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1 IntrodutionTraditionally most global atmospheri models used for numerial weather predition have used a latitude-longitude grid for disretising the equations of motion, though inreasingly many modelling groups now use(or are developing) some form of quasi-uniform grid. The latitude-longitude grid has many desirable prop-erties suh as orthogonality, symmetry and a logially retangular struture. However, with the inreasingnumber of proessor ores expeted in future generations of high performane omputers, the ommunia-tion bottlenek implied by the polar singularities in latitude-longitude grids has stimulated the interest in arange of quasi-uniform alternative grids and ompat numerial methods. A number of quasi-uniform gridshave proved popular in the atmospheri modelling ommunity inluding: the ubed sphere, (e.g. Taylor andFournier, 2010; Ullrih et al., 2010); subdivision of the iosahedron using triangular (e.g. Majewski et al.,2002) and hexagonal elements (e.g. Satoh et al., 2008; Skamarok et al., 2012; Gassmann, 2013).A range of these quasi-uniform alternatives to the latitude-longitude grid for global atmospheri modelsis reviewed in Staniforth and Thuburn (2012). They listed a number of essential and desirable properties foran atmospheri model. These an be summarised as requiring the disretisation to: have good onservationproperties; mimi ertain ontinuous vetor alulus identities; have an aurate representation of balaneand adjustment; be free of unphysial modes (either through grid imprinting or omputational modes); andhave auray at least approahing seond order.Cotter and Shipton (2012) proposed a number of families of mixed �nite elements for quasi-uniformhorizontal grids (where mixed refers to the use of di�erent funtion spaes for the dependent variables, seeAurihio et al., 2004 for a review of mixed elements) whih preserve a number of the desirable propertiesidenti�ed by Staniforth and Thuburn (2012). These methods rely upon de�ning appropriate funtion spaes
Vi and operator mappings between the spaes. For example, in two dimensions:

∇⊥ ∇.
V0 −→ V1 −→ V2,

L99

k.∇̃×
L99

∇̃

(1)where the ∇⊥ operator is k ×∇, i.e. the rotation of the gradient operator by 90 degrees antilokwise withunit vetor k pointing out of the plane. The di�erential operators along solid lines map from Vi → Vi+1 e.g.for a vetor w ∈ V1, then ∇.w ∈ V2. The di�erential operators along dashed lines map from Vi → Vi−1 inthe weak sense obtained via integration by parts, used in (17) and (25) below, for example the weak gradientoperator ∇̃ maps a salar Φ ∈ V2 to a vetor ∇̃Φ ∈ V1 and is de�ned as � v.∇̃Φda =
�

v.nΦdl−
�

(∇.v) Φdafor all v ∈ V1. In a shallow water ontext the streamfuntion and potential vortiity ψ, q ∈ V0, veloity
u ∈ V1 and geopotential Φ ∈ V2. One partiular family of �nite element omplexes suggested by Cotter andShipton (2012) is the family of Raviart-Thomas elements (RTk) (Raviart and Thomas, 1977) for veloitypaired with a ontinuous bi-polynomial representation of salars in V0 (Qk+1) and a disontinuous bi-polynomial representation of salars in V2

(
QDG

k

) denoted Qk+1 − RTk − QDG
k , on quadrilaterals. Thelowest order member of this family, Q1 − RT0 − QDG

0 , orresponds to the mixed �nite element analogueof the C-grid �nite di�erene disretisation in that the same number and position of degrees of freedom isobtained. For triangular elements the polynomial spae Pk is used instead of the tensor produt spae Qk. Atthe lowest order both PDG
0 and QDG

0 represent disontinuous �elds that are onstant within the element andan be used interhangeably. For notational simpliity the omplex of funtions spaes Qk+1 −RTk −QDG
kwill be referred by only the vetor spae RTk from here on.At large sales atmospheri motion is dominated by balane and adjustment. Geostrophi and hydrostatiadjustment our through the emission of inertia-gravity and aousti waves and the disrete representationof balane an be analysed through the dispersion relation of the andidate numerial sheme. A C-grid stag-gering, where edge normal veloity omponents are staggered with respet to the mass variable is ommonlyused to ahieve good dispersion properties, (Arakawa and Lamb, 1977). At lowest order ompatible mixed�nite elements an be viewed as the �nite element generalisation of the C-grid staggering with the �exibilityof using the �nite element methodology to extend the disretisation to arbitrary order. Although using higherorder elements improves the dispersion properties for a range of the spetrum, problems an arise, due to theinreased number of branhes of solutions, in the form of spetral gaps whih an manifested themselves astrapped or distorted waves, for example in the RT1 (Staniforth et al., 2013) and spetral elements (Melvinet al., 2012) methods. In a omplete model of the atmosphere the physial parametrisations and boundary2



Figure 1: Primal (solid lines) and dual (dashed lines) grid where primal ell entres (�lled irles) are dualverties and dual ell entres (open irles) are primal verties.onditions an fore at sales lose the grid sale. Therefore, any unusual behaviour, even if near the limitsof resolution, would be of onern. These problems an often be mitigated through various methods suhas partial-mass lumping (Staniforth et al., 2013), modi�ed quadrature (Ullrih, 2014) or most ommonlydi�usion. The dispersion properties of a variety of other mixed elements was disussed by Le Roux (2012)(and referenes therein) to whih the interested reader is referred for a more general disussion of mixed�nite element dispersion properties. At the lowest order on quadrilaterals, there is a one-to-one mapping ofanalytial roots to the dispersion relation with the disrete branhes (i.e. for the shallow water equationsthere are two inertia-gravity wave branhes and one Rossby wave branh) and therefore spetral gaps arenot a problem. However, on non-quadrilateral grids the C-grid staggering leads to a hange in the ratio ofveloity to mass degrees of freedom, suh that there are either too many veloity degrees of freedom (as fora C-grid hexagon) or too many mass degrees of freedom (as for a C-grid triangle). This imbalane gives riseto spurious omputational Rossby (Thuburn, 2008) or inertia-gravity (Danilov, 2010) modes respetively.At higher orders the mixed element approah allows the degree of freedom ratio to be hosen so as to retainthe desired 2:1 ratio, (Cotter and Shipton, 2012), though this is not a su�ient requirement to obtain gooddispersion properties.A methodology for obtaining mimeti disretisations of the shallow water equations is presented byCotter and Thuburn (2014) using �nite element exterior alulus. They propose two methods: termed�primal� and �primal-dual� formulations. The �primal-dual� formulation of Cotter and Thuburn (2014)makes use of elements de�ned on both the primal and dual grid, Fig. 1, in addition to mappings between theorresponding funtion spaes. As noted in Cotter and Thuburn (2014) the use of a primal-dual formulationhas the advantage over the primal only method of using the dual, disontinuous, representation of potentialvortiity, therefore permitting the use of a wider range of disontinuous Galerkin/�nite volume methodsfor omputing vortiity �uxes. In order to onstrut the primal and dual grid elements we use a methodproposed by Christiansen (2008) (extending the ideas of Bu�a and Christiansen (2007)), whih allows theprimal and dual ompound elements to be onstruted out of the same set of sub-elements.In addition this method also has the added bene�t of providing a straightforward method for ompoundelements to be onstruted for arbitrary polygons and this property will be used to onstrut a ompound
RT0 element on a hexagonal mesh in addition to the ompound RT0 element on a quadrilateral mesh.A omparison of the resultant ompound elements, with both the C-grid �nite di�erene and standardprimal-onlyRT0 elements on quadrilateral grids and with a C-grid �nite di�erene sheme on a hexagonal grid(where there is no standard �nite element formulation), will be the fous of this paper. Although the mimetiproperties of the ompound �nite elements help to ensure that ertain onservation and balane propertiesare well aptured even on quasi-uniform meshes, they do not diretly imply aurate wave dispersion. It istherefore important to hek that their wave dispersion properties are at least as good as those of a C-grid.Investigation of the dispersion properties of the ompound elements will be the partiular fous of this paper;this provides useful insight into both the adjustment in response to imbalane and also the presene andbehavior of any omputational modes. Of partiular interest is the group veloity, whih governs the speed3
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Figure 2: Triangular element with verties νi, edges opposite verties ei of length li. Tangent and (outward)normal vetors to edge ei are denoted ti,ni respetively. di is the perpendiular distane from edge i tovertex i.and diretion of propagation of disturbanes. It is well known that the C-grid disretisation slows downpropagation suh that the highest frequeny resolved mode (the 2h wave, where h is the element width) haszero group veloity (.f, a olloated A-grid disretisation where the 4h wave has zero group veloity and allwaves with wavenumber >2h have a group veloity with the wrong sign).The rest of the paper is set out as follows. The P1 − RT0 − PDG
0 �nite element spae on triangularelements is reviewed in Setion 2. Setion 3 desribes how the ompound elements are formed from thesub-elements and formulates the basis funtions on the ompound element. The disrete linear shallowwater equations are formed in Setion 4 for uniform elements. The dispersion properties of the ompoundelements are investigated in Setion 5 and ompared with the well known C-grid �nite di�erene and standard

RT0 disretisations. Numerial simulations are performed in Setion 6 to on�rm some of the theoretialproperties derived earlier, and �nally onlusions are drawn in Setion 7.2 P1 − RT0 − P
DG
0 Triangular elementsThe P1 − RT0 − PDG

0 triangular elements have two funtion spaes for salars (P1 and PDG
0 ) and onefor vetors (RT0). The P1 spae ontains salars that vary linearly within eah element and are ontinuousbetween elements, there are three degrees of freedom per element loated at the element verties and sharedbetween all elements that share the vertex. Vetors have ontinuous normal omponents at element edges(with a onstant normal omponent along the edge), within the element the vetor �eld varies linearly and isurl free. As a result of this the tangential omponents are disontinuous at element edges. There are threedegrees of freedom per element for a vetor �eld, one per edge, whih are shared with elements that share theedge. The PDG

0 spae ontains salars that have a pieewise onstant representation and one salar degreeof freedom per element. The loation of degrees of freedom is therefore the same as for a triangular C-griddisretisation. For the shallow water equations this results in a 3:2 veloity to height degree of freedom ratioand therefore the triangular based RT0 disretisation su�ers from the same omputational inertia-gravitywave mode as the C-grid (Danilov, 2010; Le Roux, 2012).Consider the triangular element as shown in Fig. 2 with verties νi loated at (xi, yi). The baryentrioordinates of a point x = (x, y) are given by λ = (λ1, λ2, λ3) where λj = 1 at vertex i = j and λj = 0 atvertex i 6= j, see Coxeter (1989) for details. The basis funtions used to onstrut the RT0 elements onsistof: pieewise linear funtions in spae V0 that are ontinuous between elements
χi (x, y) ≡ λi (x, y) , (2)4



∇χi (x, y) ≡ ∇λi (x, y) = −ni

di

∇.wi (x, y) = 2 ≡ 2ρ (x, y)
k.∇× w (x, y)i = 0

∇⊥χi (x, y) = − ti

di
≡ wk(x,y)−wj(x,y)

lidiTable 1: Useful relationships of the triangular P1 −RT 0 − P0 basis funtions.
v1

v2 v3Figure 3: Basis funtion w2 for a triangular RT0 element assoiated with edge 2 as desribed in Fig. 2.where i = 1, 2, 3 indiates whih vertex of the element χi is assoiated with; vetors with onstant normalomponents along edges in V1

wi (x, y) ≡ λj (x, y) lktk − λk (x, y) ljtj , (3)where i = 1, 2, 3 and j and k are yli inrements of i and j respetively, as an example w2 is shown inFig.3; and pieewise onstant funtions in the funtion spae V2

ρ (x, y) ≡ 1. (4)Variables in eah funtion spae an be expressed as weighted sums of the appropriate basis funtions. Someuseful properties of the basis funtions that will be needed in the following setions are given in Table 1.3 Compound RT0 elementsThe ompound elements are onstruted by �rst subdividing the polygonal element into a number ofsmaller sub-elements. The number and shape of the sub-elements is onstrained by the need to onsistentlybuild both the primal and dual grid out of the same set of sub-elements and therefore the overlap area betweenthe primal and dual grid needs to be exatly divided into a number of sub-elements. For a polygonal grid theprimal-dual overlap is a quadrilateral, in the form of a kite. Therefore, the sub-elements are required to beeither triangles (by further subdividing the kite) or quadrilaterals. Sine any polygonal shape an be dividedinto triangles, and triangles are also onvenient for approximating urved surfaes (suh as the sphere) byplanar faets, this hoie of sub-elements o�ers greater �exibility for future implementation on nonuniformgrids, see Fig. 4. For example, although a hexagon ould be sub-divided into only six triangles by joiningeah vertex to the entre of the element, this would be inonsistent with the orresponding subdivision of thedual element triangle, whih would be subdivided into three smaller triangles through joining eah vertex tothe entre of the dual element.To onstrut the basis funtions for the ompound elements we use the harmoni extension ideas ofChristiansen (2008). We wish to onstrut the ompound element funtion spaes V
(C)
0 , V

(C)
1 , V

(C)
2 out ofthe larger spaes of the sub-element funtion spaes V0, V1, V2. For example, to onstrut a basis funtion,5



(a) (b)Figure 4: Subdivision of the primal-hexagonal and dual-triangular grids using (a) inonsistent subdivision(the sub-elements on the primal and dual grid are not idential) with 6 sub-elements for the primal-hexagonalompound elements, indiated by vertial shading and 3 sub-elements for the dual-triangular ompoundelements, indiated by horizontal shading and (b) onsistent subdivision (the sub-elements on the primaland dual grid are idential) using 12 sub-elements for the primal-hexagonal ompound elements and 6 sub-elements for the dual ompound-triangular elements.
w ∈ V

(C)
1 , where the supersript denotes appliation to the onstruted ompound element, �rst boundaryonditions are imposed, namely that the normal omponent of w is nonzero and onstant only along oneedge of the polygonal element. Then the basis funtion is extended harmonially into the interior of theelement, that is, to satisfy

∇ (∇.w) ≡ 0, (5)
k.∇× w ≡ 0. (6)Similar onstrutions hold for basis funtions in other spaes. Unfortunately exat solutions of (5) and (6)do not generally have analyti expressions. However, a disrete version of (5) and (6) an be solved bydividing eah polygonal element into triangular sub elements and using an RT0 �nite element disretisationon the spae of sub-elements, thus giving a disrete harmoni extension. Moreover, it an be shown that thefuntion spaes obtained in this way are ompatible (Christiansen, 2008).Consider a ompound element made up of n triangular sub-elements Ti, i = 1, .., n, where n = 8 fora ompound quadrilateral element and n = 12 for a ompound hexagonal element, Fig. 5. A variable isexpanded in terms of ompound basis funtions in the same way as for a non-ompound element but withtime dependent oe�ients loated as in Fig 6. Hene for variables in the ompound funtion spaes V

(C)
i thatwe wish to onstrut: (ψ, u, Φ) ∈

(
V

(C)
0 , V

(C)
1 , V

(C)
2

) the expansions are
ψ (x, t) =

nvert∑

k=1

ψk (t)χ
(C)
k (x) , (7)

u (x, t) =

nedge∑

k=1

uk (t)w
(C)
k (x) , (8)

Φ (x, t) = Φ (t) ρ(C) (x) , (9)where (χ(C)
k , w

(C)
k , ρ(C)

) are the ompound basis funtions and nvert and nedge are the number of externalverties and edges on the ompound element respetively, i.e. both nvert and nedge are 4 for a quadrilateral6
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(b)Figure 5: (a) Quadrilateral element made up of 8 triangular RT0 elements, T1, .., T8, the ompound elementis formed by gluing the sub-elements together. Arrows indiate loations of the veloity basis funtions w
(j)
iassoiated with eah sub-element j. (b) Similar onstrution an be made for a ompound hexagonal elementusing 12 triangular RT0 elements. Note the onvention that edge 1 of the sub-element is on the outer edgeof the ompound element. 7
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χ
(C)
k (x) =

n∑

j=1

nverts∑

i=1

α
(j)
i χ

(j)
i (x) , (10)

w(C) (x) =
n∑

j=1

nedges∑

i=1

β
(j)
i w

(j)
i (x) , (11)

ρ(C) (x) =

n∑

j=1

γ(j)ρ(j) (x) , (12)where n is the number of sub-elements, and nverts and nedges are the number of verties and edges on asub-element, whih for the triangles used here are always 3, (see Fig. 5 for loations of the w
(j)
i sub-elementbasis funtions). For the right hand side sub-element terms the supersript refers to the sub-element indexand the subsript refers to the edge or vertex of the sub-element whih follows the onvention that edge1 lies on the edge of the ompound element and the edge index inreases in the antilokwise diretion,and vertex i is opposite edge i. The sub-element basis funtions ψ(j)

i , w
(j)
i and ρ(j) take their usual valueinside sub-element j and are zero outside of it. It remains then to �nd the oe�ients α, β and γ for eahompound basis funtion, this is done through imposing disrete versions of (5) and (6) along with boundaryonditions.For a V2 �eld eah sub-element (j) has a onstant value ρ(j), therefore to ensure the ompound elementbasis funtion is ontinuous aross sub-element boundaries requires

γ(j) ≡ const = 1, ∀j = 1, .., n. (13)Therefore ompound basis funtion, ρ(C) = 1 is onstant throughout the ompound element, as for a standardnon-ompound RT0 element.To form the ompound V1 basis funtions three sets of onstraints are applied. First, the normal �uxalong eah edge of the ompound element is required to be ontinuous and onstant, requiring
β

(i)
1 di = β

(j)
1 dj = 0, or const, (14)8



where β(i)
1 , β

(j)
1 are the oe�ients of the expansion (11) along a ompound element edge, and di, dj are theperpendiular distanes from the orresponding verties to the edges of the sub-element. For a ompoundbasis funtion w

(c)
k then β

(i)
1 di = const if edge 1 of sub-element i is a setion of ompound edge k and

β
(i)
1 di = 0 otherwise, (see aption of Fig. 5) . Seond, mimiking the non-ompound element, the divergenewithin the ompound element is required to be onstant, this is equivalent to enforing (5). Using Table 1and (11) this an be expressed as

3∑

i=1

s
(j)
i β

(j)
i (t) =

3∑

i=1

s
(k)
i β

(k)
i (t), ∀j, k = 1, .., n, (15)with s(j)i = ±1 being the sign of ∇.w(j)

i . The �nal onstraint on the V1 basis is that, mimiking k.∇×w = 0,and equivalent to enforing (6), a measure of vortiity is required to vanish inside the ompound element.The vortiity is given by ξ = k.∇ × w(C). However the url of the veloity is not de�ned and so the weakform of the vortiity is used and it is demanded that this weak formulation of vortiity vanishes inside theompound element. For a test funtion χ ∈ V0 (note that χ /∈ V
(C)
0 for the ompound element funtionspae V

(C)
0 whih is a subset of V0) the onstraint that an integrated measure of the vortiity vanishes overthe ompound element ec, an be expressed as�

ec

χξds ≡
�

ec

χ
(
k.∇̃ × w(C)

)
ds = 0. (16)Evaluating the url in the weak sense by integrating by parts this beomes

−
�

ec

∇⊥χ.w(C)ds = 0. (17)Taking χ loated at the entre of the ompound element, yields, using Table 1
−

n∑

j=1

�
Tj

∇⊥χ.
3∑

i=1

(
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(j)
i w

(j)
i

)
ds =
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Tj
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(j)
1

d
(j)
1

.

3∑

i=1

(
β

(j)
i w

(j)
i

)
ds = 0, (18)where t

(j)
1 is the tangent vetor to the edge of sub-element j lying on the boundary of the ompound element.Using (14), (15) and (18) the values of β an be determined for eah ompound basis funtion. Note thatwhen the ompound elements are onstruted in this way, (1) holds for V

(C)
0 , V

(C)
1 , V

(C)
2 ,For the quadrilateral element in Fig 5 (a) the ompound veloity basis funtion assoiated with edge 1,Fig 6 (a), is:
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)]
, (19)where d(C)

1 is the perpendiular distane from the ompound edge 1 to the enter of the element, i.e. halfthe element width. The other ompound basis funtions, w(C)
j , j = 2, .., 4, an be obtained in sequene from

w
(C)
k , k = 1, .., 3 by inreasing the sub-element index by 2 (modulo 8) and multiplying by −1. In additiona normalisation has been applied so that for a unit element w

(C)
j .n

(C)
j = 1 along edge j. Fig. 7 (a) shows

w
(C)
1 in the ompound element. Note, that even for a uniform ompound element on a plane, as onsideredhere, this results in a onsiderably di�erent set of basis funtions to the non-ompound RT0 element on aquadrilateral where the equivalent to (19) would be

w
quad
1 ≡ (x− x−)

x+ − x−
i, (20)where x+ and x− indiate the positions of the right- and left-hand edges of the element respetively.9



(a) (b)Figure 7: Compound basis funtions for a (a) ompound quadrilateral (19), and (b) ompound hexagon (21).For the hexagonal element in Fig. 5 (b) the ompound basis funtion assoiated with edge 1, Fig 6 (b),is:
w

(C)
1 d

(C)
1 =

1

6

[(
6w

(1)
1 − 5w

(1)
3

)
+
(
6w

(2)
1 − 5w

(2)
2

)
+
(
5w

(3)
3 − 4w

(3)
2

)
+
(
4w

(4)
3 − 3w

(4)
2

) (21)
+
(
3w

(5)
3 − 2w

(5)
2

)
+
(
2w

(6)
3 − w

(6)
2

)
+
(
w

(7)
3

)
+
(
w

(8)
2

)
+
(
2w

(9)
2 − w

(9)
3

)

+
(
3w

(10)
2 − 2w

(10)
3

)
+
(
4w

(11)
2 − 3w

(11)
3

)
+
(
5w

(12)
2 − 4w

(12)
3

)]
,and w

(C)
j , j = 2, .., 6 an again be obtained in sequene from w

(C)
k , k = 1, .., 5 by inreasing the sub-elementindex by 2 (modulo 12) and multiplying by −1 and the same normalisation as used for the quadrilateralelements has been applied. Fig. 7 (b) shows w

(C)
1 in a hexagonal ompound element.In priniple the preeding method ould be applied to reate a primal grid made of ompound triangularelements (where eah ompound triangle is subdivided into six sub-elements), however, applying the on-straints in this setion, the resulting ompound element, for a uniform subdivision, inherits the same basisfuntions and hene dispersion properties as the non-ompound triangular RT0 element that was analysedby Le Roux et al. (2008); Le Roux (2012).It is worth noting that for regular geometry it is possible to form the ompound elements by hand,however, for a more general geometry this would be very time onsuming and would not be reommended,instead it is suggested to apply the onstraints numerially.For the linear shallow water equations onsidered here the ompound V

(C)
0 �eld is not needed and so theomputations for the ompound basis funtions χ(C) are omitted, though the proess for omputing themfollows a similar method to the V

(c)
1 and V

(c)
2 �elds.4 Disrete equationsThe 2D ontinuous linear shallow water equations on an f−plane are
∂Φ

∂t
+ Φ0∇.u = 0, (22)

∂u

∂t
+ ∇Φ + fu⊥ = 0, (23)10



with onstant referene geopotential Φ0. Rewriting these in the weak form, introduing test funtions ρ and
w in the geopotential and veloity spae respetively and integrating over a domain Ω ∈ R

2 yields�
Ω

ρ
∂Φ

∂t
da+ Φ0

�
Ω

ρ∇.uda = 0, (24)�
Ω

w.
∂u

∂t
da−

�
Ω

Φ∇.wda+

�
Ω

fw.u⊥da = 0, (25)where the ∇Φ term in (25) is evaluated in the weak sense and has been integrated by parts where periodiboundary onditions have been assumed. Substituting (8) and (9) into (24) and (25) and integrating over theompound elements gives the element-wise disrete equations. The spatially disrete equations are writtenin matrix-vetor form as a sum over eah element-wise disrete equation, whih are
∑

e

MΦ
∂Φ̂(e)

∂t
+ Φ0Dû

(e) = 0, (26)and ∑

e

Mu

∂û(e)

∂t
−DT Φ̂(e) + F û(e) = 0, (27)for the ontinuity and momentum equations respetively. Φ̂(e) and û(e) are the vetors of geopotential andveloity degrees of freedom for element e respetively. Eah ompound element e has a single geopotentialdegree of freedom assoiated with it, and either 4 (for quads) or 6 (for hexagons) veloity degrees of freedom.The element degree of freedom vetors are therefore.
Φ̂(e) ≡ [Φ] , (28)

û
(e)
quad ≡

[
u+, u−, v+, v−

]T
, (29)

û
(e)
hex ≡

[
u+, u−, v+, v−, w+, w− ]T

. (30)The veloity omponents u, v, w point in the x1, x2, x3 diretions respetively (see (37) & (46) below) andthe supersripts indiate whether the omponent points out of (+) or into (−) the element. In addition thereis a 1-1 mapping between these omponents and u(c)
j as used in Fig. 6 given by

[
u+, u−, v+, v−

]
≡
[
u

(c)
1 , u

(c)
3 , u

(c)
2 , u

(c)
4

] (31)
[
u+, u−, v+, v−, w+, w−] ≡

[
u

(c)
1 , u

(c)
4 , u

(c)
2 , u

(c)
5 , u

(c)
3 , u

(c)
6

] (32)for quadrilaterals and hexagons respetively. In addition: Mu andMΦ are the mass matries; D is the matrixassoiated with the divergene operator; its transposeDT is the matrix assoiated with the gradient operatorand F is the operator assoiated with fk×. These are given for uniform elements of width h in Appendix A.Note that the resulting operator matries for both a C-grid �nite di�erene and an RT0 based disretisation(using both ompound and, on quadrilaterals, regular basis funtions) di�er only in the veloity mass matrix
Mu. This is true for both the quadrilateral and hexagonal based methods. See Appendix A for details.5 Dispersion AnalysisThe disrete dispersion relation for both quadrilateral and hexagonal ompound elements using the samemethodology as Thuburn (2008) and Staniforth et al. (2013) is adopted. Begin by seeking solutions of theform

Φ = P exp [i (k.x − ωt)] , (33)
u± = U exp [i (k.x − ωt)] , (34)
v± = V exp [i (k.x − ωt)] , (35)
w± = W exp [i (k.x − ωt)] , (36)with x ≡ (x, y) , k ≡ (k, l) . 11
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(d)Figure 8: Normalised (ωh/√Φ0

) dispersion relation for gravity-wave equations, (f ≡ 0): (a) Exat solution,(b) C-grid �nite di�erene, () standard quadrilateral RT0 element and (d) ompound quadrilateral RT0element. Contour interval 0.25. Solid blak ontour shows the e�etive resolution, the region within whihthe dispersion relation error ≤ 1%.5.1 Quadrilateral ElementsIt is onvenient to work in terms of oordinate diretions normal to element edges, therefore, for quadri-lateral elements de�ne
(x1, x2) ≡ (x, y) , (37)
(k1, k2) ≡ (k, l) . (38)Substituting (33)-(35) into (26) and (27) with the mass matrix Mu as given in Appendix A (A.4) for theompound elements and using (37)-(38) gives

−ωP + 2
Φ0

h
[S1U + S2V ] = 0, (39)

− 1

12
ω
([

7C2
1 + 5

]
U − S2S1V

)
+ 2S1

P

h
+ ifC1C2V = 0, (40)

− 1

12
ω
([

7C2
2 + 5

]
V − S1S2U

)
+ 2S2

P

h
− ifC1C2U = 0 (41)with Sj ≡ sin (kjh/2) and Cj ≡ cos (kjh/2) with j = 1, 2. Writing this in matrix form results in




−ω 2Φ0

h
S1 2Φ0

h
S2

2S1

h
− 1

12ω
(
7C2

1 + 5
)

1
12ωS1S2 + ifC1C2

2S2

h
1
12ωS1S2 − ifC1C2 − 1

12ω
(
7C2

2 + 5
)





P
U
V


 = 0, (42)
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()Figure 9: Normalised (ω/f) dispersion relation for inertia-wave equations (Φ0 ≡ 0): (a) C-grid �nite di�er-ene, (b) standard quadrilateral RT0 element and () ompound quadrilateral RT0 element. Contour interval
0.1. Solid blak ontour shows the e�etive resolution, the region within whih the dispersion relation error
≤ 1%..
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yielding the dispersion relation
ω

{
−
( ω

12

)2 [(
7C2

2 + 5
) (

7C2
1 + 5

)
− S2

2S
2
1

]
+ f2C2

1C
2
2 +

1

3

Φ0

h2

[
S2

2

(
7C2

1 + 5 + S2
1

)
+ S2

1

(
7C2

2 + 5 + S2
2

)]}
= 0(43)whih has solutions:

ω = 0,±12

√
1
3

Φ0

h2 [S2
2 (S2

1 + 7C2
1 + 5) + S2

1 (S2
2 + 7C2

2 + 5)] + f2C2
1C

2
2

[(7C2
2 + 5) (7C2

1 + 5) − S2
2S

2
1 ]

. (44)Note the presene of the ω = 0 root is guaranteed by the mimeti properties of the sheme, even on non-regular meshes. For small (kh, lh) it an be veri�ed that
ω ∼ 0,±

{
ω0 +

1

96ω0

[
3Φ0

(
k4 + l4

)
+ 2Φ0k

2l2 − 5f2
(
k2 + l2

)]
h2 +O

(
h4
)}

, (45)with ω0 =
√

Φ0 (k2 + l2) + f2, providing a useful hek on the orretness of (44) and showing that shemeis seond order aurate on the regular grid used here.For pure gravity waves (f ≡ 0) the positive non-zero root of (44) is shown in Fig. 8 (d) along with the (a)exat, (b) C-grid �nite di�erene and () non-ompound RT0 quadrilateral element results for omparison.The ompound element, panel (d), an be seen to improve upon the isotropy of the dispersion relationompared with both the C-grid, panel (b), and the non-ompound RT0 element, panel () at least for small
k. For pure inertia waves (Φ0 ≡ 0) the positive non-zero root of (44) is shown in Fig. 9, again along withthe C-grid �nite di�erene and non-ompound RT0 quadrilateral element results for omparison. In thisase the exat solution is unity and is therefore omitted. Here, all three methods produe very similarresults, although frequeny for the RT0 elements drops o� more slowly than the C-grid method. Cross-setions of Figs 8 and 9 along entroid-edge and entroid-node slies are shown in Fig 10. The entroid-edgeslies (panels (a) and ()) are the dispersion relations that would be obtained for a 1d model. For gravitywaves the ompound element redues the overestimation of the frequeny, inreasing the auray for largewavenumbers. This result is partially reversed for inertia waves where underestimation of the frequenyin the standard RT0 element is made worse in the ompound method. The entroid-node slies show thatfor gravity waves (panel (b)) the standard and ompound elements produe the same overestimation of thefrequeny whilst for inertia waves (panel (d)) the ompound element again inreases the underestimation ofthe of frequeny slightly when ompared to the standard elements.The x-omponent of the group veloity ∂ω/∂k for the gravity wave equation is shown in Fig. 11. Both
RT0 methods exhibit overshoots in the group veloity, although the overshoot is greatly redued for theompound element, Max (Cg) ≈ 1.2 at (kh, lh) =

(
2atan

(
3/

√
5
)
, 0
), ompared to the standard element,

Max (Cg) ≈ 1.4 at (kh, lh) = (2π/3, 0). Due to symmetry the same maximum values are found for the yomponent if kh and lh are swapped. It should be noted that Cg −→ 0 at k = kmax for all three shemes.5.2 Hexagonal ElementsAs before it is onvenient to work in terms of diretions normal to element edges and so for hexagonalelements
(x1, x2, x3) ≡

(
x,−1

2
x+

√
3

2
y,−1

2
x−

√
3

2
y

)
, (46)

(k1, k2, k3) ≡
(
k,−1

2
k +

√
3

2
l,−1

2
k −

√
3

2
l

)
. (47)Substituting (33)-(36) into (26)-(27) with the mass matrix Mu from the ompound elements and using(46)-(47) yields

−ωP +
4

3

Φ0

h
(S1U + S2V + S3W ) = 0, (48)14
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(d)Figure 11: Normalised group veloity for the gravity-wave equations: (a) Exat solution (b) C-grid �nitedi�erene, () non-ompound quadrilateral RT0 element and (d) ompound quadrilateral RT 0 element. Solidblak lines indiate the zero ontour. All plots show the x−omponent of group veloity, the y−omponentan be obtained by rotation of -90 degrees. Contour interval 0.1.
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ω
[
C1U + C̃3V + C̃2W

]
+ 2S1

P

h
+
(
Ĉ3V − Ĉ2W

)
= 0, (49)

ω
[
C2V + C̃1W + C̃3U

]
+ 2S2

P

h
+
(
Ĉ1W − Ĉ3U

)
= 0, (50)

ω
[
C3W + C̃2U + C̃1V

]
+ 2S3

P

h
+
(
Ĉ2U − Ĉ1V

)
= 0. (51)with

C̃p ≡ − 1

108
(−28CqCr + 10Cp) , (52)

Ĉp ≡ i

3
√

3
f (2CqCr + Cp) , (53)

Cp = − 1

108

(
50 + 40C2

p

) (54)where p = 1, 2, 3 and q, r are yli inrements of p and q respetively. Writing (48)-(51) in matrix formgives 


−ω 4
3

Φ0

h
S1

4
3
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 = 0. (55)This an be solved to give the dispersion relation (whih is omitted for brevity). There are four rootsorresponding to two inertia-gravity waves solutions and two Rossby modes (one of whih is spurious, aswith the C-grid disretisation due to the 3:1 veloity to geopotential degree of freedom ratio). For small

(kh, lh) it an again be veri�ed that
ω ∼ ±0,±

{
ω0 +

1

288ω0

(
k2 + l2

) [
8Φ0

(
k2 + l2

)
− 9f2

]
h2 +O(h4)

}
, (56)with ω0 =

√
Φ0 (k2 + l2) + f2 as before, providing a useful hek on the orretness of (55) and showingthat, as with the quadrilateral elements, the sheme is seond order aurate on regular grids. Again thepresene of the ω = 0 root is guaranteed by the mimeti properties of the sheme. The seond zero rootis the omputational Rossby mode that due to the f-plane approximation made here degenerates to a zerofrequeny mode. Thuburn (2008) analysed the impat of this extra root in the dispersion relation andThuburn et al. (2013) investigate the impat of it on a numerial simulation showing that if the potentialvortiity advetion is well handled then the omputational mode has little e�et.For pure gravity waves (f ≡ 0) the positive non-zero root of (55) is shown in Fig. 12 along with the exatand C-grid �nite di�erene results for omparison. The limits of the domain are given by the �rst Brillouinzone of the hexagonal lattie and an be pratially determined by observing where the dispersion relationstarts to repeat itself; the wavenumber ranges are lh ∈

(
− 2√

3
π, 2√

3
π
) and kh ∈

(
− 4

3π + |lh|√
3
, 4

3π − |lh|√
3

).Both the ompound RT0 and C-grid disretisations show improved isotropy ompared with the equivalentquadrilateral disretisations, and again this is improved in the ompound element ase ompared with theC-grid. Cross-setions of Figs 12 and 13 along entroid-edge and entroid-node slies are shown in Fig14. In ommon with both the standard and ompound quadrilateral elements, the ompound hexagonalelement overestimates the frequeny for large wavenumbers for gravity waves ompared with the C-gridwhih underestimates the frequeny. However, the estimation error in the ompound element is smalleras an be seen from the ompound dispersion relation lying loser to the exat solution. As with thequadrilateral elements, the ompound RT0 elements exhibit spuriously high frequeny waves, though this ismuh redued ompared with the quadrilateral elements, as shown in Table 2.For pure inertia waves (Φ0 ≡ 0) the positive non-zero roots are shown in Fig. 13, again along with theC-grid �nite di�erene results for omparison. In this ase the exat solution is unity and so is not shown.17
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(f)Figure 15: Normalised group veloity for the gravity-wave equations: (a)-() x-omponent & (d)-(f) y-omponent, with (a) & (d) exat solution, (b) & (e) C-grid �nite di�erene and () & (f) ompound hexagonal
RT0 element. Solid blak lines indiate the zero ontour. Contour interval 0.1.

Sheme ωnum
max /ω

exact
maxQuad C-grid 0.6366Quad RT0 1.103Compound Quad RT0 1.103Hex C-grid 0.585Compound Hex RT0 1.012Table 2: Ratio of maximum numerial frequeny to maximum exat frequeny ωnum

max /ω
exact
max for the gravitywave equations with quadrilateral and hexagonal elements. These maxima our at the orners of the plotsin �gures 8 and 12, that is at kh = lh = ±π for the quadrilateral elements and at kjh = 4π/3 for hexagonalelements where j = 1 or 2 or 3 and kj is given by one of (47).
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Sheme E�etive resolution ε = 0.01 E�etive resolution ε = 0.1Gravity Waves Inertia Waves Gravity Waves Inertia WavesQuadrilateral C-Grid 10.1h 22.20h 4.65h 6.97hQuadrilateral RT0 10.47h 13.02h 4.7h 4.50hQuadrilateral Compound RT0 9.15h 14.46h 4.14h 4.88hHexagonal C-Grid 9.17h 20.27h 4.22h 6.30hHexagonal Compound RT0 8.83h 11.21h 4.07h 3.80hTable 3: E�etive resolution for gravity-wave and inertia-wave dispersion with error levels ε = 0.01, 0.1 ofthe di�erent spatial disretisations.As with the quadrilateral elements, there is less di�erene between the disretisations for the inertia-wavelimit, but again the ompound element frequeny deays more slowly than the C-grid. In ontrast with thegravity wave ase both the ompound and C-grid methods underestimate the frequeny, although again theerror for the ompound element is smaller than the C-grid.The x− and y−omponents of the group veloity are shown in Fig. 15. Again the ompound elementsshow a spurious speeding up of some waves with Max (Cg) ≈ 1.3, ourring at (kh, lh) ≈ (2.42, 0). In ontrastwith the quadrilateral elements there are now small regions of wavenumber spae where a omponent of thegroup veloity vetor spuriously hanges sign for both the C-grid and RT0 disretisations, this means thatwavepakets in these regions will have a omponent in either the x or y diretion that travels in the wrongdiretion. These regions are however both small in extent and at the limits of the resolvable resolution, inaddition the magnitude of the group veloity in these regions is small and so the e�et on the auray ofthe model is likely to be small, .f. a olloated A-grid method where (in 1-dimension) half the spetrumhas the wrong sign of group veloity and of up to the same magnitude as the exat solution. Additionallysine these regions of negative group veloity are for small sale waves and sine nonlinear models generallydissipate on the small sales this will likely further redue the impat of these regions of negative groupveloity.5.3 E�etive ResolutionTo try to quantify the auray of the numerial shemes at approximating the ontinuous equations thee�etive resolution of eah disretisation is omputed. The e�etive resolution is de�ned to be the resolutionat whih the numerial sheme an be onsidered to have aurately resolved the �ow. To quantify this,the de�nition of Ullrih (2014) is used: for a given error level ε, the shortest resolved wavelength λ is somemultiple of the grid spaing λ = bh suh that
∣∣∣∣
h√
Φ0

(ωnumerical − ωexact)

∣∣∣∣ ≤ ε. (57)For ε = 0.01 and ε = 0.1, whih orrespond to the numerial solution being within 1% and 10% respetivelyof the exat solution, the e�etive resolutions for the di�erent shemes are listed in Table 3. These areobtained numerially from Figures 8, 9, 12 and 13 by �nding the point at whih the inequality (57) fails tohold. This shows that for pure gravity waves there is a small inrease in auray (of the order h/2−h) fromusing the ompound elements. For pure inertia waves the improvement over the C-grid methods is muhgreater, but for quadrilaterals the e�etive resolution when using ompound elements is atually slightlyworse than with non-ompound elements. The e�etive resolution ontour orresponding to ε = 0.01 isalso shown in Figs. 8-9 and 12-13 as a solid blak line, where the more isotropi nature of the ompoundquadrilateral elements and the hexagonal methods an be seen.5.4 Variable Rossby radiusSo far all the results presented have been for the two ends of the inertia-gravity wave spetrum, eitherpure gravity waves (f ≡ 0) or pure inertia waves (Φ0 ≡ 0) . However, in pratie we are interested in the19
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(d) Rd/h = 2Figure 16: Normalised dispersion relation (ω/f) for hexagonal ompound elements with a variably resolvedRossby radius, ranging from Rd/h = 1/20 (oarse resolution) to Rd/h = 2 (well resolved).propagation of mixed inertia-gravity waves for a range of values of the Rossby radius Rd =
√

Φ0/f . FollowingLe Roux (2012) four values of the normalised Rossby radius are hosen Rd/h = 1/20, 1/3, 1, 2 ranging froma oarse resolution Rd/h = 1/20 of the Rossby radius up to a well resolved radius Rd/h = 2. The dispersionrelation for the hexagonal ompound element is shown in Figure 16 and 1D slies along lh = 0 for boththe hexagonal ompound elements and C-grid disretisation are shown in 17. In ommon with the earlierresults when the Rossby radius is well resolved the ompound elements aurately represent the dispersionrelation whilst for poorly resolved wavenumbers the representation is less good as was found with pure inertiawaves. However ompared with the C-grid disretisation the ompound elements do a muh better job formoderately resolved Rossby waves Rd/h = 1/3, 1. A similar representation is found for the quadrilatetralelements (not shown).6 Numerial SimulationsTo test the theoretial preditions of the previous setions numerial integrations are performed. Thequestion we are primarily interested in answering is what is the e�et of the small improvement in thedispersion properties predited by the previous analysis? Additionally, we are interested if there is anysigni�ant hange in the auray of the model and �nally whether any of the improvement to the dispersionproperties that were analysed on a uniform Cartesian mesh arry over to a quasi-uniform spherial mesh.For a more general disussion of the performane of these methods on a standard set of spherial shallowwater test ases the interested reader if referred to Thuburn et al. (2013) and Thuburn and Cotter (2015).To perform the numerial integrations a entred semi-impliit time disretisation is used. Equations (26)and (27) an be ombined, yielding
A+yn+1 = A−yn, (58)20
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(b)Figure 20: Goepotential pro�les for numerial integration using a entred impliit timestepping method for(a) hexagonal C-grid and (b) hexagonal ompound RT0 elements. Contour intervals 0.1 m2/s2.where y =
[
Φ̂, û

]T and
A± ≡

[
MΦ ±∆t

2 Φ0D
∓∆t

2 D
T Mu ± ∆t

2 F

]
. (59)The omponents of the system matrix A± for a uniform orthogonal grid are given in Appendix A. Due tothe small size of problems investigated here the system of equations (58) is solved exatly using Guassianelimination, but for larger problems a iterative solver suh as Congjugate gradient ould instead be used.6.1 Uniform elementsTo test the onvergene of the numerial sheme equation (58) is initialised with a steady state analytialsolution de�ned via the streamfuntion

ψ (x, t = 0) = ψ0 exp

(
−x

2 + y2

a2

)
. (60)The balaned veloity �eld is therefore

u (x, t = 0) = ∇⊥ψ (x, t = 0) , (61)22



and the supporting initial geopotential �eld is given by
Φ (x, t = 0) = fψ (x, t = 0) . (62)This initial ondition is integrated for a period of 10 days on a uniform domain of size 3000 km× 3000 kmfor di�erent resolutions. A timestep of ∆t = 600 s is used. Note we are primarily interested in e�ets ofthe spae disretisation but the hoie of time disretisation would also be expeted to have some smallin�uene on the results in Figs. 19 and 20; to avoid this the timestep has been hosen suitably small so thatthe temporal errors are small and as a hek, reduing the timestep further by a fator of 10 produes novisible di�erene to the results. The onstants ψ0 ≡ Φ0 = 102 m2/s2 and f = 10−4 s−1, a = 4 × 105 m. Theonvergene of the l2 (Φ) error for eah sheme with various element widths in the range h = 25 − 400 kmis shown in Fig. 18. All shemes show the seond-order onvergene expeted on a regular grid with thehexagonal based methods exhibiting a slightly smaller oe�ient. (Note, however, that on nonuniform gridsthese methods are all, at best �rst-order).The dispersion properties an be observed by removing the support of the initial veloity �eld, u (x, t = 0) =

0, from the initial state (62) along with reduing the width of the Gaussian (60) to a = 2h. Integrations areperformed with a onstant element width h = 50 km and run until t = 30 hours. The unsupported initial Φ�eld projets energy onto a wide spetrum of inertia-gravity waves that propagate radially from the entralperturbation aording to the appropriate dispersion relation. The �nal Φ pro�les are shown in Fig. 19 forthe quadrilateral elements and Fig. 20 for the hexagonal elements. The e�ets of the inrease in the groupveloity for a given wavenumber k, ompared to the exat value Cg = Φ0k√
Φ0k2+f2

, for the RT0 disretisationsan learly be seen from the loation of the outermost ontours partiularly in ontrast with the derease inthe group veloity for the C-grid shemes. The greater isotropy of the ompound quadrilateral elements analso be seen in the marginally more irular ontours of Fig. 19 () ompared with the other disretisations.In ontrast the hexagonal C-grid �nite di�erene sheme is already very isotropi, so the di�erenes observedin the hexagonal elements, Fig. 20 (b) are muh smaller.6.2 Spherial domainsTo ompare the performane of the ompound element method with a standard �nite volume C-gridmethod in a more realisti setting, the ompound element model of Thuburn and Cotter, 2015 is omparedwith the �nite volume model of Thuburn et al., 2013 on both ubed sphere grids and iosahedral grids. Bothmodels simulate the nonlinear shallow water equations on the sphere using a mimeti disretisation withsemi-impliit time stepping and swept area forward in time advetion shemes on both the primal and dualgrid. The onvergene and auray of the various shemes onsidered here are disussed in some detailin Thuburn et al., 2013, for the C-grid shemes, and Thuburn and Cotter, 2015 for the ompound elementshemes, in the ontext of quasi-uniform spherial grids and the interested reader is referred to these papersfor more details. The iosahedral mesh is generated following Heikes and Randall (1995a,b) (but withoutthe twist) and the ubed sphere is based upon the equi-angular ubed sphere of Ronhi et al. (1996) butwith a single step of the smoothing desribed in Thuburn et al. (2013). The appliation of the ompound�nite element method to these spherial grids is presented in Thuburn and Cotter (2015) and the interestedreader is referred there. To mimi the planar dispersion test of Setion 6.1 the geopotential �eld is initialisedwith a Gaussian perturbation and the initial wind �eld is set to zero
Φ (λ, φ, t = 0) = Φ0

{
1 +

1

10
exp

[
−
( r
a

)2
]}

, (63)
u (λ, φ, t = 0) = 0, (64)with
r = cos−1 [sinφ0 sinφ+ cosφ0 cos (λ− λ0)] , (65)the great irle distane on a unit sphere from the point (λ0, φ0) = (4π/5, π/4), the perturbation half-widthis a = 1/25 and Φ0 = 102 m2/s2. The test is run on a non-rotating sphere for 12 hours with a timestep of

∆t = 112.5 s. The results, using both a high resolution (221184 faes) ubed-sphere and lower resolutionubed-sphere (3456 faes) and iosahedral (2562 faes), are shown in Figure 21. As with the planar results23



the most obvious di�erene between the ompound elements and the �nite volume results is the speed of wavepropagation. Compared to the high resolution results the bulk of the wave in the �nite volume methods hasbeen retarded, suh that there are still a number of ontours lose to the initial loation of the wave, whilstthe �nite element method has sped the wave front up. To ease omparison of the propagation speed a greatirle line has been added to eah �gure orresponding to the leading edge of the high resolution solution. Inontrast to the planar results it is very di�ult to observe any inreased irular symmetry in the ompoundelement results ompared with the equivalent �nite volume ones and it is likely that any potential slightimprovement has been hidden by the larger sale errors aused by using a non-uniform-non-orthogonal grid,and the added omplexity of the nonlinear terms. As with the previous results the hexagonal grid methodsgenerally produe better results showing better symmetry in the resulting wave form even though they arebeing nominally run at a lower resolution (∼ 75% of the number of ells as the ubed-sphere runs), though,due to the extra veloity points there are approximately the same number of total degrees of freedom on thetwo grids.6.3 Computational CostThe omputational ost of the ompound element method ompared to other methods is hard to analyseas it is dependent upon the partiular appliation, implementation and arhiteture being used. Neverthelessa broad outline of some of the potential osts an be given. For the method used here, the omputationalost mainly onsists of onstruting the matries MΦ, Mu, D, F and inverting the A+ matrix. Sine all ofthese matries are onstant in time they an be omputed one at set up and then stored. This methodis the same for all the numerial shemes onsidered here with the added simpli�ation that for the C-gridmethods the veloity mass matrix (Mu) is diagonal. Sine the matries are preomputed the only additionalost of using the ompound element method is to ompute the element matries, whih involves applying theonditions in Setion 3 to eah sub-element. As this is a one-o� setup ost it means that the omputationalost of eah method is similar.For a more ompliated appliation, suh as for the nonlinear shallow water equations or 3D Eulerequations equations it may beome impratial to preompute and store a large number of operators athigh resolution (though this is exatly what is done in Thuburn and Cotter (2015)). In whih ase, ifthe quadrature is performed on the �y, then eah evaluation of a �eld on the grid will involve evaluationat quadrature points for all the sub-elements of eah element instead of just the full element, i.e for aquadrilateral ompound element it would be neessary to ompute funtions in eah of the 8 triangularsub-elements instead of just the single quadrilateral element as for the standard RT0 implementation. Inbroad terms the number of �oating point operations for evaluating a funtion on a grid of n ells will risefrom n evaluations on a quadrilateral/hexagonal element to 8n or 12n evaluations on triangular elements fora quadrilateral or hexagonal grid. This ost will be somewhat mitigated by the smaller number of operationse.g fewer quadrature points needed for evaluation on a triangular element.7 ConlusionsThe disrete harmoni extension method of Christiansen (2008) has been used to build polygonal om-pound RT0 elements from a number of triangular sub-elements, suh that the primal and dual grid elementsare onstruted from the same sub-elements. It was found that even for uniform quadrilateral elements theobtained disretisation di�ers from the standard RT0 disretisation and inherits elements of the underlyingtriangular geometry. For the linear shallow water equations onsidered here only two ompound funtionspaes V1, V2 are required and so the onstrution of the third spae V0 has not been doumented, thoughthe same method an be applied, see also Thuburn and Cotter (2015).The dispersion properties of the ompound elements in both the gravity- and inertia-wave asymptotilimits have been investigated and ompared with the well-known C-grid disretisations on uniform hexagonalgrids and with both the C-grid and non-ompound RT0 elements on uniform quadrilateral grids. Theompound elements are found to have a more isotropi dispersion relation, whih is most notieable on aquadrilateral grid and improves upon the standard C-grid and RT0 methods. Additionally, on quadrilaterals,the overshoots in the dispersion relation for high frequeny waves with the RT0 elements, that manifeststhemselves as spuriously fast moving waves, have been signi�antly redued. The ompound hexagonal24
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(b) FEM, C192
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(d) FV Iosahedron
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(f) FEM IosahedronFigure 21: Evolution of a narrow Gaussian hill using �nite volume and ompound �nite element methodson spherial grids. (a) Initial height pro�le on high resolution ubed sphere (221184 faes) (b) Final heightpro�le on high resolution ubed sphere (221184 faes) using ompound �nite elements. Final height pro�leson () ubed sphere grid (3456 faes) and (d) iosahedral grid (2562 faes) using a �nite volume method.Final pro�les with ompound �nite element methods on ubed sphere (e) and iosahedral grids (f) at thesame resolution as () & (d). In all plots Contour intervals are every 50 m, and every 100 m is shown in abold line. For omparison a great irle line loated at the front of the high resolution wave is shown withdiamond markers. 25



elements again have a more isotropi dispersion relation than the C-grid equivalent, though the di�erenehere is less marked. In omparison with the C-grid, the ompound element is more aurate for large wavenumbers with a slight overestimation of the frequeny ompared with a large underestimation. Comparingthe �nite volume and �nite elements in a more ompliated spherial gravity-wave dispersion test the leadingorder di�erene is the propagation speed of poorly resolved waves and any inreased isotropy of the �niteelement method is muh harder to detet.The bene�ts of these ompound elements have to be weighed against the inreased ost assoiated witha denser mass matrix for the momentum equation, (A.5) & (A.9) even on an orthogonal grid where the uand v veloity omponents would not normally be expeted to ouple. This ost an be lessened when usingan impliit sheme due to the need to invert a system matrix, of whih the mass matrix forms but a part.In addition the ost of omputing the redution from the sub-element stenil to the ompound element onemust be inluded, but for a time independent grid this an be inluded as a one-o� pre-proessing ost.Compound elements provide a way of onstruting ompatible �nite element spaes on general polygonalgrids, suh as hexagons, as well as primal and dual families of ompatible �nite element spaes, and thusbroaden the options available for developing geophysial models with desirable onservation and balaneproperties. We have demonstrated here another advantage of ompound elements, whih is that their wavedispersion properties are as good as, and in nearly all ases a small improvement on, those of analogous�nite di�erene or standard �nite element shemes.AknowledgmentsThe authors would like to thank Daniel Le Roux and two anonomous reviewers for their helpful suggestionson how to improve the paper and also Nigel Wood for omments on an early draft of the paper. The workof John Thuburn was funded by the Natural Environment Researh Counil under the �Gung Ho� projet(grant NE/1021136/1).ReferenesArakawa A, Lamb VR. 1977. Computational design of the basi dynamial proesses of the UCLA generalirulation model. Methods in Comp. Phys. 17: 174�265.Aurihio F, Brezzi F, Lovadina C. 2004. Mixed �nite element methods. John Wiley.DOI:10.1002/0470091355.em004.Bu�a A, Christiansen S. 2007. A dual �nite element omplex on the baryentri re�nement. Math. Comp.76: 1743�1769.Christiansen S. 2008. A onstrution of spaes of ompatible di�erential forms on elluar omplexes. Math.Models and Meth. in App. Si. 18: 739�758.Cotter CJ, Shipton J. 2012. Mixed �nite elements for numerial weather predition. J. Comput. Phys. 231:7076�7091.Cotter CJ, Thuburn J. 2014. A �nite element exterior alulus framework for the rotating shallow-waterequations. J. Comp. Phys. 257: 1506�1526.Coxeter HSM (ed). 1989. Introdution to geometry. Wiley. 2nd edition.Danilov S. 2010. On the utility of triangular C-grid type disretization for numerial modeling of large-saleoean �ows. Oean Dynamis 60: 1361�1369.Gassmann A. 2013. A hexagonal non-hydrostati C-grid dynamial ore. Quarterly Journal of the RoyalMeteorologial Soiety 139: 152�175.Heikes R, Randall DA. 1995a. Numerial integration of the shallow-water equations on a twisted iosahedralgrid. Part I: basi design and results of tests. Mon. Wea. Rev. 123: 1862�1880.26
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A Element MatriesThe matrix operators for a single element/ell on a uniform grid are given here for quadrilateral andhexagonal elements where the element width is hA.1 Quadrilateral ElementsFor the ontinuity equation the mass matrix is the 1x1 matrix
MΦ ≡ h2, (A.1)the divergene operator is

D ≡ h
[

1, −1, 1, −1
]T
, (A.2)and the Coriolis matrix is

F ≡ fh2

4




0 0 −1 −1
0 0 −1 −1
1 1 0 0
1 1 0 0


 . (A.3)The momentum mass matrix di�ers, depending upon the disretisation (C-grid, RT0, ompound RT0), Fora C-grid disretisation the mass matrix is the appropriate identity matrix, h2I4. For a regular quadrilateral

RT0 element the mass matrix is
Mu ≡ h2

6




2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2


 , (A.4)whilst for a ompound RT0 element it is

Mu ≡ h2

48




17 7 −1 1
7 17 1 −1
−1 1 17 7
1 −1 7 17


 . (A.5)A.2 Hexagonal ElementsFor the ontinuity equation the mass matrix is again a 1x1 matrix

MΦ ≡
√

3

2
h2, (A.6)the divergene operator is

D ≡ h√
3

[
1, −1, 1, −1, 1, −1

]T
, (A.7)and the Coriolis matrix is

F ≡ h2f

18




0 0 −1 −2 1 2
0 0 −2 −1 2 1
1 2 0 0 −1 −2
2 1 0 0 −2 −1
−1 −2 1 2 0 0
−2 −1 2 1 0 0



. (A.8)The momentum mass matrix again di�ers, for a C-grid disretisation the momentum mass matrix is theidentity matrix, (h2/

√
3
)
I6. For the ompound hexagonal RT0 element mass matrix is

Mu ≡ h2

108
√

3




35 10 −7 −2 −7 −2
10 35 −2 −7 −2 −7
−7 −2 35 10 −7 −2
−2 −7 10 35 −2 −7
−7 −2 −7 −2 35 10
−2 −7 −2 −7 10 35



. (A.9)28


