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In this note we describe the theory of functional asynchusnoetworks and one of the main results, the
Modularization of Dynamics Theorem, which for a large clag$unctional asynchronous networks gives a
factorization of dynamics in terms of constituent subnekso For these networks we can give a complete
description of the network function in terms of the functiminthe events comprising the network and thereby
answer a question originally raised by Alon in the contexviofogical networks.

I. INTRODUCTION computation, etc. Our goal is to address Alon’s comment in
the context of functional asynchronous networks. Spedifica

Kastan & Alon [9] identify and describe the configurations We describe a factorization of dynamics theorem where it is
of relatively simple and small subnetworks that occur morgP0ssible to describe the function of a large class of funetio
frequently in biological networks than would be the case ifasynchronous networks in terms of the function of constitue
the network were random. They refer to these subnetworkg8ubnetworks. As this article is only intended to be an intimd

asnetwork motifs Later, in his 2007 book on systems biol- tion, we work always with the simplest examples and models
ogy [1], Alon makes the following comment and omit technical details. We refer the reader o [3, 4] for

greater detail, generality and proofs.
“Ideally, we would like to understand the dynam-
ics of the entire network based on the dynamics
of the individual building blocks{Alon [1, page Il. EXAMPLES AND PROPERTIES OF ASYNCHRONOUS
27]) NETWORKS

The underlying premise behind this comment is that a mod-
ular, or engineering, approach to network dynamics is feasi
ble. Identify building blocks, connect together to form-net
works and then describe dynamical properties of the regylti
network in terms of the dynamics of its components. This
approach works well in linear systems theory, where a super-
position principle holds, or in, for example, the study ofisy
chronization in weakly coupled systems of nonlinear approx N threaded or parallel computation, computation is bro-
imately identical oscillators where network dynamics can b ken into blocks or ‘threads’ which are then computede-
closely related to the dynamics of individual nodes (oaeill Pendentlyof each other at a speed that depends on the clock
tors). rates of the individual processors. As the computation pro-

However, from the perspective of a mathematician or physiceeds, threads may need to exchange information with other
cist, Alon’s comment seems unhelpful for the study of dynamhreads. This process involves stopping and synchronizing
ics of heterogenous networks modelled by systems of norfuPdating) the thread states. Each thread may have to stop
linear ODEs. This is a well-known issue in complex Sys_and wait for other threads to complete their computations be
tems [10]. Yet engineers do couple gadgets together to maKere _it can continue with i_ts own _computa?ion. Each thread
more complex systems and so it is natural to ask if it is possibas its own clock (determined by its associated procestor).
ble to reconcile these viewpoints. threads run on separate processors, threads will be unaware

In this note, we outline some of the basic ideas involved irPf the clock times of other threads except during the stappin
an approach to network dynamics based on what weasgti- ~ @nd synchronization events.
chronous networksWe allow for features seen in networks
from technology, engineering, and biology (for exampley-ne

We briefly describe some characteristic examples of asyn-
chronous networks (we refer ta [83] for more detail).

A. Threaded & parallel computation
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roscience or gene transcription networks). Network dynam- B. Production and transport networks
ics can involve a mix of distributed and decentralized aalntr
adaptivity, event driven dynamics, switching, varyingmetk We give a simple detailed example of a transport network in

topology and hybrid dynamics. Typically network dynamics sectiorf1V. In production networks, parts, compounds, &te.
will be piecewise smooth, time-irreversible, nodes may sto repeatedly built and combined as part of a production psces
and later restart, and there may be no intrinsic global timeleading to the desired item (for example, a car or protein).
Significantly, many of these networks have a function: transin particular, there is variation in both connection stuuet
portation networks bring people and goods from one point tdypically intermittent, and in the set of nodes (nodes may be
another, neural networks may perform pattern recognition ocombined or decomposed).
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C. Power grid models . ASYNCHRONOUS NETWORKS: FORMALISM

A power grid consists of a network of various types of gen- We use the notational conventions that {1,...,k} and

erators and loads connected by transmission lines. A micrds® = kU {0}, ke N. LetR, = {xe R | x> 0O}.

grid is a local network, capable of existing independently o Assume given a network withnodesNj, ..., N. Suppose

the main power grid, and typically powered by renewable enthatN; has associated phase spsei € k. SetM = [T« M;

ergy sources (for example, solar or wind power). Critical—the network phase space. A vector fieloh M is anetwork

guestions involve the stability of the power grid in case ofvector field

loss of a transmission line or generator (variation in nekwo  Stopping, waiting, and synchronization are a feature of

structure), and control and stability issues related toliam asynchronous networks. If nodes are stopped or partially

ing and separation (islanding) of a large set of micrognidsit  stopped, node dynamics will be constrained to subsets & nod

the main power grid. phase space. We codify this situation by introducingpa-
straining node N that, when connected th;, implies that
dynamics or\; is constrained. Se¥ = {No, ..., Ng}.

D. Thresholds, spiking models and adaptation

. ) . ) A. Connection structures; admissible vector fields
Many mathematical models from engineering and biol-

ogy incorporate thresholds. For networks, when a node at-

talr?s a th_reshold, th_ere are often changes (addition,idejet l?y the network graph. ConnectioNs—N; encodealependen-
weights) in connections to another nodes. For networks of. .~ . o ;
ciesif i, j € k, andconstraintsf j = 0,i e k.

neurons, reaching a threshold can result in a neuron firing ; . i
- . A connection structure is a directed network graph on the
(spiking) and short term connections to other neurons (for . . .
> . . . nodesN such that for ali € k, j € k®,i # |, there is at most
transmission of the spike). For learning mechanisms, sach a . .
. . L 3 . one directed connectioN;—N;. We do not allow self-loops
Spike-Timing Dependent Plasticity (STDR) [7] relative tim X .
) - " MEl B or connections to the constraining nddg
ings (the order of firing) are cruciall[5| 8,/11] and so each o ) - )

. . ... An a-admissiblevector fieldf® is a network vector field
neuron, or connection between a pair of neurons, comes W't\?vith dependencies given by If Ni—N; ¢ a, | # |, thenf®
a ‘local clock’ that governs the adaptation in STDP. In gen- P 9 ' i—N & @ ),

does not depend ax) € M; (and conversely, segl [§2]).

eral, networks with thresholds, spiking and adaptationiple

characteristic examples of asynchronous networks where dy

namics is piecewise smooth and hybrid — a mix of continuous

and discrete dynamics. N, N,
_—

Interactions between distinct nodes in the network aregive

E. Properties of asynchronous networks No o

We summarize some of the characteristic features of asyn-
chronous networks as revealed in the examples above. N3 N,

1. Variable network structure and dependencies between
node_s. Changes depe.nd on the state of the system or FIG. 1. Construction structure di, Ny, No. N, Nal.
are given by a stochastic process.

2. Synchronization events associated with stopping or Re.fef””g to figurelll, suppose’ = (fr..... £) is -
" admissible. FOX = (X1, X2, X3, X4) € M, we have
waiting states of nodes.

fr(X)=f f5(X) = fo(X;
3. Order of events may depend on the initialization of the 1(X) = fa(xa), £5'(X) = fa(xzi x1)

system or stochastidfects.
o o f(X) = falxai X1, X2), f9(X) = O,
4. Dynamics is only piecewise smooth and there may be a

mix of continuous and discrete dynamics. where here we have assumed that the constNyrtN, re-
sults inN4 being stopped.
5. Aspects involving function, adaptation and control. A generalized connection structuré is a (nonempty) set

of connection structures oN.
6. Evolution only defined for forward time — systems are  An A-structureF is a set¥ = {f* | a € A} of network
not time reversible. vector fields such that eaéh € F is a-admissible.
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B. The event map and asynchronous networks coordinate-a < 0, S; has coordinatd > 0, The passing
loop L will be at x = 0, andT will be the phase space for the
Suppose thafl is a generalized connection structure gnd ~ nonlinear oscillator.
is anA-structure. Assume train motion given by;, V, whereVy(x) > 0 >
Interactions between nodes in asynchronous networks mayz(X) x € [-a b]. Note that neithei; or V, can be zero
be state dependent or change over time (stochasticallyp Heanywhere onta, b] otherwise the trains will never both reach
we on|y consider state dependence_ their destination stations in finite time.
We handle interactions and constraints usingeent map ~ \We define four connection structures.
E:M-A.
The quadruplét = (N_,?l,_?—‘, &) defines arasynchronous a = No—Ni, i € 2 (T; stopped)
network Dynamics ot is given by the state dependent net-

work vector fieldF defined by B =No—N; & N « No(stopped & cross coupled)

0 = Empty connection structure

_ $8(X)
FX) = F(X), X e M. (1) Let A = {a1,a2,B,0} be the associated generalized connec-

RemarkL. We refer to[[3§4.7] for the definition of an integral  tion structure.

curve for [II2) and note that the definition we use ife- . Model the uncoupled oscillator dynamics for train by
ent from that used in Filippov systems [2, 6]. Under simpleh = w, wherew > 0, and the coupled dynamics by the Ku-
conditions on the event mapl [8§4.7, 4.8], it can be shown ramoto phase oscillator system

that if M is compact then for eack € M there is a unique 61 = w + Sin@, — 61)

piecewise smooth integral curdg : [0, co)—M with initial ;
conditionX and corresponding semiflo¥ : M x R, —M. In
general® will not be continuous as a function ¥fe M. It remains to define the admissible vector fields and event

map that give the required dynamics for this example. As
admissible vector fields (on<{p, b] x T)?) we take

f = ((V1.9). (V2. 9)),

f* =((0.9). (V2,9)). (T1 stopped T> running)

f*2 = ((V1.9),(0.9)). (T2 stopped T; running)

= ((0,Gy), (0,Gy)), (T4, T» stopped & cross coupled)

6 =w+ sin(Ol - 92)

IV. A SIMPLE TRANSPORT EXAMPLE

Passing loop with stations

S IR L I s We define the event map by
- T E(X,0) = a1, x1=0,% >0
= a2, X1<O,X2=0
FIG. 2. A single track railway line with a passing loop. =B, X1=%X =0, |01 —6 > ¢

= (, otherwise

We consider a single track railway line joining stations

markedSs, S; in figure[2. Suppose there is a passing loop
atL. Trains, marked; andT; in figure[2, start from stations

S: andS; respectively and proceed towards the opposite sta- F(X, 0) = fEX9(X . g). (IV.2)

ton. T_here_ is no central control or communlcqtlon betwegrwe leave it as an easy exercise for the reader to check that if
the train drivers except when both trains are in the passing . " L .

| : : i is initialized at (0),4(0)) € [-a,b] x T, i € 2, where
oop. We further assume that both drivers are running a non. (0) < 0 < %(0), then [IV2) has a well defined integral
linear oscillator. When a train enters the passing loopjpst W) = = 20 9

i . S e "
When both trains are in the passing loop, the drivers crosﬁ:ﬂve‘.’o : Ry —>([-a.b] xT) ’V.V'th specified |n_|t|aI condition,

. ) . ; at gives the correct dynamics for the passing loop problem
couple their nonlinear oscillators. In order for a traingéave

the passing loop, two conditions must be satisfied. Remark2. The passing loop gives an example of a simple
functional asynchronous network. The function is for the
1. Both trains must be in the passing loop. trains to go from one station to the opposite station in finite
. . time. Observe that for this example there is the possihility
2 T_he two nonl|near oscillators must be phase SynChrOé\dynamical deadlockif the trains start at the same time and
nized to withine where 0< & < 7.

if 61(0) = 62(0) + &, then the coupled phase oscillators will
We model this setup using an asynchronous network with tw@€ver phase synchronizeo{t) = 6(t) + n for all t € R,

nodes — corresponding to the two trains. The phase space forand so the trains will never exit the passing loop. We re-
train T; will be M; = [-a,b] X T, i € 2 (T = R/2xZ), where fer to [4, §§2,3] for more details on deadlocks in functional

the interval [-a, b] models the line joiningS; to S,, S; has ~ asynchronous networks.

Finally, dynamics are given by the network vector field



\/. FUNCTIONAL ASYNCHRONOUS NETWORKS Direction of time and space evolution
'ﬂ"l:‘:zamn — T Termination
We follow the notational conventions of section Il and let ! ’ o e . 2
N = (N, A, F,E) denote an asynchronous network. We as- j Jz; FA/—B:“
sume thafit has associated semiflow g 5! ~ — L B E
z iy 3 z

® = (Dr,..., D) M X R, M. ]\_F%

Suppose that we are givémitialization andterminationsets

I,F c M where - ‘
I= ]_[]Ii, F= HFi, FIG. 3. A spatiotemporal decomposition of a functional asyn
ik iek chronous network
Typically, I;, Fi ¢ M; will be closed disjoint hypersurfaces that
separateM; into three connected componeritg, k. That is, B. Building blocks
Mi = M7 U M? U M whereM;” N M;" = 0 and
M- AM=aM =T, M°nM'=aM' =F,. In figure[4 we represent a basic building block with the
same number of inputs and outputs.
We callN = (0, I, F) afunctional asynchronous networkhe
network function is getting frorfito F and is expressed by the
transition and timing functions o ®
o IS ®
Go:DcCI-F, S:DcI-R<. S -
,,,,,,,,,,,,,,,,, 5l
Thatis, ifX € O, then for alli € k there existsS; e R¢ such | E
that o 3 PY
o z °

Oi(X,Si) e F, Oi(X,t)¢F,t<S;,
S(X) = (S, ..., SK),

Examplel. For the passing loop example discussed in the FIG. 4. Dynamicafunctional module

previous section, we takg = M] = MJ = F, = {-a} x

T,F1 = M{ = MJ =1, = {b} x T. In this case, there is The initialization sets are represented by the symbdisr-

the implicit assumption that trains stop when they reachr the mination sets by. Interaction between nodes occurs only in
termination set. Equally well, we could talk4 = R x T so  the eventregion denoted by the rectangle. Outside of thet eve
thatM] = (-0, a] x T etc. (see also [43]). Finally, observe region, nodes evolve independently. More generally, we can

thatD = {((-a, 61), (b, 82)) | |61 — 82| # 7}. allow for different number of inputs and outputs: nodes may
More generally, we allow for general initialization times Merge .orsplit: o . . _
and define generalized transition and timing functions Our immediate aim is describe some basic operations that
— ‘ —_ C K we can define on functional asynchronous networks that allow
G:DCcIxRi—>F, S:DcCIXRi-R,. us enable us to find a (maximal) decomposition of a functional

We refer to [4,§3.4] for details. For our main result, it is re- asynchronous network into the form shown in figre 3.

quired that the network has a generalized transition anidgm

. . - _ Kk
functions withD = I x K. C. Operations on functional asynchronous networks

A. Functional networks built from events If N = (M3, 1%, F?), a € q, are functional asynchronous
networks with distinct node set&/¢ N N° c {No}, a # b € q),

In figure[3 we show a nine node functional asynchronoudl€fine theproduct] T, N* to be the functional asynchronous

network that is built from the eight “event§®, ..., P". networkN = (%, 1, F), where

The initialization and termination sets are indicated an th I l_l B pe l_l Fa
left and right sides of the figure respectively. The evergs si ’
nify regions of phase space where there can be (state depen-
dent) interaction between nodes. For example, the event land %t = [],qN® is defined in the obvious way to be the
belledP? involves interaction between nodig, N7, Ng, and  asynchronous network with node s¥t= UacqN? (we refer
Ng. Observe that there is only a partially ordered temporato [3, §6] for details).
structure on the events. Thus, the evehimust occur after We say thek-node functional asynchronous netwadyk=
P but can occur before or after eve?it M, ILF) is trivial if N = [z N where eactiN® has exactly

aeq aeq



one nodeN,. In particular, ifN is trivial there are no interac-
tions between nodes and no constraints.

Next letf? = (R4, I, F), a € q, be a family of functional
asynchronous networks with common initialization set; ter
mination set and node st = {No, Ny, ..., Nk}. Suppose that
for eacha € q, there exist&(a) c k such that

1. M = NG x NG whereN? has node seX(a) andNg is
trivial.

2. Ifa# b, =(a) N Z(b) = 0.

We define themalgamatiomt = LiaqN? to be the functional
asynchronous networf [, 93) x 92, wheredt; is the trivial

Time

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, P2l .~

FIG. 6. Concatenating two functional asynchronous netaiork

Remark3. We have deliberately avoided listing the detailed
properties required of functional asynchronous networks i
order to define amalgamations and concatenations. Briefly,
apart from requiring the existence of generalized tramsiti

network defined as the product of the common trivial factorsand timing functions, we require (1) the uncoupled vecta ve

in %%, a € . Thus the node set 0f; will be k \ UaeqgZ(a).

P! and P2

FIG. 5. Amalgamating two functional asynchronous networks

Referring to figurd b, we hav&(l) = {7,8,9,10} and
¥(2) = {2,3,4,5). The amalgamatio” = P! L P? is triv-
ial when restricted to nodgsl;, Ng, N11}.

Finally, we outline the operation of concatenation, refeyr
the reader to [4§4] for the details (most) we omit. Suppose
that M = (N2, 18, F?), a € 2, are functional asynchronous
networks with common node set. Assume thRat= 12. The
concatenatioN = (%,1,F) = N2 o N! will be a temporal
mergingN?, N2. We define

1.1=1'F=F>
22 A={arVaz | IXeM,a; = 81()(),0'2 = SZ(X)},

whereVv denote the join of the graphs. The definition of the
set of admissible vector fields for 9t is trickier and requires
additional conditions oiN', N2 — we refer to |[4] for details.
We define the event map &(X) = 84(X) v &(X), X € M.
We refer to figuré€ls for the operation of concatenation.

The concatenatioiN? o N' has the important property
that if N® has generalized transition and timing functions
G2 : P xRKSF?, S 1 12 x RK5RK, a € 2, thenNZ o N?
has generalized transition functigd given by G(X,T) =
G2(GY(X,T),SHX,T)) [4, Corollary 4.15].

tors defining intrinsic dynamics of a nod\g to be transverse
toI;, F; and (2) a local product structure on the network. We
refer to [4,§3] for the detalils.

VI. MODULARIZATION OF DYNAMICS AND FUNCTION

A functional asynchronous networkgsimitive if it cannot
be written as a nontrivial amalgamation or concatenation.

Theorem 1. Under general conditions, a functional asyn-
chronous networl has a unique (up to rearrangements) de-
composition

N=N%... oN.,

whereN/ = NM 1y uNHO), j e g, and and eaciN/’ is
primitive.

The generalized transition function G fdd can be ex-
pressed in terms of the generalized transition and timimgfu
tions G, S; of NI (or G for Ni) by:

G(X,T) = GI(...G3GYX,T),SY(X,T))...),
S(X,T) = ... FGHX, T), SHX, T)).. ),
Gl =GMx.. xGHD jeq.

Example2. Consider the network shown in figuré 3 and as-
sume that each eveRt. j € {a, ..., h} is primitive. A decom-
position satisfying the requirements of theoifdm 1 is inida

in figure[7 — the dashed lines indicate the initialization and
termination sets for the subnetworks. The factorization fo
the network is

N=P'o(PPLPY) o (PUPT)oPPo (PPLIPY).

This factorization corresponds to maximizing from the left
hand side. However, if we maximize from the right we ob-
tain the factorization

N=P"UP)o(PCUPPLPT)oPYoPPoP?

In either case there is a concatenation of five networks — that
is the minimum number possible.



Direction f ime and space evolution 3. The result suggests the utility of starting with a small
e : : functional asynchronous network; understanding the
: — \ \ : ‘ structure in depth and then then evolving to optimize
function (for example by adding feedback).

2
3
o
5

Nodes

4. There are many as yet unexplored issues such as bifur-
cation, hidden deadlocks, and théeets of noise.

Nodes

© © N o

5. There is the problem of how far one can determine in-
ternal structure on the basis of infauitput time series
data.

FIG. 7. Factorization of network of figufé 3.
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