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Abstract: As a promising next-generation computing paradigm, Mobile Cloud Computing 
(MCC) enables the large-scale collection and big data processing of personal private data. An 
important but often overlooked V of big data is data veracity, which ensures that the data used 
are trusted, authentic, accurate and protected from unauthorized access and modification. In 
order to realize the veracity of data in MCC, specific trust models and approaches must be 
developed. In this paper, a Category-based Context-aware and Recommendation 
incentive-based reputation Mechanism (CCRM) is proposed to defend against internal attacks 
and enhance data veracity in MCC. In the CCRM, innovative methods, including a data 
category and context sensing technology, a security relevance evaluation model, and a 
Vickrey-Clark-Groves (VCG)-based recommendation incentive scheme, are integrated into 
the process of reputation evaluation. Cost analysis indicates that the CCRM has a linear 
communication and computation complexity. Simulation results demonstrate the superior 
performance of the CCRM compared to existing reputation mechanisms under internal 
collusion attacks and bad mouthing attacks. 
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1. Introduction  

Mobile Cloud Computing (MCC) combines cloud computing and mobile computing to 

provide mobile users with data storage and processing services in clouds, such as Amazon, 

Google AppEngine and Microsoft Azure, that perform resource-intensive computing [31, 32]. 

MCC is a highly promising technology trend for the future of mobile computing, and for this 

reason, there has been a phenomenal burst of research activities in MCC. Although MCC has 

attracted significant research and development efforts, there are salient open issues and 

challenges in the area of security and trust in MCC, which is an essential factor for the 



success of the burgeoning MCC paradigm [1, 26, 27, 31, 32].  

MCC enables the large-scale collection and processing of personal private data such as 

individuals’ locations and electronic medical records [5, 6, 26, 32]. The processing of this 

information using big data analytics has become a hot topic in MCC. In order to avoid making 

decisions based on the analysis of uncertain and imprecise data, it is crucial to maintain a high 

level of data veracity, which is often overlooked. But it is just as important as the other three 

V's of Big Data: Volume, Velocity and Variety. Data veracity includes two aspects: data 

certainty defined by their statistical reliability; and data trustworthiness defined by a number 

of factors including data origin, collection and processing methods, such as trusted 

infrastructure and facility [29]. Thus, apart from data confidentiality and privacy, data 

provenance must be certified and data must be accurate, complete and up-do-date as well [3, 

25]. Since ubiquitous access to the Internet in MCC exposes critical data and privacy 

information to new security threats, a number of research works have been focused on 

security and trust to cope with these new threats and enhance the data veracity in MCC.  

Data veracity shows how much the data used are trusted, authentic and protected from 

unauthorized access and modification. There are many security challenges in data veracity 

such as external denial-of-service, credential stealing, remote code injection, data integrity 

attacks, internal attacks, and supply chain attacks [10]. Consequently, the availability, 

confidentiality, and integrity of both the original data and the data analytics results are 

threatened by these attacks, e.g., the degraded availability of a big data system, the 

compromised confidentiality of the data and analytics, and the violated integrity of the data 

and analytic results. 

As an effort to tackle the aforementioned challenges, this paper focuses on the aspect of 

data trustworthiness to enhance data veracity through designing a reputation mechanism to 

defend against internal attacks in MCC. A new Category-based Context aware and 

Recommendation incentive reputation Mechanism (CCRM) is proposed, which incorporates 

innovative approaches in terms of data categories, context sensing, security relevance and 

recommendation incentive. To the best of our knowledge, our work is one of the first to 

describe this front of data veracity in MCC. The major contributions of this work include the 

following: 



(1) This paper proposes a new Category-based Context aware Reputation Mechanism 

(CCRM) to defend against the internal threats for enhancing data veracity in MCC. 

(2) The CCRM incorporates three key innovations: a Vickrey-Clark-Groves (VCG)-based 

distributed cheat-proof recommendation incentive scheme, a security level-based data 

category method, and a user context sensing technology. 

(3) Extensive OPNET simulation experiments demonstrate that the CCRM improves the 

performance of the reputation mechanism compared to the state-of-the-art including the 

RP-CRM [14], ARTSense [23] and Harmony [22] mechanisms. The CCRM can 

effectively defend against internal collusion attacks and bad mouthing attacks to 

enhance data veracity in MCC. 

The remainder of this paper is organized as follows. Section 2 presents a brief review of 

related work, Section 3 describes network and adversary models, Section 4 introduces the 

implementation details of the CCRM, Section 5 analyzes the cost and evaluate the 

performance of the CCRM. Finally, Section 6 presents the paper’s conclusions .  

 

2. Related Work  

Data veracity is becoming a research hotspot of big data and there have been many related 

studies in the literature [2, 4, 10, 16, 20, 15]. For example, Kepner et al. [10] introduced a new 

technique called Computing on Masked Data (CMD) to improve data veracity while allowing 

a wide range of computations and queries to be performed with low overhead by combining 

efficient cryptographic encryption methods with an associative array representation of big 

data. Bodnar et al. [4] proposed a veracity assessment model for information dissemination on 

social media networks that combines natural language processing and machine learning 

algorithms to mine textual content generated by each user. Sanger et al. [20] introduced two 

veracity research branches emerging from the combination of the terms of interest, namely 

Big Data for Trust and Trust in Big Data. Aman et al. [2] proposed a two-stage solution for 

building an electricity consumption prediction model to address the problem of data veracity 

raised in the context of Smart Electricity Grids. Lukoianova and Rubin [16] focus on veracity 

as a critical quality factor and introduce a big data veracity index that combines the three 

dimensions of subjectivity, deception and implausibility.  



Data veracity includes two aspects: data certainty and data trustworthiness. This paper 

focuses on the aspect of data trustworthiness to enhance data veracity using a reputation 

mechanism to defend against internal attacks in MCC. Tremendous research efforts have been 

focused on the reputation mechanism as a key scheme for managing trust to improve data 

security and privacy. Since this paper investigates the data veracity issue in MCC, in the 

following, we mainly review the existing research results regarding reputation mechanisms in 

MCC. 

Kim et al. [12] proposed a trust management mechanism for reliable data integration, 

management and applications in MCC. The mechanism suggested a method to quantify a 

one-dimensional trusting relationship based on the analysis of telephone call data from mobile 

devices. Liu et al. [15] presented a reputation mechanism to recognize selfish nodes much 

earlier and reduce the convergence time for isolating selfish nodes by combining familiarity 

values with subjective opinions. Hammam et al. [8] proposed a trust management system 

(TMC) for mobile ad-hoc clouds to verify that participants are reliable, available, and 

harmless. The TMC considered availability, neighbors’ evaluation and response quality, and 

task completeness; it also calculated the reputation trust value for nodes. Shen et al. [22] 

developed an integrated reputation management platform, Harmony, for collaborative cloud 

computing. Harmony incorporates an integrated reputation management component, a 

multi-QoS-oriented resource selection component and a price-assisted resource control 

component to enhance their mutual interactions for efficient and trustworthy resource sharing 

among clouds. Zhang et al. [30] presented a general framework to jointly design incentive 

mechanisms and reputation schemes in social cloud systems. The proposed framework 

combined a repeated game framework-based incentive mechanism with a differential 

reputation-based reward/punishment scheme to incentivize users to contribute their resources. 

In the existing research on data veracity, many studies were based on the assumption that 

the participants are trustworthy, thus ignoring the internal security threats launched by an 

inside attacker that has a legal identity and gives dishonest recommendations to frame up 

good parties and/or boost trust values of malicious peers. Meanwhile, most existing 

reputation-based trust models in MCC were based on the traditional cryptographic encryption 

and authentication techniques without considering internal security threats. Consequently, it is 



an open problem and a challenging task to design a reputation mechanism to prevent internal 

attacks in order to enhance the data veracity in MCC.  

 

3. Network and Adversary Model 

A. Network Model 

In this paper, we focus on the network environment of MCC, which is considered to be a 

viable solution to implement fast, large-scale big data applications [11, 34]. A typical MCC 

architecture, which consists of a mobile client network, a wireless mesh backbone network 

and a cloud service platform, is depicted in Fig. 1. The mobile client is connected to the base 

transceiver station (BTS) and accesses the mesh backbone via the mesh router; these are 

linked to each other and communicate with the cloud through the Internet. The cloud service 

platform includes cloud servers to offer data-rich services such as queries of electronic 

medical records. 

 

Fig. 1. An Architecture of MCC  
 

B.  Adversary Model 

This paper focuses on the internal security threats [13, 14] in MCC that can affect data 

veracity. The internal threats are launched by an inside attacker who is a legal and certified 

user. The internal attacks may compromise certain users and gain full control of them. Once 

users are compromised, the attacker can gain access to all stored information, including public 

keys and private keys [28]. The attacker could also reprogram the captured users to behave in 

a malicious manner [27]. Therefore, the traditional encryption and authentication techniques 



may no longer be effective [33]. The specific internal attacks considered in this paper are as 

follows: 

 Collusion attacks: attackers can collude and provide either high or low 

recommendations to each other. 

 Bad mouthing attacks: attackers provide dishonest recommendations to frame up good 

parties and/or boost reputation values of malicious peers. 

4. Category-Based Context-Aware Reputation Mechanism (CCRM) 

In this section, we elaborate on the proposed Category-based Context-aware Reputation 

Mechanism (CCRM), which integrates the reputation evaluation with data category [17, 23], 

context-awareness technologies [19] and the VCG mechanism [7, 18, 24] to defend against 

the insider threat and enhance the data veracity in MCC. The CCRM is implemented in both 

mobile clients and cloud service providers to perform bidirectional reputation evaluation. The 

CCRM includes three phases: direct reputation computation, recommended reputation 

computation and final reputation computation. 

In CCRM, data are classified into different categories based on the sensitivity level of data. 

The higher is the sensitivity level of data in a category, the higher is the user reputation 

required for a user to access the data category. The details of the reputation computation are 

described as follows. The main notations and symbols used in this paper are summarized in 

Table 1. 

Table 1. Main notations and symbols 

Direct
y:xR , Rec

:y xR , Final
y:xR  The x’s direct, recommended and final reputation towards y  

C, c The set of the data categories and a specific data category 

c
sAC , c

fAC  The number of successful and unsuccessful accesses to the data 
category c  

dir
unp 	   The uncertainty about the history interaction 

timeα , locationα , cα  
The weight factors that determine how much the time, location and 
data category of the interactions affect Direct

y:xR  

Elocation, Etime The error of location sensing and time sensing 

locationβ , timeβ  The location sensitivity and time sensitivity parameters 

jN , slotN  The number of times that x’s historical data access category is 
confirmed as category j, the number of time slots 

Q,q, γ  The transfer efficiency, bandwidth requirement, signal-to-noise ratio 



of the receiver 

( )iV q , ( )iP q  The profit function that gives the profits gained by user i when it 
provides the recommendation, the cost of user i 

pcost The cost of the bandwidth usage 

o , ,i jb  The set of bandwidth allocation, the allocation that bandwidth i is 
assigned to the user j 

*π , o* The system’s best profit, the best allocation result 
( , )i iT q o  The taxes for a user i 

*( , )j j i
j i
u q o

≠
∑ , ( , )j j i

j i
u q o−

≠
∑  The total utility of all the other users when i participates and 

withdraws 

( )i,yθ ， ( , )
sl
i xθ  

The security level relevance factor between y and the 
recommendation user i，the security level relevance factor between i 
and the recommended user x 

1η , 2η 	  
The weight factors used to determine how much the direct 
reputation and integrated recommended reputation affect the final 
reputation  

rf , f θ  The reputation and the security relevance fade factors 

itm , ntm  
The number of the objects within the recommendation users set at 
times ti and tn 

 

4.1. Direct Reputation Computation 

The direct reputation computation is run at each user that stores its historical opinion 

towards the others in the relevant local database. When a user wants to request (or provide) a 

service from (or to) another user (including unknown users), it will send a request message to 

all neighboring users. Each neighboring user receiving the request will first execute the direct 

reputation computation function to evaluate the requestor’s direct reputation and judge 

whether it is a malicious user.  

Suppose x and y are the client and service provider, respectively. The direct reputation of x 

toward y, Direct
y:xR , can be computed as: 

Direct

C

1 [(1 ) ( )]
| C |

c
dir s

cy:x un
fc

ACR p AC∈

= ∗ − ∗∑                          (1) 

where C is the set of the data categories and c stands for a specific data category. c
sAC  and 

c
fAC  denote the number of successful or unsuccessful access attempts to the data category c, 

respectively. dir
unp  denotes the uncertainty about the historical interaction, which is given by: 

(1 ) (1 ) (1 )dir
un time location cp α α α= − ∗ − ∗ −                           (2) 



where timeα , locationα  and cα  are the weight factors that determine how much the time, 

location and accessed data category of the interaction affect Direct
y:xR , respectively. 

In CCRM, a user’s location will influence its reputation among the other users, so if a 

user’s location is far away from the expected location then it is not as trustworthy as a user on 

a nearby location. We denote the expected location and the actual location as L and L’, 

respectively. We define |L-L’| as the distance between them and Elocation as the error of 

location sensing. We then formally define the location factor locationα  as: 

| |(1 )location location locationE L L
location e eβ βα ʹ′− ∗ − − ∗= ∗ −                     (3) 

where locationβ  is the parameter that controls the weight of the location factor’s influence on 

reputation. 

Time is another critical factor as the historical interaction usually has a great reference 

value. Similarly to the location factor, we denote T’ as the time instant of last interaction 

between the provider and the requestor and T as the time instant of current interaction 

between the provider and the requestor. We define Etime  as the error of time sensing. Next, 

the time factor timeα  can be computed as 

 | |(1 )time time timeE T T
time e eβ βα ʹ′− ∗ − − ∗= ∗ −                          (4) 

where timeβ  is the parameter that controls the weight of the time factor’s influence on the 

reputation.  

  In CCRM, similar to the location and time factors, the historical records of accessed data 

category will also influence the direct reputation computation. High and low category data are 

the data category with high data sensitivity and low data sensitivity, respectively. For a user 

used to access the low category data, its sudden access to a higher category data is noteworthy. 

Therefore, we define and compute the accessed data category factor cα as:   

                       
|C|

|C|

1

( )

, ( 1 )

c i

j
slotj Th

i

j
j

E

N i N

N

α µ

µ =

=

=⎧
⎪
⎪⎪

=⎨
=⎪

⎪
⎪⎩

∑

∑

                       (5) 



where iµ  is the rate between the number of accesses to the data categories higher than the 

threshold Th and the total number of accesses to all categories. jN  represents the number of 

times that x’s historical accessed data category is confirmed as category j, and slotN  denotes 

the number of the time slots. 

 The details of the unidirectional direct reputation computation are shown in Algorithm 1. 

_____________________________________________________________________ 
Algorithm 1: Direct Reputation Computation 
_____________________________________________________________________ 
Input: Requester x’s information 
Output: Whether x is a malicious node or not 
1. Begin 
2. Requester x sends a Request message; 
3. x’s neighbor nodes such as y receives the Request message; 
4. If ( ) ( )’' ’'down down

location timeLx s TH T Tx s THL >− ∧ >−  then 

5.   y executes the Direct Reputation Computation and returns the result as: 
6.   RDirect=Direct_reputation (x); 
7. Else  
8.   y drops the Request message; 
9. End if 
10. If ( )Direct upper

directR TH>  then 
11.  Final DirectR R= ; 
12. Else if ( )down Direct upper

direct directTH R TH< <  then 
13.   y executes the Recommendation Reputation Query Function; 
14.   y executes the Recommendation Reputation Computation; 
15.   y executes the Final Reputation Computation and gets the FinalR ； 
16.   Else  
17.      1FinalR = − ; 
18. End if 
19. If ( )Final down

finalR TH<  then 
20.   x is considered as a malicious node and will be isolated; 
21. Else if ( )down Final upper

final finalTH R TH< <  then 
22.   x will be punished by decreasing its reputation value; 
23.   Else  
24.     x is considered as a trustworthy node; 
25.     y sends Accept message to x; 
26. End if  
27. End 
_____________________________________________________________________ 
 

In order to gain the service, requester x sends a request message to all neighboring users. Each 

neighboring user receiving the request first executes the direct reputation computation 

function to evaluate the requestor’s direct reputation and judge whether it is a malicious user. 

Suppose y is one of the service providers and it receives the Request message. If both the 

distance between x’s actual location and expected location and the gap between the historical 

interaction time instant and current time instant are greater than the thresholds down
locationTH  



and down
timeTH , y computes the direct reputation; otherwise y drops the Request message. If the 

direct reputation is greater than the threshold upper
directTH , we set the final reputation equal to the 

direct reputation. If the result of the direct reputation is between the thresholds down
directTH  and 

upper
directTH , then y executes the recommendation reputation query and computation and 

computes the final reputation. If the result of the direct reputation is less than the down
directTH , 

we set the final reputation equal to -1. When y finds the final reputation, if it is less than the 
down
finalTH , then x is considered as a malicious node and will be isolated. If the final reputation 

is between the thresholds down
finalTH  and upper

finalTH , x will be punished by decreasing its 

reputation value. If the final reputation is greater than the upper
finalTH , x is considered as a 

trustworthy node and y will send an Accept message to x. 

4. 2. Recommended Reputation Computation 

If the direct reputation computation in section 4.1 cannot lead to a decision, y will first 

execute the recommended reputation query using Algorithm 2 to query x’s reputation from its 

neighbors. Afterwards, y will compute the integrated recommended reputation combining the 

received replies of recommended reputations to the query, which will be described in the 

subsection 4.2.2. 

_____________________________________________________________________ 
Algorithm 2: Recommended Reputation Query 
_____________________________________________________________________ 
Input: Users x and y’s information 
Output: x’s reputation 
1. Begin 
2. y sends a Query message to neighbors; 
3. Wait (3-5 seconds); 
4. y’s neighbor user such as k receives the Query message; 
5. If ( )' down

sly security level TH> then 

6.  k retrieves its direct reputation opinion about x on local reputation database 
7.  and returns it as: 
8. Direct _ ( , )xR Reputation query x Final ReputationDatabase= ;    
9. k sends Reply (y, Direct

xR ); 
10. Else  
11.  k drops the Query message; 
12. End if  
13. End 
_____________________________________________________________________ 

Traditional reputation mechanisms improve the trustworthiness of recommendations 

through weighted summation of recommendations from different recommenders. In an open 

network environment such as MCC, however, these mechanisms must face the significant 

problems caused by selfish and malicious users who refuse to render recommendations in 



order to avoid consuming limited resources or provide dishonest recommendations to launch 

collusion or bad mouthing attacks. 

To overcome the above shortcomings, in this subsection, we first propose a VCG based 

Distributed Cheat-proof Recommendation incentive scheme (VDCR). Next, the VDCR is 

incorporated into the recommended reputation computation process to motivate users to 

provide honest recommendations.  

4.2.1. VDCR Scheme 

The VCG mechanism is a dominant strategy mechanism, which belongs to a category of 

mechanism design. The VCG mechanism can achieve ex-post incentive compatibility 

(truth-telling is a dominant strategy for every player in the game) [7, 18, 24]. The VCG 

mechanism has the following attributes: 

 The mechanism is incentive compatible. 

 The mechanism is individual rational. 

Since users must consume bandwidth resources to provide the recommendation information, 

the recommendation processes can be naturally modelled as a VCG-based bandwidth auctions 

process with the user’s profit model and system’s profit model defined as below.  

1) Profit Model of User 

Suppose user i wants to provide a recommendation and its bandwidth requirement is q, 

which is often private information known only to the user. Using the classical transmission 

model [9], q can be given by:  

2log (1 ),
1.5

ln(0.2 / )tar

q Q

Q
BER

γ= + ⋅⎧
⎪
⎨ =⎪
⎩

                               (6) 

where Q is the transfer efficiency and γ  is the signal-to-noise ratio of the receiver.  

The profit of the user i, ( )i iu q , can be expressed as: 

( ) - ( ),
( )

0, '
i i

i i

V q P q purchase
u q

don t purchase
⎧

= ⎨
⎩

                (7) 

where ( )iV q is the profit function that gives the profits gained by user i when it provides the 

recommendation. ( )iV q  is given by:  



2

' ''

( )
. .

0, (0) 0

( ) 0, ( ) 0

i i i

i

i i

V q aq bq
s t
q V

V q V q

= +

= =

> <

                           (8) 

in which a, b are the weight factors. ( )iP q  is the cost of user i and can be computed as: 

cos( )i t iP q p q=                                   (9) 

where pcost denotes the cost of the bandwidth usage, which is relevant to the reputation. The 

higher the reputation, the lower the cost. 

  Hence, when qi > 0, the profit of the user i, ( )i iu q , is given by: 

2
cos( ) ( )i i i t iu q aq b p q= + −                             (10) 

2) Profit Model of System 

We consider the MCC environment consisting of n users. Let 

,( | 1,2, , ; 1,2, , )i jo b i m j n= =   =  denote the set of bandwidth allocation, where ,i jb  

indicates that bandwidth i is assigned to the user j. Next, the system’s best profit *π can be 

expressed as: 

* *

1 1
( , ) max ( , )

k

n n

i i i i ko Oi i
u q o u q oπ

∈
= =

= =∑ ∑                   (11) 

where o* is the best allocation result and is given by: 

*

1
argmax ( , )

k

n

i i ko O i
o u q o

∈
=

= ∑                            (12) 

3) VDCR 

Based on the above analysis, we can describe the details of the proposed VCG-based 

distributed cheat-proof recommendation incentive scheme (VDCR). 

In the VDCR, user must pay taxes ( , ) 0T q o >  in addition to the cost of bandwidth. The 

taxes for a user i are denoted as ( , )i iT q o , which is given by 

* *( , ) ( , ) ( , )i i j j i j j
j i j i

T q o u q o u q o−
≠ ≠

= −∑ ∑                 (13) 

 where *( , )j j i
j i
u q o

≠
∑  is the total utility of all other users when i participates. As opposed to 

*( , )j j i
j i
u q o

≠
∑ , ( , )j j i

j i
u q o−

≠
∑  is the total utility of all other users when i withdraws. 

Therefore, the best utility of user i can be expressed as: 



* * * *( , ) ( , ) [ ( , ) ( , )]i i i i j j i j j
j i j i

u q o u q o u q o u q o−
≠ ≠

= − −∑ ∑         (14) 

Next, we prove that the proposed VDCR is a VCG mechanism. 

Theorem 1. The mechanism is incentive compatible. 

Proof: suppose user i needs iq  units of bandwidth to provide recommendation, but the 

user applies for ˆiq  units and declares that ˆ( ) ( )i i i iu q u q> , which returns the outcome of ô . 

According to the above description, user i must pay the taxes as:  

ˆ ˆ( , ) ( , ) ( , )i i j j i j j
j i j i

T q o u q o u q o−
≠ ≠

= −∑ ∑  

Hence, the final utility of user i becomes: 

ˆ ˆ ˆ ˆ( , ) ( , ) [ ( , ) ( , )]

ˆ ˆ( , ) ( , ) ( , )

ˆ( ) ( , )

i i i i j j i j j
j i j i

i i j j j j i
j i j i

j j i
j i

u q o u q o u q o u q o

u q o u q o u q o

o u q oπ

−
≠ ≠

−
≠ ≠

−
≠

= − −

             = + −

             = −

∑ ∑

∑ ∑

∑

 

For *ˆ( )oπ π≤ , we obtain * *ˆ ˆ( , ) ( , )i i i iu q o u q o≤ , which leaves user i with no motivation to 

provide false information; therefore, truth-telling is the best strategy.  

Theorem 2. The mechanism is individual rational.  

Proof: In an individual rational (IR) mechanism, rational users are expected to gain a 

higher utility from actively participating in the mechanism than from avoiding it. In the 

VDCR, we consider the following two malicious behaviors: 

(1) The user does not have the relative recommendation information, but it still applies for 

bandwidth to provide the recommendation. 

(2) The user does not have enough to pay the costs and taxes, but it still applies for 

bandwidth to provide the recommendation. 

The utility of the user with these malicious behaviors, ˆ ˆ ˆ( , )i iu q o , can be given by: 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , )i i i i i iu q o u q o T q o= −       

It is straightforward to see that in both cases ˆ ˆ ˆ( , ) 0i iu q o < , when the incentive compatibility 

is achieved. Therefore, for user i, utility > 0 and participation in the recommendation is an 

optimal choice, which means that the mechanism is individual rational. 



In sum, according to the definition of VCG, the proposed VDCR is a VCG mechanism. 

4.2.2. Computation of Integrated Recommended Reputation  

Let sl stand for security level, which means the security level of the data category that a 

user can access with its reputation. Suppose y receives n (n>1) recommended reputations, 

then the integrated recommended reputation, Rec
:y xR , can be computed as follows: 

(1) Consider there are only two recommenders, k and k’, and their recommended opinions 

are in conflict. We say that k is more trustworthy than k’ and Rec Direct
: :y x k xR R= , if any of the 

following conditions hold:  

( , ) ( ', )

Direct Direct
( , ) ( ', ) :

k y k y

k y k y y:k y kR R

θ θ

θ θ ʹ′

>⎧⎪
⎨

= ∧ >⎪⎩
                           (15) 

(2) Consider that if there are more than two recommenders, then the Rec
:y xR  can be given by:  

( )Rec Direct
: ( , ) :

1

1 *
n

y x j y j x
j

R R
n

θ
=

= ∗∑                           (16) 

In Eqs. (15) and (16), ( )i,yθ denotes the security relevance factor between service provider y 

and the recommendation user i, which characterizes the difference between the security level 

of y and that of i. Suppose user i recommends x to y, we define ( , )
sl
i xθ  as the security 

relevance factor between the users i and x. ( )i,yθ can be calculated as: 

1 2
( , )

1 2
( ) ( , )

1 2 1 2

, lg( )( )

, lg( )

1, , [0,1]

sly
i y sl sl i x

y i

sl
i,y i y sl i y sl i x

sl sl sl sl

slsl sl sl sl

sl sl sl sl

β β θ

θ β β θ

β β β β

⎧ < ∗ + ∗⎪ −
⎪⎪

= ≥ ∗ − + ∗⎨
⎪

+ = ∈⎪
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where 1
slβ  and 2

slβ  are the weight factors associated with the numerical difference between 

security levels of y and i and the security relevance factor ( , )
sl
i xθ , respectively. ( , )

sl
i xθ can be 

given by: 
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where :y iR and :y xR are the reputation values of i and x, respectively. 

Algorithm 3 gives the details of the computation of integrated recommended reputation. 

_____________________________________________________________________ 
Algorithm 3: Computation of Integrated Recommended Reputation  
_____________________________________________________________________ 
Input: N recommendation information 
Output: Integrated recommended reputation value 
1. Begin 
2. y receives n-1 Reply messages with the recommended reputation about x 
3.   and the information of the recommenders; 
4. y executes the recommenders’ selection process; 
5. for i=1 to n-1 
6. { If ( )' securityleveli s TH>  then 
7.   Put i into the recommender set R; 
8.   y executes the security relevance factor ( )i,yθ and ( , )

sl
i xθ  computation; 

9.  Else  
10.   y drops the Reply message; 
11.  End if } 
12. y executes the recommenders’ selection process again; 
13. for j=1 to |R|  
14. { If ( )(j:y) THθ ʹ′>  then 
15.  Put j into the recommender set R’; 
16.  End if } 
17. y executes the recommended reputation computation with R’ 
18.    and returns the result as: 
19. RRec=Rec_reputation (x); 
20. End 
_____________________________________________________________________ 

 

When y receives n-1 Reply messages, it first builds a recommender set R by comparing 

each recommender’s security level (sl) with a threshold, one by one. If a recommender’s sl is 

greater than the threshold, y will put it into set R, and then compute the corresponding 

relevance factor θ  and slθ . Then, y builds a more reliable recommender set R’ by selecting 

the recommender from R and comparing its security relevance factor θ  with the threshold. 

If a recommender’s θ  is greater than the threshold, y will put it into the new recommender 

set R’. Finally, y computes the recommended reputation with R’ and returns the result. 



4.3. Final Reputation Computation 

After finding the direct and recommended reputation, the final reputation Final
y:xR  can be 

computed as: 

Final Direct Rec
1 2 :

1 2 1 21, , [0,1]
y:x y:x y xR R Rη η

η η η η

⎧ = ∗ + ∗⎪
⎨

+ = ∈⎪⎩
                        (19) 

where 1η , 2η  are the weight factors for the direct reputation and integrated recommended 

reputation, respectively. 

4.4. Update of Reputation 

Because users’ reputations change over time, the direct reputation used at present cannot 

directly make use of the data stored in the local reputation database without considering the 

influence of time on the reputation. Denote itm and ntm  as the numbers of the objects within 

the recommendation users set at time ti and tn, respectively. Let rf  and f θ  represent the 

reputation and the security relevance fade factors, respectively. Next, the direct reputation at 

time tn can be updated as below: 

Direct r Final
n it tR f f Rθ= ∗ ∗                               (20) 
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5. Cost Analysis and Performance Evaluation 

In the section, we first elaborate on the communication cost and the computation 

complexity, and then present the performance evaluation of the proposed reputation 

mechanism CCRM. 

5.1. Computation and Communication Cost 

The communication cost of CCRM can be calculated as follows: 



communication
request query reply ,

( 1) ( 1) ( 1),
(3 3).

Cost cost cost cost
O n O n O n
O n

= + +

= − + − + −

= −

                     (23) 

where requestcost , querycost and replycost  represent the number of the request, query, and reply 

messages transferred in the communication, respectively. n denotes the total number of users.  

The computation complexity can be analyzed as below: 

computation
direct vdcr rec final update

direct vdcr rec update

,

( ) ( ) ( ) (1) ( ),

(4 ).

Cost cost cost cost cost cost
O n O n O n O O n
O n

= + + + +

= + + + +

=

      (24) 

where directn , recn  and updaten represent the number of users involved in computing the direct 

reputation, recommended reputation and updated reputation, respectively, and vdcrn  is the 

number of users involved in running the VDCR mechanism. 

The above analysis indicates that both the communication cost and the computation 

complexity of the CCRM is O(n). Therefore, with the strong computing power of modern 

mobile devices and the good capacity of contemporary communication networks, the 

influences of the computation and communication cost are little and thus negligible 

considering the great benefits of enhanced security and data veracity the proposed mechanism 

brings to MCC. 

5.2. Performance Evaluation 

The OPNET [21] simulation experiments were conducted to evaluate the performance of 

the CCRM in MCC. The simulation scenario includes a mobile client network, a wireless 

mesh backbone network and a cloud service platform, as shown in Fig. 1. The mobile client 

network consists of 100 mobile clients. The mesh backbone network has 10 mesh routers and 

there are 10 service providers in the cloud. The physical layer uses a fixed range transmission 

model where two nodes can directly communicate with each other only if they are within a 

certain range, i.e., within a hop. The arrival traffic at each mobile client follows a Constant Bit 

Rate (CBR) of 1 Mbps and a packet size of 1024 bytes. The channel data rate is 10 Mbps. The 

Hybrid Wireless Mesh Protocol (HWMP) [13] is used as the routing protocol. The security 

parameters 1
slβ , 2

slβ , 1η , 2η , a, b are 0.5, 0.5, 0.4, 0.6, -10, 40, which are empirical values 



obtained from multiple experiments. Of which, 1
slβ  and 2

slβ  are the weight factors in Eq. (17) 

associated with the numerical difference between security levels of y and i and the security 

relevance factor ( , )
sl
i xθ , respectively. 1η  and 2η  are the weight factors in Eq. (19) used to 

determine how much the direct reputation and integrated reputation affect the final reputation, 

respectively. a and b are the weight factors in Eq. (8) to determine the value of the profit 

function that gives the profits gained by a user when it provides the recommendation. Each 

data point depicted in the following figures is the average of the results obtained from 100 

runs of simulation experiments with a simulation time of 100 s each. 

We adopt the MCC-based query system for electronic medical records as the simulation 

scenario. In the scenario, a mobile client requesting electronic medical records first connects 

to a BTS, which accesses the mesh backbone via the mesh router. Then, the MC will send a 

service request to the cloud service provider (CSP) to ask for the electronic medical records. 

When the CSP receives the request, it will evaluate the trustworthiness of the MC and decide 

whether to approve the request. The detailed process is described as follows. 

First, if there are one or more BTSs that the MC can directly access, it will broadcast a 

query message to its neighbor clients to query which BTS is more secure and reliable. If there 

is no BTS that the MC can directly access, it will evaluate the reputation of the neighbor 

clients based on the CCRM and select a most trustworthy client as a relay node to connect to 

the BTS. Second, when the request message is transported in the WMN, the CCRM is used to 

select a trustworthy route in order to prevent the privacy information in the request message 

from being eavesdropped on or tampered. Third, when the CSP receives the request, it will 

evaluate the trustworthiness of the MC using the CCRM and decide whether to approve the 

request. 

In this subsection, the performance of the proposed CCRM is compared to the Harmony 

[22], RP-CRM [14] and ARTSense [23] because the RP-CRM was a similar reputation 

mechanism proposed in our previous work, while Harmony and ARTSense are the latest 

proposed related mechanisms. The following performance metrics are evaluated when internal 

collusion attacks and bad mouthing attacks are present. 

 Utility of the recommender: The utility obtained by recommenders when they provide 



recommendations.  

 Reputation and its update accuracy: The reputation of a user and the update accuracy 

of its reputation. 

 Impact of context information: The impact of contextual information on users’ 

reputations. 

 Effective recommendation rate (ERR): The ratio of the number of accurate 

recommendations and the number of all recommendations. 

 Malicious user detection rate (MDR): The accuracy of detecting and identifying 

malicious users. 

5.2.1 Utility of the Recommender 

First, we investigate how the CCRM performs in an honest network and a hostile network, 

respectively. In the honest network, all the recommenders are normal users, while in the 

hostile network, the recommenders may be malicious users who give false information with 

the probability λ.  

 

Fig. 2. Utility of the Recommender: (a) Utility of the honest one (b) Utility of the 
malicious one 

The average utility of the recommender in the honest network is shown in Fig. 2 (a). The 

results show that the more truthful information the recommender provides, the larger average 

utility it achieves. In the CCRM, the VCG-based VDCR scheme will be run before users 

provide their recommendations. According to the characteristics of VCG, a user that 

participates the recommendation and does truth-telling is the best strategy; thus, a normal user 

in the honest work will always provide truthful information, which leads to an increase in its 

utility. Moreover, the utility a user gained in a recommendation will be used to update the 

user’s reputation, which leads to the continuous growth of its utility. 



In Fig. 2 (b), we analyze how the false recommendation from an adversary would impact 

its utility. We set three adversaries with the probability of giving false information (λ) being 1, 

0.2 and 0.5, respectively. It is assumed that all of them have a utility value of 1 at the 

beginning of the test. The results show that the average utility of the malicious user is affected 

by providing dishonest recommendations, and the larger the λ, the faster the utility decreases. 

When an adversary has a λ of 1 (i.e., always reports false information), its utility drops the 

fastest to 0. The utility of an adversary who sometimes sends correct information (with λ= 0.2 

and 0.5) decreases more slowly. The utility eventually drops to a very low level, however, 

even if false information is sent with a small probability (λ= 0.2). This is because when the 

adversary gives a dishonest recommendation, according to the characteristics of the VCG 

mechanism, the proposed VDCR makes it pay a higher cost, which leads to a decline in its 

utility. In our mechanism, when the user’s utility becomes less than 0, it is reset to 0. 

5.2.2 Reputation and Its Update Accuracy 

  Next, we analyze the impact of the adversary	   ratio on users’ reputations and compare the 

reputation and its update accuracy of the CCRM with those of the RP-CRM, ARTSence and 

Harmony. The λ of all adversaries is set to be 1, which represents the worst case scenario. 

 

Fig. 3. Reputation and its update accuracy: (a) Reputation (b) Reputation update 
accuracy 

We first compare the reputation decrease speed of the four mechanisms. The percentage of 

adversaries among all users is set from 0 to 50%. The results are shown in the Fig. 3 (a). It is 

clear that as the ratio of adversaries increases, the reputation in all the four mechanisms drops, 

while the reputation in the CCRM decreases the fastest. Because the adversaries are colluding 

and bad mouthing, the adversaries’ false reports will gain more support from other collusive 

users and they can also provide dishonest recommendations to frame up good parties and/or 



boost the reputation values of malicious peers. However, the VDCR and VCG-RIM schemes 

proposed in the CCRM and RP-CRM, respectively, can incentivize users to tell truth to 

effectively defend against collusion attacks and bad mouthing attacks, which makes the 

reputation decrease faster than under the ARTSense and Harmony mechanisms. Moreover, 

with the combination of security level-based data categories and user context information 

sensing, the CCRM implements fine-grained reputation evaluation that makes the reputation 

decrease faster than under the RP-CRM with adversaries in the network. 

We also compare the reputation update accuracy of the four mechanisms. The percentage of 

adversaries is set at 30%. From the results shown in Fig. 3 (b), we can see that the users’ 

reputation increases as time increases (i.e., the number of interactions increases). Similar to 

the speed of reputation decrease, the CCRM has a higher reputation update accuracy than the 

other three mechanisms. Although the RP-CRM also can incentivize users to provide truthful 

information to defend against internal collusion attacks and bad mouthing attacks, the absence 

of fine-grained reputation evaluation makes its reputation update accuracy worse than that of 

CCRM. Because both ARTSense and Harmony lack reliable recommendation evaluation 

mechanisms to effectively defend against internal collusion attacks and bad mouthing attacks, 

the false recommendations of malicious peers make the accuracy of updates of users’ 

reputations lower than that under the RP-CRM and CCRM. 

5.2.3 Impact of Context Information 

Next, we compare the impact of context sensing on reputation among these four 

mechanisms. The characteristics of the mobile and random access in the MCC-based big data 

applications make contextual information such as time, location, data category, etc., an 

important factor in both the direct and the recommended reputation computation processes. 

Accurate contextual information can help improve the accuracy and reliability of the 

reputation evaluation. In this simulation, we consider two scenarios: (1) an honest network 

environment without attacks, and (2) a hostile network environment with adversaries.  



 

Fig. 4. Impact of Contextual Information: (a) Honest network (b) Hostile network 

The results in Fig. 4 (a) show that users' reputations increase as the interaction time 

increases because they always provide honest information in the honest network. In the 

RP-CRM, the evaluation and update of reputations only depend on the historical interaction 

behaviors and ignore the time and location influences, so the reputation of the RP-CRM 

increases most quickly among the four mechanisms. For Harmony, although it introduces the 

data category into the reputation evaluation, time and location influence are ignored, which 

makes its reputation evaluation less accurate than that of CCRM and ARTSense. On the other 

hand, ARTSense considers the time and location influence on reputation, but it does not take 

the data category into account, so its reputation evaluation accuracy is lower than that of the 

CCRM. In Fig. 4 (b), we observe that although the adversaries exist, the value and increase 

speed of reputation of the RP-CRM and Harmony are close to those in Fig. 4 (a). This is 

because they cannot effectively discover and defend against context-based attacks. In contrast, 

owing to the introduction of contextual information into the reputation evaluation, the 

ARTSense and CCRM can overcome the shortcomings of the RP-CRM and Harmony; hence 

their value and increased speed of reputation are less than those in Fig. 4 (a). Meanwhile, the 

comprehensive consideration of the time, location and data category makes the performance 

of the CCRM better than the ARTSense. 

5.2.4 Effective Recommendation Rate 

We also evaluate the effectiveness and reliability of the four reputation mechanisms by 

comparing their ERR performances. 



 

 

Fig. 5. Effective recommendation rate: (a) in an honest network, (b) in a hostile network 
with 20% adversaries, and (c) in a hostile network with 50% adversaries 

The results in Fig. 5 (a) show that under the honest network environment, the ERRs of the 

four mechanisms are very close. Compared to the results in Fig. 5 (a), in Fig. 5 (b) and (c) 

where the adversaries are present, the ERRs of the ARTSense and Harmony decrease by 15% 

and 30%, respectively, and the ERRs of the RP-CRM and CCRM decrease by 10% and 20%, 

respectively. The comparison results show that the internal attacks have a large impact on the 

effectiveness and reliability of the recommendation, which will further affect the effectiveness 

and reliability of the final reputation evaluation. In Fig. 5 (b) and (c), the adversaries may 

launch the collusion attacks and bad mouthing attacks to provide the false recommendation 

information, which makes the ERR performance worse than that in the honest network. 

In addition, Fig. 5 (b) and (c) show that the ERR of the CCRM is higher than the other 

three mechanisms. The reason is that the VDCR in CCRM can effectively incentivize the 

recommenders to tell the truth and thus enhance the reliability of recommendations. Moreover, 

the security relevance factor ensures that only those recommendations with similar security 

levels and related historical data access categories are accepted, which further improves the 

effectiveness of the recommendation. For RP-CRM, although it selects the recommendation 



user and the recommendation based on the security relevance factor, it cannot incentivize 

users to tell the truth, which results in a lower ERR than the CCRM. ARTSense and Harmony 

did not consider improving the effectiveness and reliability of recommendations, so their 

ERRs are worse than those of the CCRM and RP-CRM. 

5.2.5 Malicious User Detection Rate 

Next, we analyze the malicious user detection rate under two hostile network environments 

with 50% and 70% adversaries, respectively. 

 

Fig. 6. Malicious user detection rate: (a) with 50% adversaries and (b) with 70% 
adversaries 

In Fig. 6 (a) and (b), as expected, the MDR decreases with time and the growing percentage 

of adversaries. It is observed that the MDR of the CCRM is highest among the four 

mechanisms. This finding is observed because the integrated combination of the data category, 

context sensing, security relevance and recommendation incentive scheme improves the 

accuracy, efficiency, and reliability of the reputation evaluation and thus enhances the MDR. 

Although the other mechanisms also adopt related technologies to improve the accuracy and 

reliability of the reputation evaluation, they either consider the improvement of the direct 

reputation evaluation or the improvement of the recommended reputation evaluation in 

isolation. Therefore, their MDR is lower than that of the CCRM. 

5.2.6 Sensitivity Analysis 

In this subsection, we provide a sensitivity analysis of the parameters cα , locationα  and 

timeα that strongly characterize the proposed CCRM.  

In Figs. 7-9, we can see that the user’s reputation first increases and then starts to fluctuate 

as the parameters cα , locationα  and timeα increase. According to Eq. (2), the increase of the 



three parameters leads to the decrease of uncertainty, which improves the direct reputation 

and thus results in the increase of the final reputation when the recommended reputation is 

fixed. Hence the node’s reputation increases when these three parameters increase initially. 

According to Eq. (1), however, the increase of these three parameters may also lead to the 

decline of the direct reputation because 1) with the higher cα , the cardinality of data 

categories set C increases; 2) with the larger locationα , the expected distance between the 

locations of the interacting users become smaller, and hence, the number of unsuccessful data 

access attempts, c
fAC , increases; and 3) with the bigger timeα , the expected time interval 

between the user interactions becomes larger, and hence, the number of unsuccessful data 

access attempts, c
fAC , increases. Consequently, with the declining direct reputation, the final 

reputation becomes more dependent on and starts to fluctuate in line with the recommended 

reputation.    

 

Fig. 7. Impact of data category access 

factor cα on the reputation 

 

Fig. 8. Impact of location factor 

locationα on the reputation 

 



Fig. 9. Impact of time factor timeα  on the reputation 

5.3 Discussion of the Results 

In this subsection, we discuss the simulation experimental results to offer some insights 

obtained from the proposed approach.  

1) Utility of the recommender  

The results show that the more truthful information the recommender provides, the larger 

average utility it gets. According to the characteristics of VCG, a user that participates in the 

recommendation and does truth-telling is the best strategy; thus, a normal user in the honest 

work will always provide truthful information. The results show that the average utility of the 

malicious user is affected by providing dishonest recommendations. When the adversary 

gives dishonest recommendations, according to the characteristics of the VCG mechanism, 

the proposed VDCR makes it pay more, which leads to a decline in its utility.  

2) Reputation and its update accuracy 

As the ratio of adversaries increases, the reputation drops, while the reputation in the 

CCRM decreases the fastest compared to other mechanisms. The VDCR scheme proposed in 

the CCRM can incentivize users to tell the truth to effectively defend against the collusion 

attacks and bad mouthing attacks, which causes the reputation to decrease rapidly. Moreover, 

with the combination of security level-based data categories and user contextual information 

sensing, the CCRM implements fine-grained reputation evaluation. We can also see that the 

users’ reputations increase as the time increases. Similar to the decreasing speed of reputation, 

the CCRM has a higher reputation update accuracy than the other three mechanisms.  

3) Impact of context information 

Owing to the introduction of contextual information into the reputation evaluation, the 

CCRM can overcome the shortcomings of the RP-CRM and Harmony and can obtain a 

smaller value and increased speed of reputation than the case where no adversary is present. 

Meanwhile, the comprehensive consideration of the time, location and data category makes 

the performance of the CCRM better than that of ARTSense. 

4) Effective recommendation rate (ERR) 

The comparison results show that the internal attacks have a large impact on the 



effectiveness and reliability of the recommendation, which will further affect the effectiveness 

and reliability of the final reputation evaluation. We can also see that the ERR of the CCRM is 

higher than the other three mechanisms. Moreover, the security relevance factor ensures that 

only those recommendations with similar security levels and related historical data access 

categories are accepted, which further improves the effectiveness of the recommendation. 

5) Malicious user detection rate (MDR) 

The MDR decreases with the time and the growing percentage of the adversaries. It is 

observed that the MDR of the CCRM is the highest among all the four mechanisms. This is 

because the integrated combination of the data category, context sensing, security relevance 

evaluation and recommendation incentive scheme improves the accuracy, efficiency, and 

reliability of the reputation evaluation, and thus enhances the MDR.  

6) Parameters sensitivity 

We can see that the user’s reputation first increases and then starts to fluctuate as the 

parameters cα , locationα  and timeα increase. The increase of the three parameters leads to the 

decrease of the uncertainty, which improves the direct reputation and thus results in the 

increase of the final reputation. The further increase of these three parameters, however, may 

also lead to the decline of the direct reputation, which causes the final reputation to become 

more dependent on the recommended reputation and begin to fluctuate in line with the 

recommended reputation.    

 

6. Conclusions  

In this paper, we investigated the problem of protecting against internal attacks for 

enhancing data veracity in Mobile Cloud Computing (MCC). A new category-based context 

aware and recommendation incentive reputation mechanism named CCRM has been proposed, 

which incorporates innovative technologies in terms of data categories, context sensing, 

security relevance and recommendation incentive. The simulation-based experiments and 

performance analysis have verified that the CCRM is effective and efficient. More 

specifically, in the presence of collusion attacks and bad mouthing attacks, the utility of the 

recommender, the decrease speed and update accuracy of reputation, the effective 

recommendation rate, and the malicious user detection rate of the proposed CCRM are better 



than those of the existing RP-CRM, ARTSense and Harmony mechanisms. 
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