

often as ‘scenario discovery’ (Bryant and Lempert, 2010; Groves and Lempert, 

2007). This utilises data mining algorithms or ‘bump-hunting’ algorithms such as 

the patient rule induction method (PRIM) (Friedman and Fisher, 1999; Lempert 

et al., 2006) to locate boxes of key impacting regional data from high-

dimensional data. Selected modifications are then made to the strategies to 

strengthen them against these detected vulnerabilities. It has been developed 

over the last 15 years, primarily by researchers associated with the RAND 

Corporation (Klitgaard and Light, 2005; RAND, 2013) and is used to identify a 

fixed plan that is robust (i.e. satisfices across a broad range of plausible futures, 

but may not necessarily perform optimally in any single future) (Lempert et al., 

2003; Walker et al., 2013a). 

RDM reverses the order of traditional decision analysis by conducting an 

iterative process based on a vulnerability-and-response-option rather than a 

predict-then-act decision framework, which is adaptation based on a single 

projected future (Groves and Lempert, 2007; Lempert et al., 2004; 2010). This 

is known as a bottom-up analysis and differs from the top-down method utilised 

by the majority of other DMMs (e.g. RO), as illustrated in Figure 3.2. RDM is 

often coupled with a regret-based or absolute-performance-based criteria 

(Lempert et al., 2006), in order to aid the strategy assessment process and 

isolate the most robust solutions. Although regret-based is often preferred as it 
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focuses attention on the future scenarios that produce the most significant 

differences in alternative strategy performance. 

Examples of the application of RDM in the development of long-term water 

management strategies can be found in Lempert and Groves (2010); Matrosov 

et al. (2013) and Tingstad et al. (2014). These evaluations found that RDM’s 

bottom-up form of analysis, beginning with strategy formulation, was more 

recognisable to water managers, although the follow on concepts of deriving 

critically impacting scenarios was more conceptually challenging. 

3.2.4 (iv) Decision-Scaling (DS) 

Decision-scaling (DS) is another bottom-up analysis approach to decision 

making. It begins with a vulnerability analysis of the system or decision that is of 

interest to the planner rather than using an analysis of the future uncertainties 

as a starting point (Brown, 2010). This allows the decision maker to tailor or 

scale the range of uncertainties (climate projections) to focus on the critical 

(climate) conditions that may impact on the system. The approach uses a 

decision analytic framework and sensitivity analysis to categorise the key 

conditions that will influence planning, and then uses future projections to 

characterise the relative likelihood or plausibility of those conditions occurring. 

By using climate projections only in the final step of the analysis, the initial 

findings are not diluted by the uncertainties inherent in the projections (Brown et 

al., 2012; Stainforth et al., 2007). The result is a detected ‘vulnerability domain’ 

of key concerns that the planner or decision maker can utilise to isolate the key 

climate change projections to strengthen the respective system against, which 

differs from the bottom-up analysis featured in RDM, as illustrated in Figure 3.2. 

New approaches are being sought to more accurately map the vulnerable 

conditions, such as modifications of PRIM and the Classification and 

Regression Tree (CART) method (Nazemi et al., 2013; Singh et al., 2014). This 

setup marks DS primarily as a risk assessment tool with limited features 

developed for overall risk management. Therefore a partnership of DS with 

algorithm approaches such as RO or Real Options Analysis (ROA) can improve 

follow-on identification of superior adaptation strategies. 
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Examples of the application of DS in the development of long-term water 

management strategies include: Brown and Baroang (2011), Brown et al. 

(2012), Moody and Brown (2013), Ghile et al. (2014) and Turner et al. (2014b). 

The evaluations of DS identified the benefit of tailoring climate variables and the 

estimate probabilities of the climate states to the system under review, 

removing the restricted dependency on uncertain climate projections and 

allowing greater vulnerability assessment and discernible direction for 

adaptation.  

Figure 3.2: Traditional top-down decision approach vs DS and RDM bottom-up 
approaches – adapted from Brown et al. (2011), Hall et al. (2012a) and Lempert 

and Groves (2010) 

Traditional “Top-
Down” Approach 

RDM “Bottom-Up” 
Approach 

DS “Bottom-Up” 
Approach 

Start with General 
Circulation Models (GCMs) 

Downscale multiple 
model projections 

Generate several water 
supply / demand series 

Test whether system / 
adaptation strategies are 
vulnerable to these series 

Start with candidate 
strategy 

Characterise vulnerabilities 

Identify and assess 
options for ameliorating 

vulnerabilities 

Determine the 
vulnerability domain 

Link to climate conditions 

Determine the plausibility 
of climate 

condition/vulnerability 

Evaluate strategy against 
large ensemble of scenarios 

Re-test new strategy 

Plan strategy to minimise 
the risks to the system 
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3.2.5 (v) Multi-Criteria Decision Analysis (MCDA) 

In Multi-Criteria Decision Analysis (MCDA) solutions are evaluated against a 

range of criteria and assigned scores according to each criterion performance to 

produce an overall aggregated score, or the criteria are weighted into one 

criterion or utility function. As this usually infers a deterministic approach, 

accounting for multi-objectives is regarded as more important than accounting 

for uncertainty (Ranger et al., 2010a). As such it is often performed as a 

preliminary step to isolate candidate individual resource options or to pre-select 

superior strategies to be further tested on DMMs more suited for “deep” 

uncertainty. If uncertainty is accounted for, it is usually done so by performing a 

sensitivity analysis on each criterion to uncertainty (Hyde and Maier, 2006; 

Hyde et al., 2005) or by placing joint probability distributions over all decision 

criteria (Dorini et al., 2010). 

3.2.6 Other methods 

A number of additional decision theories (or decision rules) exist which can 

either operate as individual DMMs themselves or act as rules/tools for more 

comprehensive decision frameworks; i.e. where decision rules can rank and 

compare options and identify the “optimum” decision outcomes, the DMMs 

describe the steps by which these decision rules are applied. Some of the more 

common decision rules are detailed below, including classical decision theories: 

Minimax Regret and Wald’s Maximin Theory; decision philosophy: The Laplace 

Principle of Insufficient Reason; and flexibility valuation tool: Real Options 

Analysis. 

The Minimax Regret (MR) method aims to minimise the worst-case regrets. 

Regrets are the losses created from selecting one strategy over another, under 

an isolated future scenario (Savage, 1951; Eldar et al., 2004), and are derived 

from a ratio between the actual expected performance of implementing a 

strategy and the optimum performance projected out of all strategies tested 

(Loomes and Sugden, 1982). The optimum outcome under each future scenario 

is then subtracted from all other potential strategy outcomes producing an array 

of regrets or regret table (Ranger et al., 2010b). The maximum regret for each 

strategy is derived and those with the smallest maximum regrets are identified 

as the optimum strategies. Regret is the decision criterion most often utilised in 
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RDM and an example of the application of MR to water resources management 

can be found in Li et al. (2009) and in Kim and Chung (2014). 

The Laplace Principle of Insufficient Reason (LAP) (Laplace, 1951) is a decision 

philosophy which asserts that if there is no known reason for predicting one of 

our subjects, rather than another of several alternatives, then relative to such 

knowledge each of these alternatives have an equal probability (Keynes, 1921). 

This theorises that equal probabilities should be assigned to each future 

scenario, if there is an absence of positive ground or reasoning for providing 

unequal ones (Sinn, 1980). Therefore, LAP is essentially a risk neutral equal 

likelihood approach to decision making where the best average performing 

solution is deemed most favourable.  

In contrast to the risk neutral approach of LAP, Wald’s Maximin Theory (WMT) 

(Wald, 1945) is well known to be extremely risk averse. WMT is a non-

probabilistic theory where decisions are ranked on their worst-case outcomes 

within a bounded space (Ranger et al., 2010b). Hence, from a set of potential 

strategies, WMT identifies the best strategy as the one which provides the 

greatest expected performance from the worst projected scenario. Conversely, 

by playing it safe, the Maximin model tends to generate highly conservative 

decisions, whose price can be high. This is documented by Bertsimas and Sim 

(2004) as the price of robustness. Both the radius of stability model (Hinrichsen 

and Pritchard, 1986) and the Info-Gap robustness model (Ben-Haim, 2006) 

have been shown to be instances of the generic Maximin model (Sniedovich, 

2010). 

Real Options Analysis (ROA) includes concepts such as expanding (Yeo and 

Qiu, 2003; Majd and Pindyck, 1987), deferring (Mcdonald and Siegel, 1986), 

contracting (Trigeorgis and Mason, 1996) or even abandoning assets (Myers 

and Majd, 1990) at a predetermined cost before a predetermined point in time 

to allow for adaptive decision making and is a mechanism for valuating flexibility 

by allowing decision makers to make changes to a strategy as new information 

arises in the future (Copeland & Antikarov, 2001; Woodward et al., 2014). ROA 

can also utilise decision tree analysis to enable a branching evaluation of 

potential solutions (Dixit and Pindyck, 1994), and is becoming the most noted 
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and recognised approach for evaluating the value of flexibility in decision 

making under uncertainty. 

3.3 Selection of criteria for DMM evaluation and comparison 

Despite several comparative investigations involving DMMs in application to 

WRM and climate change related problems (Hall et al., 2012a; Herman et al., 

2015; Kwakkel et al., 2016; Matrosov et al., 2013; Ray and Brown, 2015; 

Walker et al., 2013a), few comparative examples involving practical application 

of DMMs to complex real-world WRM adaptation case studies exist to date, 

including examples of optimal adaptation strategy identification from a wide 

range of potential supply and demand intervention options. Nor has a break-

down and comparison of the key criteria of the different methods been 

conducted in direct assessment of fundamental WRM issues. 

In order to perform a more in-depth analysis of the various DMMs under review, 

each is evaluated in the context of WRM planning using a selection of criteria. 

Each criterion was selected because it is deemed to be among the most 

important or influencing factors that water resources planners consider when 

selecting an appropriate decision-making method for adaptive planning. Areas 

of interest for further comparative work are highlighted at the end of each 

section and a final tabulated summary of each method is given. The selected 

criteria are as follows: 

 Criterion 1: Handling of planning objectives 

 Criterion 2: Handling of adaptation strategies 

 Criterion 3: Uncertainty handling 

 Criterion 4: Selection mechanisms 

 Criterion 5: Computational requirements 

 Criterion 6: Output formats 
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3.4 Comparison of decision making methods  

3.4.1 Criterion 1: Handling of planning objectives 

The literature generally offers four discrete ways for dealing with deep 

uncertainty when making sustainable WRM adaptation strategies (van Drunen 

et al., 2009; Leusink and Zanting, 2009; Walker et al., 2013a; 2013b). These 

four fundamental planning objective types (and their most common definitions) 

are: 

 Robustness: the degree to which a WRM system performs at a 

satisfactory level across a broad range of plausible future conditions or 

scenarios. 

 Resistance: the performance of a WRM system under the worst 

projected future scenario or set of conditions. 

 Resilience: the ability of a WRM system to respond to and recover (i.e. 

‘bounce back’) from an undesirable/failure event. 

 Flexibility: how easily a WRM system can be changed/adapted over time 

should external conditions change or more information become available. 

The most common planning objective, or design principle, utilised across the 

DMMs is to maximise for robustness to uncertainty, which stands as the prime 

feature of IG, RO, RDM, and DS methods. Classical decision rules such as 

WMT and MR can be applied to design for maximum resistance (Walker et al., 

2013a), while the ROA criterion is applicable to maximise system flexibility. 

MCDA has no set planning objectives for handling uncertainty, its main 

advantage comes in explicitly accounting for multiple objectives, which makes 

uncertainty analysis difficult to comprehensively examine in practice. If 

uncertainty is examined it is usually via a sensitivity analysis to quantify the 

impact of parametric variations on the individually weighted criteria. This is most 

closely related to a robustness analysis. For instance, Hyde and Maier (2006) 

developed a program to calculate the robustness of alternative solutions in 

MCDA via a distance-based sensitivity analysis of each criteria combined with a 

stochastic uncertainty analysis. Alternatively, several of the planning objectives 

listed above could be evaluated as separate criteria in the analysis and an 

average or aggregate score taken across the objectives. This interchangeability 
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of criteria is a unique feature of MCDA methods, although it’s uncertainty 

assessments are usually less comprehensive than other DMMs. Maximising 

resilience to uncertainty as a prime planning objective is generally an untapped 

resource in decision making under uncertainty within WRM literature and is 

more often recognised as a performance metric/indicator (along with reliability 

and vulnerability) as first recommended by Hashimoto et al. (1982). However, 

its recent attention in numerous high-level reports (Defra, 2016a; Environment 

Agency, 2015; Water UK, 2016) have qualified it for consideration as a primary 

planning objective in itself, as expressed in Walker et al. (2013a). As the 

frequency, severity and duration of future drought periods are an increasing 

uncertainty, designing a system that can securely manage and recover quickly 

from detrimental periods may be more beneficial than one that attempts to 

eliminate them entirely or reduce their occurrence. This reasoning is why 

resilience is being considered, not only as an advantageous performance 

metric, but also as a prime planning objective for improving a systems security 

to uncertain future events (van Drunen et al., 2009). Deriving an improved 

metric for resilience was also a noted conclusion in the Environment Agency 

(2013) report, which has only received a qualitative update to date 

(Environment Agency, 2015). 

The planning objectives, although discrete in nature, can overlap in practical 

application. RO theory, although generally operationalised to maximise for 

system robustness (as the name robust optimisation implies) presents versatility 

in that in can be alternatively set up to optimise for substitute planning 

objectives. Establishing a firm definition of the primary planning objectives 

within a RO decision process is problematic due to the multiple ways the 

algorithms can be operationalised. The optimisation results are dependent on 

the setting of the robustness criteria, of which there is nothing preventing the 

application of any number of established decision theories; from an optimisation 

towards local robustness (e.g. IG), global robustness (e.g. RDM), the best 

worst-case outcomes (e.g. WMT), the least maximum regrets (e.g. MR) or even 

re-defining robustness as flexibility (e.g. ROA). Robustness itself is often 

defined differently throughout WRM literature, further confounding a firm 

classification of this design objective and there is, as of yet, no standardised 

paradigm for quantifying robustness in the water sector (Whateley et al., 2014). 
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Maximising resistance is a feature of the Maximin and Minimax family of 

metrics. However, it cannot be easily applied if dealing with an unbounded 

space of uncertainty, as there is no definitive worst-case scenario to be 

resistant against. In a bounded envelope of future uncertainty it would equate to 

a strategy that copes best across all (or against the worst) projected scenarios 

explored. This ultimately produces the most costly but least risk solutions. In 

order for IG theory to maximise for resistance it would need to first establish a 

desired region of the uncertainty to be robust against and then identify the most 

cost-effect strategy to meet this now designated highest level of localised 

resistance. This equates to the creation of a maximum stability radius and it is 

from this that the Maximin model and Info-Gap’s theory of robustness are often 

related (Sniedovich, 2010). 

Recent WRM literature is applying considerable attention to flexibility as a 

primary planning objective to handle deep uncertainties in adaptive planning. It 

is especially desirable to decision makers as it generally entails less 

commitment of capital expenditure early on in the planning horizon and 

presents the decision makers with a range of robust pathways to take in the 

future. This sacrifices a small quantity of short term robustness for greater long 

term cost-effectiveness. ROA is a popular decision criterion for assessing 

flexibility and has been combined with RDM for water resources planning by 

Jeuland and Whittington (2014). The decision-analytic framework they created 

identified a range of highly flexible strategies of varying strengths of short term 

robustness to long term flexibility, from which a decision maker can then derive 

an optimum trade-off. Lempert and Groves (2010) also used RDM to explore 

the potential positives of examining deferrable and expandable options within 

the strategies. Haasnoot et al. (2013) and Kwakkel et al. (2015) employed RO 

with multi-objective evolutionary algorithms to explored flexible-adaptive 

strategy designs (see section 3.4.2) known as ‘dynamic adaptive policy 

pathways’, which extend from ‘adaptation tipping points’ (Kwadijk et al., 2010; 

Kwakkel et al., 2015), to create an adaptation map showing the most promising 

adaptation pathways and then optimise the best ways to transfer from one 

pathway to another over time. Steinschneider and Brown (2012) also 

successfully combined ROA with seasonal hydraulic forecasts to create 

adaptation strategies with overall reduced system risks. 
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Real-life problems will generally entail a complex range of multiple objectives. 

As well as the previously outlined ‘primary’ planning objectives for handling 

deep uncertainties, additional design considerations/objectives for WRM 

adaptive planning will include a maximisation of cost-effectiveness, i.e. a 

minimisation of total capital and operational strategy costs over the planning 

horizon, as well as supplementary considerations such as minimising: resource 

usage, system energy requirements, energy costs, social objection and the 

environmental impact, to name a few. The DMMs analysed all have the capacity 

to be made multi-objective. The RO method can be implemented using multi-

objective algorithms, although this is often limited to a small number of key 

objectives due to the increasing complexity of balancing optimisation search 

capability over a range of conflicting objectives. The IG, RDM, and DS methods 

can also be made multi-objective providing the objectives are weighted, or if the 

results are presented in multi-dimensional Pareto fronts (see section 3.4.6). 

Ranking type DMMs, such as MCDA, can handle the most objectives with the 

least difficulty and is the principal strength of this type of methodology, but this 

comes at a price of having to manually specify the limited number of adaptation 

strategies to be examined.    

The DMMs that set weighted or constrained objectives first (e.g. MCDA, and 

some applied forms of IG and RO) often require specifying decision maker’s 

preferences before any analysis of strategies and future scenarios is carried 

out. In contrast, the bottom-up methods (RDM and DS), allow for objective 

preferences to be specified only when the full trade-offs between conflicting 

objectives have been identified, together with suitable strategies. Pre-

processing objectives will reduce the range and diversity of final solutions 

derived, which places a much higher confidence in the decision makers 

preliminary judgments and reduces post processing control and flexibility. 

From Criterion 1 it is identified that further work could be carried out to compare 

DMMs that focus on system robustness with those that emphasise system 

flexibility. The various potential definitions of system robustness should also be 

further explored as well as an examination into how resilience could be better 

incorporated into WRM adaptation planning.   
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3.4.2 Criterion 2: Handling of adaptation strategies  

The definitions for strategic adaptations within WRM adaptive planning are as 

follows: 

 An Intervention Option: a single water resource option (e.g. a new water 

resource asset or demand reduction measure) that could be 

implemented into a water companies future strategic plans. 

 An Adaptation Strategy: a combination of intervention options sequenced 

over a planning horizon. 

Adaptation Strategies can either be statically formulated or staged (Beh et al., 

2014b; 2015a; Maier et al., 2016): 

 A Static Strategy: options are selected but not time sequenced over the 

planning horizon. 

 A Staged Strategy: options are selected and time sequenced over the 

planning horizon.   

There are 3 further sub-divided definitions of a staged strategy formulation used 

in this evaluation (Lempert and Groves, 2010; Maier et al., 2016): 

 A Fixed Strategy: pre-specified adaptation strategies are formed and 

assessed, and a final strategic design is established over the selected 

planning horizon as a fixed plan. 

 A Fixed-Adaptive Strategy: the process of forming and assessing the 

strategies is an adaptive process; i.e. strategies are iteratively modified 

and updated based on vulnerability assessments or optimisation runs. 

The final selected strategy is however a fixed plan. 

 A Flexible-Adaptive Strategy: defined as a strategy that can evolve or 

change as future conditions change. This strategy is devised with 

multiple future pathways to allow branching as more information 

becomes available and uncertainties diminish over time (i.e. the final 

selected strategy itself is a flexible plan). 

DMMs that utilise fixed strategy formulations include IG and MCDA. Examples 

of fixed-adaptive strategy formulation include traditional applications of RDM 

and DS methods, which update their strategy components as system 

vulnerabilities and key scenarios are identified; or as in RO where optimisation 
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algorithms, such as evolutionary algorithms, will modify individual intervention 

options within fixed strategies to “evolve” superior strategies from the original 

population. Flexible-adaptive strategy formulation involves a consideration of 

multiple-routes or “pathways” within the strategy designs. Application of ROA to 

an approach or the development of adaptive pathways are examples of flexible-

adaptive strategy formulation because the strategies are designed to have 

added flexibility to the uncertain future conditions. This often involves a form of 

decision tree analysis in the strategy assessment process, whereby different 

strategy “branches” (i.e. variable pathways of new water resource options and 

their construction times over a planning horizon) are examined to identify 

strategies with greater potential to be altered at low cost in the future as more 

information becomes available (i.e. uncertainties diminish). These differ to fixed 

strategy designs which compare fixed sequences of new water resource options 

against one another to derive an optimal long-term sequence of intervention 

options based on the immediate data available. Fixed strategies lack this 

assessment of flexibility; however, flexible strategies also have their down side 

in that they can lead to reduced short term spending (and as such reduced 

short term robustness) to cater for the longer term flexibility.  

DMMs can either assess pre-specified strategies or utilise optimisation-

generated strategies to select strategies from a pool of available individual 

intervention options. The Enumeration method could also be applied to 

exhaustively test every feasible strategy combination; however, this is a 

computationally demanding task if a large range of individual intervention 

options are under consideration.  

Examples of DMMs that typically utilise pre-specified strategies include IG, 

RDM, DS, and MCDA. Some of these DMMs will start with a full range of pre-

specified strategies from which an optimum is selected (e.g. IG and MCDA), 

whereas methods RDM and DS will begin with individually pre-specified 

‘candidate’ strategies which are then customised and developed during the 

assessment process in order to combat detected vulnerabilities. RO specifically 

utilises optimisation-generated strategies, automatically selecting and testing 

strategy combinations from a pool of intervention options. However, 

optimisation can also be combined with alternative DMMs to improve the range 

of strategies assessed. Examples of optimisation combined with RDM can be 



70 

 

found in (Kasprzyk et al., 2012a) and in combination with DS and RDM in 

Hoang (2013) for water adaptation planning. 

The number of pre-specified strategies for analysis is limited by computer 

processing speed/power. In current UK WRMPs (Bristol Water, 2014), pre-

specified strategies are often reduced to small range of ‘preferred’ strategies 

following pre-selection by a form of MCDA or simplified optimisation process. 

However, thousands of strategies can theoretically be formulated and tested 

providing the efficiency of the water resources simulation models. 

This computational efficiency is paramount when assessing staged adaptation 

strategies, as dynamic simulation models are required to evaluate the optimal 

staging/sequencing of options across the planning horizon (Beh et al., 2015a). 

This will be most impacting on methods that utilise optimisation (e.g. RO) 

because the frequency of simulation runs required will increase greatly as the 

time steps between potential construction windows is reduced.  This will be less 

impacting on methods that utilise ranking based approaches, such as MCDA, or 

with DMMs that utilise pre-specified strategy generation; as although the range 

of potential individual adaptation strategies will increase, the number of 

assessed strategies can still be limited to a manageable volume. Static 

adaptation strategy generation can isolate the optimal collection of intervention 

options for immediate short term adaptation but does not offer any justifiable 

optimality or satisficing robustness (or flexibility etc.) to long term uncertainties. 

In short, adaptation analysis geared towards static strategies (i.e. that do not 

explore the sequencing of options over the planning horizon) makes little sense 

in a world of growing uncertainties. 

From Criterion 2 it is identified that further work could be carried out to assess 

the impact of utilising pre-specified vs optimisation-generated adaptation 

strategies as well as fixed vs fixed-adaptive vs flexible-adaptive adaptation 

strategy designs. 

3.4.3 Criterion 3: Uncertainty handling 

The primary uncertainties in the WRM context are future projections of regional 

climate (i.e. water availability at all surface and ground water sources); 

demographics, i.e. the projections of future demand (influenced by uncertain 



71 

 

rates of population growth, social adjustments and by climate change impacts); 

costs (both capital and operational) and changes in regulation (i.e. abstraction 

licenses). Uncertainties also exist in a number of other aspects including: the 

anticipated deployable output of new water sources; the security of new water 

sources (flooding uncertainty etc.); the anticipated effect of metering and other 

demand management incentives; the projected effect of leakage reduction 

plans; the time required to build (and have in operation) new large water asset 

schemes (such as large reservoirs and water reuse plants) and the rate of 

advancement in technology and information. The decision criteria ROA also has 

additional uncertainties in the representative long-term costing of flexibility. The 

handling of these uncertainties by each DMM is dependent on the format of the 

uncertainties that are presented.    

The IG method represents uncertainty as a family of nested sets of plausible 

futures. This requires the future conditions or scenario projections (the 

uncertainties) to be ordered by some measure of increasing severity in order to 

identify a ‘most likely’ scenario/set of conditions to begin the analysis from. The 

nested ordering of scenarios allows the analysis to expand out in a proportional 

order of increasing uncertainty from the initial start point. Only the IG method 

requires a defined ordering of the future scenarios/conditions. The RDM method 

identifies the future scenarios/conditions that cause potential vulnerability to the 

initial candidate adaptation strategy selected. This form of ‘scenario discovery’ 

isolates only the key impacting range of projections, which are then utilised to 

modify the strategy into a more robust set-up. The DS method, rather than 

directly analyse scenario projections, conducts a more extensive vulnerability 

analysis over a wide range of condition variables to understand the sensitivity of 

the system to changing conditions. The plausibility of these conditions occurring 

is then estimated using recognised scientific projections. This reduces reliance 

on the demand and GCM-based climate projections, which potentially offer a 

constricted view of possible future states (Stainforth et al., 2007). RO is 

commonly used to perform a global examination of the entire range of bounded 

uncertainty, thus requiring no specific ordering, or prior ‘discovery’, of key 

scenarios. All DMMs can process large numbers of scenarios; however the 

greater the number of scenarios the longer the assessment run time. This will 

have particular impact on DMMs such as RO where non-linear optimisation 
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problems, i.e. requiring evolutionary, combinatorial or stochastic algorithms to 

repeatedly sample the uncertainties will increasingly slow computer 

performance. 

There are two commonly accepted approaches to planning and management 

when handling uncertainties. One is to assess the problem from the ‘top-down' 

and the other is from the ‘bottom-up’ (see Figure 3.2). Both assessment 

approaches can lead to an integrated plan and management policy (Loucks et 

al., 2005). RDM and DS are both examples of a ‘bottom-up’ approach (Dessai 

and Hulme, 2004; Lempert and Groves, 2010) also known as the grass-roots 

approach to scenario/strategy appraisal. This begins on the decision end with 

an assessment of system adaptive capacity and strategy vulnerabilities, which 

are then linked to potential climate conditions and demand projections (Smit 

and Wandel, 2006). The other DMMs are examples of the more traditional ‘top-

down’ approach also known as the command and control approach (Loucks et 

al., 2005), which begins with climate scenarios and the supply and demand 

uncertainty envelopes, then strategies and adaptation policies are planned to 

alleviate the vulnerabilities exposed by these uncertainties (Wilby and Dessai, 

2010). With IG the analysis still begins from the scenario end with the creation 

of an uncertainty model; however the envelopes of uncertainty are theoretically 

unbounded. This means the range of scenarios can expand and widen in 

parameters as the robustness analysis develops until established constraints 

are met. This combines aspects of the scenario led top-down approach with 

those of an expanding bottom-up vulnerability search area. 

The ‘top-down’ approach presents an overwhelming level of uncertainty in 

climate and population projections, many of which may not be decision-relevant 

or are highly uncertain on the impact scale. Meanwhile, the ‘bottom-up’ 

approach presents a danger of under focusing on climate and population 

projections and utilising vulnerability spaces extrapolated primarily from 

experienced conditions and risks. Although recent applications seek to evaluate 

the range of climate conditions well beyond historical variability and known risks 

(Whateley et al., 2014). There exist very few frameworks that can 

comprehensively integrate risk analysis from both ends (Brown et al., 2012) and 

further quantitative examination of both concepts within a WRM framework 

would be beneficial to ascertain the benefits of both approaches for WRM 
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adaptive planning. In general RDM and DS are much more ‘hands on’ 

approaches to decision making than the others as decision maker alterations 

can be made to adaptation strategies throughout the decision process. 

From Criterion 3 it is identified that further work could be carried out to compare 

the contrasting effect of utilising a top-down vs bottom-up assessment structure 

and into the contrasting approaches for scenario creation / vulnerability 

mapping.  

3.4.4 Criterion 4: Selection mechanisms 

Definitions of key strategy selection mechanism terms (Ranger et al., 2010a; 

Hall et al., 2012a; Matrosov et al., 2013): 

 Satisficing: an adequate level of service or system performance is 

established across a broad range of future scenarios. 

 Optimal: the highest level of system performance or security is sought. 

 Local Robustness: robustness to uncertainty is sought over a localised 

region of increasing uncertainty. 

 Global Robustness: robustness to uncertainty is sought over the full 

range of discrete futures. 

 Regret: the system performance lost from selecting one strategy over 

another under an isolated future scenario. 

 Worst-case: the most impacting future scenario or set of conditions 

projected on a strategies performance. 

Conventional water resources planning within the UK identifies strategies that 

can maintain a desired (i.e. target) level of service (or system risk). This is 

typically a cost minimisation-optimisation process whereby an optimal strategy 

is selected that best fits to the established target headroom projection. 

However, in the face of widening climate change and demographic uncertainties 

an optimal solution becomes unfeasible. This implies a general mechanism of 

satisficing required across all the DMMs when applied to modern water 

resources adaptation problems. For instance, a WRM decision maker does not 

aim for the strategy that provides the most water output obtainable to increase 

system security or the cheapest possible solution to a singular future; they aim 

for the strategy that meets their target objectives over the most future scenarios 
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for the lowest cost/environmental impact. In other words, an optimal state may 

not exist when uncertainties are deemed “deep” and multiple futures and 

objectives are being adhered to. The only exception is within decision theories 

MR and WMT where it can be argued that seeking the most cost-effective 

strategy that meets the worst-case scenario projected or minimises the worst-

case regrets is an optimal performance mechanism. However, the desired level 

of service the system is targeting (i.e. its performance under given metrics) will 

still merely be satisficing in this worst-case scenario and thus always satisficing 

in one or more objectives, whilst seeking the optimal in another.  

The theory of robust satisficing appears the dominant mechanism across the 

DMMs being developed. However there exists several ways to layout and map 

the uncertainties in order to establish the robustness functions. This is often 

separated into the concept of local or global robustness. Localised robustness 

is most widely associated with IG decision theory. Criticism has however been 

placed on IG’s handling of deep uncertainty (Sniedovich, 2012) because the 

localised robustness analysis centers on an initial ‘most likely’ projection (which 

may be challenging to establish) and requires the ordering of future scenarios 

into nested sets around this initial ‘most likely’ projection. The former issue 

tends to be subjective and the latter issue can present difficulties when the 

arrays of potential supply and demand scenarios are not monotonically 

increasing. However, increasing uncertainty out from a localised point of higher 

likelihood allows IG to perform a theoretically unbounded staged assessment of 

the uncertainty region (Korteling et al., 2013), in relation to the bounded 

assessment of a global analysis, although the IG robustness analysis must still 

remain within the boundaries of realistic projections. 

A global robustness examination, such as the mechanism traditionally utilised 

by RO and RDM theories, do not require the ordering of future scenarios and so 

uncertainties inherent in the ordering process can be diluted out. However, a 

global robustness evaluation requires testing of all potential scenarios which 

extends computation time in relation to the localised alternative which will stop 

assessing a strategy to future scenarios once surrounding states have caused 

the system to fail. 
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In recent literature, Matrosov et al. (2013) conducted a comparison of RDM and 

IG for water resources system planning. For the RDM analysis they used a 

regret-based form of MCDA to select the initial candidate strategy and to rank 

the subsequent strategy modifications and a fractional-error method over three 

uncertain system parameters to construct the IG model. This allowed all 

parameters to expand proportionately over the region of uncertainty, leading to 

a quicker run time for IG over RDM as fewer scenarios were sampled; however 

their IG method had the draw-back of ignoring un-proportional scenarios (i.e. 

times when both supply inflows and demands were low) and only 40 out of a 

potential 64000 scenario combinations were examined due to the way the 

fractional-error model incrementally sampled the uncertain space in a uniform 

pattern. They found both approaches sought to identify robust satisficing rather 

than optimal decisions and utilised fixed pre-specified adaptation strategies. 

However, each delivered slightly different final adaptation solutions due to the 

alternative forms of uncertainty assessment and selection mechanisms. The 

author’s final recommendations were for the joint use of IG and RDM for the 

planning of water resources systems as each method helped clarify the results 

of the other. Hall et al. (2012a) also carried out a quantitative comparison of IG 

with RDM for climate policy. They identified many similarities, including the 

incorporated concepts of robust satisficing over multiple plausible 

representations of the future and the fact that both can provide decision support 

in the form of trade-off curves when multi objectives are assessed on quantified 

system models (see section 3.4.6). IG differentiated by considering potential 

gains and losses if a situation should turn out better or worse than expected; 

however the decision process is largely dictated by the robustness function in 

application to WRM problems, as the function for an opportune outcome is 

difficult to firmly establish. Further evaluations of varying robustness measures 

from different DMMs were also conducted by (Herman et al., 2015) who 

discovered each DMM ranked solutions to differing performance levels and 

recommended further investigation. 

Selection mechanisms can also include consideration of the performance 

metrics/indicators utilised. These indicate the performance of a water system to 

a single future scenario or set of conditions and thus can theoretically be 

employed by any DMM to quantify performance. Selected performance metrics 
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are either established as individual criterions or combined into an aggregated 

metric and are used to analyse a system to a given future scenario via 

parameters such as the frequency, magnitude or duration of detrimental events 

(i.e. reliability, vulnerability and resilience (see section 2.5.7)). These aspects 

are often combined in some form to calculate a level of projected future risk to 

the system as presented in many risk-based planning methods (Borgomeo et 

al., 2014; Ghile et al., 2014; Hall et al., 2012b; Kasprzyk et al., 2012b; Kjeldsen 

and Rosbjerg, 2004; Turner et al., 2014a) or can be assessed individually to 

provide more detailed performance information. The alteration of performance 

metric utilised and its effect on optimal adaptation strategy selection for WRM 

has been examined (Kjeldsen and Rosbjerg, 2004) but is a topic with room for 

further study on real-life complex case studies, especially with regard to its 

impact on a detailed engineering level, i.e. the effect on the optimal timing and 

scale of interventions scheduled across a planning horizon. When dealing with 

a vast range of uncertainties (future scenarios) and wide choice of potential 

adaptation strategies, the varying level of system performance can then either 

be analysed as an array (or table) of regrets from one strategy to another or in 

the comparative adherence to target levels of performance (i.e. absolute-

performance based criteria).         

From Criterion 4 it is identified that further work could be carried out to compare 

the impact on adaptation strategy selection based on the contrasting selection 

mechanisms, namely the local vs global forms of robustness analysis (e.g. IG 

vs RO), the effect of varying the governing decision rules (e.g. regret vs non-

regret (absolute-performance) based assessment criteria) and in the choice of 

performance metrics/indicators on ultimate adaptation strategy selection (i.e. 

risk-based vs single criterion (reliability/resilience)based performance metrics).  

3.4.5 Criterion 5: Computational requirements 

Assessment of the computational requirements of the DMMs is a highly 

subjective issue as it depends on the simplicity of the problem, the 

computational skills of the user and the efficient set up of the approaches. 

However, impacting factors can be identified. Any DMM that involves a large 

number of simulations of plausible futures will be computationally demanding 

and will continue to increase in demand with the number of future scenarios 
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examined. The methods that require full global mapping of the future scenarios 

(e.g. RO) are more time intensive then DMMs that isolate specific ‘critical’ 

scenarios (e.g. DS) or DMMs that operate within a localised failure radius (e.g. 

IG). The assessment of RDM and IG on water resources system planning 

conducted by Matrosov et al. (2013) found RDM to be the more computationally 

intensive approach than IG, due to the wider set of scenarios analysed during 

sampling. 

Another factor impacting on efficiency will be the number of objectives 

assessed. Linear methods for deriving optima for singular objectives will always 

be significantly quicker to run than multi-objective evolutionary or combinatorial 

optimisation processes because of the nature of computational algorithms that 

require iterations. The number of iterations required for the optimisation runs 

(e.g. in RO) or when re-testing for new system vulnerabilities (e.g. in RDM), will 

also effect computational performance. Pre-processing to reduce the number of 

individual intervention options, or removing scenarios that indicate no impact on 

the base case water system models can greatly speed up the computational 

time for large scale water resources simulations and assessments (Southern 

Water, 2009; Bristol Water, 2014). 

The testing of pre-specified strategies (e.g. as in IG and RDM) will be less 

intensive to run, in comparison to the time demands inherent with optimisation 

techniques, as a limit can easily be quantified when testing a pre-specified 

number of strategies. For RO the optimisation process can take a significant 

amount of time to reach the Pareto optimum results if the optimisation technique 

utilised requires a number of iterations, especially if a complex water system 

with a high number of individual intervention options is under assessment. 

However, in contrast this allows the optimisation process to take into account a 

greater number of strategy combinations including those that may have been 

over-looked when pre-processing and pre-selection of strategies is made within 

methods such as IG and RDM. Although optimisation approaches also run the 

risk of falling into local optima if unsuitable algorithms are utilised. Application of 

the Enumeration method to test all combinations of adaptation strategies would 

alleviate these issues, however; this would constitute the most computationally 

demanding, often prohibitively expensive method. 
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Overall there are three general tiers of computational requirements. The 

simplest tier includes the DMMs that are straightforward to evaluate and would 

not require complex frameworks (e.g. MCDA, direct application of the classical 

decision theories or linear optimisation techniques). The second tier includes 

the approaches that require a high level of uncertainty assessment and/or 

vulnerability analysis but utilise pre-specified strategy testing (e.g. traditional 

RDM, DS and IG). The highest tier involves the complex optimisation processes 

or approaches that are utilising optimisation based strategy generation (e.g. 

complex forms of RO and DMMs incorporating multi-objective optimisation) as 

they comprise the greatest number of iterations. 

Each DMMs inputs can be modified (sampling of future scenarios, pre-

processing of intervention options etc.) to reduce computational demands. In 

general the number of future scenarios tested will have less impact on time 

compared with the efficiency/complexity of the water resources simulation 

models and the set-up of the decision/optimisation algorithms selected. 

Therefore, the computational proficiency when setting up the methodologies 

and models is paramount, particularly given that future investments in the water 

sector in response to climate change may be significant, hence justifying 

extensive simulation studies to identify superior adaptation strategies 

(Borgomeo et al., 2014). 

From Criterion 5 it is identified that the computational demands / requirements 

can be a largely subjective issue, dependent on the given problem and the set-

up of each approach. Further comparison work could be carried out to assess 

the performance of approaches from different tiers of computational 

requirements (e.g. IG vs RO) or the effect of utilising the more intensive 

optimisation processes (e.g. evolutionary) vs the less intensive optimisation 

processes (e.g. linear programs). 

3.4.6 Criterion 6: Output formats  

The output results from DMMs utilising optimisation processes can produce 

results from singular optima to Pareto fronts of results across multiple 

objectives. The latter allows the final decision maker to examine full trade-offs 

between the objectives, which can be further aided by utilising state-of-the-art 
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visualisation approaches such as; visual analytics (Fu et al., 2013) or visually 

interactive decision making (Kollat and Reed, 2007). These approaches can 

reduce large Pareto optimal design sets into smaller, more manageable subsets 

of interest and filter designs down by objective or subjective values (Maier et al., 

2014). An issue with optimisation outputs is in knowing whether true Pareto 

convergence has actually occurred or if optimisation has been prematurely 

terminated before optimal solutions are revealed. If the preliminary optimisation 

set-up and the initial setting of objective functions are poorly calibrated then 

there is also a risk of falling into local optima (Deb and Gupta, 2006; Kollat and 

Reed, 2006; Maier et al., 2014). In contrast, the DMMs that test a pre-specified 

set of fixed adaptation strategies will produce outputs for all the strategies 

selected. From this data, Pareto strategies can be derived to examine trade-offs 

across multi-objectives or singular optima selected if objective preferences are 

weighted or combined (Rangaiah, 2009). However, the range of potential 

strategies is limited to the initial pre-specified selection. Methods that test fixed-

adaptive strategies will start with a single (e.g. RDM) or range of adaptation 

strategies (e.g. RO) which are then iteratively modified or evolved into the final 

“best” output strategy(ies). 

DMMs that utilise flexible-adaptive strategy formulations may produce outputs in 

the form of decision trees or adaptive pathways (Haasnoot et al., 2013; Jeuland 

and Whittington, 2014); hence, no clearly defined fixed strategies will be derived 

either as singular optima or as Pareto results. Instead a range of strategies are 

identified with a branching structure, indicating multiple routes for adaptation. All 

this, however, provides additional challenges when communicating the results 

to different stakeholders and in ultimate adaptation strategy selection. 

The DMMs under comparison may initially assess just two or more primary 

objectives during the main decision process and then further evaluate additional 

objectives in a post-processing phase of assessment. This provides more 

selective tuning by decision makers once the strategy objectives deemed most 

pivotal have been optimised to. In traditional UK WRM planning the primary 

objective is to maintain a desired target headroom level over a time horizon for 

the lowest cost. Secondary objectives, such as environmental impacts and 

resource usage, are typically addressed during the pre-processing/MCDA of 

individual options or in post-processing trade-off comparisons of selected 
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preferable strategies. This is often considered a more manageable approach 

when dealing with pre-specified strategies but is limited when optimisation 

processes eliminate dominated strategies that may have revealed promising 

trade-off gains when secondary objectives are examined. This issue can be 

alleviated by incorporating more objectives into the main optimisation process, 

although this creates multi-dimensional outputs which can be more difficult for 

decision makers to then decipher and filter down to a final decision.  

DMMs that offer more manual modifications (fixed-adaptive strategies) during 

the decision process (e.g. RDM and DS) provide the decision maker with more 

control over the option filtering process. This allows the final strategy outputs to 

take shape as the process unfolds. DMMs utilising pre-specified fixed strategy 

testing (e.g. IG) place a higher level of confidence in this pre-selection of 

adaptation strategies, whereas DMMs utilising optimisation (e.g. RO) place a 

high level of confidence in the initial parameter setting to decide the resulting 

outputs of superior strategies. DMMs that examine multiple objectives must also 

consider the appropriate presentation of Pareto optimal results, as isolating 

superior trade-offs across multi-dimensions can become highly convoluted if 

numerous Pareto optimal sets are generated.    

From Criterion 6 it is identified that largely all DMMs can be manipulated to 

output strategy results in the form of singular optima or as Pareto optimal sets 

to multi-objectives. The differences come in the way the outputs are developed 

and in the number of strategies/solutions considered. The presentation of 

outputs from the decision analysts to the decision makers is also an important 

aspect, especially when trying to decipher optimal trade-offs across multiple 

objectives/dimensions. 

Table 3.1 presents the key summary points derived from this qualitative 

comparison of the different DMMs in respect to the listed assessment criteria. 

The table details the methodologies in terms of their more traditional 

features/criteria; however it should be noted that many of the methodologies 

can overlap in respect of their constituent processes. For instance, optimisation 

can be applied to most DMMs, although literature examples of WRM adaptation 

planning utilising, for example, IG have largely employed pre-specified 

strategies for analysis. 
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Table 3.1: Summary table – Comparison of Decision Making Methods (DMMs) for WRM adaptive planning 

Decision 
Making 
Method 
(DMM) 

Evaluation Criteria 
1. Handling of 

Planning 
Objectives 

2. Handling of 
Adaptation 
Strategies 

3. Uncertainty Handling 4. Selection Mechanisms 5. Computational 
Requirements 

 

6. Output Formats 

Info-Gap 
decision 
theory (IG) 

Robustness 
Pre-specified or 
enumerative, 
fixed strategies 

Top-down structure. Scenarios 
ordered into nested sets of 
severity. Analysed outward 
from most-likely scenario 
established  

Local satisficing 
robustness / 
opportuneness adhering to 
a failure / success criterion 

medium 
computational 
demands / 
requirements 

All strategies assessed to 
derive a singular best 
strategy or Pareto sets for 
multi-objective problems 

Robust 
Optimisation 
(RO) 

Robustness 

Optimisation 
search, fixed-
adaptive 
Strategies 
 

Top-down structure. No severity 
ordering of scenarios required. 
No likelihood assumptions 

Global satisficing 
robustness, adhering to 
weighted or un-weighted 
objectives and constraints 

high 
computational 
demands / 
requirements 

Pareto sets from multi-
objectives or singular 
optimum / pareto-front from 
aggregated objectives 

Robust 
Decision 
Making 
(RDM) 

Robustness 

Pre-specified, 
fixed-adaptive 
Strategies. 
Begins with 
single candidate 
strategy 

Bottom-up structure. Scenario 
discover used to identify key 
impacting scenarios / 
projections. No severity 
ordering of scenarios required 

Global or local satisficing 
robustness to scenarios 
derived from vulnerability 
analysis, assessed using 
regret or absolute-
performance based criteria  

medium 
computational 
demands / 
requirements 

Singular best strategy 
established or Trade-off 
summaries produced to 
compare the most robust 
strategies modified from initial 
candidate strategy 

Decision 
Scaling (DS) 

Robustness 
Pre-specified, 
fixed-adaptive 
Strategies 

Bottom-up structure. System 
vulnerability analysis performed 
using condition variables rather 
than climate / demand 
projections. Scientific 
projections used to establish 
condition likelihoods 

Global satisficing 
robustness over 
established vulnerability 
domain 

medium 
computational 
demands / 
requirements 

Singular best strategy 
established or trade-off 
summary derived to compare 
the most robust strategies 
over the vulnerability domain 

Multi-Criteria 
Decision 
Analysis 
(MCDA) 

Interchangeable 
Pre-specified, 
fixed strategies 

Characterises sensitivity to 
uncertainty as a criteria in the 
analysis 

Weighted aggregate score 
low computational 
demands / 
requirements 

All strategies are scored  and 
the highest ranking selected 
for trade-off assessment 

Real Options 
Analysis 
(ROA) 
*decision tool 

Flexibility 
Pre-specified, 
flexible-adaptive 
strategies 

Top-down structure. Scenario 
tree modelling or adaptive 
pathways to route flexible 
solutions 

Global satisficing 
robustness to short term 
performance goals whilst 
maximising long term 
system flexibility 

medium 
computational 
demands / 
requirements 

All strategy outcomes 
assessed allowing trade-off 
comparisons of superior 
flexible solutions 
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3.5 DMMs and criteria selected for further quantitative 

analysis  

The comparison of methods conducted in section 3.4 has indicated a number of 

key criteria/techniques that would benefit from further quantitative assessment 

on real-world case studies. The review highlighted seven areas of key interest 

in particular that present contrasting theories of handling uncertainty in the 

WRM context which, at the same time, have had limited literature attention to 

date. The seven comparative/investigative areas are as follows: 

(a) A local vs global measures of robustness, 

(b) Pre-specified vs optimisation-generated adaptation strategies, 

(c) Top-down vs bottom-up assessment structures, 

(d) Fixed vs fixed-adaptive vs flexible-adaptive adaptation strategy designs, 

(e) Regret vs non-regret based assessment criteria, 

(f) Singular optimal results vs Pareto optimal sets and 

(g) Risk-based vs reliability and resilience based performance metrics. 

The term resilience has also been highlighted as a potential alternative primary 

performance metric and/or planning objective for water resources adaptation 

planning, which, to date, has yet to be clearly defined in WRM literature. 

Deriving an improved metric for resilience is also a noted conclusion in the 

recent Environment Agency (2013) report identifying the metric as a prime 

candidate for further research and quantitiative assessment. 

To perform an in-depth examination of all DMMs and explore all the 

investigative areas highlighted above would be highly ambitious and not 

feasible given the quantity of fine detail that each comparative area warrants. 

Therefore, following the qualitative review of methods shown here several 

methods and criteria were selected for further quantitative analysis. 

More specifically, Robust Optimisation and Info-Gap decision theory methods 

have been selected for further quantitative testing on real-world case studies 

(Chapters 4 and 5) to primarily explore investigative areas (a) and (b) and 

subsequently areas (d), (f) and (g) listed above. These two methods are 

selected because they allow an examination of contrasting local vs global 

measures of robustness (a) as well as the effect of utilising pre-specified vs 
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optimisation-generated adaptation strategies (b). They also allow a comparison 

of a fixed vs fixed-adaptive strategy design allowing partial evaluation of 

investigative area (d). Both methodologies evaluate fixed rather than flexible 

strategies in a top-down assessment structure, however this reinforces their 

selection for this detailed investigation as assessing too many contrasting 

concepts in one study can make it more difficult to isolate the main impacting 

features that influence the DMM outcomes. Two case-studies are carried out, 

one utilising a risk-based performance metric (Sussex North – section 5.3) and 

the latter employing an individual criterion (reliability) based performance metric 

(Bristol Water – section 5.4), to explore investigative area (f). The results are 

also compared with strategy solutions derived using current practice (deriving 

singular optimal solutions) to allow an examination of investigative area (g). 

3.6 Summary 

A total of five DMMs (Info-Gap; Robust Optimisation; Robust Decision Making; 

Decision-Scaling and Multi-Criteria Decision Analysis) and several classical 

decision rules and decision making tools (Real Options Analysis; Minimax 

Regret; Laplace principle and Wald’s Maximin theory) were discussed and 

compared qualitatively using six assessment criteria (handling of planning 

objectives; handling of adaptation strategies; uncertainty handling; selection 

mechanisms; computational requirements and output formats). 

The qualitative comparison of methods conducted here indicated a number of 

key criteria/processes that would benefit from further quantitative assessment 

on real-world case studies. The review highlighted seven investigative areas of 

particular interest: (a) a local vs global measures of robustness, (b) pre-

specified vs optimisation-generated adaptation strategies, (c) top-down vs 

bottom-up assessment structures, (d) fixed vs fixed-adaptive vs flexible-

adaptive adaptation strategy designs, (e) regret vs non-regret based 

assessment criteria, (f) singular optimal results vs Pareto optimal sets and (g) 

risk-based vs reliability and resilience based performance metrics. The term 

resilience was also highlighted as prime candidate metric/planning objective for 

further research and quantitiative assessment. 
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Following the review DMMs Robust Optimisation and Info-Gap decision theory 

were selected for further quantitative testing on real-world case studies to 

explore investigative areas (a), (b), (d), (f) and (g). This quantitative study is 

now presented in Chapters 4 and 5. 
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Chapter 4. Methodology for Quantitative 

Comparison of DMMs for WRM Under Uncertainty 

4.1 Introduction 

The methodology presented in this chapter as well as sections of the 

subsequent case studies (Chapter 5) have been published in the following 

Journals: Sussex North case study – Journal of Water Resources Planning and 

Management (Roach et al., 2016b); Bristol Water case study – Procedia 

Engineering (Roach et al., 2015a). 

The following quantitative work evaluates two established decision making 

methods and analyses their performance and suitability within real-world WRM 

problems. The methods under assessment are Info-Gap decision theory (IG) 

and Robust Optimisation (RO). The methods have been selected primarily to 

investigate a contrasting local vs global method of assessing water system 

robustness to deep uncertainty but also to compare a robustness model 

approach (IG) with a robustness algorithm approach (RO), whereby the former 

selects and analyses a set of pre-specified “fixed” strategies and the latter uses 

optimisation algorithms to automatically generate and evaluate “fixed-adaptive” 

strategy designs (see section 3.5). The study also presents a novel area-based 

method for IG robustness modelling for use when handling discrete scenario 

projections (developed during this research study) and assesses the 

applicability of utilising the Future Flows climate change projections in scenario 

generation for water resource adaptation planning, utilising a novel rolling flow-

factor methodology (see section 4.4.1). 

The methods are then applied to two case studies (detailed in Chapter 5) 

modelling Southern Water’s Sussex North water resources zone (section 5.3) 

and Bristol Water’s water resources zone (section 5.4), both situated in the UK. 

An alternative performance metric/indicator is used within each case study, with 

the former employing a risk-based measure of system performance and the 

latter applying an individual criterion (reliability) measure of system 

performance. This allows a comparative assessment of utilising a risk-based 

performance metric against a performance metric more comparable with 
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conventional WRM practice; in order to examine whether the metric type 

selected can impact on the DMM outputs. 

First the general WRM problem is described followed by the concepts of 

robustness, adaptation strategies, costs and the two alternative performance 

metrics utilised in this methodology. A description of the dynamic water 

resources simulation model developed for this study is then given, including the 

methods for generating supply and demand scenarios, before detailing the 

specific operation of the two decision making methods under review. An 

overview of the quantitative real-world case study work carried out is then given 

prior to full case study details, results and analysis (Chapter 5). 

4.2 WRM problem definition 

The WRM problem is defined here as the long-term water resources planning 

problem of supply meeting future demand. The aim is to, for a given long-term 

planning horizon, determine the best adaptation strategy (i.e. set of 

interventions scheduled across the planning horizon) that are required to 

upgrade the existing regional WRM system that will satisfy the multiple 

objectives of maximising the robustness of future water supply whilst minimising 

the total cost of interventions required. Robustness of water supply (see section 

2.5.6) is evaluated across a number of different, pre-defined supply and 

demand scenarios which are used to represent uncertain future climate change 

and population growth. The above problem is solved by using the two different 

decision making methods, each with its specific implementation, tested over two 

real-world case studies. The results obtained by using the different decision 

making methods are compared after all strategy solutions are re-evaluated 

using the definitions of robustness, costs, risk and reliability outlined below: 

4.2.1 Robustness of water supply 

Robustness is commonly described in WRM literature as the degree to which a 

water supply system performs at a satisfactory level across a broad range of 

plausible future conditions (Groves et al., 2008). Robustness of long-term water 

supply is defined here as the fraction (i.e. percentage) of future supply and 

demand scenarios that result in an acceptable system performance (Beh et al., 

2015a; Paton et al., 2014a; 2014b), i.e. as follows:  
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௫ܾ݋ܴ =  
ܣ
ܷ

∗ 100 
 

 (4.1)  

where (x) = an adaptation strategy index; (A) = the number of scenarios in 

which the system maintains an acceptable level of performance (defined in 

accordance to the performance metric selected) and (U) = the total number of 

scenario combinations (of supply and demand) considered. For example, if 90 

(ܵ) out of 100 (U) scenarios are deemed to have been met acceptably then the 

robustness of adaptation strategy x is 0.9, i.e. 90%. The acceptable level of 

system performance is dependent on the performance metric/indicator selected 

and is defined, in case study 1 (section 5.3), as a risk of water deficit occurring 

(equation (4.2)) or, for case study 2 (section 5.4), as a level of system reliability 

(equation (4.3)) being below a pre-specified target level for the duration of the 

long-term planning horizon. 

4.2.2 Performance metrics 

4.2.2.1   Water deficits 

In this study a ‘water deficit’ (or water deficit event) is defined as the point at 

which a water system requires a temporary water restriction to be put in place 

(e.g. a temporary use ban). The implications of extended water restrictions have 

potentially severe economic, societal, reputational and environmental impacts, 

particularly in large conurbation areas (Environment Agency, 2015). A study by 

Thames Water estimated that the monthly cost for London alone under 

restriction would be upward of £7 – 10 billion (Thames Water, 2012). An 

estimate by AECOM put the cost of 3 years of drought conditions occurring in 

England in the 2050s as costing up to £80 billion if current adaptation 

approaches are not advanced (AECOM, 2016). 

The circumstances that entail a water deficit occurring are dependent on the 

system under study. For instance, in the case studies to follow (Chapter 5) a 

water deficit is counted if the stored water levels in the main system reservoirs 

fall below an unacceptable pre-specified (threshold) trigger level on a given time 

step (day or month). A water deficit may be allowed to occur occasionally, in 

order to manage the water supply system during periods of drought. However, 

an empty reservoir causing an unfulfilled water demand is deemed 
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unacceptable and is defined as a complete system failure. Therefore the 

performance (and target level of performance) of a water system is defined and 

calculated as the risk of a water deficit occurring (case study 1) or alternatively 

by the relative frequency of water deficits recorded (case study 2), without the 

system ever reaching complete failure. 

4.2.2.2   Risk of a water deficit and reliability of a water system supply  

The risk of water deficit occurring for a given adaptation strategy system (x) to 

an individual discrete scenario combination of supply and demand (u) is defined 

as follows: 

௫௨݇ݏܴ݅ =  ቆ
∑ ௧݂

்
௧ୀଵ

ܶ
ቇ × ෍ ∆ ௧ܸ

்

௧ୀଵ

 
 

 (for each x and u) (4.2)  

where (ft) = a value equal to 1 if a time step t (day or month) contains a water 

deficit event, otherwise equal to 0; (ΔVt) = the volume of a water deficit recorded 

in time step t (ML); (t) = time step index and (T) = the total number of time steps 

in the planning horizon (assuming these are of constant length). The first term in 

equation (4.2) (in brackets) presents the likelihood of a water deficit and the 

reminder represents the impact of water deficits (assuming that actual impact is 

proportional to the volume of water not delivered which, obviously, represents a 

simplification of reality). 

The reliability of a water system is defined as the probability of water supply 

fully meeting demand required over the planning horizon and is estimated here 

as the relative frequency of a water system not being in deficit (Kjeldsen and 

Rosbjerg, 2004): 

ܴ݈݁௫௨ =  ቆ1 −
∑ ௧݂

்
௧ୀଵ

ܶ
ቇ ∗ 100 

 
(for each x and u) (4.3) 

The reliability of the water system must remain at or above a desired, pre-

specified target level of system reliability (ݎ௘) for the system to be deemed as 

performing acceptably under a given future scenario (of supply and demand). 

Similarly when utilising the risk metric, the risk of a water deficit must be 

maintained at or below a desired, pre-specified target level of system risk (ݎ௖), 

i.e. the following constraints must be satisfied: 
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௫௨݇ݏܴ݅ ≤  ௖   (4.4)ݎ

ܴ݈݁௫௨ ≥  ௘   (4.5)ݎ

4.2.3 Adaptation strategies    

Different adaptation strategies can be produced for a given water resource 

network by employing different combinations of various water resource options 

(intervention options) arranged over a long-term planning horizon. The total 

costs of strategies in the form of Present Values (PVs) are derived using 

equation (4.6). 

ܲ ௫ܸ = ෍ ቎
௬ܥ

(1 + ௜೤(ݎ
+ ෍

௬ܱ

(1 + ௜(ݎ

ூ

௜ୀ௜೤

቏

௒

௬ୀଵ

 

 

(4.6) 

where (y) = the intervention option index, (Y) = the total number of intervention 

options in the (adaptation) strategy, (Cy) = the estimated capital cost of 

intervention option y (£M), (Oy) = the estimated operating cost of intervention 

option y (£M/yr), (r) = the annual discount rate, (i) = the time step of the 

planning horizon (in years), (iy) = the year in the planning horizon option y is 

implemented and (I) = the total number of years in the planning horizon. 

This calculates the present value of an adaptation strategy as the total 

discounted capital and operation costs of all intervention options employed in 

the strategy, derived by summing each (one off) discounted capital cost and the 

accumulating yearly operational costs of an option from the point of each 

options implementation in the planning horizon (iy). 

In practice each intervention options will have varying build times, i.e. a new 

large reservoir may take several years longer to construct than a new minor 

resource option. However, to simplify the optimisation problem here all 

intervention options within a strategy are assumed built and in operation from 

their selected point of implementation in the planning horizon. For instance, if a 

new reservoir is sequenced in a strategies planning horizon after 10 years then 

the discounted capital cost of the reservoir is added to the total cost of the 

strategy at this 10 year point. The new water supply addition from the resource 

to the system, and its accumulative operational costs, will also begin from this 
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point. This simplification is deemed acceptable given the focus of the study is 

on the decision making methods utilised rather than on generating a precise 

real-world optimal strategy.   

4.3 Dynamic water resources simulation model 

A dynamic water resources simulation model has been developed that can 

replicate, using a daily or monthly time step, the supply and demand balance of 

a regional water supply system over a pre-established time horizon. Different 

regional water resource networks can be input to the model, along with future 

scenarios (of supply and demand) and potential new adaptation strategies, 

analysing the performance of each future system combination via selected 

performance metrics (e.g. risk of water deficit results). The simulation model is 

written in the Python programming language (Python Software Foundation, 

2013), and scenarios and strategies can either be input manually or selected 

automatically using an appropriate optimisation algorithm (see section 4.5). 

Figure 4.1 presents a simplified flowchart of the general operation and 

processes of the dynamic water resource simulation model developed for this 

study. It’s set-up within the Info-Gap robustness model and the Robust 

Optimisation framework is shown in section 4.5; in Figures 4.6 and 4.7 

respectively. 

The simulation model requires three main data inputs: a pool of potential new 

intervention options (i.e. new resource options / demand management methods 

that could be applied to a water system) from which to form combinations of 

new adaptation strategies; a range of plausible supply scenarios (i.e. potential 

future regional precipitation and river flow projections applicable to the 

performance of all existing water resources in the system) and a range of 

realistic demand scenarios to represent uncertain future population and 

demographic changes.  

The adaptation strategy generation process, the method of mapping/analysing 

the generated scenarios of supply and demand and the format of the final 

model outputs will vary depending on the specific decision making method 

utilised and is fully described in section 4.5. 2  
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Figure 4.1: Simplified flowchart of the dynamic water resources simulation 
model developed 

4.4 Regional supply and demand scenarios 

When developing scenarios, the objective is to produce a small collection of 

vastly different but still highly plausible futures of a whole range of system 

factors (see section 2.5.5). For this study a wide range of plausible supply and 

demand scenarios deemed “equally likely” have been generated. Utilising 
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likelihood assumptions will heavily weight, and thus generally favour, strategies 

that design to the “most likely” conditions, which cause the more unexpected 

future events to be ignored (a drawback of current engineering practice) and 

encourage the selection of a less “overall” robust system. 

Effort has been made to represent the climate and population variability and 

extremes in future supply and demand in a thorough but plausible way by 

utilising the latest available projections. Resampling is also utilised for the 

supply scenarios to ensure a wide variation of potential futures are developed. 

Not ‘all’ potential scenarios are examined as this would be very computationally 

demanding; however, a suitably wide variation is utilised, including several 

‘more severe’ scenarios, in order to sufficiently stress and assess the systems 

under study to future uncertainties. 

The same methodology for generating supply and demand scenarios for a 

regional water resource zone has been utilised across both subsequent case 

studies and the follow on analysis work (Chapters 5-7). The methods and 

techniques for developing future scenarios is not one of the principle 

investigations of this research; however, an appropriate level of uncertainty 

must still be created and examined in order to produce credible outputs from the 

decision making methods. The process selected for generating scenarios is 

outlined below: 

4.4.1 Generating supply scenarios 

Following the literature review carried out in Chapter 2 a prospective 

(exploratory future trend) scenario type is selected for generating future supply 

scenarios for this study (see section 2.5.5). This form of scenario generation is 

based on the extrapolation and alteration of past data trends projected forward 

in time utilising plausible climate projections, combined with randomised 

variations in the timing and frequency of future drought periods, in order to 

produce a wide array of different scenarios that avoid directly copying historic 

patterns of events. 

A reliable source of data for producing plausible scenarios of future hydrological 

time series and synthetic flows for a water resource zone in the UK is by using 

the UK climate projections (UKCP09) developed in 2009 by the UK Climate 
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Impacts Programme (UKCIP). The UKCP09 projections are still the leading 

source of climate information for the UK and its regions, but are scheduled to be 

upgraded in 2018 to the UKCP18 projections (Defra, 2016b). The projections 

are created to help users with the process of adapting their systems to a 

changing climate (UKCIP, 2009). UKCP09 only provides changes in climate and 

therefore requires hydrological modelling to derive hydrological time series that 

represent a range of climate model projections. However this has subsequently 

been addressed by the ‘Future Flows Climate Programme’ (Prudhomme et al., 

2012) which uses the UKCP09 regional climate model to generate climate 

change projections of river flows. In this study the application of using the 

Future Flows climate/hydrology scenarios to generate future river flow 

projections for the region’s major contributing rivers and reservoirs is tested. 

The Future Flows project utilises the latest projections from the UK Climate 

Impact Program (UKCIP), derived from the UKCP09 regional climate models 

(RCMs) from the Met office Hadley Centre. They provide 11 plausible 

realisations (all assumed equally likely) of the river flows at various river 

gauging stations across England, Wales and Scotland and account for the 

impact of climate change to 2100 under a Medium emission scenario (Figure 

4.3). 

The key advantage of the Future Flow scenarios is that they are transient flow 

projections, so they do not require additional rainfall-runoff modelling and so 

can be directly utilised to continuously simulate the supply-demand balance 

over a given planning horizon. Direct use of UKCP09 projects is not suitable for 

this study as the projections provide “snap shots” of climate change for 

predefined time horizons and therefore cannot be easily manipulated for 

transient analysis. Using transient projections allows a direct analysis of the 

timing of interventions over the planning horizon. 

The limitation of the current Future Flow projections is their utilisation of only a 

medium global emission scenario and their formation from the SRES emission 

scenarios (IPCC, 2000), scenarios recently superseded by the improved 

Representative Concentration Pathways (RCPs) (Moss et al., 2010), However, 

once resampled multiple times (as outlined below), the Future Flow projections 

provide an adequate range of uncertainty for this specific metric evaluation. 

Resampling of the flow projections (as outlined below) eliminates any bias in the 
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selection of adaptation strategies due to the timing and duration of future 

drought conditions exhibited (which are fixed in time without resampling), and 

enables a sufficient investigation into the role of climate variability on the 

region’s resources. The scenario generation process is not the focus of this 

study; however, it is recommended that water practitioners wishing to employ 

this methodology in practice should examine the widest range of plausible 

projections available. 

In order to generate multiple future synthetic river flows and reservoir inflows for 

a region a Future Flows gauging site of closest proximity to the resource zone is 

selected. The specific time-series inflow/flow data required for each source of 

water, be it a reservoir or at a river abstraction point, is then translated using a 

monthly flow factoring method (Arnell and Reynard, 1996), which perturbs the 

historic flow data to match the flow changes projected at the gauging site. Flow 

factors describe the percentage change in monthly average flows over a 30 

year historic period (1961-1990) with those of a 30 year future period at the 

gauging site (e.g. 2050s = 2041-2070). The limitation of a flow factor approach 

is that the historical sequencing of drought events is unchanged (Diaz-Nieto and 

Wilby, 2005), such that if a drought event occurs after 10 years historically it 

would appear in every climate change scenario after 10 years and force a 

similar pathway of adaptation strategies. In order to test the adaptation 

strategies against a range of different naturally varying scenarios, the historical 

flows are resampled (Ledbetter et al., 2012) using 3 month seasonal blocks 

(Dec-Feb, Mar-May, Jun-Aug and Sep-Nov) to create new realisations of 

historical climate. Each new flow projection is formed by resampling the past 

100 years of flow records (1915-2014 inclusive), then selecting a 25 year period 

at random (Figure 4.2). 

In order to then impose the transient climate change signal of the Future Flows 

scenarios within the resampled historical sequences a novel rolling flow factor 

method is devised to produce factors for each year in the future planning 

horizon. For example, to create flow factors for 2020 a future flow period from 

2005-2034 is compared with the 1961-1990 baseline, for 2021 the future 

averaging period is advanced a single year to 2006-2035 and so on for each 

year in the planning/time horizon. The flow factors are then used to perturb the 

historic resampled river flow and reservoir inflow data at each source/site within 
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the resource zone to ensure the system is modelling the same patterns of 

weather and climate change throughout the system at the same time (Figure 

4.2). 

Figure 4.2: Supply scenario generation process – resampling and rolling flow 
factor method to generate transient flow projections imposed with Future Flow 

climate change signals 

Figure 4.3: Future Flow climate/hydrology projections and example of three 
resampled flow sequences – conceptual drawing 
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Figure 4.3 gives a conceptual example of a historic river flow sequence and its 

11 transient Future Flow projections. As detailed above, each flow scenario is 

formed by resampling the past 100 years of flow records (1915-2014 inclusive), 

then selecting a 25 year period at random before imposing each Future Flow 

transient climate change signal using the rolling flow factor method. Note in 

Figure 4.3 how the resampled flow scenarios maintain the downward trend of 

the given Future Flow projection but the stochastic resampling has re-ordered 

the drought periods to eliminate historic bias. 

As the likelihoods of the different scenarios is not quantifiable the supply 

uncertainty is classified as “deep” (Walker et al., 2013b). The reliability of minor 

additional sources of water unique to the following case studies (Chapter 5), 

such as applicable minor groundwater sources or imported supplies from a 

neighbouring region, that are not projected to be significantly impacted upon by 

the regions climate change projections, will use their current daily/monthly 

contributing supply values as consistent inputs over the full planning horizon 

(Bristol Water, 2014; Southern Water, 2009).  

Using transient sequences of flows is different to the standard engineering 

practice (the EBSD method) which assumes a single linear interpolation of 

supply availability from the baseline to the 2030s. 

4.4.2 Generating demand scenarios  

The method of demand scenario generation is specific to each case study and 

have either been developed using data tables from the latest regional WRMPs 

and supporting documentation (Sussex North case study) or by utilising WRMP 

data tables (per capita consumption etc.) combined with the Office for National 

Statistics (ONS) population projections (Bristol Water case study). Full demand 

scenario information for each case study is given in Chapter 5. 

Demand scenarios for the Sussex North case study consist of 4 scenarios 

based on varying success levels following the enforced introduction of Universal 

Metering (UM) in the region. This requires full metering of all properties and 

non-household businesses by 2015 and the scenarios illustrate the projected 

effect of this introduction from a pessimistic demand increase to more optimistic 

results and also include scenarios of low leakage increases and high leakage 
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increases following the implementation of the regional leakage program 

(Southern Water, 2009). 

Demand Scenarios for the Bristol Water (BW) region consist of 3 scenarios of 

Low, Principal and High population growth used to perturb historic demand 

values, which are calculated subject to 3 alternative levels of demand 

uncertainty corresponding to the 80%, 90% and 100% target headroom 

calculations derived by BW (Bristol Water, 2014; UKWIR, 1998) resulting in 9 

discrete demand scenarios.   

Demand projections for both case study regions are derived from annual 

demand projections (or annual population growth / headroom projections in the 

case of the BW case study) that are typically listed in 5 year intervals. The 5-

year demand data is interpolated to produce yearly average demands using 

linear interpolation between the known data values, which are then multiplied by 

monthly factors to reflect the changing seasonal demand averages employed by 

Southern Water (2009; 2014) and Bristol Water (2014), available from their 

WRMPs. These values are then used to create a range of discrete daily or 

monthly time step demand scenarios, either by perturbing the historic data with 

the projected population/headroom demand increases (as in the BW case 

study) or by directly interpolating the UM demand projections (as in the SW 

case study). 

4.5 Decision making methods 

4.5.1 Info-Gap decision theory (IG)  

Info-Gap (IG) decision theory, as detailed in section 3.2.1, is a non-probabilistic 

decision theory that seeks to optimise robustness to failure over a localised 

area of deep (or “severe”) uncertainty (Ben-Haim, 2001). IG evaluates the 

robustness of an adaptation strategy as the greatest level of localised 

uncertainty that can be negotiated while maintaining pre-specified performance 

requirements (Hipel and Ben-Haim, 1999). The Info-Gap robustness function, 

equation (4.7), expresses the robustness to uncertainty (ߙො) of an adaptation 

strategy (x) as the maximum horizon of uncertainty (ߙ) explored over a range of 

potential future scenarios of supply and demand (ݑ ∈ ܷ), for which the 

maximum level of risk or reliability occurring (calculated using equation (4.2) or 



98 

 

(4.3)) maintains a target level of system performance (equations (4.4) and 

(4.5)), i.e. minimal system performance requirements are always satisfied (Ben-

Haim, 2006): 

,ݔ)ොߙ (௖ݎ = max ൜ߙ: ൬ max
௨ఢ௎(ఈ,௨෥)

,ݔ)݇ݏܴ݅ ൰(ݑ ≤  ௖ൠ     (4.7)ݎ

 

,ݔ)ොߙ (௘ݎ = max ൜ߙ: ൬ max
௨ఢ௎(ఈ,௨෥)

,ݔ)݈ܴ݁ ൰(ݑ ≥  ௘ൠ     (4.8)ݎ

where (u) = an individual discrete scenario combination (of supply and demand) 

and (U) = the total range (number) of scenario combinations considered. The 

Info-Gap robustness analysis begins from a “most likely” scenario combination 

(of supply and demand) (ũ) before expanding the analysis out over widening 

uncertain parameters (ߙ). 

A novel area-based method for IG robustness modelling of uncertain future 

supply and demand scenarios is presented in Figure 4.4. This method is 

introduced in order to directly utilise the discrete Future Flow scenario 

projections (Prudhomme et al., 2012) within the IG analysis, which traditionally 

uses continuous uncertainty variables. Each flow projection is highly variable, 

thus defining each horizon expansion as a function of increasing distance (ߙ) 

cannot easily be established. The area-based method aims to solve this issue 

by first ordering the scenarios (both supply and demand) by their rank of 

severity (detailed below Figure 4.5) and then examining the various scenario 

combinations in an asymmetric search pattern (see Figure 4.4).  

The method operates by first selecting and analysing a “most likely” scenario 

combination (of supply and demand) (ũ) on the system configuration 

(adaptation strategy) under assessment. If the given water system configuration 

performs acceptably (target levels of performance are satisfied) under this 

scenario combination then all adjacently ranked scenario combinations are then 

examined (see Figure 4.4 (a)). These scenario combinations are then analysed 

and the satisfactory/unsatisfactory performance of the system recorded. If a 

system fails (target levels of performance are not satisfied) under a given 

scenario combination then the search does not continue from this point in the 

uncertainty region, but may continue elsewhere if conditions are satisfied (see 
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Figure 4.4 (b)). The IG analysis then expands out over all adjacently ranked 

scenarios (the next higher and lower ranked scenarios of supply and demand) 

in an asymmetric search pattern, until no more immediate adjacent scenarios 

satisfy the selected performance requirements (or until all supply/demand 

scenarios meet constraints) (see Figure 4.4 (c)). The robustness level (ߙො) of a 

strategy is then calculated as the sum of all satisfied scenario combinations 

(see Figure 4.4 (d)). 
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Figure 4.4: Info-Gap robustness model – utilising discrete scenario area-based 
robustness mapping to search the uncertainty region 
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The area-based methodology is designed to improve the IG robustness search 

process for handling uncertainties based on discrete scenario projections that 

are not monotonically increasing. Incrementally sampling uncertainties in 

proportional increases across all uncertain variables leads to a number of 

scenario combinations being ignored (Matrosov et al., 2013). The area-based 

method advances this by assessing all potential scenario combinations within 

each incrementally expanding robustness analysis. This robustness search 

technique allows more scenario combinations to be analysed and allows the 

robustness search to continue until all scenario expansion routes end in system 

failure. This calculates the expanding horizon of uncertainty (ߙ) as a function of 

total area rather than as a function of maximum distance (Figure 4.5) and the IG 

robustness level is calculated as a sum of all successful (ߙᇱ) deviations (total 

no. of local scenarios (u) satisfied): 

,ݔ)ොߙ (௖ݎ = ෍ ᇱߙ ൜ߙ: ൬ max
௨ఢ௎(ఈ,௨෥)

,ݔ)݇ݏܴ݅ ൰(ݑ ≤ ௖ ൠݎ

௎

௨ୀ ௨෥

 (4.9) 

,ݔ)ොߙ (௖ݎ = ෍ ᇱߙ ൜ߙ: ൬ max
௨ఢ௎(ఈ,௨෥)

,ݔ)݈ܴ݁ ൰(ݑ ≥ ௘ ൠݎ

௎

௨ୀ ௨෥

 (4.10) 

In order to later compare the IG results with those of the RO assessment the 

overall robustness to uncertainty is then calculated as a percentage over all 

futures scenarios considered using equation (4.1), where (ߙො =   .(ܣ

Figure 4.5: Example of two adaptation strategies tested using the Info-Gap 
area-based robustness model 
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The severity ranking of demand scenarios is straightforward as they are 

typically projected in a severity order. However the supply scenario ranking and 

ordering can be performed in a number of ways. For this methodology each 

supply scenario is tested on the baseline historical water supply system 

configuration, with the level of system risk or reliability calculated and used to 

assign relative severity ranks to the scenarios. 

The selection of an appropriate starting point (ũ) within a theoretically 

unbounded region of uncertainty is a highly debated subject (Sniedovich, 2007; 

2012). For both following case studies the median scenarios of supply and 

demand (following rankings as stated above) are selected for the primary IG 

runs (defined as Umid). However, positions in the upper and lower quartile of 

scenario severity (defined as Uhigh and Ulow respectively) are also tested in order 

to quantify the sensitivity of the (ũ) selection. The number of start points 

selected for examination is deemed appropriate given the complexity of the 

case studies and range of uncertainty examined. The range in supply and 

demand uncertainty is selected with great care and by considering a wide array 

of different data/information sources to produce a range of genuinely likely 

scenarios, as advised by Sniedovich (2007), detailed fully in Chapter 5 sections 

5.3.2 and 5.4.2. 

For IG, multiple adaptation strategies are manually prespecified from the range 

of potential option combinations and evaluated using the IG robustness model 

created. Either a subset of preferred strategies can be selected by the user or 

strategy combinations are generated either using complete enumeration 

(generate all possible combinations) or using random generation (generate a 

specified number of combinations at random). The specific method utilised for 

each case study is detailed in sections 5.3.2.5 and 5.4.2.5. 

Figure 4.6 presents a flowchart of the IG methodology and its set-up / 

interaction with the dynamic water resources simulation model outlined in 

section 4.3. 
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Figure 4.6: Flowchart of the dynamic water resources simulation model – IG 
methodology set-up 
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4.5.2 Robust Optimisation (RO)  

Robust Optimisation (RO), as detailed in section 3.2.2, involves the application 

of appropriate optimisation algorithms to solve problems in which a specific 

measure of robustness is sought against uncertainty (Ben-Tal et al., 2009; see 

equation (4.1) for the defintion used here). For this WRM problem, the objective 

functions are the minimisation of cost (equation (4.6)) and maximisation of 

robustness (equation (4.1)). The optimising algorithm selected for this study is a 

modified version of the NSGA-II (Deb et al., 2000), as its high performance and 

capabilities in handling multi-objective water related optimisation problems is 

well documented (Kollat and Reed, 2006; Nicklow et al., 2010) and it is 

recognised as an industry standard algorithm (Wang et al., 2014). The algorithm 

uses integer values to select from the decision variables and is run using multi-

processor parallel programming to increase run time efficiency. 

The dynamic water resources supply and demand simulation model (see 

section 4.3) is combined with the NSGA-II optimisation algorithm, set-up using 

the R-programming language (R Core Team, 2013). The algorithm requires 

three main data inputs; a pool of potential new intervention options, from which 

to form combinations of new adaptation strategies, and the range of potential 

supply and demand scenarios (see section 4.4). The NSGA-II algorithm 

automatically forms a population of adaptation strategies, sequences the 

strategies across the planning horizon and then analyses their performance 

across all scenario combinations of supply and demand in the simulation model 

to the two objectives of cost and robustness. The decision variables are coded 

in a genetic code form such as [2, 10, 5, -1, -1, … n] where each chromosome 

is a different intervention option that could be included in an adaptation strategy 

(up to n number of variables(options)). The number of the variable indicates 

when in the planning horizon it is constructed (i.e. its point of adding additional 

water capacity to the system). For instance, the code example above is 

indicating five intervention options; the first three are implemented at 2, 10 and 

5 years into the planning horizon, whereas -1 for options 4 and 5 indicate that 

they are not included in the strategy at all. 

The best performing strategy codes are then carried forward, undergo 

crossover and mutation at random (based on selected probabilities) and then 
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are re-analysed over several generations, with the aim of ultimately identifying 

the Pareto optimal set of results for robustness vs cost, where all non-

dominated strategy results are discovered. The parameters used for each RO 

analysis are given in Chapter 5, sections 5.3.2.5 and 5.4.2.5, and further 

explanation of the NSGA-II operation can be found in Deb and Pratap (2002).   

Figure 4.7 presents a flowchart of the RO methodology and its set-up / 

interaction with the dynamic water resources simulation model outlined in 

section 4.3. 
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Figure 4.7: Flowchart of the dynamic water resources simulation model – RO 
methodology set-up 
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RO differs in its robustness analysis to IG in that it has been set up to assess 

the “global” robustness of a strategy rather than performing a  “local” robustness 

examination prominent to IG decision theory (Figure 4.8). In a way it allows a 

“decentralised” robustness examination, testing a strategy’s performance over 

all possible scenario combinations when calculating robustness, rather than 

isolating itself to a central “most likely” region, as implemented in the IG local 

“centralised”, examination. 

Figure 4.8: Info-Gap local robustness examination vs Robust Optimisation 
global robustness examination 

4.6 Summary 

This chapter outlines the general methodology for evaluation and comparison of 

two established decision making methods (Info-Gap decision theory and Robust 

Optimisation) on real-world water resource adaptation problems. A description 

of the dynamic water resources simulation model developed for this study is 

given, including the methods for generating supply and demand scenarios, 

before detailing the specific operation of the two decision making methods 

under review. A novel area-based method for IG robustness modelling for use 

when handling discrete scenario projections is presented as well as a novel 

rolling flow factor methodology for generating transient supply scenarios 

(developed during this research study). 

The above DMMs are applied in Chapter 5 to two real-world case studies 

representing Southern Water’s Sussex North water resources zone and Bristol 

Water’s water resources zone.  

Satisfied scenarios  
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Chapter 5. Evaluation and Comparison of DMMs 

for WRM on Case Studies 

5.1 Introduction 

Sections of the real-world case studies presented in this chapter have been 

published in the following Journals: Sussex North case study (section 5.3) – 

Journal of Water Resources Planning and Management (Roach et al., 2016b); 

and the Bristol Water case study (section 5.4) – Procedia Engineering (Roach 

et al., 2015a). 

Following the qualitative review of methods carried out in Chapter 3, decision 

making methods “Robust Optimisation” and “Info-Gap decision theory” were 

selected for real-world case study evaluation and comparison. These two 

methods were selected because they allow an examination of contrasting local 

vs global measures of robustness (investigative area (a) from section 3.5) as 

well as the effect of utilising pre-specified vs optimisation-generated intervention 

strategies (investigative area (b)). They also allow a comparison of a fixed vs 

fixed-adaptive strategy design allowing partial evaluation of investigative area 

(d). Both methodologies evaluate fixed rather than flexible strategies in a top-

down assessment structure, however this reinforces their selection for this 

detailed investigation as assessing too many contrasting concepts in one study 

can make it more difficult to isolate the main impacting features that influence 

the DMM outcomes. 

Two case-studies are examined, the first utilising a risk-based performance 

indicator (equation (4.2); Sussex North – section 5.3) and the latter employing 

an individual criterion (reliability) based performance indicator (equation (4.3); 

Bristol Water – section 5.4), to begin to explore investigative area (g). The 

results are also compared with strategy solutions derived using current practice 

(deriving singular optimal solutions) to allow an examination of investigative 

area (f). 
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5.2 Case study explanation 

The cases studies of Southern Water’s Sussex North Resource Zone (section 

5.3) as well as the more complex Bristol Water Resource Zone (section 5.4) are 

used here. The variations between the case studies and current engineering 

practice are shown in Table 5.1.  

Table 5.1: Case study details and data 

Case study / 
practice 

WRM 
Performance 

metric 

Supply/demand uncertainty Number of 
intervention 

options 

Planning 
horizon 
(years) 

DMM 
utilised 

Demand 
scenarios 
(number) 

Supply 
scenarios 
(number) 

Total scenario 
combinations 

(number) 

Current UK 
engineering 
practice 

Level of 
service – 
reliability 
metric 

Variable – 
typically 
single 
median 
projection 
including 
headroom 
addition 

Variable – 
typically 
single 
median 
projection 

Variable – 
typically single 
supply-
demand 
balance 
analysed 

Variable – 
dependent 
of water 
resource 
network 

25 

 

Linear low-
cost 
optimisation 

Sussex 
North 
(section 5.3) 

 

Risk-based 
performance 
metric 

4 72 288 9 50 Info-gap and 
robust 
optimisation 

Bristol Water 
(section 5.4) 

Reliability 
performance 
metric – 
relative 
frequency 

9 331 2,979 31 25 and 
50 

Info-gap and 
robust 
optimisation 

The Bristol Water case study involves a more complex system and incorporates 

a wider range of uncertainty (a greater number of supply and demand 

scenarios) and a much greater number of potential intervention options. This 

allows an examination of how the two DMMs handle real-world WRM problems 

of varying complexity. An extended planning horizon (50 years) is applied in the 

Sussex North case study to incorporate more climate change and demand 

uncertainty over time than a typical 25-year planning horizon used by the UK 

water industry. A 25 year planning horizon is then applied in the primary Bristol 

Water investigation to allow a more direct comparison with the current UK 

practice, before a further comparative assessment utilising a 50 year planning 

horizon is carried out. An alternative performance metric is used within each 

case study, with Sussex North employing a risk-based measure of system 
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performance and the Bristol Water applying an individual criterion (reliability) 

measure of system performance. This allows a comparative assessment of 

utilising a risk-based performance metric against a performance metric more 

comparable with conventional WRM practice; in order to examine whether the 

metric type selected can impact on the DMM outputs. 

5.3 Sussex North case study 

This section compares the contrasting mechanisms and outputs of two DMMs 

analysed (Info-Gap and Robust Optimisation) on a real-world WRM case study 

of the Sussex North Water Resource Zone in the UK. It also assesses the 

applicability of using the Future Flows climate change projections in supply 

scenario generation for water resource adaptation planning. 

5.3.1 Case study description 

IG and RO are applied to a case study of Southern Water’s Sussex North Water 

Resource Zone (SNWRZ) shown in Figure 5.1, a region in the South East of 

England that was listed as a region under “a serious level of water stress” 

(Environment Agency, 2007; 2013b). The existing water resources for the 

SNWRZ system are shown in Figure 5.1 and listed in Table 5.2. 
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Figure 5.1: Southern Water: Sussex North Water Resource Zone (SNWRZ) 
and surrounding territories, including network schematic (adapted from 

Southern Water, 2014; 2015) 

Table 5.2: SNWRZ existing water resources 

Resource 
abstraction 

priority 
Resource description 

Minimum 
deployable output 

(MDO) In ML/d 

Projected by Southern 
Water to be affected by 

climate change? 

1 River Rother/Arun abstraction 40a Significantly 

2 Groundwater sources 11.05b Not significantly 

3 Portsmouth water import 15b Not significantly 

4 
Reserve groundwater at 
Hardham 

36.96 Not significantly 

5 Weir Wood reservoir storage 21.82 Significantly 
aDependent on minimum residual flows (MRFs) in the river Rother  
bSet at a constant value 

Water from all sources is treated at the Hardham Water Treatment Works 

(WTW). The minimum deployable output (MDO), which defines the water 

resource availability at the point at which it is most physically constrained and 

typically occurs in early autumn before the onset of winter recharge, is used to 
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define the availability of new resource options (Southern Water 2009; 2014). 

The priority order for abstraction of each resource (shown in Table 5.2) is based 

directly on the SNWRZ system order (Southern Water, 2009). On each daily 

time step of the simulation model – river abstraction occurs first and reservoir 

abstraction last in order to meet the required demand. This allows the reservoir 

resource to remain as reserve storage until required (e.g. when demand levels 

are high or river flow levels are low). 

The aim of the WRM problem analysed here is to, over a 50 year planning 

horizon, determine the best adaptation strategy(ies) to implement within the 

existing regional WRM system that will maximise the robustness of future water 

supply whilst minimising the total cost of interventions required (as defined in 

equations (4.1) and (4.6) respectively).  

5.3.2 Case study set-up 

The dynamic water resource simulation model (described in section 4.3) is set 

up for the SNWRZ to simulate the daily supply-demand balance of the water 

system over a 50 year planning horizon (2015-2064 inclusive). A 50 year 

planning horizon has been selected to incorporate more climate change and 

demand uncertainty over time than a typical 25 year UK water company 

planning horizon. 

5.3.2.1   Adaptation strategies 

A list of new potential water supply resources for the SNWRZ was taken from 

Southern Water’s WRMP ‘feasible’ options list (Southern Water, 2009). This 

included the range of options derived from the final phase (Phase 3) of resource 

investigation and appraisal carried out by Atkins (2007). This created a pool of 

potential intervention options (see Table 5.3), from which adaptation strategies 

can be formed by implementing different combinations of the new supply 

options, arranged over the 50 year planning horizon. The planning horizon is 

further sub-divided into 10 year construction periods, producing five potential 

operational start points for each option within a strategy. This is to reduce the 

number of potential combinations of strategies, allowing swifter optimisation and 

easier pre-selection of strategies for the application of IG methodology. 
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The total cost of a strategy is calculated using the Present Value (PV) approach 

shown in equation (4.6), with an assigned annual discount rate of 3%, as 

utilised by Southern Water (2009). The variation in water treatment costs of 

each individual resource option are included in the calculation of projected 

operational costs; however the uncertainties in changing water resource quality 

and the changing operational costs of individual options over time are not 

incorporated in this investigation due to low available data on these aspects. It 

should be noted that energy and water treatment costs are also highly variable 

and liable to change over time, but these uncertainties are beyond the scope of 

this investigation. The intervention options in Table 5.3 include the list of 

potential new ‘supply’ additions to the system. Demand side options are also 

important considerations for addressing the supply-demand balance. However, 

due to the Sussex North Water Resource Zone being classified as a “serious 

water stress area” (Environment Agency, 2007; 2013b), compulsory Universal 

Metering (UM) of all properties has already been initiated and a set leakage 

program is underway, therefore further demand side options are not included as 

potential intervention options in this analysis. New resource options (Table 5.3) 

are implemented in the simulation model between existing supply resources 3 

and 4 (Table 5.2). This allows reserve groundwater and stored water at Weir 

Wood reservoir to remain as storage until required. 

Table 5.3: New water resource supply options available for the SNWRZ 

Option    Resource option description 

Minimum 
deployable 

output 
(ML/d) 

Estimated 
capital 

costs (£M) 
(2015) 

Estimated 
annual 

operational 
costs (£M/yr) 

(2015) 

A 
Surface storage reservoir with combined river 
Rother/Arun feed 

26 47.8 0.21 

B Effluent re-use Scheme-MBR at Ford WWTW 19 36.7 0.16 

C Tidal river Arun desalination plant - 20ML/d 20 34.6 0.34 

D Tidal river Arun desalination plant - 10ML/d 10 24 0.27 

E Hardham WTW winter transfer to coast 4 17.1 0.12 

F River Adur abstraction point 5 11.2 0.07 

G Aquifer storage on the Sussex coast 5 10.8 0.06 

H 
River Arun abstraction point (below tidal limit) 
and small storage reservoir 

11.5 10.2 0.07 

I Winter refill of Weir Wood reservoir 3 3.2 0.02 
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5.3.2.2   Supply scenarios  

In this analysis the application of using Future Flow scenarios (Prudhomme et 

al., 2012) to generate future projections for the region’s major contributing river 

flows and reservoir inflows is used as outlined in section 4.4.1. The closest 

Future Flow gauging site for Sussex North is at Iping Mill on the river Rother 

upstream of the Hardham extraction point (see Figure 5.1). The flow data 

required downstream of the gauging station are translated using the monthly 

rolling flow factoring method as outlined in section 4.4.1 and then resampled 

five times including one unchanged base-case. The 11 flow factors are then 

used to perturb the historic resampled river flow data at Hardham (Figure 5.1) to 

provide 72 discrete supply scenarios. The same flow factors were used to 

perturb the inflows to Weir Wood reservoir and flows in the River Arun to ensure 

the system is modelling the same patterns of weather and climate change 

throughout the system at the same time. The reliability of future groundwater 

and imported water from the Portsmouth region are not projected to be 

significantly impacted upon by the regions climate change projections so their 

current MDO values are taken as consistent daily inputs to supply over the full 

planning horizon (Southern Water, 2009).      

5.3.2.3   Demand scenarios  

Demand Scenarios for the Sussex North region have been produced using data 

from Southern Water’s WRMP 2010-35 (Southern Water, 2009), which includes 

data to 2035 that is then extrapolated to 2060 using the same rate of change 

increases as those within the 2030-2035 data, as recommended by Southern 

Water (2009; 2014). They consist of four scenarios based on varying success 

levels following the enforced introduction of Universal Metering (UM) in the 

region (see Table 5.4). This requires full metering of all properties and non-

household businesses by 2015 and the scenarios illustrate the projected effect 

of this introduction from a pessimistic demand increase to more optimistic 

results and also include scenarios of low leakage increases and high leakage 

increases following the implementation of the regional leakage program 

(Southern Water, 2009). 
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Table 5.4: Demand scenarios for the SNWRZ (ML/d) 

 
Scenario name 

Year beginning – average daily demanda (in ML/d) 

2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 

UM (pessimistic) 69.7 69.6 69.8 70.4 71.0 71.6 72.3 73.2 74.1 75.2 

UM (optimistic) 67.2 67.5 68.2 69.2 70.1 70.9 71.8 72.5 73.2 73.8 

UM (low leakage) 67.1 67.3 67.9 68.7 69.4 70.2 70.7 71.3 71.7 71.9 

UM (high leakage) 68.7 69.0 69.5 70.1 70.9 71.6 72.6 73.7 75.1 76.7 
aDemand values are the Dry Year Annual Average (DYAA) levels which are then fluctuated 
monthly throughout each year based on seasonal demand ratios (Southern Water, 2009) 

The annual demand projections (in 5 year intervals) given in Table 5.4 are 

interpolated to produce yearly average demands. The annual average demand 

is then multiplied by monthly factors to reflect the changing seasonal demand 

averages employed by Southern Water (2009; 2014). These values are then 

used to create four 50 year daily time step demand scenarios. 

5.3.2.4   Level of system performance 

Each adaptation strategy that is tested in the simulation model over a given 

future scenario combination of supply and demand projections will result in a 

specific risk of a water deficit estimated (equation (4.2)). For the SNWRZ this 

risk level (as described in section 4.2.2.2) is calculated once all supply sources 

have been maximised, with the system entering a ‘water deficit’ (see section 

4.2.2.1) when the last source, Weir Wood reservoir reaches a threshold level of 

1155 ML (Southern Water, 2009). The likelihood and magnitude of water 

deficits (calculated as a single risk metric, equation (4.2)) must not exceed a 

target level of system performance (ݎ௖). This target level of system performance 

has been determined by calculating the risk of a water deficit occurring over the 

previous 50 years of historic data. As the system has been deemed acceptable 

by customers over this period (Southern Water, 2009), maintaining the system 

at its current level of historic risk is considered as acceptable system 

performance. The existing system, when tested in the simulation model with 

historic flows/inflows, recorded 20 days of water deficits over the 50 year period 

(18,263 days) and registered a total combined water deficit of 388 ML. Applying 

equation (4.2), this resulted in the target level of system risk (ݎ௖) of 0.425 ML. 
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5.3.2.5   Application of RO and IG methods 

For application of the RO methodology the dynamic, daily-time step, water 

resources supply and demand simulation model is combined with the NSGA-II 

optimisation algorithm (as described in sections 4.3 and 4.5.2). The NSGA-II 

algorithm parameters used (derived following testing of numerous combinations 

to ensure true Pareto optimality is obtained) are as follows: 

Table 5.5: NSGA-II parameters selected 

Parameter Value 

Population size 200 

Number of generations 500 

Selection bit tournament size 2 

Mutation probability (per gene) 0.2 

Crossover probability (single point) 0.7 

Adaptation strategy generation, testing, ranking, mutation and ultimate Pareto 

optimal strategy identification is an automatic process carried out by the NSGA-

II algorithm during the RO procedure after 500 generation assessments. Ten 

separate runs (random seeds) are tested to ensure that the true Pareto optimal 

strategies are being identified by the optimisation process. 

For the application of the IG methodology, multiple adaptation strategies are 

manually pre-specified from the range of potential intervention option 

combinations and evaluated using the IG robustness model created. For this 

study complete enumeration (generation of all possible strategy combinations) 

was not utilised as this approach yielded too many combinations for feasible 

computational testing. Hand picking a small number of “preferred” strategies for 

testing (i.e. based on Southern Waters preferred strategy lists (Southern Water, 

2009, 2014)) was also not a suitable approach as it greatly limits the number of 

strategies evaluated making the decision process highly subjective. Therefore a 

random sampling approach was utilised, whereby a set number of strategy 

combinations were selected at random constrained by a rational list of 

assumptions. These assumptions were based on information from Southern 

Water’s WRMP 2010-2035 (Southern Water, 2009) and included: 
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 Limiting the PV of total cost of adaptation strategy to £120 million over 

the planning horizon. 

 A minimum of 10 ML/d to be added to the system over the planning 

horizon. 

 Intervention options C and D cannot be combined in the same strategy. 

 Intervention options that provide more deployable output for less cost 

than alternative options should have priority of construction (e.g. option G 

should be employed before F; option H should be employed before 

options D, E, F and G). However, the superseded options can still be 

employed in combination with their superior counterparts either at the 

same time or at a later point in the planning horizon. 

A random sample generation tool was developed in Python to select the set of 

adaptation strategies for testing. The tool generated 28,000 individual 

adaptation strategies (of different intervention option combinations and varying 

sequencing of the options across the time horizon) for application to the 

methodology detailed in section 4.5.1. Each adaptation strategy was then 

evaluated using the IG robustness model. The resulting strategy robustness vs 

cost results are then ranked to identify a set of IG Pareto optimal strategies. 

This is a non-traditional step in the IG process; however, it allows for easier 

comparison of the two DMMs. 
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5.3.3 Results and discussion 

For each DMM the 72 supply and 4 demand scenarios (i.e. a total of 288 

possible scenario combinations) were modelled with the adaptation strategies, 

leading to the identification of Pareto optimal sets for both decision making 

methods (RO and IG(Umid)), trading-off the robustness of water supply and the 

PV of total cost (see Figure 5.2).  

 

Figure 5.2: Pareto sets identified by the info-gap and robust optimisation 
methods 

IG(Umid) indicates that the Info-Gap analysis began from the median scenarios 

of supply and demand (following scenario severity rankings as stated in section 

4.5.1). As it can be seen from Figure 5.2, when compared to RO, the IG method 

always produces higher-cost Pareto strategies for the same robustness level. 

The distribution of Pareto strategies across the range of robustness is also 

lower for the IG analysis, with no Pareto strategies recorded between 20-60% 

robustness levels. The reason for both occurrences is due to the IG’s local 

robustness analysis and the method of ordering the scenarios. Examining the 

uncertainty region from a local point outwards requires multiple-adjacent 

scenarios to be satisfied in order for the robustness search to continue. This 

leads to more stringent localised performance requirements than those placed 

on global robustness.  As the analysis expands outward in an area calculation 

of satisficing scenarios, occasionally imperfectly ordered scenarios can lead to 

isolated regions of much higher requirements, which can pre-maturely end the 
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robustness analysis. The reason for this is that several scenarios beyond these 

regions may have been satisfied by a strategy had they been reached. Figure 

5.3 depicts a simplified example of this ‘blocking’ effect using two example 

scenarios. 

 

Figure 5.3: (a) Example of a scenario ordering arrangement that would 
prematurely end an info-gap robustness search, explained via two scenario 

water deficit profiles and the respective system capacity increase provided by 
two adaptation strategies; (b) Strategy A has not satisfied scenario 1 but would 

have satisfied scenario 2, Strategy B has satisfied both scenarios but for 
increased total cost 

The scenario profiles illustrate the changing water deficit levels projected on the 

current water system over time. Both scenarios are projecting frequent deficits 

across the planning horizon if the system is not adapted; however, scenario 2 is 

calculated as having the higher risk of water deficit value (equation (4.2)) over 

the planning horizon, so is ranked and ordered as more severe than scenario 1. 

When example strategy A is tested over scenario 1 the system fails as the risk 

of water deficit exceeds the target level of system risk. However, it would have 

satisfied scenario 2, but this scenario is not examined as the IG assessment is 

terminated following failure to satisfy scenario 1. Consequently, IG theory would 

Time horizon (years)  

(a) 

Water deficit volume 
(scenarios) – system 
capacity increase 
(strategies) (ML) 

(u) 2 (u) 1 (u) 0 

Scenarios 

(u) 1 (u) 2 (u) 0 

Scenarios 

Scenario 2 is ranked more severe than scenario 1 following calculation of 
its risk level on the base case historic system.  (݇ݏܴ݅) 2ݑ ൐  (݇ݏܴ݅) 1ݑ

(b) 

Strategy A - £55M Strategy B - £60M 
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favour strategy B as it provides a sufficient system capacity increase to satisfy 

both scenarios, but has a trade off as being the more expensive one. RO’s 

global assessment incorporates each successful scenario (e.g. scenario 2 for 

strategy A) in the robustness calculation regardless of severity ordering and so 

can more easily satisfy target robustness levels. 

Figure 5.3 highlights the difficulty in ordering discrete scenarios into a range of 

severity, when the individual scenarios are so variable and complex in their 

constituent parts (i.e. including 50 year river flow sequences). This presents a 

potential weakness of utilising an ensemble of discrete projections for scenario 

generation with the IG method. Matrosov et al. (2013) tackled this issue by 

using continuous variables of monthly perturbation factors that diverged out 

from their median flow factor set at structured intervals, whereas Hall et al. 

(2012a) adopted an ellipsoid uncertainty model combined with an interval-

bounded model to uniformly scale the uncertainty. However, these approaches 

did not utilise discrete transient flow sequences when forming their scenarios, 

which was a specific investigative area selected for examination here. 

The IG results obtained (see Figure 5.2) also indicate that a strategy of do 

nothing (i.e. spending £0) produces a 0% robust system and a sharp increase 

(spending over £60 million) is required to gain just a 2% robust system. This is 

due to the IG analysis using the median severity scenarios of supply and 

demand as a starting point, placing numerous hard to satisfy scenarios in direct 

proximity to the starting location. However, it could be argued that a solution of 

low robustness is not desirable so only the solutions of higher robustness (i.e. 

the IG results >60% robustness in Figure 5.2) are significant to the final decision 

maker. 

Figure 5.4 presents the breakdown of intervention options within all the Pareto 

strategies ranked above 60% robustness for both RO and IG methods. It shows 

the percentage of Pareto strategies that feature each option (a), including 

graphs showing the year of construction of each option as a percentage of 

occurrences, for the RO (b) and IG (c) Pareto strategies. 
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Figure 5.4: (a) Individual intervention options that feature in the Pareto 
strategies ranked above 60% robustness for info-gap and robust optimisation 

methods as a percentage of occurrences; and their year of implementation (also 
as a percentage of occurrences) for the RO (b) and IG (c) Pareto strategies 
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It highlights several interventions as being the most cost-effective options 

following their inclusion in all the Pareto strategies (e.g. option H – a new river 

Arun abstraction point including a small scale storage reservoir; and option I – a 

new pipeline for transfer of excess winter water to refill Weir Wood reservoir). 

Both DMMs have identified Pareto strategies that sequence the majority of 

intervention options early in the planning horizon (2015-2035). The main 

difference between the IG and RO Pareto strategies is IG’s regular selection of 

a large new reservoir (option A) to be constructed immediately in the planning 

horizon (2015) to increase overall system robustness (explained previously via 

Figure 5.3), whereas RO repeatedly selects option B (an effluent re-use 

scheme) in 2015, providing less water than option A but for less initial cost 

earlier in the planning horizon. The RO strategies then sequence additional 

options G and/or F (aquifer storage and a new abstraction point on the river 

Adur) later in the planning horizon to increase water supply as more frequent 

deficit periods are projected over time. 

Neither method selects a desalination plant (option C or D), most likely due to 

the high operational cost of this supply option. In general the IG method tends 

to favour fewer, but larger scale intervention options scheduled early in the 

planning horizon, compared to the RO method, which frequently selects more 

but smaller scale intervention options more evenly spaced across the planning 

horizon. This is again due to the more stringent robustness analysis requiring a 

wide range of scenarios to be sequentially satisfied in the expanding local 

robustness “search”, as discussed in Figure 5.3.   

The IG pre-specified adaptation strategy generation process, using random 

samples rather than full enumeration, did not contribute to a difference in the 

Pareto strategies identified as significantly as expected, as the majority of RO 

Pareto strategies were also found among the IG pre-specified selection.  

Although, RO was able to identify several strategies that were not among the 

pre-specified set used in the IG analysis. The low impact of the strategy 

generation process is likely due to this case study’s relatively small pool of 

intervention options examined and using a planning horizon segmented into 10 

year construction periods. This allowed the majority of strategy combinations to 

be generated during the random sample generation process. It is expected that 

a more complex case study with a larger pool of potential options will lead to 
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more variation in the final Pareto strategies identified – this is an aspect for 

further investigation (see section 5.4). 

Figure 5.5 presents the Pareto strategies selected by the IG robustness 

analysis following variation of the initial starting point of the robustness analysis 

(Uhigh, Umid and Ulow in the scenario severity index). It reveals that the variation 

of start point did not alter the final Pareto strategies identified significantly, as 

can be seen by the largely overlapping IG Pareto fronts. The main variation can 

be seen in the strategies identified below 50% robustness, where lower costing 

strategies are more readily identified by Ulow. This is because the larger 

robustness areas will encompass all the starting points regardless of their 

location within the region of uncertainty; however strategies of lower robustness 

will be identified at a more cost effective rate from a lower severity start point. 

This also implies that the starting point becomes increasingly important the 

larger the uncertainty region becomes. 

 

Figure 5.5: Pareto strategies identified by Info-Gap following variation of the 
initial start point of the analysis (denoted as Uhigh, Umid, and Ulow) 

Southern Water’s current water resource adaptation plan for the Sussex North 

WRZ (Southern Water, 2009; 2014) includes option H (a new river Arun 

abstraction point including a small scale storage reservoir) which has been 

constructed and is now in use as of 2015, as well as plans for Options I (new 

pipeline to refill Weir Wood reservoir), G (aquifer storage) and B (the effluent re-

use scheme) scheduled for 2018, 2020 and 2026 respectively. These options 
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were also frequently selected within both DMM Pareto strategies; however, the 

overall plans differ, as both IG and RO produced Pareto strategies 

recommending a greater system capacity increase to the system earlier in the 

planning horizon to ensure higher levels of overall system robustness. Although 

this may seem an obvious statement qualitatively the DMMs provide 

quantitative information as to the size of the capacity increase and where and 

when it needs to be added to the existing system to achieve a specific level of 

robustness.  

The larger initial resource options recommended also highlight the effect of 

examining multiple scenarios rather than planning to a single projection of 

supply and demand. The current UK industry planning methods assume a linear 

scaling of climate change between present day and the end of the planning 

horizon (Environment Agency et al., 2012) that ignores the variability from 

droughts, which these methods explicitly capture in this study. Therefore, by 

varying climate change and droughts you naturally plan for a wider range of 

robustness. It could also be argued that current methods do not evaluate for 

robustness given they typically only use central deterministic scenarios. The 5 

year cycle of water company WRMPs also means that large investments are 

typically deferred whilst low impact, low costs measures are implemented, as it 

is very hard to get large infrastructure development past the regulators. The 

more substantial resources recommended early in the planning horizon by both 

DMMs highlight these potential issues in current practice. The results could also 

be linked with the longer planning horizon considered in this assessment, 

whereby higher initial costs are traded for greater long term system robustness 

– an aspect for further investigation (see section 5.4). The selection of the most 

suitable risk-based (or individual criterion) metric as well as an appropriate 

selection of target system performance, are also likely to heavily influence the 

final Pareto strategies obtained. 

Computational aspects of the methods (coding complexity and computational 

time) have not been examined in detail in this study as the computational set-up 

is considered very specific to this case study and to the specific approaches 

developed here. 
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5.3.4 Conclusions 

The Robust Optimisation and Info-Gap methods were applied and compared on 

a case study of the Sussex North Water Resource Zone in the UK with the aim 

to solve a specific WRM problem driven by the maximisation of robustness of 

long-term water supply and minimisation of associated costs of adaptation 

strategies, all under a range of uncertain future supply/demand scenarios. The 

results obtained lead to the following key conclusions: 

1. The two DMMs analysed produced different Pareto adaptation strategy 

recommendations to each other and to the strategies derived using the 

current UK engineering practice.  

2. Robust Optimisation generally produced lower costing Pareto strategies 

than IG for all ranges of desired system robustness due to RO’s less 

stringent method of global analysis, i.e. not needing to satisfy adjacently 

ranked scenarios for the robustness analysis to continue. 

3. Info-Gap’s local analysis proved problematic to construct and assess 

using discrete scenarios and likely contributed to the higher costing 

strategy recommendations. 

4. Optimisation, although not applied to the IG methodology here is likely to 

be required at some stage of planning when dealing with larger data sets 

and a larger pool of potential intervention options. 

5. The location of the starting points of the IG analysis did not significantly 

alter the Pareto strategy results obtained, especially at higher robustness 

levels. However this could be associated to case study complexity and 

should be examined on more complex case studies to further explore this 

pivotal aspect of the theory. 

6. The variation in the Pareto strategies derived highlight how the current 

industry standard for water supply system adaptation planning could 

benefit by applying a wider range of decision methodologies and 

assessment tools (especially those that quantify a level of system 

‘robustness’) as well as a more encompassing investigation into potential 

future uncertainties and alternative methods for scenario generation. 
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It is recommended that further analysis of IG and RO methods be undertaken 

on more complex case studies, utilising a larger pool of intervention options and 

a greater number of scenario projections before above conclusions, including 

computational conclusions on the DMMs, could be generalised. This was done 

in the following text.  

5.4 Bristol Water case study 

This section aims to compare the contrasting mechanisms and outputs of two 

DMMs analysed (Info-Gap and Robust Optimisation) on a more complex real-

world WRM case study then previously studied (section 5.3). The study again 

assesses the applicability of using “prospective” transient supply and demand 

scenarios in the form of Future Flows climate/hydrology projections, but differs 

in its use of an individual criterion of “system reliability” to measure water 

system performance in place of a risk-based measure. This allows a more direct 

comparison of the current EBSD ‘levels of service’ method utilised by BW in 

generating their proposed plan for 2015-40 (Bristol Water, 2014). The 

adaptation strategy solutions derived by the two DMMs are compared with the 

real-life BW plans derived from current industry practice, before finally 

comparing the Pareto strategies derived using a 25 year planning horizon with 

those identified by using a 50 year planning horizon. 

5.4.1 Case study description 

The methodology detailed in Chapter 4 is applied to a case study of the Bristol 

Water Resource Zone (BWRZ). A region in the south-west of the UK supplying 

approximately 1.2 million customers (as of 2015), which is expected to 

experience increasing pressures on local water resources from rising 

populations (with a 15% projected increase in demand by 2045) and increased 

climate variability that could cause further reductions in the availability of 

established resources. Should no adaptations be made to the system in the 

near future (new water supply additions etc.) then the system is projected to 

suffer significant shortfalls in its ability to meet demands by 2020, as illustrated 

in Figure 5.6 (Bristol Water, 2014).  
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Figure 5.6: Bristol Water projected supply-demand balance without adaptation 
measures (adapted from Bristol Water, 2014) 

The main existing water resources are shown in Figure 5.7 and listed in Table 

5.6. They consist of a variety of sources, with approximately half of the required 

supply coming from the River Severn (via the Sharpness canal); a third from 

reservoirs fed from the Mendip Hills; and the remainder from small wells and 

springs throughout the supply area (Bristol Water, 2014). 

 

Figure 5.7: Bristol Water Resource Zone (BWRZ) schematic 
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Table 5.6: BWRZ existing water sources and abstraction priority ordering 
(Bristol Water, 2014) 

Resource 
abstraction 

priority 
Resource description 

Deployable outputa 
(DO) annual average 

- in ML/d 

Projected by Bristol 
Water to be affected by 

climate change? 

1 Sharpness canal 210 Not significantly 

2 Groundwater sources 65 Not significantly 

3 Mendip reservoirs 91 Significantly 
aDO is the yield of the source subject to additional system constraints such as the abstraction 
license, infrastructure capacity and environmental requirements. 

The BWRZ is based upon the operation of the company area as a single 

resource zone. This means that all water resources (river, groundwater and 

reservoirs) within the company area are capable of being shared throughout the 

zone at all times of the year via a comprehensive pipe transfer network and 

using multiple water treatment works, as shown in the Mendip reservoirs 

network schematic in Figure 5.8 (Bristol Water, 2014). In this way, no part of the 

zone is solely dependent upon the yield of a single water source. This has been 

the approach adopted in previous BW WRMPs and agreed as appropriate for 

the current 2014/15 plan with the Environment Agency (Bristol Water, 2014).  

The priority order for abstraction of each resource (shown in Table 5.6) is based 

on the BWRZ system priority of use. The primary river and groundwater sources 

are considered reliable and sustainable over the next planning period (2015-

2039 inclusive); whereas the resource available from the network of Mendip 

reservoirs is anticipated to be impacted by climate change. 

There are three main components to the reservoir system to be modelled when 

projecting climate scenarios. These are: the Mendip catchment region (direct 

reservoir inflows); the river Axe at Cheddar and the lake at Chew Magna (see 

section 5.4.2.2). 
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Figure 5.8: Bristol Water: Mendip reservoirs network schematic (Bristol Water, 2014) 
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The aim of the WRM problem analysed here is to, over a 25 year planning 

horizon, determine the best adaptation strategy(ies) to implement within the 

existing regional WRM system that will maximise the robustness of future water 

supply whilst minimising the total cost of interventions required (as defined in 

equations (4.1) and (4.6) respectively).  

The dynamic water resource simulation model (described in section 4.3) is set 

up for the BWRZ to simulate the monthly supply-demand balance of the water 

system over a 25 year planning horizon (from year 2015 to year 2039 inclusive). 

A 25 year planning horizon has been selected to imitate the time frame used in 

a typical UK water company WRMP planning horizon. However, a 50 year 

planning horizon is also tested to analyse the effect on intervention selection 

from altering the planning horizon length. 

5.4.2 Case study set-up 

The dynamic water resource simulation model (described in section 4.3) is set 

up for the Bristol Water resource zone to simulate the monthly supply-demand 

balance of the water system over a 25 and 50 year planning horizons. All BW 

data files utilise a monthly time step, hence a monthly time step has been 

implemented in this case study. 

5.4.2.1   Adaptation strategies 

An investigation into potential new water supply resources and options to 

reduce water consumption/losses was carried out using data surveys for the 

Bristol Water region (Bristol Water, 2014). This created a list of potential 

intervention options (Table 5.7), from which different intervention (i.e. 

adaptation) strategies can be formed by implementing combinations of options 

arranged over a strategic planning horizon (e.g. 2015-2039). The total cost of 

strategies is calculated using the Present Value (PV) approach shown in 

equation (4.6), with an assigned annual discount rate of 4.5%, as utilised by 

Bristol Water (2014). 

The options C4, D1, D4, and D6 (see Table 5.7) feature in the BW WRMP 

2015-40 as planned interventions for 2015. Hence, for this study it is assumed 

that these interventions will be put in place from the start of the planning horizon 

and included them in all adaptation strategy assessments. An additional 
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outgoing supply of 19 ML/d of non-potable water to new customers in 

Avonmouth is also scheduled to begin in 2018 so has been incorporated in the 

water resource model from this time period onwards.  

The variation in water treatment costs of each individual resource option are 

included in the calculation of projected operational costs; however the 

uncertainties in changing water resource quality and the changing operational 

costs of individual options over time are not incorporated in this investigation 

due to a lack of available data on these aspects. It should be noted that energy 

and water treatment costs are also highly variable and liable to change over 

time, but these uncertainties are beyond the scope of this investigation. 

Each intervention option will also carry a level of uncertainty in their projected 

deployable output (DO). However, a single fixed daily DO has been assumed 

for this study to simplify the optimisation and because there are no inflow data 

and operational rules in order to model the effects of climate variability for the 

option locations. The day to day operational rules used by BW allow a more 

dynamic control of output from specific options at given times of the year in 

order to reduce operational costs of higher energy resources, but these 

variables were not included in the following methodology due to the use of a 

simplified water resources model. In practice it is recommended that simplified 

water resources models are used for higher level adaptation strategy appraisal, 

in order to identify subsets of scenarios and system configurations which are 

then tested using a more detailed operational model, which are typically more 

computationally intensive. 

New supply resource options (see rows R1-R18 in Table 5.7) are implemented 

in the simulation model resource order between existing supply resources 2 and 

3 (Table 5.6). 
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Table 5.7: Intervention options available for the Bristol Water region (Bristol 
Water, 2014) 

Option 
code 

Intervention option 
Capital 

cost 
(£M) 

Operational 
cost 

(£M/year) 

Deployable 
output (DO) 

(ML/d) 

  OPTIONS TO REDUCE WATER CONSUMPTION       
C1 Smart metering rollout 11.45 0.06 2.6 
C2 Compulsory metering of domestic customers 32.32 2.40 8.0 
C3 Selective metering of domestic customers (high users) 5.98 0.32 3.2 

C4 
Selective change of ownership metering domestic 
customers 

32.45 1.45 11.6 

C5 Business water use audits 0.00 0.30 1.0 

C6 
Household water efficiency programme (partnering social 
housing) 

0.00 0.42 0.4 

OPTIONS TO REDUCE WATER LOSSES       
D1 Pressure reduction 2.47 0.01 2.8 
D2 Mains Infrastructure replacement 78.47 0.00 2.2 
D3 Communication pipe replacement 36.24 0.00 3.4 

D4 
Communication pipe and subsidised supply pipe 
replacement 

3.51 0.00 2.2 

D5 Leakstop enhanced 1.75 0.00 0.2 
D6 Active leakage control  increase 0.00 0.91 4.4 
D7 Zonally targeted infrastructure renewal 165.08 0.06 13.4 

OPTIONS TO PROVIDE ADDITIONAL WATER 
RESOURCES       

R1 Minor sources yield improvement 14.68 0.32 1.8 
R2 City docks to Barrow transfer scheme 179.42 1.87 30.0 
R3 Desalination plant and distribution transfer scheme 179.42 1.87 30.0 
R4 Cheddar second reservoir 99.67 0.16 16.3 
R5 Purton reservoir and transfer scheme 288.57 4.30 25.0 
R6 Pumped refill of Chew Valley reservoir from river Avon 153.81 3.40 25.0 
R7 Upgrade of disused southern sources 8.30 0.30 2.4 
R8 Effluent re-use for commercial and industrial customers 165.75 1.91 20.0 
R9 Avonmouth WWTW direct effluent re-use 185.85 2.07 20.0 

R10 Severn Springs bulk transfer 100.94 0.89 15.0 
R11 Reduction of bulk transfer agreements 0.00 0.30 4.0 
R12 Bulk supply from: (Wessex Water Bridgewater) 26.37 2.31 10.0 
R13 Bulk supply from: (Vyrnwy via Severn and Sharpness) 151.95 4.29 25.0 
R14 Huntspill Axbridge transfer (traded licence) 10.23 0.14 3.0 
R15 Honeyhurst well pumped transfer to Cheddar 5.11 0.01 2.4 
R16 Gurney Slade well development 10.70 0.26 1.5 
R17 Holes Ash springs re-development 10.22 0.02 0.8 
R18 Chew Stoke Stream reservoir 54.81 0.17 8.0 

5.4.2.2   Supply scenarios  

Future flow/inflow scenarios for the three reservoir inflow sources that supply 

the Bristol Water’s reservoirs which are ‘significantly’ affected by climate change 

(Table 5.6) are again produced utilising the Future Flow climate/hydrology 

scenarios (Prudhomme et al., 2012), as outlined in section 4.4.1. The closest 

Future Flow gauging site for the BWRZ is at Midford Brook. This is a 147.4 km2 

catchment area adjacent to the Mendip region. 
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The specific time-series flow/inflow data required for each source of water being 

modelled is translated using the monthly rolling flow factoring method outlined in 

section 4.4.1, which perturbs the resampled historic flow/inflow data at each site 

to match the Future Flow changes projected at the Midford Brook gauging site. 

The historic flow/inflow data for each modelled site are resampled 30 times then 

perturbed using the 11 future flow factors to generate 330 discrete supply 

scenarios, including one unchanged base-case.  

The same set of flow factors are used to perturb the inflows to the Mendip 

reservoirs, Chew Magna and the flows in the River Axe for one individual 

scenario, to ensure the system is modelling the coherent patterns of weather 

and climate change throughout the system/region. Bristol Water’s most recent 

WRMP (Bristol Water, 2014) indicated that the river Severn fed Sharpness 

canal and all combined groundwater sources exhibit high deployable output 

reliability to climate variability over the next 25 years (providing licensed levels 

of abstraction are upheld). The lack of additional data on these sources mean 

that the current DO values are taken as constant daily inputs to the supply 

system over the full planning horizon, which is consistent with BW’s projections 

within this study. 

5.4.2.3   Demand Scenarios 

Demand Scenarios for the Bristol Water region have been produced using per 

capita consumption values from the latest Bristol Water WRMP (2014) 

combined with the Office for National Statistics (ONS) population projections 

(ONS, 2014b). They consist of three scenarios of Low, Principal and High 

population growth used to perturb historic demand values, which are calculated 

subject to three alternative levels of demand uncertainty; based on the 80%, 

90% and 100% risk and uncertainty calculations (i.e. the target headroom 

calculations) derived by BW (Bristol Water, 2014; UKWIR, 1998) (Figure 5.9). 
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Figure 5.9: Target headroom distributions for Bristol Water – data taken from 
Bristol Water (2014) 

The headroom percentage distributions are calculated either side of the median 

supply-demand balance forecasts and encompass the plausible range of 

uncertainty. The target headroom levels utilised were selected as they include 

the risk and uncertainty percentage level selected by BW for their latest plans 

(90%) and also the percentage risk and uncertainty levels either side of this 

selection (80% and 100%), in order to increase the range of demand 

uncertainty considered. Conventional target headroom estimations also include 

climate change uncertainties that could affect water supply levels. These values 

were omitted from the demand scenario generation process as this uncertainty 

is now explicitly included in the supply scenarios generated.   

This approach formed 9 discrete scenarios of demand, which combined with the 

331 supply scenarios, creates 2,979 potential future supply and demand 

scenario combinations to model. 

5.4.2.4   Level of system performance 

Each adaptation strategy that is tested in the simulation model over a given 

future scenario combination of supply and demand projections will result in a 

specific level of reliability (equation (4.3)). For the BWRZ this level of reliability 

(as described in section 4.2.2.2) is calculated once all supply sources have 

been maximised, with the system entering a ‘water deficit’ (see section 4.2.2.1) 
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when the last sources, the level of remaining water in the Mendip reservoir 

network, reaches a given threshold level. The threshold level varies depending 

on the month of operation and is at its lowest (13,610 ML) in the autumn, rising 

to a more stringent level (30,000 ML) in the spring. The level of reliability 

exhibited by the system must not fall below a target level of system 

performance, i.e. a target level of reliability (ݎ௘). 

The current BW WRMP 2015-40 desired ‘level of service’ (following customer 

consultation) is to implement temporary use bans no more than 1 in every 15 

years (Bristol Water, 2014). Hence over a 25 year planning horizon the system 

is deemed as operating acceptably if it maintains a reliability of ≥ 92% over the 

planning horizon and must never reach a magnitude that would induce a water 

shortage (an empty reservoir network). This reliability level must also be 

maintained when examining the 50 year planning horizon. The robustness of 

the water system is then calculated as the percentage (%) of discrete future 

scenarios under which the system performs acceptably (equation (4.1)). 

5.4.2.5   Application of RO and IG methods 

The following parameters were selected for the RO NSGA-II algorithm 

(following testing of numerous combinations):  

Table 5.8: NSGA-II parameters selected 

Parameter Value 

Population size 400 

Number of generations 2000 

Selection bit tournament size 2 

Mutation probability (per gene) 0.2 

Crossover probability (single point) 0.7 

It should be noted that increased population and generation parameters were 

utilised for this case study due to the increased complexity of the Bristol Water 

problem (larger pool of intervention options available). Adaptation strategy 

generation, testing, ranking, mutation and ultimate Pareto strategy identification 

is an automatic process carried out by the NSGA-II algorithm during the RO 

procedure after 2000 generation assessments. 
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Due to the greater complexity of this case study, the method of strategy 

generation for the application of IG theory has been altered from the previous 

case study. The pre-specified strategy generation process carried out in the 

Sussex North case study (section 5.3) was achievable due to the relative 

simplicity of the Sussex North problem, utilising few different intervention 

options and a planning horizon sub-divided into 10-year construction periods. 

However, as the Bristol case study is far more complex; with 31 potential 

intervention options and a planning horizon now sub-divided into yearly 

construction periods (producing 25 potential operational start points for each 

option within a strategy - 50 when using a 50 year planning horizon), this 

produced too many possible combinations of strategies to carry out a reliable 

process to pre-specify adaptation strategies. Either too many strategies are 

generated (i.e. using full enumeration) producing an unacceptable model run 

time, or too few strategies are examined (i.e. using a pre-selection process or 

random sample generator) making the process overly subjective and reducing 

the chance of discovering optimal solutions. The number of strategies 

generated using a random sampling tool can be precisely chosen by the user 

(as in the Sussex North case study). However, when applied to a complex 

problem with a large number of potential option combinations the approach 

ultimately requires too great a number of strategies to be generated to ensure 

optimal solutions are included. A reduced random sample size of strategies 

could alternatively be produced, but this reduces the chance of identifying 

optimal solutions. 

For this reason the NSGA-II optimisation algorithm is again utilised. The 

algorithm tool, set up in the R-programming language (R Core Team, 2013), is 

wrapped around the combined dynamic water resource simulation model and 

IG robustness mapping model (see section 4.5.1) and set up with the same 

optimisation parameters listed for the RO method above. This allows an early 

conclusion to be established from this case study, recognising that a more 

complex case study, utilising a large number of potential intervention options, 

will require some form of computational optimisation to be applied in order to 

derive “optimal” solutions.    
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5.4.3 Results and discussion 

A total of 331 supply and 9 demand scenarios (i.e. a total of 2,979 possible 

scenario combinations) were modelled with the adaptation strategies, leading to 

the identification of Pareto optimal sets for both decision making methods (RO 

and IG), trading-off the robustness of water supply and the PV of total cost (see 

Figure 5.10). 

 

Figure 5.10: Pareto sets identified by the info-gap (Umid) and robust 
optimisation methods – including the cost and robustness of BW’s chosen plan 
2015 and ten alternative strategies considered by BW examined by the IG local 

and RO global robustness models 

As it can be seen from Figure 5.10, when compared to RO, the IG method 

produces higher-cost Pareto strategies for nearly all robustness levels. 

Although, both methods produce similar Pareto strategy solutions for plans 

providing >80% robustness, marked at the point at which the differences 

between the local and global robustness analysis are becoming negligible. The 

distribution of Pareto strategies across the range of robustness is also lower for 

the IG analysis. The reason for both occurrences is again due to IG’s local 

robustness analysis leading to the more stringent localised performance 

requirements over the expanse of uncertainty, as fully discussed in section 

5.3.3.  

Bristol Water’s preferred chosen plan for 2015 (Bristol Water, 2014), when 

examined in the RO global robustness model, delivered approximately 48% 
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robustness to uncertainty (Figure 5.10). This was somewhat to be expected as 

BW currently optimises to the median projections of supply and demand and 

using the 90% risk and uncertainty headroom additions. This translates to the 

median projections of supply and demand utilised in this investigation. Both 

BW’s chosen plan and the alternative strategies they considered provided 

between 8-61% robustness when tested in the RO global model. This is due to 

the expanded level of uncertainty now being examined, as BW examined 

various alternative strategies with reduced or increased total costs, but still 

centred around an examination of the median projections of supply and 

demand. 

However, the RO model identified numerous lower cost strategies for the same 

levels of robustness exhibited by the BW strategies and also provides a greater 

trade-off examination by identifying a wide range of Pareto optimal solutions. 

When examined in the IG robustness mapping model (see section 4.5.1), the 

BW strategies all exhibited significantly reduced robustness (all <6%). This 

further highlights the greatly increased constraints imposed by the localised 

mapping method of IG (discussed in section 5.3.3). Each BW alternative 

strategy is first assessed to the ‘most likely’ scenario combination (ũ), chosen 

as the median severity ranked supply and demand scenarios (see section 

4.5.1), then must satisfy adjacently ranked scenarios sequentially. This 

highlights the issues of optimising plans to a single linear future pathway, as the 

selected strategies can prove weak to alternative future scenarios in close 

proximity to the initial ‘most likely’ projections.  

This issue could be alleviated by switching to using increasing uncertainty 

variables; however, the purpose here was to examine how the DMMs handle 

complex ‘scenario’ assessments in practice, because approaches that focus on 

scenario development/assessment are increasingly considered for evaluating 

WRM adaptation strategies and the validity of management decisions to deep 

uncertainties (European Environment Agency, 2009; Lempert et al., 2003; Maier 

et al., 2016; Notten et al., 2003). 

The trade-off with the IG method is that the Pareto strategy solutions, although 

having a greater PV of total cost for the same robustness level, will create 

systems that provide a greater system capacity increase by favouring larger 
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infrastructure that will cover a wider set of variations in future scenario 

projections, as shown in Figure 5.11. IG typically favours strategies with higher 

DO resources in order to satisfy a wide range of scenarios in the expanding 

local robustness “search”. It therefore doesn’t favour the selection of small 

interventions because these don’t provide additional robustness in the IG 

search (see Figures 5.11 and 5.12). These larger resource strategies then 

inherently have a higher associated cost. In short, IG encourages higher cost 

strategies and is unable to select lower cost/resource options. 

Figure 5.11: System capacity increases (water supply added to system) for the 
BW chosen plan 2015 and selected RO and IG strategies of similar robustness 

Figure 5.11 shows the system capacity increase (water supply added to the BW 

system – in ML/month) over time by the BW chosen plan (Bristol Water, 2014) 

and by two adaptation strategies identified by the RO and IG methods with the 

most similar robustness to the BW chosen plan (as indicated in Figure 5.11). 

The reduction in supply for all strategies at 2018 is due to an additional output 

of 19 ML/d (578 ML/m) to new customers (see section 5.4.2.1). The RO 

strategy presents a very similar pattern of interventions to that of the BW 

chosen plan although cost savings are made by delaying the construction of the 

second reservoir at Cheddar (R4 – in Table 5.7) until 2025 and implementing 

more low-cost interventions in the initial time steps. The IG strategy differs from 

the RO and BW chosen plan by selecting fewer but larger interventions at key 

Selected strategies 

48% 

55% 
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detected periods of the planning horizon, including a desalination plant (R3 – in 

Table 5.7) at 2017 to accommodate for the outgoing supply in 2018, and 

additional supply resources around 2025 to cater for the large shortfall in supply 

and rise in demand projected for this period onwards. This again highlights how 

IG typically favours strategies with higher DO resources in order to satisfy a 

wide range of scenarios in the expanding local robustness “search”. 

The full list of selected interventions for the strategies in Figure 5.11 is shown in 

Figure 5.12. It shows the optimised increase in smaller intervention options 

(cost and DO) selected by the RO solution (including several options not 

considered by the BW chosen plan) and the increase in larger scale but fewer 

options selected by the IG solution, again supporting the above conclusion. 

Figure 5.12: Intervention options proposed by the BW chosen plan 2015 and by 
selected RO and IG strategies of similar robustness 

The RO Pareto strategy that has the same PV of total cost as the BW chosen 

plan 2015 (indicated in Figure 5.13) has an increased robustness of 58% when 

compared to the BW chosen plan. This strategy along with the 90% and 95% 

RO Pareto strategies (near identical to the IG Pareto strategies of the same 

robustness) are selected for further analysis (Figure 5.13). The strategy of 

similar PV of total cost but higher robustness (58%) then the BW plan (48%) 

reduced costs by delaying the second reservoir at Cheddar (R4) by two years 
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and incorporating additional options to reduce water consumption early on in 

the planning horizon (options C1, C3 and C5) before implementing various 

minor additional sources and enforcing compulsory metering later in the 

planning horizon (options C2, R7 and R12). The additional system capacity 

added around 2018 by the RO’s 58% robust strategy means few additional 

interventions were required over the 2019-2029 period, where conversely the 

BW plan imposed numerous water transfer schemes (R11, R14, R15) over this 

period to ensure supply levels remained just above the, very specific, target 

headroom level projected for this period. This led to a sequence of interventions 

of similar total cost, but less overall robustness than the strategy derived by RO. 

RO was able to derive this more robust strategy as it was directly optimising for 

robustness across the range of supply and demand scenario combinations. The 

conventional EBSD approach optimises to a single linear projected future 

(target headroom level) so the optimal sequence of interventions obtained is not 

as robust in handling deviations outside of the most likely set of conditions.   

Figure 5.13: System capacity increases (water supply added to system) for the 
BW chosen plan and selected RO and IG strategies of higher robustness 

If planning for a maximisation of robustness (solutions of 90% and 95% 

robustness in Figure 5.13) then both the RO and IG Pareto strategies 

recommend construction of a larger resource (e.g. the desalination plant (R3)) 

early in the planning horizon, followed by the second reservoir at Cheddar (R4) 

and various additional bulk supply / transfer options (R11, R12 and R14) at 

Selected strategies 

90% 
95% 

58% 
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around 2025. This greatly increases system robustness to uncertainty but for an 

additional spending of £144-£195 million over 25 years on top of the current BW 

planned total expenditure of approximately £271 million. This would likely be 

deemed an overdesign given the BW’s current planned expenditure, but what 

both DMMs allow is a comparison of Pareto optimal strategies across a wide 

range of robustness levels. This allows decision makers to then select an 

optimal trade-off solution, identifying an ideal robust adaptation strategy from a 

group within a desired range of expenditure.  

Figure 5.14 presents the Pareto results derived from altering the initial starting 

location of the IG analysis (denoted as Uhigh, Umid and Ulow) – see section 4.5.1. 

From this investigation an increased variation between the Pareto strategies 

identified is exhibited compared to that of the Sussex North investigation. 

Figure 5.14: Pareto strategies identified by Info-Gap following variation of the 
initial start point of the analysis (denoted as Uhigh, Umid and Ulow) 

The added complexity in this case study, incorporating a wider region of 

uncertainty, has led to a greater variation in the adaptation strategies identified 

for different levels of robustness across the three examinations (Uhigh, Umid and 

Ulow); except at 100% robustness where all Pareto fronts converge on the same 

solution. The least variation can again be seen in the strategies of higher 

robustness (i.e. for robustness > 80%). These strategies can satisfy multiple 

scenario combinations across the range of uncertainty regardless of their 
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starting location. Strategies of mid to low levels of robustness will generally be 

detected at a lower cost from the less severe starting points in the scenario 

rankings (the triangles and circles in Figure 5.14), as more easily satisfied 

scenarios (of supply and demand) will be in closer proximity to these starting 

locations. This clarifies that the starting point becomes more important the 

larger the uncertainty region becomes and so should be selected with great 

care. 

The final analysis involves an investigation into the effect of altering the length 

of the planning horizon. The current 25 year planning horizon (2015-2039 

inclusive) is compared with an extended 50 year planning horizon (2015-2064 

inclusive). Both methodologies are re-tested, as described in Chapter 4, using 

the extended time steps from the 50 year planning horizon and new Pareto 

strategies are identified (Figure 5.15 (a)). The two Pareto fronts follow a similar 

pattern to the fronts shown in Figure 5.10, with both fronts near converging 

around 75-80% robustness; however, the IG Pareto front now contains a larger 

number of solutions following the 50 year planning horizon runs, as a greater 

variation of intervention sequences are now available.  

In order to examine whether the extended 50 year planning horizon has 

affected the timing and scale of intervention options sequenced over the first 25 

years the IG and RO Pareto strategies of 90% and 95% robustness derived 

using a 50 year planning horizon (circled in Figure 5.15 (a)), are compared with 

the corresponding RO strategies of 90% and 95% robustness derived using a 

25 year planning horizon (shown in Figure 5.13). These comparisons are shown 

in Figure 5.15 (b) and (c) respectively. 
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Figure 5.15: (a) Pareto strategies identified by IG (Umid) and RO methods when 
utilising a 50 year planning horizon; (b) system capacity increases for 90% 

robust strategies identified over 50 and 25 year planning horizons; (c) system 
capacity increases for 95% robust strategies identified over 50 and 25 year 

planning horizons 

(a) 

(b) 

(c) 

95% robust strategies 
90% robust strategies 
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The strategies compared present a fairly similar sequence of intervention 

options selected over the initial 25 years. All three strategies recommend 

construction of a larger water resource (e.g. the desalination plant - R3) two or 

three years into the planning horizon, followed by a second larger resource (e.g. 

the second Cheddar reservoir (R4)) after 2025. The main difference comes in 

the timing of intervention options and in the additional construction of large 

resource (either Chew Stoke reservoir (R18), or a new bulk supply from Severn 

Springs (R10) or Vyrnwy (R13)) at around 2035-2038 years into the planning 

horizon for the adaptation strategies examined over 50 year horizons. This is 

due to the strategies preparing for future climate change impacts projected post 

2040, which is not examined in the 25 year planning procedures. However, the 

current industry standard 25 year WRMPs are re-evaluated every 5 years, so 

additional resources required later in the planning horizon may be identified and 

included over time should they be required. 

An advantage of planning further into the future means a more robust plan can 

be developed for the near term whilst ensuring a least-cost robust plan is 

constantly refined over the long term. However, at least in the case study 

analysed here, extending the planning horizon by 25 years does not 

significantly alter the optimal plans identified over the preliminary 25 year 

period. Similar intervention options are selected; however, the timing of those 

options shows a slight variation. 

5.4.4 Conclusions 

This case study provided a comparison of two DMMs for integrated water 

resource management under deep uncertainty. The Robust Optimisation and 

Info-Gap methods were applied and compared on the case study of the Bristol 

Water resource zone in the UK with the aim to solve a specific WRM problem 

driven by the maximisation of robustness of long-term water supply and 

minimisation of associated costs of adaptation strategies, all under a range of 

uncertain future supply/demand scenarios. The results obtained lead to the 

following key conclusions: 

1. Optimisation based automatic generation of strategies was required for 

the IG method in order to test a suitable range of strategy formulations 
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given the larger data sets and a larger pool of potential intervention 

options applied in this more complex case study. 

2. The two DMMs analysed produced different Pareto adaptation strategy 

recommendations to each other and to the strategies derived using the 

current UK engineering practice. Robust Optimisation generally produced 

lower costing Pareto strategies than IG for all ranges of desired system 

robustness due to RO’s less stringent method of global analysis. Info-

Gap’s local analysis generally lead to larger scale interventions selected 

earlier in the planning horizon in order to satisfy the widening range of 

variable scenarios. 

3. The location of the starting points of the IG analysis altered the Pareto 

strategy results obtained across all robustness levels and examinations 

(Uhigh, Umid and Ulow), especially at lower robustness levels. This was due 

to the increased case study complexity utilising a larger region of 

uncertainty and highlighted the importance of carefully selecting the initial 

start point. 

4. Varying the length of the planning horizon from 25 to 50 years did not 

significantly alter the optimal plans identified over the preliminary 25 year 

period. Similar intervention options are selected; however the timing of 

those options showed a slight variation.     

5. The variation in the Pareto strategies derived highlight how the current 

industry standard for water supply system adaptation planning could 

benefit by applying a wider range of decision methodologies and 

assessment tools (especially those that explicitly quantify a level of 

system “robustness”) as well as a more encompassing investigation into 

potential future uncertainties and alternative prospective methods for 

scenario generation. 

5.5 Summary 

Two real-world quantitative case studies were carried out to analyse the 

performance and suitability of decision making methods Robust Optimisation 

and Info-Gap decision theory in application to water resource management 

adaptation problems under deep uncertainty. The two methods were applied 
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and compared on case studies of Southern Water’s Sussex North resource 

zone and the Bristol Water resource zone, both situated in the UK. The 

methods aimed to solve a specific water resource management problem driven 

by the maximisation of robustness of long-term water supply and minimisation 

of associated costs of adaptation strategies, all under a range of uncertain 

future supply/demand scenarios. The case studies were of varying complexity 

and utilised alternative performance indicators, planning horizons and scales of 

uncertainty. The primary investigation was into: (a) a local vs global method of 

robustness analysis and (b) utilising pre-specified vs optimisation-generated 

adaptation strategies, but also incorporated: a study of utilising Future Flow 

climate/hydrology projections to produce prospective supply and demand 

scenarios and a comparison with current UK engineering practice. The specific 

results and conclusions for the Sussex North and Bristol Water case studies are 

detailed in section 5.3.4 and 5.4.4 respectively. The overall key WRM 

conclusions derived across the two case studies are as follows: 

1. The two DMMs examined allowed a comparison of local vs global 

measures of robustness (investigative area (a) from section 3.5). Robust 

Optimisation, with its global robustness analysis, appears the more 

favourable DMM for the WRM problems examined here. Its simpler 

computational set-up and operation allowed an easier examination of 

future scenarios when utilising an ensemble of prospective transient flow 

projections. The RO analysis also led to the identification of lower costing 

adaptation strategies across both case studies for all given levels of 

desired robustness. Info-Gap had a more complex set-up and the 

localised mapping methodology proved problematic when applied to a 

wide range of discrete scenario projections that were extremely variable 

and not monotonically increasing. 

2. The novel area-based robustness search technique developed for the IG 

method application improved on previous scenario mapping practices by 

allowing more scenario combinations to be analysed and allowing the 

robustness search to continue until all scenario expansion routes ended in 

system failure. 

3. The location of the starting points of the IG analysis did not significantly 

alter the Pareto strategy results obtained in the simpler case study 
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(Sussex North) but did in the more complex problem (Bristol Water). The 

Bristol water study utilised a larger region of uncertainty signifying that the 

starting location of the IG analysis is more impacting on outputs as the 

uncertainty region increases, highlighting the importance of carefully 

selecting the initial start point. 

4. The IG performance could be improved by switching to using uncertainty 

variables instead of using transient flow projections; however, the purpose 

here was to examine how the DMMs handle complex ‘scenario’ 

assessments in practice, as approaches that characterise uncertainty via 

scenario development/assessment are being increasingly regarded as the 

next step for evaluating complex systems to deep uncertainties (Maier et 

al., 2016; Moss et al., 2010). 

5. In assessment of pre-specified vs optimisation-generated adaptation 

strategies (investigative area (b) from section 3.5), it was discovered that 

Info-Gap required optimisation based automatic generation of strategies 

as the case studies became more complex. The larger pool of potential 

intervention options made it problematic to reliably pre-specify strategies 

for testing, reinforcing the suitability of a form of Robust Optimisation for 

WRM adaptation planning.    

6. A comparison of singular vs Pareto optimal results was also examined 

(investigative area (f) from section 3.5). Both DMMs could produce a 

Pareto optimal set of adaptation strategies (either formed automatically or 

following the ranking of results), which ultimately allows a visualisation of 

trade-offs across the objectives before final strategy selection is carried 

out. This improves on current UK engineering practice, which typically pre-

specifies a linear projection of future supply and demand and then 

optimises to derive a single optimal adaptation strategy solution. Single 

objective (least cost) optimisation, as in the current practice EBSD 

method, effectively determines only a single point on the Pareto fronts 

identified by the DMMs here, and so does not provide any trade-off 

comparisons. 

7. The two DMMs examined also facilitated an examination of a “fixed” vs 

“fixed-adaptive” strategy design (investigative area (d) from section 3.5). A 

fixed strategy design (i.e. unchanging the set sequence of interventions in 
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the strategies examined from input to output) suffers from the same 

computational issues experienced when pre-specifying a selection of 

strategies when system complexity, larger data sets and a larger pool of 

potential intervention options are used. A fixed-adaptive design (either 

manually altering strategy designs as vulnerabilities are detected (as with 

RDM), or mutating strategy designs within optimisation processes (as 

done here with RO)) proves more beneficial at testing multiple strategy 

design configurations in a much more computational acceptable time 

frame. Examining every form of potential fixed strategy design when 

millions of potential combinations exist is not practical. 

8. The comparison between using a risk-based metric and an individual 

criterion (reliability) based metric (investigative area (g) in section 3.5) is 

difficult to directly analyse across the two case studies; although, from an 

immediate practical point of view it is arguably more informative to use a 

reliability criterion to measure the performance of the water system as it 

provides clearer insight into the relative frequency of water deficits 

detected over the planning horizon. The risk-based metric identified 

strategies that could maintain a given level of risk over a given planning 

horizon; however, the calculation of risk is far less transparent when you 

amalgamate both likelihood and severity into a single parameter and it 

remains unclear just how many water deficits are occurring and at what 

magnitude. In order to better compare the effect of altering the 

performance metrics utilised it is recommended that a more complete 

investigation into potential indicators be conducted, which explore 

individual criterions of performance; such as examining the frequency, 

duration and magnitude of water deficits (Hashimoto et al, 1982) and how 

this can better inform decision makers on the performance of the water 

system. 

9. In comparison with the SW and BW WRMPs 2015-40 proposed plans it 

can be concluded that quantifying the robustness explicitly (as opposed to 

indirectly, via headroom and level of service failure) and using this and 

costs as drivers to identify solutions, is likely to result in more robust and 

less costly plans when compared to a more conventional approach used 

in current UK engineering practice. However it was observed, at least in 
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the case studies analysed here, that increasing the current 25 year 

planning horizon to a 50 year analysis did not significantly influence the 

intervention options selected over the initial 25 years of the plan. 

The differences in DMM outputs highlight how the current industry standard for 

water supply system adaptation planning could benefit by applying a wider 

range of decision methodologies and assessment tools as well as a more 

encompassing investigation into potential future uncertainties. The requirement 

to apply optimisation to the IG method suggests that the development of an 

optimal DM framework for complex WRM planning under uncertainty may 

involve one that will utilise (perhaps hybridise) features from a range of DMMs 

with the aim to exploit advantages and minimise disadvantages of existing 

methods (e.g., using optimisation to select and test more strategy combinations, 

combined with new vulnerability map or scenario discovery methodologies (e.g., 

Singh et al., 2014)) with objectives set up to examine the trade-offs between 

robust and flexible solutions across multiple objectives.  

The flexibility of solutions is another aspect not explored within the approaches 

presented here. In practice, evaluating only fixed rather than flexible-adaptive 

strategies limits the range of potential long-term trade-offs explored. This 

limitation could be overcome by combining the DMMs tested here with modern 

approaches such as real options analysis (Jeuland and Whittington, 2014), 

adaptive pathways (Kwakkel et al., 2015), or adaptive multi-objective optimal 

sequencing (Beh et al., 2015a). 

In addition to the above mentioned conclusions two alternative performance 

metrics were also applied to the two case studies, but no significant conclusions 

could be derived as to their impact on strategy selection. In order to perform a 

more quantitative comparison of potential performance metrics it was 

recommended that a more in-depth analysis of the various indicators of water 

system performance be carried out. This investigation now follows in Chapter 6. 
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Chapter 6. Resilience-Based Performance 

Assessment for WRM Under Uncertainty 

6.1 Introduction 

Multiple methods exist for assessing WRM systems under deep uncertainty; 

however, the output results from adaptation investigations can be highly 

dependent on the performance metrics employed.  

A performance metric (or criterion) defines the performance of a water system 

to a single future scenario or set of conditions. The more well-known 

performance criterions often cited within WRM literature (as detailed in section 

2.5.7) are those of Hashimoto et al. (1982) who were among the first to propose 

the use of the terms; reliability, vulnerability and resilience for water resource 

system performance evaluation. These performance criteria, in general, refer to 

how likely a system is to fail (its reliability), how severe the consequences of 

failure might be (its vulnerability) and how quickly it can bounce back, which is 

the recovery from a failure (its resilience).  

In current UK engineering practice the EBSD ‘levels of service’ method most 

commonly assess the performance of a water system as the likelihood of 

temporary customer demand restrictions being enforced. This is a metric most 

closely related to that of ‘reliability’. The ‘vulnerability’ of the system is also 

implicitly included in the control rules and triggers used to define each ‘level of 

service’ event for a given resource system, however current practice does not 

explicitly consider the ‘resilience’ of the system. The latest investigation by the 

EA into water resource planning methods of the future (Environment Agency, 

2013a), called for a review of the EBSD ‘levels of service’ method and for the 

advancement of incorporating more resilience into water resource system 

planning, indicating it will support adaptation strategies that are aimed at 

improving system resilience. However a clear definition of resilience was not 

given in this report and resilience, to date, currently lacks a precise definition for 

practical real world water resource system performance evaluation. 
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In the previous chapter, two alternative performance metrics (reliability and risk-

based metrics) were applied to the two independent case studies; however, no 

significant conclusions could be derived as to their direct impact on adaptation 

strategy selection. In order to further explore and analyse a range of applicable 

metrics a more detailed investigation is conducted. This chapter explores 

alternative assessment metrics addressing different aspects of a water supply 

system’s resilience to uncertain climate change, i.e. to uncertain future supply 

and demand over a pre-specified long-term time horizon. The sensitivity and 

correlation between the various metrics is examined and the ‘most suitable’ 

metric that could characterise water system resilience is selected for a follow on 

investigation (Chapter 7). The metric chosen is employed in a newly developed 

resilience driven methodology; to compare the derived strategy solutions to that 

of current engineering practice solutions and to ascertain the metrics potential 

as an answer to the water industries need to define and include more emphasis 

on resilience in future water resource design and adaptation planning (Charlton 

and Arnell, 2011; Environment Agency, 2013a).         

First the selected performance metrics are listed and described, followed by a 

description of the methodology applied to explore the metrics. An analysis of the 

metrics then follows, including an examination of metric sensitivity and 

correlation, and a more in-depth examination of the behaviour of water deficit 

periods, before a recommendation is made of a most appropriate metric to 

characterise system resilience. The selected metric is then applied to a novel 

resilience-based methodology for WRM adaptation planning (Chapter 7). 

6.2 Methodology 

6.2.1 Objective, problem definition and main procedure 

The objective of this examination is to select, analyse and compare a range of 

different metrics (or criterions) that could be used to assess and indicate the 

performance of a water system to a given future scenario of supply and 

demand. The ultimate goal is to identify and further examine a single individual 

metric that has the potential to be the defining metric and calculation of the term 

‘resilience’ of a water system. The task included 6 main procedural steps as 

outlined below:  
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1. Identified a group of potential metrics to quantify the resilience-based 

performance of a water resource management system. 

2. Selected a suitable real-world case study, utilising a dynamic long-term 

supply/demand balance water resource simulation model. 

3. Generate a range of plausible future supply and demand scenarios to 

examine the varying effect they have on the metric results. 

4. Identified a group of realistic adaptation strategies to apply to the case 

study to further examine the effect they have on the performance metric 

results. 

5. Perform a number of simulation model runs based on the above and 

calculate performance metrics values and related results. 

6. Analyse results to identify the most promising/suitable metric(s) for 

further investigation as a metric of resilience. 

6.2.2 Metrics under assessment 

In order to select a range of metrics for analysis first a set of desirable metric 

characteristics are explored, derived by reviewing a range of WRM documents 

and reports (Defra, 2011b, 2013, 2016a, Environment Agency, 2013a, 2015; 

UKWIR, 2016a). Some characteristics of a good metric in the context of WRM 

are listed in Table 6.1 (in reference to the resilience of a water supply system; in 

no particular order): 

Table 6.1: Characteristics of a good performance metric for WRM adaptation 
planning 

Item Description Rationale 

1 Practical Quantitative rather than qualitative. 

2 Comprehensive Covers all important aspects of system resilience (how 

well is the system prepared to, affected by, responds 

to and recovers from a deficit event), including 

attributes of deficit events (frequency, time/duration 

and magnitude). 

3 Understandable/

transparent 

Easy to understand, and explain to, different, non-

technical stakeholders. 
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Item Description Rationale 

4 Non-redundant A set of independent and specific metrics. 

5 Minimal As small as possible number of resilience metrics 

adopted eventually. 

6 Defensible Enables calculation of and comparison to relevant 

conventional measures in the context (reliability, risk / 

likelihood / impact, etc.). 

7 Industry focused Enables water industry to express its current goals 

and objectives. 

8 Strategic Embodies a strategic objective and can provide 

sufficient information to correctly monitor, plan and 

adapt a water supply system. 

9 Accurate Can be accurately projected/calculated for a given 

system, free of approximates and indistinct values. 

10 Sensitive The metrics need to provide a clear indication of 

improvement or deterioration. 

11 Standardised Deriving a metric definition that all respective parties 

can agree on that can be easily examined/calculated 

and understood by all relevant 

companies/organisations/individuals. 

12 Informative The metrics need to provide useful information that a 

decision maker can accurately utilise to quantify the 

relevant social, environmental and economic 

benefits/costs associated to the performance of a 

system. 

Ten potential metrics to characterise different aspects of water system 

resilience have been selected for this assessment. To be compatible with 

current UK engineering practice the metrics chosen all relate to aspects 
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surrounding threshold levels and trigger points of low water resource periods, 

i.e. water deficit events. The ten metrics are selected as they are deemed to 

cover all significant aspects of a water deficit event or water deficit period. A 

water deficit event was defined, in section 4.2.2.1, as the point at which a water 

system requires a temporary water restriction to be put in place (e.g. a 

temporary use ban) due to a critical threshold of low resource being surpassed. 

A water deficit period is here defined as the period of consecutive days/months 

the water system remains in deficit.  

Figure 6.1 illustrates the ten potential resilience metrics derived for examination 

which aim to cover all aspects of individual water deficits events and prolonged 

water deficit periods. The ten metrics selected are as follows: 

Duration based metrics 

M1. Total time system is under water deficit (months) 

M2. Duration of the longest water deficit period (months) 

M3. Time to reach water deficit of greatest magnitude (months) 

M4. Time to recover from water deficit of greatest magnitude (months) 

M5. Average duration of water deficit periods (months) 

Frequency based metrics 

M6. Number of water deficit periods recorded (-) 

Magnitude based metrics 

M7. Water deficit of greatest magnitude recorded (Ml/month) 

M8. Average magnitude of water deficits (Ml/month) 

M9. Average magnitude of water deficit period peaks (Ml/month) 

Volume based metrics – magnitude x duration 

M10. Total volume of all water deficits recorded (Ml) 
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Figure 6.1: The ten performance/assessment metrics as calculated from a 
series of example water deficit periods 

These ten metrics (Figure 6.1) were selected to cover the whole range of 

different assessment features of water deficit events/periods (i.e. duration, 

magnitude, frequency, etc.) and because they encapsulate many of the 

highlighted characteristics of what would make a good resilience-based 

performance metric for WRM adaptation planning (see Table 6.1). For instance, 

the metrics are all quantitative rather than qualitative (item (1) in Table 6.1); are 

transparent in their direct calculation (item (3)); are highly specific (i.e. do not 

encompass too many aspects into one calculation – item (4)); are industry 

focused (i.e. can be used to quantitatively express the industries qualitative 

goals – item (7)); can be used to directly monitor and adapt strategic plans (item 

(8)); can be calculated to an exact (non-approximated) figure during 

uncertainty/future scenario examinations (item (9)), and can be easily 

standardised (i.e. examined, understood and agreed upon by all relevant parties 

– item (11)).  

The current classification of resilience within WRM practice in the UK is still very 

much a qualitative description rather than quantitative metric (Ofwat, 2015; 

UKWIR, 2016a; Water UK, 2016). The following assessment is carried out to 

examine several quantitative aspects of the metrics such as how sensitive, 
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informative and comprehensive the candidate metrics are (items (2), (10) and 

(12) from Table 6.1) in order to identify a smaller number, ideally singular 

criterion, of resilience that is defensible against conventional practices (items (5) 

and (6)). 

6.2.3 Assessment set-up 

The dynamic water resource simulation model (as described in section 4.3) is 

set up for the Bristol Water case study (as described in section 5.4) and utilised 

to test the ten potential resilience metrics listed in section 6.2.2.  

The Bristol Water case study included the generation of 331 discrete future 

supply scenarios and 9 future demand scenarios, which were subsequently 

ordered into a range of severity. The full range of scenarios are not used in this 

metric examination in order to allow a more considered examination with more 

detailed analysis of individual scenarios tested. The many thousand possible 

scenarios combinations available would also yield an unnecessarily vast range 

of individual results if all tested, which would be very computationally 

demanding due to the multiple simulation runs required. Therefore, in order to 

examine the sensitivity of the metrics across a range of uncertain future supply 

and demand scenarios a subset of scenarios (20 supply and 3 demand 

scenarios) of varying severity are selected at intervals from across the range of 

uncertainty. This produced a total of 60 future scenario combinations (of supply 

and demand) for assessment purposes that encompass projections of low to 

high demand and low to high changes in future supply availability, but ensuring 

that the more extreme projections are also included, to see how the system 

responds to being stressed beyond what it has been designed to.  

Four intervention adaptation strategies were selected for the evaluation of 

metrics. These strategies entail a varying degree of system adaption and 

include a strategy of “no” adaptation (i.e. no interventions applied across the 

planning horizon) through to “low”, “moderate” and “high” level adaptation where 

multiple intervention options were applied across the planning horizon, as 

detailed in Table 6.2 (full intervention option information is detailed in Table 

5.7). 
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Table 6.2: Adaptation strategies examined 

The four adaptation strategies were applied to the Bristol Water existing system 

configuration and tested over the 60 future scenario combinations of supply and 

demand over a 25 year planning horizon. The resulting water deficits were then 

assessed in relation to each listed performance metric (M1-M10).  

6.3 Resilience metrics analysis – sensitivity assessment 

The performance metrics values are calculated for each adaptation strategy 

over each future scenario combination of supply and demand, resulting in 60 

individual results for each performance metric and each strategy. Box plots are 

then produced for each set of metrics in order to gauge the sensitivity of each 

metric across the scenarios and across the increasing levels of adaptation 

applied to the system (see Figure 6.2). 
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Figure 6.2: Box plots of performance metric results for all strategies across all scenarios



160 

 

The following can be noted from Figure 6.2: (a) most metric media (trend) 

values reduce (i.e. improve) with increasing levels of adaptation but not always, 

as can be seen with metric M6, where the number (e.g. frequency) of water 

deficit periods detected from low to high adaptation exhibit the same median 

and min to max values. The increasing level of system adaptation reduces the 

duration and magnitude of the detected water deficit periods (as can be seen in 

the alternative metric box plots). This, however, highlights the misperception 

that can arise from using frequency only based metrics that do not make a more 

detailed assessment, i.e. take duration or absolute magnitude of deficits into 

account; (b) the variation (e.g. min to max and interquartile range) of most of 

metric values also reduces with increasing level of adaptation although again 

not necessarily always (e.g. M3 and M6). Therefore, utilising metrics M3 and 

M6 would likely only lead to the recommendation of a low level of adaptation, 

whereas applying the alternative metrics would lead to greater adaptation 

recommendations to increase overall system performance. 

Metrics that are more sensitive to changing conditions are preferable to those 

that indicate little change in system performance (see Table 6.1), as sensitive 

metrics can provide a clear indication of system improvement or deterioration. 

To evaluate the relative sensitivity of each potential resilience metric, graphs 

are plotted which show the normalised sensitivity of each metric for each 

strategy for all scenarios (Figure 6.3). Each coloured line on Figure 6.3 

represents one individual discrete future scenario of supply and demand and its 

respective (normalised) value for each metric. The scenario lines on Figure 6.3 

illustrate how one given scenario can produce very different results when 

analysed to one metric rather than another.   
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Figure 6.3: Normalised sensitivity of each metric across all scenarios 
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The results generally show the magnitude metrics (M7-M9) to be the most 

sensitive and maintain the greatest sensitivity across the increasing adaptations 

to the system, whilst time to water deficit of greatest magnitude (M3) and 

number of water deficit periods (M6) are the least sensitive. For the duration 

based metrics – total time under water deficit (M1) and the duration of the 

longest water deficit (M2) maintain the greater sensitivity across the scenarios. 

Metrics M3-M5 tend to ‘clump’ more often around isolated values for multiple 

scenarios making the difference in performance under each scenario, or from 

one strategy to another, harder to ascertain. The variation in recorded 

performance for the time to reach (M3) and recover from (M4) a water deficit of 

greatest magnitude also often tend to fluctuate (lines cross) from one scenario 

to the next. This presents a problem if utilising one of these metrics individually; 

as the time for the system to recover (M4) may be of low duration under a given 

scenario, leading a decision analyst to believe this strategy is performing well 

over this scenario; however, it may instead exhibit a long duration of time to 

reach the deficit of greatest magnitude (M3) and vice versa. 

To investigate the low variation of the time to reach water deficit of greatest 

magnitude (M3) and the performance of the alternative metrics the largest 

deficit periods within a selection of scenarios are isolated and given a more 

detailed assessment. Three scenarios are selected from across the scenario 

severity range and the longest water deficit periods are examined in more 

detail, as shown in Figure 6.4. 
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Figure 6.4: Analysis of largest water deficit periods recorded for three isolated 
scenarios for all adaptation strategies 

Figure 6.4 shows how the time to reach the water deficit of greatest magnitude 

(M3) is constant (for most scenarios) across the strategies and it is the time to 

recover from largest deficits (M4) that is more variable. It is only possible to 

observe the above when a water deficit period is separated into the metrics of 

M3 and M4, i.e. it is not possible to observe this when an aggregate type metric 

(e.g. M1, M6 or M10) is used, which is what is currently proposed in the 
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literature and utilised in current practice. In addition, Figure 6.4 shows that the 

duration time of the longest water deficit (metric M2) provides a fairly 

comprehensive picture of the complete water deficit period without separating 

out the ‘time to’ and ‘recovery from’ aspects of the deficit period, which, as 

mentioned previously, can produce variable performance results in the two 

aspects across the scenarios. Finally, Figure 6.4 shows that the water deficit of 

greatest magnitude (M7), although highlighted previously as being very 

sensitive (which is good) also exhibited a fairly uniform reduction across the 

three scenarios and four strategies. This may not provide the most informative 

assessment of the deficit periods as they are shown to have a clearly non-

uniform variation in the changes in maximum durations of the deficit periods 

recorded (M2) and time to recover (M3).  

The maximum and average magnitudes of water deficits are slightly less 

variable (by percentage change) but are still good indicators of the adaptation 

impacts on system performance. The swift time to reach the point of greatest 

deficit magnitude (exhibited in most scenarios) followed by the longer duration 

of recovery time, suggests it is individual severe drought months that cause 

initial water deficit periods to form, which are then recovered from over time. 

The follow up peaks shown in the high and medium scenarios are caused by 

repeat severe drought conditions occurring later in the same deficit period. Note 

that the above cannot be captured by using a single frequency-based or 

aggregated type resilience metric. 

The above observations clearly demonstrate that the choice of metric(s) has 

implications on the choice of interventions to implement. Decision makers could 

decide that small or medium magnitude deficit events can be dealt with via 

water restrictions alone; however, unforeseen extended duration/recovery times 

could be costly and more detrimental to the system (and to customers) and 

require more extensive interventions. From this examination at least moderate 

to high adaptation to the case study system would be recommended to reduce 

water deficit periods of protracted duration over the more extreme projections 

(i.e. the high demand increase – high supply reduction scenario in Figure 6.4), 

whereas only low adaptation may be recommended if targeting a reduction in 

the magnitude or frequency of water deficits.  
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6.4 Resilience metrics analysis – correlation assessment 

In order to see how the duration, magnitude and frequency metric values cross-

over and compare with each other the correlation between individual metric 

values obtained is explored. This is important as using two highly correlated 

metrics for resilience assessment is not desirable (as it does not provide 

additional useful information about the system’s resilience).   

Figure 6.5 shows the correlation results obtained for the ten metrics analysed 

across the 60 supply/demand scenarios and four adaptation strategies. As it 

can be seen from this figure, strong correlations tend to exist within groups of 

the same metrics types (e.g. M7-M9) and weaker correlations tend to exist 

across different metric groups.  

Figure 6.5: Metric correlation results 
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To further examine the above, the coefficients of determination (i.e. the R2 

values) of each metric correlation are calculated, as shown in Figure 6.6. Note 

that the R2 values obtained indicate the proportion of variance between two 

variables and are scored between 0 and 1 (with 1 indicating perfect correlation 

between two variables). 

Figure 6.6: (a) Coefficient of determination (R2 values) for all metrics; (b) the 
average of the R2 values for each metric 

Figure 6.6 (a) highlights the low correlation between the frequency of water 

deficit periods metric (M6) with all other metrics. This very low statistical 

correlation with the other metrics indicates that there is low connection between 

the changing frequency of water deficit periods and the changing 

duration/magnitude aspects; however, the frequency-based metric was also 

shown to be the least sensitive metric, which will inherently reduce the 

correlation exhibited between this metric and others (as can be seen by the 

straight lines for M6 on Figure 6.5).This suggests that metric M6 can provide 

important deficit information that other metrics do not encompass, but also that 

it cannot predict other performance aspects, so should not be used on its own. 

Figure 6.6 (a) also indicates (again) that the metrics with the highest correlation 

are those within the same group, suggesting that using more than one metric 

from within the same group is unnecessary. It also shows that the aggregated 

total volume metric (M10) incorporating both magnitude and duration of deficits 

has the highest correlation with metric M2. This is suggesting that metric M2 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
0.692 0.718 0.478 0.509 0.670 0.164 0.693 0.648 0.648 0.648

(a) 

(b) 

M1
0.935 M2 High Correlation 0.8-1

0.526 0.612 M3 Moderate Correlation 0.5-0.8

0.739 0.730 0.153 M4 Low Correlation 0-0.5

0.801 0.919 0.624 0.610 M5
0.306 0.151 0.066 0.209 0.058 M6
0.804 0.796 0.503 0.636 0.714 0.312 M7
0.653 0.717 0.603 0.466 0.697 0.177 0.885 M8
0.670 0.748 0.512 0.554 0.820 0.112 0.878 0.878 M9
0.791 0.858 0.703 0.480 0.788 0.083 0.710 0.759 0.659 M10
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can cover multiple performance aspects in a single criterion of performance, 

further highlighting its potential as a comprehensive duration based metric and 

as a potential candidate for a WRM resilience measure. 

Taking the average of all R2 values for each metric reveals the most all-

encompassing indicators (Figure 6.6 (b)). It shows that metric M2 has the 

highest average R2 value, again indicating that evaluation of this particular 

duration-based metric provides a wider indication of more system performance 

aspects in a single assessment. For example, it demonstrates high correlation 

with the volume metric (M10) mentioned above, as well as all magnitude (M7-

M9) and other duration-based metrics (M1-M5). Indicating it can best 

encompass these multiple individual assessment aspects in a single metric. 

Information not as well encompassed by the assessment of the other metrics 

(as displayed in Figure 6.6(b)), include metrics M3, M4 and M6. Additional 

evaluations of these metrics would be required if the exact characterisation of 

the time to reach (M3) and time to recover from (M4) the worst magnitude 

deficits, and the total number of water deficits experienced (M6), was desired.  

6.5 Summary 

Ten different metrics that could be used to characterise the resilience of a water 

system (i.e. an adaptation strategy) to a given future scenario of supply and 

demand were investigated. An in-depth analysis of the metrics was carried out, 

including an examination of metric sensitivity and correlation, and a detailed 

examination of the behaviour of water deficit periods, leading to a range of 

recommendations for the selection of an appropriate resilience-based 

performance metric. In general it was found that: 

1. Multiple metrics covering different aspects of resilience are 

recommended for providing additional water deficit information, than is 

presently utilised in current practice. 

2. Metric M2 (“the duration of longest water deficit period” metric) stands 

out as the most all-encompassing and informative performance metric 

followed closely by metric M7 (“the water deficit of greatest magnitude 

recorded” metric). However, the analysis demonstrated a relatively high 

correlation between the two metrics and therefore considering just a 
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single metric may prove sufficient to evaluate the resilience of a water 

resource system. A duration based metric would be a more logical 

assessment metric to use of the two types, as it is the duration of 

temporary water restrictions that most impact on customers and supply, 

whereas the magnitude of water deficit events is of less direct concern to 

customers and water companies so long as the magnitude is maintained 

within acceptable threshold levels. 

3. Frequency type resilience metrics (M6, and in essence M1) cover 

important aspects/information and would also prove beneficial to 

measure, as emphasised by the low correlation between M6 and all other 

metrics; however, metric M6 was also found to be highly un-sensitive and 

unable to capture the size of ‘impact’ on the system from water deficit 

periods, so should not be used on its own. 

4. Aggregated type resilience metrics (e.g. averaging metrics M5/M8/M9 or 

sum/volume type metrics such as M10) are fairly sensitive to different 

adaptation strategies and supply/demand scenarios but there is also a 

considerable uncertainty in their calculation due to their nature (i.e. is it a 

single big or several small deficit periods occurring to give the final 

values) making it harder to clarify exact adaptation strategy and system 

performance. 

5. Magnitude type resilience metrics (M7-M9) are highly sensitive and 

provide useful information, especially in terms of proximity to critical 

threshold levels; however, they do not provide a full picture of deficit 

events/periods. 

6. Duration type resilience metrics are also highly sensitive with “the 

duration of longest water deficit period” metric (M2) providing the most 

detailed and informative picture of a deficit event. It is also the metric that 

exhibits the highest correlation to all other metrics. Splitting the duration 

of a water deficit period into the time to max peak deficit (M3) and time to 

recover from max peak deficit (M4) (as suggested in Linkov et al. (2014)) 

provides more detailed water deficit period information, but the relative 

performance of each aspect tends to be highly variable when assessed 

across multiple scenarios of future supply and demand, reducing the 

clarity of each as a consistent measure of performance. 
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The above findings are limited to the Bristol case study analysed here. The 

effect of utilising a single duration (resilience) based metric or a single ‘current 

practice’ frequency (reliability) based metric for WRM adaptation planning 

should be examined more in-depth (on additional case studies) to derive if both, 

or a single metric, is sufficient for effective resilience assessment, i.e. optimal 

adaptation planning.  

Despite several investigations involving resilience criteria (as outlined in section 

2.5.7), few to date have applied the metric to a complex real-world WRM 

adaptation case study under deep uncertainty to identify optimal adaptation 

strategies from a wide range of potential supply and demand intervention 

options. Nor has a comparative analysis been conducted with alternative 

metrics results, i.e. from current UK engineering practice, utilising the more 

standard reliability metric (frequency of temporary water restrictions). This 

detailed assessment is now carried out in Chapter 7 where a novel resilience-

based methodology for optimal water resource adaptation planning is designed 

and tested. Based on the results obtained and shown in this chapter, metric M2 

is selected for resilience assessment. The optimal adaptation strategy results 

derived are then compared with a strategy solution derived using current 

practice, by application of a more traditional frequency based metric (M6). 
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Chapter 7. Resilience-Based Methodology for 

WRM Under Uncertainty 

7.1 Introduction 

The resilience-based methodology and subsequent results and analysis 

presented in this chapter are under review for publication in Water Resources 

Research (Roach et al., 2016a). 

This chapter assesses whether incorporating a duration-based metric of 

resilience as a quantified objective in WRM assessments (as identified in 

Chapter 6), in addition to appraisals of robustness and total cost, can improve 

the derivation of system adaptation strategies when compared with the standard 

UK practice of using a system reliability metric in a least cost constrained 

analysis. A novel resilience-based multi-objective optimisation method is 

presented that identifies Pareto optimal solutions by maximising water system 

resilience (calculated as the maximum (longest) recorded duration of a period of 

water deficit over a given planning horizon) and minimising total adaptation 

strategy cost subject to target system robustness to uncertain projections of 

future supply and demand (note the focus on identification of optimal strategies 

which was not done in the previous chapter). The method is applied to the real 

world case study of the Bristol Water Resource Zone in the UK (see section 

5.4), assessing its applicability at selecting suitable resilient adaptation 

strategies under climate change and future demand uncertainties. 

First the general WRM problem is described followed by the concepts of 

resilience, reliability, robustness, adaptation strategies and costs. The resilience 

driven methodology and quantitative case study of Bristol Water is then outlined 

followed by results and discussion. 
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7.2 Methodology 

7.2.1 WRM problem definition 

The WRM problem is defined here as the long-term water resources planning 

problem of supply meeting future demand over a pre-specified planning horizon 

under uncertain climate change and population growth. The aim is to, for a 

given planning horizon, determine the best adaptation strategy(ies) (i.e. set of 

interventions scheduled across the planning horizon) that are required to 

upgrade the existing regional WRM system that will maximise the resilience of 

future water supply whilst minimising the total cost of interventions required 

subject to target levels of desired robustness. Note here that resilience is now a 

primary planning objective being optimised for within the methodology, while 

target robustness is set as a constraint. 

The individual performance aspects of resilience, robustness and cost are 

defined below. Note here that a resilience value is calculated for every future 

scenario combination tested and robustness is calculated as a single value 

across all scenario combinations. For example, if 100 combinations of supply 

and demand scenarios are tested then 100 different resilience results are 

obtained for a single adaptation strategy examined. Robustness is then 

calculated as a percentage of those 100 scenarios at which a given level of 

resilience is maintained. 

7.2.2 Resilience of water system and robustness of water supply 

A water deficit period was defined in section 6.2.2 as the period of consecutive 

days/months a water system remains in deficit following an initial water 

restriction event (e.g. a temporary use ban is put in place due to low supply 

levels). The implications of extended water restrictions have potentially severe 

economic, societal, reputational and environmental impacts (as discussed in 

section 4.2.2.1), with a study by Thames Water estimated that the monthly cost 

for London alone under restriction would be upward of £7 – 10 billion (Thames 

Water, 2012). 

The circumstances that entail a water deficit event, and subsequent deficit 

period, occurring are dependent on the system under study. For instance, in the 
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Bristol Water case study utilised here (section 7.3) a deficit month is counted if 

the water level in the main network reservoir falls below an unacceptable pre-

specified (threshold) level. A water deficit period may be allowed to occur 

occasionally, in order to manage the water supply system during periods of 

drought. However, an empty reservoir causing an unfulfilled water demand is 

deemed unacceptable; therefore, resilience is defined and calculated as the 

maximum (longest) recorded duration of time taken for the system to enter, and 

then recover from a water deficit period, without the system reaching complete 

failure, as shown in equation (7.1).  

For example, under a given future scenario if a water deficit period lasts for a 

single month before being recovered, but is then followed by a water deficit 

period lasting 6 months, then the resilience of the system is designated as 6 

months. Therefore a shorter maximum duration water deficit (e.g. 0-3 months) 

indicates a higher resilience system, whereas a longer maximum duration water 

deficit (e.g. 6-12 months) indicates a lower resilience system. The method 

optimises for a ‘minimisation’ of total deficit event time hence leads to a 

‘maximisation’ of how quickly a system can recover (i.e. ‘bounce back’) from a 

deficit period, i.e. characterised by Hashimoto et al. (1982). The inverse time or 

probability of recovery is not employed here as this is not easily quantifiable in 

this instance, as discovered by Moy et al. (1986). 

The threshold which defines a water deficit (the vulnerability of the system 

(Hashimoto et al., 1982)) is pre-specified by setting the water deficit threshold 

level to an appropriate magnitude. This threshold level varies depending on the 

system under study. For the Bristol Water system utilised here, this threshold 

level is linked to the level of water in the combined reservoir system and varies 

depending on the month of operation, i.e. the threshold is dynamic and is at its 

lowest (13,610 ML) in the autumn, rising to a more stringent level (30,000 ML) 

in the spring. However the frequency of deficit periods (the reliability of the 

system) is left unconstrained in this methodology in order to examine the effect 

of driving strategy optimisation by resilience alone.  

For comparison with the resilience-based methodology described above, a 

‘current practice’ methodology is also tested which represents conventional 

water company practice of using ‘levels of service’. This defines the target 
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frequency that customer water restrictions would be implemented. Rather than 

using a resilience metric this approach involves setting a target reliability of 

water supply for the system (here defined as a maximum allowable frequency of 

water deficit periods recorded over a planning horizon) and then optimising with 

the same definition of system robustness, calculation of total strategy costs and 

utilising the dynamic water resource simulation model as outlined below. 

Robustness of long-term water supply is specifically defined, as in section 4.2.1, 

as the fraction (i.e. percentage) of future supply and demand scenarios that 

result in an acceptable system performance in terms of resilience, as shown in 

equation (7.3). 

7.2.3 Adaptation strategies and dynamic water resource simulation 

model 

Different adaptation strategies can be produced by employing different 

combinations of water resource options (intervention options) arranged over a 

long-term planning horizon (see examples and option codes in Table 7.1). The 

total cost of an adaptation strategy is again expressed in terms of Present Value 

(PV), as shown in equation (7.2). Different adaptation strategies are evaluated 

using the dynamic water resource simulation model (see section 4.3 for full 

description), which has been modified to incorporate the resilience-based 

methodology (see Figure 7.1). 
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Table 7.1: Intervention options available for the Bristol Water region (Bristol 
Water, 2014)  

Option 
code 

Intervention option 
Capital 

cost 
(£M) 

Operational 
cost 

(£M/year) 

Deployable 
output (DO) 

(ML/d) 

  OPTIONS TO REDUCE WATER CONSUMPTION       
C1 Smart metering rollout 11.45 0.06 2.6 
C2 Compulsory metering of domestic customers 32.32 2.40 8.0 
C3 Selective metering of domestic customers (high users) 5.98 0.32 3.2 

C4 
Selective change of ownership metering domestic 
customers 

32.45 1.45 11.6 

C5 Business water use audits 0.00 0.30 1.0 

C6 
Household water efficiency programme (partnering social 
housing) 

0.00 0.42 0.4 

OPTIONS TO REDUCE WATER LOSSES       
D1 Pressure reduction 2.47 0.01 2.8 
D2 Mains Infrastructure replacement 78.47 0.00 2.2 
D3 Communication pipe replacement 36.24 0.00 3.4 

D4 
Communication pipe and subsidised supply pipe 
replacement 

3.51 0.00 2.2 

D5 Leakstop enhanced 1.75 0.00 0.2 
D6 Active leakage control  increase 0.00 0.91 4.4 
D7 Zonally targeted infrastructure renewal 165.08 0.06 13.4 

OPTIONS TO PROVIDE ADDITIONAL WATER 
RESOURCES       

R1 Minor sources yield improvement 14.68 0.32 1.8 
R2 City docks to Barrow transfer scheme 179.42 1.87 30.0 
R3 Desalination plant and distribution transfer scheme 179.42 1.87 30.0 
R4 Cheddar second reservoir 99.67 0.16 16.3 
R5 Purton reservoir and transfer scheme 288.57 4.30 25.0 
R6 Pumped refill of Chew Valley reservoir from river Avon 153.81 3.40 25.0 
R7 Upgrade of disused southern sources 8.30 0.30 2.4 
R8 Effluent re-use for commercial and industrial customers 165.75 1.91 20.0 
R9 Avonmouth WWTW direct effluent re-use 185.85 2.07 20.0 

R10 Severn Springs bulk transfer 100.94 0.89 15.0 
R11 Reduction of bulk transfer agreements 0.00 0.30 4.0 
R12 Bulk supply from: (Wessex Water Bridgewater) 26.37 2.31 10.0 
R13 Bulk supply from: (Vyrnwy via Severn and Sharpness) 151.95 4.29 25.0 
R14 Huntspill Axbridge transfer (traded licence) 10.23 0.14 3.0 
R15 Honeyhurst well pumped transfer to Cheddar 5.11 0.01 2.4 
R16 Gurney Slade well development 10.70 0.26 1.5 
R17 Holes Ash springs re-development 10.22 0.02 0.8 
R18 Chew Stoke Stream reservoir 54.81 0.17 8.0 
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Figure 7.1: Simplified flowchart of the dynamic water resources simulation 
model – Resilience-based methodology set-up 
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7.2.4 Optimisation methodology 

A two-objective optimisation method (Figure 7.1) is presented that identifies 

Pareto optimal solutions by maximising system resilience to water deficits and 

minimising the total cost of interventions, all subject to target level of 

robustness, i.e. as follows: 

The resilience of an adaptation strategy (x) to an individual discrete scenario 

combination of supply and demand (u) is calculated using metric M2 from 

Chapter 6 as: 

௫௨ݏܴ݁ = max
௝

  (7.1)   {(݆)݌}

where p(j) is the duration of the jth water deficit period. The total cost of 

adaptation strategy (x) expressed in terms of Present Value (PV) is as follows: 

ܲ ௫ܸ = ෍ ቎
௬ܥ
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 (7.2) 

where (y) = the intervention option index, (Y) = the total number of intervention 

options in the (adaptation) strategy, (Cy) = the estimated capital cost of 

intervention option y (£M), (Oy) = the estimated operating cost of intervention 

option y (£M/yr), (r) = the annual discount rate, (i) = the time step of the 

planning horizon (in years), (iy) = the year in the planning horizon option y is 

implemented and (I) = the total number of years in the planning horizon. A 

discount rate of 0.045 was selected for this investigation, as utilised by Bristol 

Water (2014). The robustness of long-term water supply is then derived as 

follows: 

௫ܾ݋ܴ =  
ܤ
ܷ

∗ 100 
 (7.3) 

where (B) = number of scenarios in which the system maintains a given level of 

resilience and (U) = total number of scenario combinations (of supply and 

demand) considered. Every time an adaptation strategy is evaluated during the 

optimisation process all potential combinations of supply and demand are 

generated and assessed using full enumeration sampling of all potential 

scenarios, i.e. the global robustness measure utilised by the Robust 
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Optimisation methodology in Chapters 4 and 5. This robustness measure is 

selected as it was analysed as the more favourable from work carried out in 

those chapters and ensures all viable futures are explored in the robustness 

calculation. 

A target robustness (R) is set as a constraint in the optimisation process and 

the highest level of resilience that can be achieved by a system at greater than 

or equal to this target level is recorded. For example, if target robustness is set 

at 80% and the highest level of resilience maintained by a given adaptation 

strategy system is 5 months, then the system’s resilience is designated as 5 

months. Note that if multiple optimisation problems (for varying target levels of 

robustness) are solved this will enable the production of a 3D trade-off surface 

between resilience, cost and robustness. The same result could be achieved by 

solving a single three-objective optimisation problem (where robustness is 

represented as an additional objective rather than a constraint) but this was not 

done here as this optimisation problem is much harder to solve. 

The optimising algorithm selected for this study is the NSGA-II (Deb et al., 

2000) from Chapters 4/5. The dynamic, monthly-time step, water resource 

supply and demand simulation model (see section 7.2.3) is combined with the 

NSGA-II optimisation algorithm. The model requires three main data inputs; a 

pool of potential new intervention options (see Table 7.1) from which to form 

combinations of new adaptation strategies, and the range of potential supply 

and demand scenarios for a region (see section 7.3.1). 

The NSGA-II algorithm automatically forms a population of adaptation 

strategies, sequences the strategies across the planning horizon and then 

analyses their resilience across all scenario combinations of supply and 

demand in the simulation model. The best performing strategies are then 

carried forward, mutated at random (based on selected probabilities) and then 

re-analysed over several generations, with the aim of ultimately identifying the 

Pareto set of results for maximum resilience and least cost for a given target 

level of robustness where all non-dominated strategy results are discovered. 

The parameters used for the optimisation analysis are listed in section 7.3.4 and 

further explanation of the NSGA-II operation can be found in Deb and Pratap 

(2002). 
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7.3 Case study 

7.3.1 Description and set-up 

The methodology detailed in section 7.2 is applied to the case study of the 

Bristol Water Resource Zone (BWRZ). The full description of this case study is 

given in section 5.4. The 2,979 future supply and demand scenario 

combinations are again utilised (see section 5.4.2) as well as the complete pool 

of BWRZ intervention options (see Table 7.1). The dynamic water resource 

simulation model is set up for the BWRZ, utilising a monthly timestep and 

examining a 25 year planning horizon (from year 2015 to year 2039 inclusive). 

A 25 year planning horizon has been selected to imitate the time frame used in 

a typical UK water company WRMP planning horizon. 

7.3.2 Resilience of water system and robustness of water supply 

As detailed in the methodology the resilience of each adaptation strategy under 

a discrete future scenario of supply and demand is calculated as the maximum 

recorded duration (in months) that the system remains in a water deficit period 

(equation (7.1)), due to the remaining water volume in the combined reservoir 

network falling below a threshold level. The threshold levels are dynamic and 

vary depending on the month in the year as specified in Bristol Water’s drought 

plan (Bristol Water, 2012).  

As there are 2,979 scenario combinations examined, this results in a resilience 

result for every scenario combination for each adaptation strategy. A discrete 

target level of robustness is selected (different in different optimisation runs) 

and the maximum resilience level maintained by each adaptation strategy at or 

above this selected target robustness is recorded. Note that in the case of the 

‘current practice’ methodology a maximum level of reliability (rather than 

resilience) is maintained instead. 

7.3.3 Current practice methodology application 

The target level of reliability for Bristol Water is currently set to maintain a 1 in 

15 year maximum occurrence of temporary restrictions being put in place 

(Bristol Water, 2014). Using reliability equation (7.4) the relative 
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frequency/probability of a system not being in deficit is calculated (Kjeldsen and 

Rosbjerg, 2004):  

ܴ݈݁௫௨ =  ቆ1 −
∑ ݆௧

ு
௛ୀଵ

ܪ
ቇ ∗ 100 

 
(7.4) 

where (jt) = a value equal to 1 if a year contains a water deficit period, otherwise 

equal to 0; (h) = the year index and (H) = the total number of years in the 

planning horizon. Note the difference here to the reliability calculation in 

equation (4.3), where the frequency of water deficit periods is now summed 

rather than the frequency of water deficit events. This allows a more direct 

replication of the BW system reliability targets. 

For BW to meet its target Level of Service, this translates as maintaining 

approximately 93% reliability. Over the selected 25 year planning horizon this 

corresponds to a maximum allowable frequency of 2 water deficit periods 

occurring over the planning horizon. This ‘level of service’ must also be 

maintained over a specified level of a system’s supply/demand balance 

uncertainty known as target headroom (Environment Agency et al., 2012). 

Target headroom (see section 2.3.4) is defined as “the minimum buffer that a 

prudent water company should allow between supply and demand to cater for 

specified uncertainties in the overall supply-demand resource balance” 

(UKWIR, 1998) and is calculated by applying probability density functions (pdfs) 

to all sources of uncertainty in supply and demand (Hall et al., 2012b). 

Bristol Water has selected to maintain a target headroom level of 90% over the 

next 25 year planning horizon in order to significantly reduce the risk of failing to 

maintain their agreed ‘level of service’ (Bristol Water, 2014). It should be noted 

that BW’s headroom value is applied to an aggregate supply-demand balance, 

not directly within a simulation model, and includes factors that are not 

considered in this study (e.g. risk of outage events of assets). However these 

are typically smaller components and this study considers a wider range of 

uncertainty in the supply and demand scenarios which are directly simulated. 

Therefore BW’s target headroom level, reflecting an attitude to risk, is used by 

selecting a 90% target robustness of the supply/demand scenarios considered 

in the resilience driven methodology. It should still be noted though that the two 

methods differ in that, direct scenario examination is utilised in the methodology 
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presented here compared with the traditional practice of applying pdfs to allow 

an uncertainty buffer to the overall supply-demand balance. 

7.3.4 Application of optimisation model 

The dynamic, monthly-time step, water resource supply and demand simulation 

model with combined NSGA-II optimisation algorithm (as described in section 

4.3 and 7.2.4) has been used here. The NSGA-II algorithm parameters used 

(derived following testing of numerous combinations for optimal optimisation) 

are as follows: 

Table 7.2: NSGA-II parameters selected 

Parameter Value 

Population size 400 

Number of generations 2000 

Selection bit tournament size 2 

Mutation probability (per gene) 0.2 

Crossover probability (single point) 0.7 

Adaptation strategy generation, testing, ranking, mutation and ultimate Pareto 

strategy identification is an automatic process carried out by the NSGA-II 

algorithm during the optimisation procedure after 2000 generation assessments.  

A range of target levels of robustness are selected and input to the optimisation 

model as constraints to derive a Pareto set of results. The Pareto sets obtained 

from multiple optimisation model runs are then combined to produce a 3D-

surface of Pareto optimal solutions. The discrete target levels of robustness 

selected for the optimisation analysis are 50, 60, 70, 80, 90 and 100%. A 

‘current practice’ problem was also solved to derive a single optimal solution 

under the constraints listed in section 7.3.3. 

7.4 Results and discussion 

The optimal solution derived by the current practice methodology is presented 

first, including calculations of the respective resilience exhibited by this strategy 

over varying target levels of robustness. The resilience driven methodology 

results are presented afterwards. Selected Pareto optimal adaptation strategies 
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solutions from the resilience driven optimisation methodology are then 

compared with the current practice derived solution and engineering aspects 

discussed.    

The current practice methodology derives a single optimal strategy solution 

following low-cost optimisation to a target reliability of ≥92% and target 

robustness of 90% (see section 7.3.3). The adaptation strategy solution derived 

has a PV of total cost of £199M and consists of several low cost options to 

reduce water consumption and water losses and several water transfer 

schemes scheduled from 2015 to 2017, before construction of a large reservoir 

at Chew Stoke (option R18 in Table 7.1) in 2021. Only few options are 

scheduled for post 2021. The full strategy details are shown in Table 7.4.  

The strategy derived by the current practice methodology is compared with the 

resilience driven optimisation model by calculating the resilience of this strategy 

for the same target levels of robustness applied in the resilience driven 

optimisation methodology. Figure 7.2 displays the maximum resilience 

maintained by the current practice strategy under target levels of robustness of 

50, 60, 70, 80, 90 and 100% respectively. It shows that this ‘reliability’ driven 

strategy can maintain a resilience as high as 3 months for at least 80% of future 

supply and demand scenarios, but this resilience worsens to 10 and 22 months 

respectively for 90% and 100% robustness respectively. 

Figure 7.2: Resilience exhibited by the ‘current practice’ optimal solution at 
varying target levels of robustness 
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Pareto optimal strategies were identified by the resilience driven methodology 

optimised by maximising the system resilience and minimising the PV of the 

total cost of adaptation strategies. Six separate optimisation runs were 

conducted for the following target system robustness’s: 50, 60, 70, 80, 90 and 

100%. Figure 7.3 presents the 3D Pareto set derived from these optimisations 

run as three 2D graphs displaying: (a) resilience vs cost for varying target levels 

of robustness, (b) robustness vs cost for varying levels of resilience and (c) 

resilience vs robustness for varying strategy cost groups. Resilience is also 

constrained during the optimisation process to derive Pareto solutions to a 

minimum resilience of 24 months. A system less resilient then this would be 

highly undesirable hence it was not investigated. 
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Figure 7.3: Pareto adaptation strategies identified for: (a) resilience vs cost for 
varying target levels of robustness (b) robustness vs cost for varying levels of 

resilience and (c) resilience vs robustness for varying strategy cost groups 

(a) 

(b) 

(c) 
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The Pareto strategies displayed in Figure 7.3 present a trade-off across the 

three performance indicators. The figures show how increasing the desired 

target robustness increases the total cost of Pareto adaptation strategies in 

order to maintain a given level of resilience, with a notable cost increase when 

attempting to maintain any level of resilience across 100% of future scenarios. 

The same is evident when attempting to design for a maximisation of resilience, 

where a resilient system with no failures (i.e. 0 months) shows a notable 

increase in total costs required. The selection of a preferable adaptation 

strategy can be made from Figure 7.3 following suitable weighing up of the 

various performance indicators, however the potential trade-offs are not 

necessarily easy to visualise. 

In order to provide a better visualisation of the three performance aspects a 3D-

surface of Pareto optimal solutions is formed by combining all the Pareto sets 

derived (Figure 7.4). The 3D-surface provides a clearer overview of the various 

trade-off options and affords a decision maker more perspective about how best 

to satisfy the various performance criteria. An ideally located individual strategy 

can then be selected or a specific, more desirable, region of the surface 

selected for further examination of individual strategies. More specifically, the 

decision makers can select exactly how robust and resilient they want their 

system to be as well as being able to discern how moderate increases or 

decreases in expenditure will alter the performance of the water system. 

Optimisation to individual target levels of performance, as is undertaken in 

current UK engineering practice using a cost only optimisation (the EBSD 

approach (NERA, 2002)), does not allow these observations to be made. 

Typically only singular optimal solutions are derived (equivalent to identifying a 

single point in Figure 7.3 (a-c)). 
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Figure 7.4: A 3D-surface of Pareto adaptation strategies identified over performance indicators of resilience (0-24 months), robustness 
(50-100%) and PV of total cost (0-600 £M); for discrete target levels of robustness of 50, 60, 70, 80, 90 and 100%. Including individual 

strategies selected for further analysis (R1-R6, A1-A4, and B1-B3) 
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The current practice derived optimal strategy is compared with selected strategy 

solutions derived by the resilience driven methodology. Pareto solutions for this 

comparison are selected from the surface that exhibit similar levels of resilience 

/ total costs to the current practice strategy in order to contrast and compare the 

solutions derived by each method. The strategies selected are shown in Figure 

7.4. They consist of: strategies R1-R6, which are selected as they exhibit the 

same resilience to target levels of robustness as the current practice solution 

(i.e. from Figure 7.2), and strategies A1-A4 and B1-B3 as they offer increased 

resilience at a high level of robustness (90% for strategies A1-A4 and 80% for 

strategies B1-B3) for a similar PV of total cost as the current practice solution. 

Table 7.3 lists the PV of total cost of each strategy examined as well as the 

resilience and reliability exhibited, the respective levels of robustness and the 

average resilience and average reliability recorded across all future scenarios 

examined. 
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Table 7.3: Cost, resilience, reliability and robustness exhibited by the selected strategies 

 

100% 90% 80% 70% 60% 50%

R1 165.1 80 64 22 4.4 91.2
R2 175.7 84 71 10 3.1 92.8
R3 173.6 88 76 3 3.0 93.2
R4 191.1 88 80 2 2.8 94.0
R5 195.2 88 86 1 2.7 94.8
R6 163.2 84 78 1 2.4 94.8
A1 198.3 88 81 6 2.4 95.6
A2 209.6 88 87 5 2.2 96.0
A3 214.8 88 87 4 2.1 96.0
A4 231.3 92 93 3 1.8 96.8
B1 214.0 88 87 2 2.1 95.6
B2 261.6 92 96 1 1.6 97.6
B3 349.1 96 99 0 0.9 98.8

Strategy derived by 
Current Practice (CP)

199.0 92 2.422 10 3 2

Strategies derived from resilience driven methodology

Strategy 
ID

CP

Of similar PV of total 
cost to CP strategy

1 1

Strategy information

Of matching resilience 
(R) to CP strategy

95.6

Highest relibaility 
maintained over 90% 

of scenarios (%)

Total cost - 
PV (£M)

Avg. 
resilience 
(months)

Avg. 
reliability 

(%)

90

Scenarios 
maintained at 

reliability of ≥92% 
(%)

Resilience maintained over varying % target levels of 
robustness (months)
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Comparing the current practice optimal strategy with the R1-R6 Pareto optimal 

strategies in Table 7.3 shows that, for a lower PV of total cost, solutions are 

generated with the same resilience as the current practice strategy for the 

varying target levels of robustness. For example, strategy R3 has the matching 

resilience of 3 months over 80% of future scenarios whilst costing 

approximately £25M less than the current practice strategy. The trade-off is a 

slight decrease in reliability of water supply, with strategy R3 maintaining a 

reliability of 88% over 90% of future supply/demand scenarios as opposed to 

92% in the case of the current practice strategy. 

Strategy A1, the solution of most similar total cost to the current practice 

solution produced a more resilient system, with 90% of future scenarios now 

maintaining a resilience of 6 months, in contrast to the 10 months exhibited by 

the current practice solution. The trade-off again is a moderate reduction in 

reliability, with strategy A1 maintaining a reliability of 92% over 81% of future 

scenarios, which falls to 88% over the remaining 9% of future scenarios within 

the 90% target robustness region. This demonstrates that the resilience driven 

methodology has identified an adaptation strategy that provides a much more 

resilient, but marginally less reliable system than the one identified by using the 

current practice. 

Strategy solutions A2, A3 and B1 can further increase the resilience of the 

system for around 5% increase in overall total costs. Strategy solutions A4, B2 

and B3 increase both the resilience and reliability of the system for increased 

overall costs. The above demonstrates that an optimal solution across all three 

performance indicators can only be identified from the resilience driven 

methodology as opposed to current practice, whereby singular optimal solutions 

to fewer objectives are derived. If the priority design criterion for a water supply 

system is to maintain high reliability then this could be set as a constraint and 

still maintained at a high robustness. However the benefit of the resilience 

driven methodology is it allows a more resilient system to then be identified in 

addition to just using reliability, albeit at a potentially increased PV of total cost. 

Table 7.4 lists the individual intervention components for each analysed 

strategy and their time of implementation within the 25 year planning horizon 

(codes for individual intervention options located in Table 7.1). It shows that the 

current practice reliability driven strategy solution includes a greater number of 
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low cost intervention options early in the planning horizon (2015) with the most 

costly intervention option (R18 – a new reservoir at Chew stoke) not 

implemented until 2021. This strategy also includes no interventions later on in 

the planning horizon (2029-2039), implying that a number of less costly 

interventions selected early on in the horizon greatly improves system reliability. 

Opposite of this, the alternative strategies derived by the resilience driven 

methodology recommend a high cost intervention early in the planning horizon 

(either R4 – a reservoir at Cheddar, R18 or, for the most resilient strategy (B3), 

R3 – a small desalination plant), before distributing a number of lower cost 

interventions over the remaining planning horizon, right up to 2039. This 

suggests larger investment early on in the planning horizon as well as regular 

smaller water resource additions to the system increases overall system 

resilience, as the duration as well as frequency of severe drought periods are 

projected to increase over time due to climate change. 
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Table 7.4: Table of intervention option components and their year of 
implementation for selected strategies (option codes listed in Table 7.1) 

 

 

 

 

Strategy code CP R1 R2 R3 R4 R5 R6 A1 A2 A3 A4 B1 B2 B3

Year of option implementation
C1 D4 D1 R4 C3 C1 R11 C4 C4 C4 C1 C4 D1
C3 D6 R15 R15 D1 D1 R15 D1 D4 D6 R4 R4 R3
C4 R18 D4 D4 R11 R11 R11 R11
D1 R4 R11
D4 R12
D6
R14

D1 C3 C3 R11 R15 R15 C3 D4 C3 C1 C3 D1 R4
D1 C4 D1 D1 R4 D1 D4 C4 D4
R4 D4 D6 R4 R4 R11 R18

R11 R11 R4 R11
R14

R11 C3 R15 C3 R11 D6 C1 R14 R14 C3 D1 C3 D4
R15 C4 C4 R7 D4 R15 R15 D4 R15

D4
R14 C3 C1 D1 R15

R15
2019

D6
R11

2021 R18
2022 C4
2023 C1
2024 C3
2025 D5
2026 C5 R12 D4 R12 R14 R15
2027 C2 D6
2028 R7 D5
2029 R14

C1
D6

C4 C1 C4 C3 C4 D6 R12 D6 R14
R12 R14

2032
R7 R14 D6 R12

R14
R12 R12 D6

R14
2035
2036

R12 R12 D6 C4
C5

2038 R16 C5 R12 R12
2039 D5 C5 C5

PV of total cost (£M) 199 165 176 174 191 195 163 198 210 215 231 214 262 349
Very high cost intervention options > £150 M capital cost
High cost intervention options > £100 M capital cost
Medium cost intervention options > £50 M capital cost
Low cost intervention options < £50 M capital cost

2015

2020

2033

2016

2034

2037

Figure key

2017

2018

2030

2031
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Figure 7.5 demonstrates the system capacity increases (water supply capacity 

added to the system) provided by the CP strategy and two similarly priced 

strategies A1 and B1, over the 25 year planning horizon (details of intervention 

options selected are shown in Table 7.4). It highlights how the outputs from the 

‘levels of service’ method and the resilience driven method differ considerably in 

the size and timing of intervention options recommended. 

Figure 7.5: System capacity increases for the current practice (CP) strategy 
and resilience driven strategies A1 and B1 

The results obtained here demonstrate how simplifying a planning approach to 

optimise to a single criterion (i.e. cost subject to target reliability) does not 

provide solutions that perform optimally across alternative criteria. Current UK 

engineering practice that utilises a single target level of reliability does not 

explicitly consider the resilience of the system. For instance, a water system 

may maintain its target level of a 1 in 15 year risk of water deficit occurring, 

however this assessment does not explore the length of time these deficit 

periods may last. A prolonged single water deficit period may be as detrimental 

to the system and its customers as a higher frequency of smaller deficit periods. 

The methodology proposed here produced a wide range of Pareto optimal 

strategies to the performance indicators of resilience, robustness and cost and 

allows a decision maker to select a strategy based on their final preferred trade-

off across these criteria.  

Driving the optimisation by resilience allowed the identification of multiple 

solutions that trade-off marginally reduced reliability for significantly improved 

resilience when compared to the existing practice. The variation in strategy 
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solutions derived in this study highlights that resilience and reliability lead to 

differently designed systems and therefore by considering both performance 

indicators it may be possible to derive a solution that performs well across both 

metrics (see Figure 7.5). A future development to explore in this method would 

be to constrain the resilience driven optimisation to maintain a desired target 

reliability in order to derive the most resilient as well as adequately reliable 

solutions, or alternatively optimise the system to all four objectives 

simultaneously. This would identify a surface of Pareto solutions with increased 

total costs to account for the additional constraint but also an increased number 

of strategy solutions. However this would be a worthwhile trade-off to ensure 

more reliable and resilient water systems in the face of future uncertainties. 

7.5 Summary 

This chapter has presented a comparative assessment of a new resilience-

based methodology for WRM planning that optimises for resilience and cost for 

a given target level of robustness, with that of a more conventional engineering 

approach. A candidate metric for measuring water system resilience is defined 

as the maximum recorded duration of a water deficit period and its impact 

assessed on a real-world WRM adaptation case study of Bristol Water. 

The results obtained in this case study demonstrate that the new approach 

improves on key industry planning issues by increasing the transparency of 

adaptation strategy assessment processes and improving the information 

available to decision makers. The method also improves on the economic cost 

appraisal of water restriction periods, as a duration of deficit is more easily 

quantifiable than a frequency-based approach. The resilience methodology 

created a 3D surface of Pareto-optimal solutions providing decision makers with 

a more complete trade-off picture of what different planning strategies can 

achieve in terms of system performance benefits and related costs thus 

enabling them to make better informed decisions. 

In addition to the above observations, a comparison of the new methodology 

with the current UK planning practice on the same case study resulted in further 

observations as follows: 



193 

 

1. Optimising for a single objective in the current practice methodology 

yields only a single solution that is highly dependent on the initial target 

robustness (headroom) and target reliability selected and does not 

provide alternative solutions that may achieve benefits for small trade-

offs. 

2. The strategy solution derived using the current practice methodology 

produced in the real-life case study analysed a less resilient system than 

the similar costing solutions identified using the proposed resilience 

driven methodology. Whereas the resilience driven strategies were less 

reliable (although not by much), suggesting that trade-off exists between 

the two. 

3. In order to better explore the trade-offs that may be gained by 

considering both resilience and reliability, it is recommended that the 

resilience driven methodology is further developed with the inclusion of a 

reliability criteria as an additional objective or constraint in the approach 

presented here. 

4. The resilience driven methodology yielded planning strategies which 

space interventions more evenly across the planning horizon when 

compared to the current practice (reliability driven) strategy solution, 

which scheduled more lower cost interventions earlier in the planning 

horizon. This suggests that, at least in the case study analysed here, 

more low cost interventions early in the planning horizon achieve higher 

system reliability whereas regular intervention options spread over the 

planning horizon achieve higher system resilience when planning to an 

uncertain future. Examination of both metrics is recommended if 

optimisation of the additional system attribute (resilience) is desired in 

future UK practice. 
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Chapter 8. Considerations for Future WRM 

Framework 

8.1 Introduction 

The work carried out throughout this study has led to a range of specific 

conclusions, both qualitative and quantitative, in relation to isolated methods 

and metrics for application to improve WRM adaptation planning under deep 

uncertainty. The findings ultimately reveal that a more diverse range of tools 

and approaches should be utilised to improve on the approaches being 

exploited in current engineering practice, ideally identified following further 

quantitative examples and pilot studies. An update in WRM adaptation planning 

approaches is supported by the increasing evidence of non-stationarity in the 

world’s climate and the growing complexity of projecting future levels of regional 

population growth and associated water use. The approaches explored here 

highlighted several superior DMM characteristics and beneficial supplementary 

metrics of performance leading to a number of recommendations (as detailed in 

each Chapters conclusions). Although no single definitive answer can be 

objectively given here on how best to update the UK water industries planning 

approaches, the findings from this research can help consolidate a “minimum 

standard” list of aspects that should ideally be considered when approaching 

WRM adaptation problems under uncertainty in the future.  

8.2 Minimum standards for a future WRM framework  

Based on the reviews carried out and case study results obtained in Chapters 

2-7, the ideal framework for long-term WRM planning under uncertainty should 

include or facilitate the following: 

1. Define and use multiple objectives. This is imperative if the industry plans 

to advance from the current EBSD method and move away from single 

point linear least-cost optimisation which limits output data. Consideration 

of multiple objectives leads to identification of multiple, detailed and often 

complex, trade-offs. This was revealed in both the IG/RO case study 

investigations (Chapter 5) and in the resilience-based methodology 
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examination (Chapter 7), which in both cases concluded that pre-

specifying a single linear projection of future supply and demand (as in the 

current EBSD method), or constraining a system to specific objective 

values, leads to the output of only a single optimal adaptation strategy, 

effectively determining only a single point on Pareto fronts or surfaces 

identified by the DMMs. Analysing multi-objectives provides additional 

trade-off information that can be used to make better, more informed 

decisions. 

2. Utilise optimisation algorithms. The Bristol Water case study explored in 

Chapter 5 concluded that optimisation algorithms were a necessity, even 

for DMMs that typically carry out pre-specified strategy assessments (i.e. 

Info-Gap), if a large pool of potential intervention options is considered 

(which is normally the case in practice). Ideally, state-of-the-art algorithms 

should be applied to maximise the chance of identifying optimal solutions 

and to minimise model run times. The optimisation algorithms should be 

efficient and reliable but also able to handle multi/many-objectives (see 

above) in order to facilitate comprehensive adaptation strategy generation, 

evaluation and eventual Pareto optimal strategies discovery. This 

increases the range of output information for the decision maker and 

allows a detailed, visualised and hence more transparent trade-off 

examination of optimal strategies. 

3. Incorporate complex simulation models into planning process. The 

dynamic water resources simulation model developed in this thesis and 

utilised by the DMMs on the two case studies (Chapter 5) and the 

subsequent resilience-based study (Chapter 7) was able to carry out 

detailed performance assessments of metrics such as resilience and 

reliability (i.e. analysing the exact duration and frequency of water deficits) 

because of the dynamic daily/monthly simulation of the supply system 

replicating a real-life continuously fluctuating supply-demand balance. 

Non-simulation based assessments of water resource systems (i.e. as in 

the current EBSD method, which uses single annual numbers of supply 

and demand rather than dynamically simulating the balance over the 

planning horizon) are unable to analyse these specifics and so cannot 

explore the system level benefits of specific options. The growing 
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complexity of WRM problems means water resource planners need to 

move towards simulation-based assessments in order to fully understand 

the interactions between different options/strategies over different futures. 

4. Employ improved uncertainty characterisation and assessment. The 

current practice EBSD method of applying probability distributions to 

uncertain variables in order to derive a single target headroom level has 

been deemed fit for purpose in the past but its limitations have been 

quantified in the case studies presented here. Namely its inability to 

investigate, and thus be strengthened against, potential variations in the 

central supply and demand estimations utilised (shown in the Bristol 

Water case study in Chapter 5 when the preferred Bristol Water plans 

were tested in the RO and IG models and exhibited lower robustness then 

the Pareto optimal strategies derived by the given DMMs when a wide 

range of future scenarios were examined), as well as the inability of the 

headroom methodology to facilitate trade-off examinations of the 

uncertainties due to its singular derived projection in the supply-demand 

balance. The headroom methodology also does not utilise simulation 

assessments (see above), and so cannot be used for precise deficit 

evaluations (i.e. calculations of resilience as defined in Chapter 7). 

Analysis carried out in Chapter 5 highlighted the additional benefits of 

assessing a range of different plausible futures in the form of pre-defined 

scenarios of supply and demand. Scenarios were used to represent a 

wide range of climate change and population growth uncertainties and 

allowed a greater examination of how different adaptation strategies 

perform under different futures. This allowed the identification of a range 

of optimal strategies for varying levels of robustness to the array of 

plausible scenarios, allowing beneficial trade-off examinations. Scenario 

assessments also permit a more transparent and defendable calculation 

of robustness to uncertainty (see below). Therefore it is recommended 

that water resource planners move away from single estimate headroom 

projections and utilise either a wide range of plausible scenarios or apply 

an intelligent method of scenario discovery to reduce the range of 

examined conditions, but still ensuring that the extremes are suitably 

observed. 
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5. Include an explicit robustness examination. Current UK WRM planning 

methods do not explicitly calculate a level of system robustness. The 

global (RO) and local (IG) robustness measures examined on the case 

studies in Chapter 5 proved highly informative in indicating a strategies 

ability to maintain a target level of performance over a wide range of 

different futures. The robustness measures utilised were easily applied 

and calculated within the simulation model and could easily be set either 

as a direct optimisation objective (see Chapter 5) or as a constraint in the 

optimisation process (see Chapter 7). From case study work carried out in 

Chapter 5 it was concluded that Robust Optimisation utilising a global 

robustness analysis is preferable to an Info-Gap local robustness analysis, 

as the local analysis proved more problematic when applied to a wide 

range of discrete scenario projections that were not monotonically 

increasing. 

6. Incorporate additional performance metrics. The study carried out in 

Chapter 7 indicated the benefits of examining an additional metric of 

resilience (i.e. a duration-based assessment criterion) in WRM adaptation 

planning. The metric examined not only identified Pareto optimal 

strategies that minimised the maximum duration of water deficit periods 

but the strategies derived were also highly reliable (maintained a low 

frequency of water deficits occurring). The results indicated however, that 

ideally both a metric of resilience as well as reliability should be utilised in 

order to maximise the performance of adaptation strategies to both 

performance aspects and address related trade-offs. Using a duration and 

frequency assessment metric would also allow easier quantification of the 

projected ‘cost’ of water deficit periods over a planning horizon, thus 

enabling water companies to perform smarter cost-benefit planning. 

7. Increase the transparency of adaptation strategy assessments. This 

aspect links in with the item 6 above as improved metrics for performance 

analysis will greatly increase the transparency of the adaptation strategy 

assessment process. However, this section also includes features that 

reduce the clarity of the assessment process and could be improved, such 

as reducing indistinct and ambiguous terminology often prevalent within 

water resource management plans (as discovered in Chapters 2 and 3), 
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as well as avoidance of indistinct metrics of performance, i.e. metrics that 

amalgamate, normalise or include integrated complex risk calculations (as 

ascertained from Chapter 6). This includes multi-criteria analysis 

processes within company WRMPs which weight particular performance 

aspects of options (i.e. environmental/social impact) in an often 

amalgamated and ambiguous form, which cause some options to be 

dismissed before potentially beneficial trade-offs can be examined. The 

current EBSD ‘levels of service’ approach also utilises a range of complex 

calculations and assumptions often buried deep within company WRMPs, 

which prevents complete clarity of the strategy assessment process for 

different stakeholders and customers. From the comparative investigation 

between the resilience-based methodology and the representation of 

current practice in Chapter 7, it was shown that the single optimal strategy 

identified by the current practice method prevented any further 

examination, and as such, any further debate on the suitability of the 

strategy identified. This places complete faith in the initial headroom 

selection and the specific level of service selected, which as discussed, 

can lack transparency in their exact calculations. Whereas the resilience-

based method produced a whole surface of optimal solutions that could be 

further examined and debated until a preferred strategy is selected that 

satisfies all parties involved. 

8. Provide improved visualisations of trade-off examinations. The resilience-

based methodology in Chapter 7 led to the formation of a 3D surface of 

Pareto optimal adaptation strategies across the objectives of resilience, 

cost and robustness. This provided an improved visualisation of the trade-

offs between the various performance aspects and highlighted how 

current planning approaches could benefit from applying similar concepts, 

especially within future company WRMPs. Improved visualisation of 

outputs will be particularly important as assessment and 

modelling/simulation processes inevitably get more complex. Outputs from 

multi-objectives can produce hundreds of optimal solutions across the 

objectives and will require smart screening/visual methods to isolate 

preferred strategies. Simplifying the trade-off evaluations will be vital in 

steering decision makers in the water industry to making appropriate 
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decisions across multi-objectives. Improved output formats also make final 

decisions easier to communicate to different stakeholders and customers. 

9. Deliver a manageable step change from current practice. In order to trial 

and eventually include updated practices, such as detailed simulation 

testing, a manageable step change from current practices must be 

applied. This will include simplifying often complex DMMs into easily 

adaptable decision tools for use by all water companies that can be 

incorporated into existing modelling software and data. A complete 

overhaul of all existing planning methods could lead to an increased lack 

of confidence in the WRM adaptation planning process, therefore a paced 

induction of new decision making method/tools may be preferable to more 

easily gauge the improvement (or decline) in planning performance 

brought about. 

10. Include a more thorough optioneering investigation. A more thorough, or 

‘smarter’, optioneering/screening appraisal would be beneficial in a future 

WRM framework. This ‘smarter’ optioneering process should include a 

more in-depth analysis into options that can inherently reduce 

uncertainties, i.e. such as less ‘climate vulnerable’ resource options; more 

‘flexible’ solutions; assessment of options outside of a company’s 

boundaries (inter-company cooperation/collaboration) and taking 

advantage of more advanced resource technology (see section 8.3). 

11. Encourage more inter-sector cooperation and collaboration. This could be 

one of the more significant step changes in WRM adaptation planning as it 

would tie in other sectors, such as energy and agriculture, to evaluate 

opportunities to improve all sectors simultaneously. Future frameworks 

should include more inter-sector cooperation and collaboration to improve 

true long-term resilience/robustness across all vital societal systems, i.e. 

more consideration of the water-food-energy nexus and potential 

multifunctional features of water resource options (see section below). 
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8.3 Engineering smarter adaptation: additional considerations 

In the previous section a list of minimum standards for a future WRM framework 

were detailed. This included a number of suggestions derived directly from work 

carried out in this thesis (Chapters 2-7); however, two of the items (no. 10 and 

11), were derived indirectly from the work carried out here but are important 

planning aspects that should undergo further consideration to enhance 

adaptation planning procedures and improve the overall robustness/resilience 

of future water resource systems. A discussion into the various aspects detailed 

in those two sections now follows. 

So far this study has concentrated on the specific characteristics and features of 

the selected decision approaches being considered for use in the water 

industry; however, there has been no examination of alternative practical 

approaches, techniques or options for increasing overall water system 

robustness or resilience to uncertainty. For instance, engineering solutions that 

inherently reduce uncertainties to future climate events or beneficial intervention 

options that exist beyond a water company’s boundaries (Defra, 2016a). Water 

companies should consider every feasible option/strategy available to best 

balance future supply against demand with greater consideration of the long-

term benefits (beyond the current UK 25 year planning horizon) and employ a 

more in-depth analysis of the hidden threats and indirect uncertainties that 

could impact a network. These additional considerations should ideally be 

incorporated into future adaptation planning frameworks and the optimal 

approach for doing so warrants additional study. These additional engineering 

considerations include the following unconventional adaptation approaches: 

8.2.1 Multifunctional water resource options  

In 2011 a research group was set up in the Netherlands between the STW 

research group and the universities of Delft, Twente and Wageningen for the 

assessment of “Multi-functional Flood defences (MFFD)” (STW, 2016). During 

the completion of this STREAM EngD project I acted as the ambassador for HR 

Wallingford to the MFFD group, attending several meetings to hear the progress 

of the research projects, share ideas and discuss areas for collaborative study. 

The research presented at the meetings was innovative and showed potential 

for application elsewhere in the water industry. However, to date, the concept of 
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multi-functional water resources has no established research group and is a 

concept not examined in detail within UK water industry WRMPs. Nonetheless, 

examples exist that highlight the potential for greater consideration of the 

planning concept to improve the resilience of multiple sectors simultaneously, 

i.e. to look beyond the scope of simply satisfying a supply and demand balance 

and examine multifunctional benefits of resources.  

Additional functions that could be exploited include: flood relief capabilities, 

social (i.e. leisure and tourism) benefits, conservation/environmental payoffs 

and the nexus of water, food and energy (Hoff, 2011). The water-food-energy 

nexus is multidimensional and highly complex in nature (Howarth and 

Monasterolo, 2016) and to comprehensively combine the management and 

organisation of all sectors simultaneously may be overly ambitious. However, a 

transdisciplinary approach to knowledge development across the various 

sectors may be needed to effectively inform the decision making processes to 

build true long-term societal resilience to future deep uncertainties that goes 

beyond the divisions of current planning and research practice. 

One example of a multifunctional water resource design is found within Essex 

and Suffolk Water (a UK based water company) who have recently enlarged the 

Abberton reservoir to increase its storage capacity by 58% to, as they state: 

“make Essex’s water resources more resilient to the effects of climate change” 

(Essex and Suffolk Water, 2014). The scheme takes advantage of the vast 

wetlands surrounding the reservoir by transferring water from these often 

flooded regions during wetter periods to the now enlarged reservoir area. The 

effect is reduced flooding during wet periods while simultaneously providing 

more water for use during periods of drought, in turn reclaiming and improving 

nearby farmland and agricultural outputs.  

This type of multifunctional engineering option may not necessarily feature in 

the Pareto optimal adaptation strategies identified when optimising only for a 

least cost - highly robust strategy examined over a constrained set of climate 

futures; however, the option provides numerous additional benefits, including 

many environmental and social co-benefits. Alternative options providing similar 

deployable outputs for less capital cost may be available to the planners; 

however, some of these options (e.g. additional river abstractions on an already 
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tapped river) can be precarious if placing additional stresses on already 

exploited water sources. These often “smaller scale” resource options can 

initially appear more cost effective but may have the drawback of concentrating 

a large volume of a systems water supply on the reliability of individual key 

sources or offer no additional benefits. This reduces the robustness of the 

system to an aspect of uncertainty not typically examined in detail in current 

practice. 

8.2.2 Interconnection of resource networks 

Defra’s recent report on enabling greater resilience in the water sector 

highlighted the benefit of including long-term national assessments to reveal 

more options for balancing supply and demand then are currently examined on 

a regional/company level (Defra, 2016a). For example, to encourage more 

collaboration between neighbouring companies to improve ways to trade water, 

and possibilities to develop large-scale joint water supply infrastructure to 

supply multiple companies/regions simultaneously. 

United Utilities, a large UK based water company, are currently considering 

plans to construct a series of pipelines between West Cumbria and the 

Thirlmere Reservoir, one of the company’s largest water resources (Figure 8.1). 

If this strategy is employed it would form the UK’s largest interconnected water 

resource zone (United Utilities, 2014); however, due to its high capital costs this 

option would not be readily selected using the more simplistic EBSD or 

alternative least-cost optimisation forms. Nevertheless, the connective pipeline 

option allows the transfer of water to any diminishing supply area in the region 

and would provide enough water to fulfil projected customers’ needs well above 

forecasted demand levels. The interconnection of resource zones would not 

only provide increased resilience for long-term supplies but also provide 

additional supply to cater for (and encourage) future energy generation and 

agricultural/industrial developments in the area. The transfer would also enable 

existing resources in West Cumbria to cease and thus return the local habitats 

to more natural conditions, improving regional conservation. Selection of this 

adaptation strategy would procure benefits for the water-food-energy nexus 

within the region whilst providing increased long-term robustness and resilience 

for the West Cumbria water supply. This form of strategy innovation, spending 
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more in the short-term to increase long-term benefits across a range of sectors 

and services needs to be more thoroughly considered in future adaptation 

planning frameworks. 

 

Figure 8.1: Map of proposed interconnecting pipeline option for West Cumbria 
(image adapted from United Utilities (2014)) 

Additional propositions for large scale inter-connection of resource networks in 

the UK exist including the ambitious national grid concept (AECOM, 2014). This 

option involves directing water from the precipitation rich Scotland into Kielder 

Reservoir in the North of England before channelling it down through West 

England using the natural topographical curvature of the country to ultimately 

irrigate the South East of England (Figure 8.2). The boldness and numerous 

benefits of this plan (from increased nationwide water security to wide ranging 

energy, agriculture, leisure and tourism opportunities (see section 8.2.3)), are 

offset by its enormous price-tag (projected around £14bn capital cost by 

AECOM (2014)). However, if the UK and other nations are looking to develop 

planning frameworks that ensure adequate robustness to future uncertainties 

are maintained in the most water scarce regions of the country then this sort of 

“outside the box” (or rather “outside the company resource zone”) thinking is to 

be encouraged to develop more “collaborative” future planning frameworks. 

This should include examinations of options to reverse the privatisation of water 

industries around the world. 
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Figure 8.2: Map of proposed national water grid between North and South UK 
(map taken from the Chartered Institute of Building, (2013)) 

8.2.3 Collaborative planning and management 

The recent Defra water sector resilience report (Defra, 2016a) called for 

increased consideration of collaborative opportunities between neighbouring 

water companies and across sectors. Since privatisation of the water industry in 

England and Wales in 1989, water resource management across the UK has 

been a highly fragmented practice. This has been mirrored across the world 

with the majority of nations opting for full privatisation following the UKs 

example, with each segregated company largely consolidating its plans within 

its boundaries with only moderate consideration given to inter-basin transfers 

and resource sharing opportunities. Inter-sector collaboration will be particularly 

essential in the future but currently receives limited examination in water 

resource management plans. Despite this a few examples are beginning to 

surface where companies have taken this initiative. Examples include: Kent 

County Council who are currently working with Southern Water, South East 

Water, farmers and growers to explore the potential for collaboration (Southern 

Water, 2016), as well as the East Anglia Water resources group who are 
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bringing together water companies, farmers, the energy sector and others to 

work together to improve water resilience over the long-term (Defra, 2016a). 

The advantages of providing surplus water supplies available for energy and 

agricultural growth have far reaching economic and social benefits that warrant 

further examination and analysis. The most important step-change in future 

WRM planning approaches could be an updated mechanism for inter-sector 

management, as increasing the performance (e.g. the resilience, reliability, 

robustness) of one sector will inherently increase the performance of another 

(e.g. energy, agriculture). Inter-sector collaboration should also include more 

cooperation between applicatory scientific bodies and worldwide water 

industries in order to provide precision data and advisable information to 

companies on the risks to water availability in their catchment regions over the 

long term. 

8.2.4 Flexible water resource options  

Flexible water resource options include those that have the capability of being 

updated in scale and deployable output if and when required as more 

information becomes available in the future (i.e. as uncertainties reduce over 

time). This includes resource options such as multi-scale reservoirs or 

desalination plants that have the potential to be increased in total 

capacity/output over time, e.g. the Abberton reservoir example in section 8.2.1. 

The main trade-off of this approach is reduced initial capital costs in the short-

term for long-term flexibility, but often in exchange for reduced short term 

robustness. However, this is dependent on such flexible options being available 

to decision makers. 

The main difficulty with flexibility assessments is in making a true reliable 

valuation of the long-term flexibility of an option (Beh et al., 2015a; Deng et al., 

2013). Tools such as Real Options Analysis (Copeland and Antikarov, 2001; 

Jeuland and Whittington, 2014; Woodward et al., 2014), Adaptation Tipping 

Points (Kwadijk et al., 2010; Walker, et al., 2013a) and Dynamic Adaptive Policy 

Pathways (Haasnoot et al., 2013; Kwakkel et al., 2015) have been developed to 

achieve this. A combination design approach maximising both short-term 

flexibility and long-term robustness may yield the optimal strategies for future 

WRM adaptation planning, and is an area for further investigation.   
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8.2.5 Advanced water resource technology  

The United Nations have reported that by 2025 approximately 1.8 billion people 

will live in regions that face "absolute water scarcity" due to climate change, 

population growth and the inadequacies of current water resource technology in 

physically or economically stressed regions (FAO, 2012). Continued innovation 

within water resource technology as well as management processes is essential 

if water supply is to be maintained in the growing number of water scarce 

regions on the planet. 

Although not directly linked to the decision making method processes 

investigated in this thesis, an important aspect for consideration in future 

WRMPs is an improved optioneering investigation into alternative/advanced 

technologies when developing the pool of potential intervention options. During 

early water company optioneering phases a wide range of new resource options 

(and ways to reduce water consumption/losses) are considered; however, this 

range of diverse options is often swiftly reduced to a number of favoured, more 

cost-effective, interventions. This often overlooks potential options/technologies 

that may have high capital costs, or still be in an experimental phase, but could 

inherently increase the robustness and resilience of water supply to aspects 

such as severe climate change/variability.    

For instance, desalination has long been a vital provider of potable water to 

communities where cheaper fresh surface or ground water alternatives are not 

available. The technology is known to be very energy intensive, clarifying its 

prevalence in energy rich nations, such as Australia, the US and many 

countries in the Middle East, and it is often installed as a last resort. Its typically 

high capital and operational costs meant it was infrequently selected in the 

optimal strategies identified in the case study work carried out in Chapter 5 (see 

Figure 5.4 in section 5.3.3). However, if this vital (climate change resilient) 

technology is to be utilised worldwide, especially in the most fresh water scarce 

developing nations then the energy consumption of the process needs to be 

significantly reduced, or ideally, be made energy neutral. 
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Several prototype energy neutral or renewable / low energy desalination 

concepts are under research including: forward osmosis models (Cath et al., 

2006); direct or indirect solar desalination (Blanco Gálvez et al., 2009; Qiblawey 

and Banat, 2008; Qtaishat and Banat, 2013), i.e. utilising direct solar ray 

distillation or solar power (see Figures 8.3 and 8.4 respectively); magnetic 

nanoparticle membrane desalination (Zhao et al., 2013) and capacitive 

deionisation desalination (Suss et al., 2015), to name a few. 

Figure 8.3: Examples of direct solar distillation desalination for developing 
nations: (a) concept drawing, (b) prototype module (ICWC, 2015) 

Figure 8.4: Examples of indirect solar desalination concepts ideas: (a) Aquahex 
design (Aquahex, 2013), (b) Solar Cucumber (Pauley, 2013) 

Direct or indirect solar desalination is a particularly favourable concept given the 

common coupling of intensive sunlight and low rainfall in many water scarce 

regions around the planet. An advanced form of direct desalination has great 

potential for developing nations given its relatively low cost and zero energy 

requirements when utilising natural solar distillation (Figure 8.3); whereas 

indirect solar desalination (utilising a combination of renewable solar energy 

(a) (b) 

(a) (b) 
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and low powered membrane treatment technology) is favourable for more 

developed nations which require a higher deployable output, especially in light 

of the steadily reducing costs of solar power. 

Several alternative emerging technologies are under development, including 

forms of aquifer recharge (Dillon, 2005; Kurtzman et al., 2013; Lennon et al., 

2014), water reuse and rainwater harvesting (Kalungu et al., 2015; Lebel, 

Fleskens et al., 2015), with particular regard being given to low or zero energy 

resource forms for developing nations (Kostiuk et al., 2015; Qaiser et al., 2013). 

However, the key message here is that water companies, both UK-based and 

international, must continue to innovate and expand the range of 

intervention/resource options considered for long-term planning. Future 

frameworks should include greater examination of alternative low-energy 

climate resilient options and ideally incentives given to endorse and encourage 

companies to trial technologies and plan low energy strategies that are 

sustainable and renewable. 

8.2.6 Additional uncertainties and threats of the future  

Climate change is increasing areas of water scarcity around the world, but it is 

also generating an increase in severe weather events and expanding the global 

regions suffering from desertification and at threat of rising sea-levels. These 

issues greatly increase the chance of large scale involuntary migration 

occurring (WEF, 2016), either under emergency conditions (e.g. a sudden 

severe weather disaster) or as a drawn out movement of people over time (e.g. 

abandoning water scarce areas or regions becoming inundated by sea-level 

rise). Mass involuntary migration of people is not currently a consideration 

within modern WRM planning approaches around the globe; however the 

impacts of such events could be devastating to both the groups relocating and 

the area taking in climate refugees. International regions near to areas at high 

risk of large scale migration need to begin factoring in these occurrences and 

assess how resilient their systems are to a sudden in-flux of migrants. 

Conversely, areas at threat to extreme weather, flooding and rising sea-levels 

also need to examine how resilient their water resource systems are to such 

occurrences and begin planning contingencies for the worst case scenarios. We 



209 

 

are moving into a modern era of anthropogenic uncertainty and it is vital that the 

water resource systems of the world are prepared for the worst circumstances.  

Newly proposed high-capital large-scale infrastructure can provide a significant 

supply addition to a water network; however, they intrinsically bring a security 

threat and place high dependency on individual large resources. Such 

resources could present a target for terrorist attack or increase the susceptibility 

of the system to extreme weather events should natural disasters impact on key 

resource locations or on the power assets that drive them. These ‘indirect’ 

uncertainties and their potential impacts on resources also need more 

consideration to ensure true robust modern day WRM adaptation planning is 

carried out. 

8.3 Summary  

The work carried out throughout this study has led to a range of specific 

conclusions, both qualitative and quantitative, in relation to specific methods 

and metrics for application to improve WRM adaptation planning under deep 

uncertainty. The purpose of this chapter was to consolidate those conclusions 

into a “minimum standard” list of aspects that should ideally be considered 

when approaching WRM adaptation problems under uncertainty in the future. It 

is recommended that future WRM frameworks should include or facilitate the 

following: 

1. Define and use multiple objectives 

2. Utilise optimisation algorithms  

3. Incorporate complex simulation models into planning process 

4. Employ improved uncertainty characterisation and assessment 

5. Include an explicit robustness examination 

6. Incorporate additional performance metrics 

7. Increase the transparency of adaptation strategy assessments 

8. Provide improved visualisations of trade-off examinations 

9. Deliver a manageable step change from current practice 

10.  Include a more thorough optioneering investigation 

11.  Encourage more inter-sector cooperation and collaboration 
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Additional important planning aspects discussed that should undergo further 

consideration to enhance adaptation planning procedures and improve the 

overall robustness/resilience of future water resource systems include an 

examination of: 

1. Multifunctional water resource options 

2. Interconnection of resource networks 

3. Collaborative planning and management 

a. with neighbouring water companies 

b. with other sectors 

4. Flexible water resource options 

5. Advanced water resource technology 

6. Increased awareness and planning for additional uncertainties / system 

threats  

Climate change uncertainty is now inherent in the modern world we live in but it 

has the advantage of stimulating research into alternative ways of providing 

water and sanitation. The scientific and engineering communities must embrace 

this challenge and take the threat of future uncertainties as an opportunity for 

robust and resilient innovation. A reform of the governance of national water 

resource systems may be the first adaptation step change required for many 

nations if new frameworks and approaches are to be successfully established, 

especially in developing nations more susceptible to the corruption of private 

companies (OECD, 2009). For many countries in the grip of privatisation it has 

long been argued by industry and investors that putting water in private hands 

translates into improvements in efficiency, service quality and management. 

However, with profit the primary objective of private companies, the idea of 

water as a human right arguably becomes a secondary concern. It is important 

to recall the conception that water supply is a fundamental human right and the 

robustness of its supply should not be marginalised in order to protect a profit 

margin. The availability of water over the next decade will be challenged in 

ways we have never seen. It is the single most important element, responsible 

for shaping human existence to date. It will continue to be so tomorrow and our 

ability to manage its uncertainties will define our future. 
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Chapter 9. Summary, Conclusions and       

Further Work 

9.1 Introduction 

This chapter provides a summary of the main findings and conclusions derived 

from each section of work presented in this thesis in relation to the research 

objectives laid out in Chapter 1, including overall project conclusions. It closes 

by describing several recommendations for further research. 

9.2 Summary and conclusions 

9.2.1 Objectives 1 and 2 – Review and qualitative comparison of DMMs 

for WRM under uncertainty  

An extensive literature review of potential decision making methods for use in 

WRM planning was conducted leading to the selection of five predominant 

DMMs for a more in-depth qualitative comparison. The methods selected for 

examination included: Info-Gap decision theory (Y. Ben-Haim, 2006); Robust 

Optimisation (Ben-Tal et al., 2009); Robust Decision Making (Lempert and 

Groves, 2010); Decision-Scaling (Casey Brown, 2010) and Multi-Criteria 

Decision Analysis (Dorini et al., 2011), as well as discussion on several 

alternative/classical decision theories: Real Options Analysis (Jeuland and 

Whittington, 2014); Minimax Regret (Li et al., 2009); Laplace principle (Laplace, 

1951) and Wald’s Maximin theory (Wald, 1945). The methods were compared 

qualitatively using six assessment criteria: handling of planning objectives; 

handling of intervention strategies; uncertainty handling; selection mechanisms; 

computational requirements and output formats.  

The comparison of methods indicated a number of key criteria/processes that 

would benefit from further quantitative assessment on real-world case studies. 

The review highlighted seven areas of key interest in particular that present 

contrasting theories of handling uncertainty in the WRM context which, at the 

same time, have had limited literature attention to date. In conclusion the seven 

comparative areas identified were as follows: 
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(a) A local vs global measures of robustness, 

(b) Pre-specified vs optimisation-generated adaptation strategies, 

(c) Top-down vs bottom-up assessment structures, 

(d) Fixed vs fixed-adaptive vs flexible-adaptive strategy designs, 

(e) Regret vs non-regret based assessment criteria, 

(f) Singular optimal results vs Pareto optimal sets and 

(g) Risk-based vs reliability and resilience based performance metrics. 

The review also highlighted the concept of Resilience as a potential alternative 

primary performance metric and/or planning objective for water resource 

adaptation, which, to date, had yet to be clearly defined in WRM literature. 

9.2.2 Objectives 3 and 4 – Quantitative comparison of DMMs for WRM 

under uncertainty on case studies 

Following the qualitative review of methods, two DMMs were selected for further 

quantitative analysis of WRM under uncertainty on real-world case studies. The 

methods selected were Robust Optimisation and Info-Gap decision theory. 

These two methods were selected because they allowed an examination of 

contrasting local vs global measures of robustness as well as the effect of 

utilising pre-specified vs optimisation-generated intervention strategies. 

A generic water resource software model was developed for implementing the 

subset of methods identified and capable of interacting with a wide range of 

water resource networks/system models. The simulation model was developed 

to replicate, using a daily or monthly time step, the supply and demand balance 

of a regional water supply system over a pre-established time horizon. During 

software development it proved difficult to incorporate the traditional Info-Gap 

‘stability radius’ method for analysing robustness/sensitivity to uncertainty whilst 

employing discrete scenario projections that were not monotonically increasing. 

Therefore, a novel area-based method for IG robustness modelling of uncertain 

future supply and demand scenarios was developed. 

Two case studies were then developed recreating the water resource networks 

of two real-life UK based resource zones. The case studies selected were: 

 Southern Water’s Sussex North resource zone  

 Bristol Water’s Water resource zone 
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The case study models were set up to accurately recreate the existing water 

resource networks and a full range of potential intervention options (for the 

formation of adaptation strategies) and future scenarios of supply and demand 

were derived for each region for testing of the DMM software and dynamic 

water resource simulation model developed during objective 3. The case 

studies were of varying complexity and utilised alternative performance metrics, 

planning horizon lengths and numbers of supply and demand scenarios. The 

results obtained across the two case studies lead to the following key 

conclusions: 

1. Robust Optimisation, with its global robustness analysis, appears the 

more favourable DMM for the WRM problems examined here. Its simpler 

computational set-up and operation allowed an easier examination of 

future scenarios when utilising an ensemble of prospective transient flow 

projections. The RO analysis also led to the identification of lower costing 

adaptation strategies across both case studies for all given levels of 

desired robustness. Info-Gap had a more complex set-up and the 

localised mapping methodology proved problematic when applied to a 

wide range of discrete scenario projections that were extremely variable 

and not monotonically increasing. 

2. The novel area-based robustness search technique developed for the IG 

method application improved on previous scenario mapping practices by 

allowing more scenario combinations to be analysed and allowing the 

robustness search to continue until all scenario expansion routes ended 

in system failure.  

3. The location of the starting points of the IG analysis did not significantly 

alter the Pareto strategy results obtained in the simpler case study 

(Sussex North) but did in the more complex problem (Bristol Water). The 

Bristol water study utilised a larger region of uncertainty signifying that 

the starting location of the IG analysis is more impacting on outputs as 

the uncertainty region increases, highlighting the importance of carefully 

selecting the initial start point. 

4. The IG performance could be improved by switching to using uncertainty 

variables instead of using transient flow projections; however, the 



214 

 

purpose here was to examine how the DMMs handle complex ‘scenario’ 

assessments in practice, as approaches that characterise uncertainty via 

scenario development/assessment are being increasingly regarded as 

the next step for evaluating complex systems to deep uncertainties 

(Maier et al., 2016; Moss et al., 2010).  

5. In assessment of pre-specified vs optimisation-generated adaptation 

strategies (investigative area (b) from section 9.2.1), it was discovered 

that Info-Gap required optimisation based automatic generation of 

strategies as the case studies became more complex. The larger pool of 

potential intervention options made it problematic to reliably pre-specify 

strategies for testing, reinforcing the suitability of a form of Robust 

Optimisation for WRM adaptation planning.    

6. Both DMMs could produce a Pareto optimal set of adaptation strategies 

(either formed automatically or following the ranking of results), which 

ultimately allows a visualisation of trade-offs across the objectives before 

final strategy selection is carried out. This improves on current UK 

engineering practice, which typically pre-specifies a linear projection of 

future supply and demand and then optimises to derive a single optimal 

adaptation strategy solution. Single objective (least cost) optimisation, as 

in the current practice EBSD method, effectively determines only a single 

point on the Pareto fronts identified by the DMMs here, and so does not 

provide any trade-off comparisons. 

7. A fixed strategy design (i.e. unchanging the set sequence of 

interventions in the strategies examined from input to output) suffers from 

the same computational issues experience when pre-specifying a 

selection of strategies when system complexity, larger data sets and a 

larger pool of potential intervention options are used. A fixed-adaptive 

design (either manually altering strategy designs as vulnerabilities are 

detected (as with RDM), or mutating strategy designs within optimisation 

processes (as done here with RO)) proves more beneficial at testing 

multiple strategy design configurations in a much more computational 

acceptable time frame. Examining every form of potential fixed strategy 

design when millions of potential combinations exist is not practical. 



215 

 

8. The comparison between using a risk-based metric and an individual 

criterion (reliability) based metric (investigative area (g) in section 9.2.1) 

is difficult to directly analyse across the two case studies; although, from 

an immediate practical point of view it is arguably more informative to 

use a reliability criterion to measure the performance of the water system 

as it provides clearer insight into the relative frequency of water deficits 

detected over the planning horizon. The risk-based metric identified 

strategies that could maintain a given level of risk over a given planning 

horizon; however, the calculation of risk is far less transparent when you 

amalgamate both likelihood and severity into a single parameter and it 

remains unclear just how many water deficits are occurring and at what 

magnitude. In order to better compare the effect of altering the 

performance metrics utilised it is recommended that a more complete 

investigation into potential indicators be conducted, which explore 

individual criterions of performance; such as examining the frequency, 

duration and magnitude of water deficits (Hashimoto et al., 1982) and 

how this can better inform decision makers on the performance of the 

water system. 

9. In comparison with the SW and BW WRMPs 2015-40 proposed plans it 

was concluded that quantifying the robustness explicitly (as opposed to 

indirectly, via headroom and level of service failure) and using this and 

costs as drivers to identify solutions, is likely to result in more robust and 

less costly plans when compared to a more conventional approach used 

in current UK engineering practice. However it was observed, at least in 

the case studies analysed here, that increasing the current 25 year 

planning horizon to a 50 year analysis did not significantly influence the 

intervention options selected over the initial 25 years of the plan. 

10. The variation in the Pareto strategies derived highlight how the current 

industry standard for water supply system adaptation planning could 

benefit by applying a wider range of decision methodologies and 

assessment tools (especially those that quantify a level of system 

‘robustness’) as well as a more encompassing investigation into potential 

future uncertainties and alternative methods for scenario generation. 
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9.2.3 Objectives 5 and 6 – Performance metric investigation and 

development of novel resilience-based methodology  

The findings from the two case studies concluded that more research should be 

conducted into the comparison and evaluation of performance 

metrics/indicators for WRM adaptation planning. Therefore a more detailed 

investigation to explore and analyse a range of applicable performance metrics 

for WRM adaptation planning was conducted, specifically to derive the optimal 

metric that could be used to define system resilience. Ten different metrics were 

selected for an in-depth analysis that exhibited desirable performance metric 

characteristics (see Table 6.1). The analysis included an examination of metric 

sensitivity and correlation, as well as a detailed examination of the behaviour of 

water deficit periods. This led to a range of recommendations for the selection 

of an appropriate resilience-based performance metric. In general it was found 

that: 

1. Multiple metrics covering different aspects of resilience are 

recommended for providing additional water deficit information, then is 

presently utilised in current practice. 

2. The “duration of longest water deficit period” metric stood out as the most 

all-encompassing and informative performance metric followed closely by 

the “water deficit of greatest magnitude recorded” metric. However, the 

correlation analysis demonstrated a high linearity between the two 

metrics and therefore considering just a single metric may prove 

sufficient to evaluate the resilience of a water resource system. A 

duration based metric would be a more logical assessment metric to use 

of the two types, as it is the duration of temporary water restrictions that 

most impact on customers and supply, whereas the magnitude of water 

deficit events is of less direct concern to customers and water companies 

so long as the magnitude is maintained within acceptable threshold 

levels. 

3. Frequency type resilience metrics cover important aspects/information, 

but should not be used on their own as they do not capture the size of 

‘impact’ on the system and provide limited information on water deficit 

periods, so should not be used on their own. 
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4. Aggregated type resilience metrics are fairly sensitive to different 

adaptation strategies and supply/demand scenarios but there is also a 

considerable uncertainty in their calculation due to their nature (i.e. is it a 

single big or several small deficit periods occurring to give the final 

values) making it harder to clarify exact adaptation strategy and system 

performance. 

5. Magnitude type resilience metrics are highly sensitive and provide useful 

information, especially in terms of proximity to critical threshold levels; 

however, they do not provide a full picture of deficit events/periods. 

6. Duration type resilience metrics are also highly sensitive with “the 

duration of longest water deficit period” providing the most detailed and 

informative picture of a deficit event. It is also the metric that exhibits the 

highest correlation to all other metrics. Splitting the duration of a water 

deficit period into the time to max peak deficit and time to recover from 

max peak deficit (as suggested in Linkov et al. (2014)) provides more 

detailed water deficit period information, but the relative performance of 

each aspect tends to be highly variable when assessed across multiple 

scenarios of future supply and demand, reducing the clarity of each as a 

consistent measure of performance. 

A new resilience driven methodology for WRM planning was developed and 

tested utilising the optimal resilience-based performance metric derived. The 

method optimised for resilience and cost for a given target level of robustness 

utilising the dynamic water resource simulation model and was applied to the 

more complex Bristol Water case study. This new approach provided a 3D 

trade-off surface of Pareto-optimal solutions providing decision makers with a 

better picture of what system performance benefits different planning strategies 

can achieve. The method utilised a global measure of robustness and 

optimisation-generated adaptation strategies. This new methodology was 

compared with the current UK planning practice of identifying a single least cost 

strategy subject to maintaining a target level of reliability (frequency of deficits). 

It was found that: 

1. Optimising for a single objective in the current practice methodology 

yields only a single solution that is highly dependent on the initial target 
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robustness (headroom) and target reliability selected and does not 

provide alternative solutions that may achieve benefits for small trade-

offs. 

2. The strategy solution derived using the current practice methodology 

produced in the real-life case study analysed a less resilient system than 

the similar costing solutions identified using the proposed resilience 

driven methodology. Whereas the resilience driven strategies were less 

reliable (although not by much), suggesting that trade-off exists between 

the two. 

3. In order to better explore the trade-offs that may be gained by 

considering both resilience and reliability, it is recommended that the 

resilience driven methodology is further developed with the inclusion of a 

reliability criteria as an additional objective or constraint in the approach 

presented here. 

4. The resilience driven methodology yielded planning strategies which 

space interventions more evenly across the planning horizon when 

compared to the current practice (reliability driven) strategy solution, 

which scheduled more lower cost interventions earlier in the planning 

horizon. This suggests that, at least in the case study analysed here, 

more low cost interventions early in the planning horizon achieve higher 

system reliability whereas regular intervention options spread over the 

planning horizon achieve higher system resilience when planning to an 

uncertain future. Examination of both metrics is recommended if 

optimisation of the additional system attribute (resilience) is desired in 

future UK practice. 

5. The resilience-based methodology improves on key industry planning 

issues by increasing the transparency of adaptation strategy assessment 

processes and improving the information available to decision makers. 

The method also improves on the economic cost appraisal of water 

restriction periods, as a duration of deficit is more easily quantifiable than 

a frequency-based approach. The resilience methodology created a 3D 

surface of Pareto-optimal solutions providing decision makers with a 

more complete trade-off picture of what different planning strategies can 
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achieve in terms of system performance benefits and related costs thus 

enabling them to make better informed decisions. 

9.2.4 Objectives 7 and 8 – Future WRM framework improvements and 

overall conclusions  

Key research findings and priority items for future adaptation planning methods 

and approaches were discussed in Chapter 8. Some overall key conclusions 

derived from across this research are as follows: 

1. All DMMs have certain strengths and weaknesses depending on their 

application and user requirements. Employing a plurality of approaches 

to an adaptation problem under deep uncertainty may be the answer, as 

the decision maker can take advantage of each DMMs unique features 

and identify strategies that repeatedly perform well.  

2. The ability to overlap method processes have been highlighted, i.e. the 

ability to apply optimisation to all methodologies and utilise alternative 

scenario generation techniques. This suggests that the development of 

an optimal framework for complex WRM planning under uncertainty may 

involve one that will utilise (perhaps hybridise) features from a range of 

DMMs with the aim to exploit advantages and minimise disadvantages of 

existing methods and would help simplify a range of complex 

mathematical decision theories into a practical set of procedures. 

3. The DMM ultimately selected for advancing WRM adaptation planning 

will inevitably have trade-offs in performance with alternative 

approaches. For instance, if a method seeks global robustness to 

uncertainty across a large range of future scenarios, uses multi-objective 

evaluation or automatically generated intervention strategies the trade-off 

is that the DMM will be more computationally demanding, require expert 

knowledge or specialist software codes. Whereas, if the method 

analyses fewer future scenarios (examining a localised radius of 

uncertainty), uses single-objective evaluation or utilises pre-specified 

intervention strategies the DMM will be less computational demanding 

and simpler to implement. 
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4. The key approach is striking a balance between planning aspects while 

satisfying all stakeholders involved but ensuring a justifiable level of 

system performance is established. 

The ideal future WRM planning under uncertainty framework should include or 

facilitate the following: 

1. Define and use multiple objectives 

2. Utilise optimisation algorithms  

3. Incorporate complex simulation models into planning process 

4. Employ improved uncertainty characterisation and assessment 

5. Include an explicit robustness examination 

6. Incorporate additional performance metrics 

7. Increase the transparency of adaptation strategy assessments 

8. Provide improved visualisations of trade-off examinations 

9. Deliver a manageable step change from current practice 

10.  Include a more thorough optioneering investigation 

11.  Encourage more inter-sector cooperation and collaboration 

Additional important planning aspects discussed that should undergo further 

consideration to enhance adaptation planning procedures and improve the 

overall robustness/resilience of future water resource systems included an 

examination of: 

1. Multifunctional water resource options 

2. Interconnection of resource networks 

3. Collaborative planning and management 

a. with neighbouring water companies 

b. with other sectors 

4. Flexible water resource options 

5. Advanced water resource technology 

6. Increased awareness and planning for additional uncertainties / system 
threats  
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9.3 Summary of novel research contributions  

This research has contributed to existing WRM knowledge in several distinct 

ways. It qualitatively evaluated and then quantitatively applied and tested a 

range of decision making methods, known to originate from economics and 

game theory, to a new domain of water resources management. This developed 

new knowledge and understanding as to the specific pros and cons of the 

different approaches and how they can improve on current water resources 

adaptation planning and practice. 

During detailed quantitative analysis of two selected decision making methods 

several further contributions to knowledge were made including: the 

development of a dynamic water resources simulation model that can be 

customised to model a range of water resources networks and DMMs; the 

creation of a novel area-based info-gap robustness mapping model customising 

the original methodology to allow utilisation of discrete non-linear future 

scenarios of supply and demand in the analysis process; and the development 

of a new rolling flow factor method to produce a wider range of varied and more 

comprehensively perturbed transient supply scenarios.  

Additionally this study developed and reviewed a range of new potential 

performance metrics that could be used to quantitatively assess system 

resilience to help answer the water industries question of how best to build in 

more resilience in future water resources adaptation planning. This led to the 

creation and verification of a novel resilience-based methodology for optimal 

water resources planning.  

Finally, the research closed with discussion on the potential future of adaptation 

planning in the water industry and the development of a list of recommended 

“minimum standards” for an ideal future procedural framework. These findings 

could have an impact on new water resource planning legislation and policy and 

would be of interest to a wide range of regulatory bodies, environmental 

agencies and water companies with the agenda of improving system resilience 

to a future of rising deep uncertainties. 
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9.4 Recommendations for further research 

The application of decision making methods to solve water related adaptation 

problems under deep uncertainty is a growing scientific field with many facets 

that could be further explored. The recommendations for further research on the 

topics presented and discussed in this thesis are as follows: 

 The flexibility/adaptability of solutions is an aspect not explored within the 

approaches presented here. In practice evaluating only fixed rather than 

adaptable strategies limits the range of potential long-term trade-offs 

explored. This limitation can be overcome by combining these DMMs 

with modern approaches such as Real Options analysis (Jeuland and 

Whittington, 2014), Adaptive Pathways (Kwakkel et al., 2014) or Adaptive 

Multi-Objective Optimal Sequencing (Beh et al., 2015a). A combination 

design approach optimising for both short-term flexibility and long-term 

robustness may yield the optimal strategies for future WRM adaptation 

planning, and is an area for further investigation. 

 Further case study assessments would also better reveal the strengths 

and weaknesses of the various methods examined here. Efforts were 

made to make the simulation models utilised in the case study 

assessments as real to life as possible; however, it would be beneficial to 

test the methods described here in direct combination with a more 

complex resource model package, such as a water company MISER 

model or AQUATOR platform, to see how easily the methods can be 

incorporated into an actual multi-nodal company network simulation 

model. 

 The water resources simulation model utilised in the case studies 

(Chapters 5 and 7), although dynamically able to model the daily or 

monthly supply and demand balance of a complex water system over a 

long-term time horizon, could be further improved to incorporate 

additional dynamic and flexible system aspects. This could include 

conditions such as the ability to switch resource options on and off at 

specific points in the time horizon to reduce operational costs or to 

reserve water, or to examine the effect of outage (i.e. due to the flooding 
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of assets etc.). The analysis also assumed the performance of each 

intervention option selected and applied to the model was independent of 

future changes (i.e. constant DO values were used). However, the water 

yield from several of the new resource options will likely be affected by 

changes in the climate system and are therefore themselves dynamically 

linked to the deep uncertainties within the system. For example, option 

R4 from the Bristol Water case study (the new reservoir at Cheddar) is 

assumed to yield 16.3 ML/d under all future climate conditions, which is 

not likely to be the case. Flooding events are also expected to increase 

in frequency in the future providing further risk of outage of individual 

resources/assets adding further uncertainty to the supply issues 

discussed here. The models developed here could be further improved if 

the iterative, dynamic approach used for characterising future 

uncertainties in the existing water resources were applied to all climate 

vulnerable intervention options also. 

 It is expected that further research within this area will ultimately lead to 

the development of a novel framework for complex WRM planning under 

uncertainty for real-world application to the UK water sector to update 

existing outdated practices. This final updated framework may utilise 

(perhaps hybridise) features from a range of DMMs with the aim to 

exploit advantages and minimise disadvantages of existing methods (e.g. 

using optimisation to select and test more strategy combinations, 

combined with new vulnerability map or scenario discovery 

methodologies (e.g. Singh et al., 2014) with objectives set up to examine 

the trade-offs between robust and flexible solutions across multiple-

objectives). 
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