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Evolutionary trajectories are constrained by tradeoffs when mutations that benefit

one life history trait incur fitness costs in other traits. As resistance to tetracycline

antibiotics by increased efflux can be associated with a 10%, or more, increase in

length of the Escherichia coli chromosome, we sought costs of resistance associated with

doxycycline. However, it was difficult to identify any because E.coli’s growth rate (r),

carrying capacity (K) and drug efflux rate increased during evolutionary experiments

where E.coli was exposed to doxycycline. Moreover, these improvements remained

following drug withdrawal. We sought mechanisms for this seemingly unconstrained

adaptation particularly as these traits ought to tradeoff according to rK selection

theory. Using prokaryote and eukaryote microbes, including clinical pathogens, we

therefore show r and K can tradeoff, but need not, because of ‘rK trade-ups’. r and

K only tradeoff in sufficiently carbon-rich environments where growth is inefficient.

We then used E. coli ribosomal RNA (rrn) knockouts to determine specific muta-

tions, namely changes in rrn operon copy number, than can simultaneously maximise

r and K. The optimal genome has fewer operons, and therefore fewer functional ribo-

somes, than the ancestral strain. It is, therefore, unsurprising for r-adaptation in the

presence of a ribosome-inhibiting antibiotic, doxycycline, to also increase population

size. Although E. coli can evolve to grow faster and to larger population sizes in the

presence of antibiotics when compared to their absence, we found two costs to this

improvement: an elongated lag phase and the loss of stress protection genes.
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Introduction

Tradeoffs lie at the heart of a cross-kingdom research effort that seeks to explain how biodiversity

is generated and maintained.1–5 Two traits engage in an evolutionary tradeoff when beneficial

mutations for one trait are deleterious for the other, and vice versa, and many theories agree2,6–11

that genetic polymorphisms are maintained when tradeoffs have an appropriate geometry. Less

clear, however, are the physical, chemical and physiological forces that create tradeoffs in the first

place12 and tradeoffs needed for the theories to work can be difficult to isolate in practise.13–18

It is essential for medicine that we understand tradeoffs. The term ‘superbug’ refers to a

pathogenic microorganism that resists treatment by antibiotics with no apparent cost, or trade-

off, in terms of its pathogenicity. An evolutionary route to superbug status is thought to occur

when a pathogen first adopts costly drug resistance mutations, a process that sees resistance

traded against proliferation rate in antibiotic-free environments. Thereafter, other mutations

compensate for those costs, yielding strains that are both drug resistant and capable of rapid

proliferation.19,20

Tradeoffs are, however, sometimes observed in pathogens. A genomic study of a clinical pathogen

using several antibiotic classes21 showed resistance costs were dynamic during treatment for a

Salmonella infection in which drug efflux proteins exhibited between-drug tradeoffs. During treat-

ment, structural mutations that increased efflux rates for one antibiotic decreased them for others.

Biophysical tradeoffs like this are important as they can help support genetic diversity, as was

shown in a laboratory study where the rate-affinity tradeoff maintained a trimorphic transporter

gene within a bacterial population.10

Single-protein tradeoff mechanisms, like the above, are more readily identified than organism-

wide tradeoffs where costs may be hard to discern. Indeed, a classical concept, the rK tradeoff,

where r is growth rate and K is organismal carrying capacity, suffers from an absence of both

mechanism and data and so, along with rK selection theory, fell out of favour some time ago.22

Others argue rK theory is relevant to understanding tumour progression and heterogeneity23,24

but details of how rK selection theory makes predictive statements about tumour evolution are

unclear. Interestingly, much the same can be said of the rate-yield tradeoff (RYTO) postulated
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for microbes and cancers25 that has also proven elusive.14,26–28 Here ‘rate’ refers to growth rate

and ‘yield’ to a metabolic conversion efficiency, c, between carbon source intake and biomass

production. Some have observed a RYTO10 while others have seen weak RYTOs, or no tradeoff

at all, even positive rate-yield correlations have been observed13,26,27 (i.e. a trade-up).

In this study of E.coli and fungal Candida we too see both rK, and rate-yield, tradeoffs and

tradeups. However, we show this is only to be expected mechanistically because, for unicellular

organisms, rK and rate-yield relationships derive from one underlying theory. By applying that

theory, which is consistent with all our data, we resolve the geometry of the RYTO by demon-

strating it has a parabolic shape that contains a tradeup. As a direct corollary we also resolve

the geometry of rK tradeoffs for microorganisms, including Candida, by showing that it too has

a parabolic shape where growth rate is maximal at intermediate population size.

The presence of rK tradeups is important for antibiotics which suppress r and K by design, which

the antibiotic doxycycline achieves by slowing protein production in Escherichia coli. Antibiotic

resistance mutations should restore r during chemotherapy but, here, the absence of rK constraints

during resistance evolution allows the creation of a seeming E. coli mutant ‘uberbug’ that effluxes

doxycycline more quickly, and which grows more rapidly to higher densities than its wild-type

ancestor, whether or not the antibiotic is present. We were able to isolate one phenotypic and

one genetic cost to this triple improvement: increased delay in the onset of exponential growth

and the loss of stress protection genes contained in a prophage.

Results

We first present a mechanistic argument10 supporting a parabolic relationship between growth

rate in exponential phase of microbes and the population size those microbes achieve; recent

extensions of flux balance analysis provide another.29 As a result of the parabolic geometry of

this trait pairing, rK relationships can contain both trade-ups and tradeoffs.

First consider the rK tradeup: it is straightforward to see why r and K might be positively

correlated. Assume a carbohydrate, like glucose, is a limiting source of carbon, as can be the case

for tumours and microbes. The size of a population of unicellular organisms can be predicted
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from the carbohydrate concentration if the number of cells produced per carbon molecule, a.k.a.

yield, c, is a constant:

K = number of cells =

yield (c)︷ ︸︸ ︷
number of cells

moles of available glucose
× moles of available glucose = c× S; (1)

S is the concentration of that extracellular carbohydrate. This equation circumvents one problem

of rK theory in which ‘K cannot be realistically expressed as a function of life history traits’.30

Equation (1) addresses this for microbes whereby the trait is yield, c, which is multiplied by the

available nutrient to form K.31 Equation (1) will not apply, however, to multicellular organisms

where different cells in tissue develop with different nutrient to biomass conversion efficiencies.

To relate growth rate to the carbohydrate assume, for now, that r varies as a Monod function:31

r = r(S) = c · VmaxS

km + S
. (2)

Here km is a half-saturation parameter, so-called because r(km) = 1
2 max{r(S) : S ≥ 0} and Vmax

is the maximal uptake rate of carbohydrate into the cell. As S = K/c in (1), using (2), we derive

a putative rK relationship:

r = r(K/c) = c · Vmax ·K
km · c+K

. (3)

Equation (3) is consistent with microbial data31 but, interestingly, inconsistent with classical rK

theory: increasing r increases K. Assumptions typical of rK theory,32,33 for example that a linear

regression r = a − bK can describe rK datasets, is not compatible with (3). To resolve this for

microbes we first turn to a clinical pathogen, Candida glabrata.

RYTO and rK relationships in C. glabrata

By culturing (see Methods) C. glabrata in media with different concentrations of glucose as the

carbon source, seeking to test equations (1-3) against data, we determined the dependence of r

and K on glucose supply. Figure 1(a) summarises this dataset and the Methods section details

how r and K are determined from microbial culture data. It shows a linear regression poorly

captures the data (parameter-adjusted R2 ≈ 0.13), so does equation (3) (adjusted R2 ≈ 0.46) and

a unimodal Poisson distribution function is a marginally better fit (adjusted R2 ≈ 0.48). One
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might hypothesise, from Figure 1(a), that equation (3) and a linear regression apply to different

subsets of the data: (3) applies at low K whereas data are approximately linear at high K. Much

better would be one theory capturing all the data.

For this we summarise a calculation performed elsewhere10,25,34 which removes the assumption

in (2) that yield, c, is a constant independent of environment10,34 by writing

K = number of cells =
cells

ATP
×

S−dependent︷ ︸︸ ︷
ATP

glucose
× glucose = c(A)×A(S)× S. (4)

We now need information about two measures of efficiency: the ATP produced per cell and the

ATP per glucose in each cell. To allow progress, although not ideal, we now assume that ATP

per cell does not depend on glucose availability. This allows yield, that we write c(S), to depend

only on glucose concentration, S. This is the simplest possible extension we could make to add

realism to (2) and (3).

It has been shown,10 to approximation, that

c(S) = chi
1

1 + pS
+

pS

1 + pS
clo, (5)

where p is a shape parameter, clo is the lowest possible yield and chi is the highest possible yield

over a non-toxic range of carbohydrate concentrations; Figure 1(c) validates (5) for Candida and

E.coli. If we modify (2) and (3) to accommodate (5), we then obtain a curve in the rK-plane

parameterised by S:

(r,K) = (r(S),K(S)) =

this is c(S) in equation (5)︷ ︸︸ ︷(
chi

1

1 + pS
+

pS

1 + pS
clo

)
·

(uptake,sugar)︷ ︸︸ ︷(
VmaxS

km + S
, S

)
, (6)

where K(S) = S · c(S). Equation (6) can be written as a rate-yield relationship.10,25–27,34 To see

this, divide K(S) by S to form c(S):

(r, c) = (r(S), c(S)) =

(
chi

1

1 + pS
+

pS

1 + pS
clo

)
·
(
VmaxS

km + S
, 1

)
. (7)

Supplementary Figure S3 illustrates geometric tradeup and tradeoff forms described by (5-7). Note

that we cannot fit (6) and (7) directly to rK and rate-yield data. Instead, to obtain those data,

we first determine p, clo and chi from yields determined at different carbohydrate concentrations.

We then determine km and Vmax from r data measured at different carbohydrate concentrations.
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Let us test this reasoning on C. glabrata rK data. Figure 1(b-d) show that (5) is an excellent

descriptor of C. glabrata yield (adjusted R2 ≈ {0.995, 0.98, 0.99, 0.95, 0.98} for five strains). We

then eliminated parameters Vmax and km in (6) using those data and the resulting datafits, and

this is key, exhibit unimodal, parabola-like profiles (Figure 1, Supplementary Figures S5, S3 and

S4) in which r exhibits its maximum at intermediate K. Thus, (6) reconciles the competing tradeoff

and the Monod-based, tradeup, theories of rK data. Furthermore, the fit of (7) to C. glabrata

rate-yield data is unimodal in rate and yield (Supplementary Figure S4). This is consistent with

prior, untested predictions on the shape of the RYTO25 that are corroborated by recent flux

balance analyses.29

Figure 1 shows the dependence of r, yield and K on S for five C. glabrata strains. This shows K

increases nonlinearly as glucose supply increases due to a decrease in efficiency at high, non-toxic

glucose concentrations (relative likelihood of linear and a nonlinear regression < 10−16), a property

not observed by Monod.31 As a result, growth rate can decrease as glucose supply increases (Figure

1(c)) and so growth rate can be maximised at intermediate glucose concentrations.

Given differences in their blood sugar levels, we sought, and found, evidence for different rK and

rate-yield profiles in the fungal infections of diabetic and non-diabetic patients. Supplementary

Figure S5(a) compares rK parabolae of C. glabrata strains 2001 and 3605, the latter isolated

from a diabetic patient, which indicates a between-strain rK tradeoff: 2001 has lower r with

potential for greater K than does 3605 (t-test for r: t ≈ −4.52, df = 250, p < 10−5, for K:

t ≈ 7.72, df = 250, p < 10−12). Supplementary Figure S5(b) shows the mathematical rK model

datafit for the C. glabrata strain taken from a diabetic patients has a skewed profile toward higher

growth rates at lower population densities.

RYTO and rK relationships in E.coli

We then asked whether the parabolic rK shape was specific to eukaryotes. It is not, Figure 2 shows

Escherichia coli has rK parabolae too. We use E.coli strains MG1655, wild-type, ∆1,∆2 − ∆5

that have different numbers of ribosomal RNA operons (rrn) in their genomes; wild-type has 7,

∆1 has 6 operons, ∆2 has 5, and so on. Figures 1 and S5 show that claims made above for

6



Candida apply equally to these E.coli and Figure 2 shows the RYTO and rK shapes to be robust

to changes in the number of rrn operons. These E. coli answer the following question: do genetic

changes that increase yield, and therefore K, lead to a concomitant decrease in r? In other words,

can we produce evidence of a between-strain rK tradeoff?

In response, ribosomal RNA is known to constitute a metabolic burden under carbon limita-

tion.35,36 By using these E.coli strains whereby this burden is under genetic control, we can

mediate r and yield, thus K, to probe how selection for one of these traits affects the others. To

this end, we establish the following property of the six E.coli strains that differ in the number

of ribosomal RNA (rrn) operons. First, strains with fewer such operons have greater yields at

the same carbon supply concentrations, and subsequently higher K (Figure 3(a), Supplementary

Figure S8 shows p-values). According to equation (7) the number of rrn operons, as they mediate

yield, should also mediate r, and indeed they do (Figures 3(a) and 4). This operon also mediates

lag phase (Supplementary Figure S11). We thus have three inter-dependent traits, r, K and yield

under genetic control, as desired, and lag phase too.

Figure 4 shows that different copy numbers of rrn optimise r at different glucose availabilities,

although yield (therefore K) is optimised when fewest operons are present (Supplementary Figure

S8). Figures 3(b) and S9 shows there is no between-genotype rate-yield tradeoff between these

strains because changes in rrn copy number can follow a parabolic geometry exhibiting both

positive and negative corrections with r and K and which occurs is contingent upon the glucose

available. Supplementary Figure S7 summarises this information using three empirical and theo-

retical r, yield and K landscapes illustrating the dependence of these phenotypes on glucose and

rrn operon number.

Data from the E.coli strain set indicate it may be possible to simultaneously improve r and K

by mutational change, for example by deleting or duplicating an rrn, but is it? To answer this,

we sought genetic and environmental conditions where population size is largest and Figure 5(a)

provides a self-evident response: K is largest at greatest nutrient supply, as is obvious, and for

the highest yield genomes, namely when rrn copy number is low. Now, Figures 5(a) and (b)

show the strain with 3 and 4 rrn operons resides within a 2-strain cluster with maximal K but

which also has the largest observed r (Supplementary Clustering Analysis). Finally, Figure 5(c)
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shows that rate and yield, and therefore K, can be positively or negative correlated between

genotypes, depending on the glucose background in which growth takes place. We conclude that

improvements in K are not associated with a penalty in r in this strain set: deleting operons from

the WT can improve both r and K.

E.coli rate-yield and rK changes following adaptation to an antibiotic

K, r and yield phenotypes are relevant to clinical infections because some antibiotics, ones said to

be bacteriostatic, explicitly reduce r without lysing cells in a way that would reduce K. We there-

fore ask, do drug-resistance mutations that restore r during a bacteriostatic antibiotic challenge

also reduce yield or K? Prior RYTO and rK theory would predict so. However, the potential for

rK and rate-yield trade ups demonstrated above indicates that some resistance mutations might,

instead, increase both r and K.

To study this, we propagated six replicate E.coli K12 (AG100) populations for 4 days of antibiotic

treatment at clinical levels above the minimal inhibitory concentration (MIC) of doxycycline

treating every 12h with drug (∼60 generations, MIC from 24h data in Supplementary Figure S12,

see Methods). Figure 6 summarises the resulting r and K phenotypes. First, r in the presence of

drug was restored to, and greater than, that of the ancestral strain in the absence of drug (Figure

6(b), p < 0.012, df = 6, t ≈ −3.5). However, discordant with the hypothesis of a RYTO or rK

tradeoff during adaptation, K also increased above that observed in both the ancestral strain and

in the strain adapted to growth media containing no doxycycline (K nearly tripled: Figure 6(a),

p ≈ 1.3× 10−7, df = 6, t ≈ −28.1 for the ‘Ancestral’ strain, p ≈ 4.0× 10−7, df = 6, t ≈ −23.4 for

the ‘Media Adapted’ strain). Thus, although it was an antibiotic molecule for initial treatments,

doxycycline eventually stimulated biomass production. Supplementary Figures S12 and S14 show

doxycycline can also stimulate population growth within 48h at near MIC dosages.

Simultaneous rK improvements in AG100 were observed not only at super-MIC dosages, they

also arose when the same adaption protocol was performed at sub-MIC dosages (see Methods).

In this case, populations that had been inhibited by 70% due to the antibiotic subsequently grew

to higher densities than populations cultured without antibiotic (Supplementary Figure S13).
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Whole genome sequencing (WGS) of high-K populations indicated the appearance, and partial

sweep, of duplications of a genomic region containing a doxycycline efflux pump operon,37 acr (at

frequencies 21, 25 and 42% in each of three replicates, Figures 7 and S15). It is on the basis of

there being more cells with more efflux operons that we claim antibiotic resistance by efflux has

increased in these populations, consistent with observations of increased r and K in the presence

of doxycycline (Figures 6 and Supplementary Figure S13). WGS showed the excision of prophage

dlp12 from the AG100 genome at high frequency in high K populations (at frequencies 78, 84 and

88%). Polymorphisms common to all the drug-adapted populations observed at lower frequency

were found in the insertion sequence (IS5) transposase, insH-5, and in the carbon starvation

lipoprotein (slp) that mediates acid resistance (Supplementary Tables S1 and S2).

Although r, yield, K and drug resistance increased, and rK improvements remained following drug

withdrawal (Figure 6), we were able to isolate a cost to this improvement: an increased duration

of lag phase (Supplementary Figure S14). It is notable that although doxycycline is said to be

bacteriostatic,38 in fact here it stimulates biomass production while lengthening lag phase beyond

24h without slowing exponential growth (Supplementary Figure S14(b)). Thus, assays testing the

antibiotic effect of doxycycline for 24h, or less, can conclude that it reduces growth rate when,

instead, it merely increases the the waiting time to exponential growth.

Discussion

The logistic equation (8) is extremely useful when seeking growth rate and populations sizes

of microbial growth data, but this does not mean rK selection theory provides any mechanistic

insight into our data. Indeed, simply because the logistic model is a good fit of a growth dataset,

one cannot deduce that r and K tradeoff, nor can one exploit that datafit to understand the

nature of selection for r or K in that population. A range of theoretical and computational

tools were required here to elucidate the selective forces in our experimental system. We needed

mathematical models that causally relate growth efficiency, and therefore population size, to the

rate of population growth and whole genome sequencing data highlighted the likely cause of that

efficiency increase. Here this amounts to selection for the amplification of an efflux pump and the

loss of a prophage from the genome.
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rK theory is consistent with our datasets where r and K are negatively correlated, for example in

Figure 1(a), although any prior claim that r and K were correlated would have been consistent

with our data somewhere due to the humped, parabolic geometry we observe in rK and rate-yield

data.

Ours is a laboratory study but there is a potential medical consequence of this geometry and the

subsequent presence of rK tradeups: mutations that overcome chemotherapies designed to reduce

growth rate can also increase population size. Here, just such adaptations created drug-resistant

populations of bacteria that grow more quickly, and to higher densities, than bacteria not treated

with antibiotics. These beneficial adaptations bear costs that are relevant to survival outside

the laboratory. The doubling of lag time (Supplementary Figure S14, ‘lag time’ is parameter

L in equation (9)) means the evolved strains can take twice as long to profit from increased

nutrient uptake if the environment switches from a glucose-poor to a glucose-rich state. The

loss of dlp12 prophage removes protection from environmental stresses: dlp12 is implicated in

biofilm formation, an important aspect of the drug-resistance phenotype.39 The observed acr

amplifications can be strongly selected against in environments without antibiotic.40 So, although

a 3-dimensional phenotype of (rate, yield, resistance) shows positively correlated adaptation in

lab conditions, the 5-dimensional phenotype (rate, yield, resistance, lag time, biofilm production)

indicates those changes come with costs that will be exposed in other environments.

Finally, it is possible the humped rK geometry we observe applies to tumours and metazoa because

equations (6) and (7) were derived from a theoretical model of a branched, glucose-processing

pathway10 common to all living cells. However, those equations are not applicable when different

cells express those pathways differently or do not have pathways in common. Therefore, to

generalise our findings to such heterogenous populations one could extend equations (6) and (7)

to a situation where one microbial strain uses an extracellular, secondary metabolite of another

microbe to grow. We hypothesise, in such a microbial community, r, yield and K will also exhibit

positive correlations.
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Methods

The supplement contains additional details on the methods used to analyse data. Please email

the corresponding author to request any of the Matlab scripts used in this work.

Throughout, estimates of r and K are obtained from microbial growth data using the logistic

equation
dN

dt
= rN(1−N/K), x(0) ≥ 0, (8)

whose solutions are modified to account for lag phase. This means r, K and L are determined

from the best fit of the following 4-parameter model to microbial density timeseries:

N(t) = β +
K

1 + q · e−r(t−L)
(9)

where N(t) is density at time t. In this model, β is the estimated experimental blank, needed

because microtitre plates used for culture absorb light, q is a composite parameter that contains

the initial population size, N(0), and L is lag, a proxy for the time taken for growth to enter

exponential phase. Yield is calculated as the ratio between K and the glucose supplied to the

growth medium (Supplementary Figures S1 and S2).

Please note that the biological parameter L is used throughout the text and supplementary and

is always referred to by the term ‘lag’. The parameter β is not a biological phenotype. It is an

electromechanical parameter associated with the microtitre plates and plate-reading devices in

which microbial population densities are measured. It refers to a constant measure of the light

absorbance of the material from which those plates are constructed and the value of β derives

from that material, in addition to the light absorbed by the liquid media placed in each well of

the plate which allows microbial cultures to grow. This value must be properly subtracted from

optical density readings to determine microbial population densities and the definition of N(t)

above allows us to do this in a reliable manner that accounts for potential errors in estimates of

β. The parameter β might be termed the ‘blank’ but this term is used nowhere in the paper.

The parameters associated with equation (8) are estimated by fitting (8) to microbial growth

data using NonLinearModel.fit in Matlab. This is a powerful nonlinear regression facility that

produces a range of statistics on the robustness and suitability of that fit to the dataset in question.
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Once estimates of r and K have been obtained, with associate uncertainties, because glucose has

been supplied to the cells at a controlled concentration, S0, the efficiency of biomass production

is the value K/S0.

Microbial biomass measure

Throughout our empirical work we use optical density (OD) as a proxy for biomass. Our reasons

for doing so are 1) OD is known to correlate well with live cell counts at the densities we are using,

see the Supplementary Information in these references10,37 , 2) OD accounts for mass contained

in non-viable cells which have previously sequestered carbon from the environment and therefore

count as biomass, even if they no longer grow, 3) OD need not always correlate with live cell

counts because cell size changes are accounted for within OD (larger cells produce a larger OD

for equivalent population sizes), but this is consistent with the use of OD as a proxy for biomass,

indeed, larger cells will have sequestered more carbon from the extracellular environment than

smaller cells.

Other measures could be used to as a proxy for biomass, and therefore yield (a.k.a. efficiency:

biomass produced per carbon supplied), for example i) colony forming units (CFUs, a.k.a. live

cells counts), ii) total cell count performed by flow cytometry, iii) total DNA, iv) dry mass. We

chose OD as it can be measured on a minute-by-minute basis for large numbers of replicates

and culture conditions, allowing us to measure dynamics in the chosen biomass measure without

disrupting or sampling the culture vessel, something that is not readily feasible for the other

measures mentioned here.

C. glabrata rK data using 24h cultures

Overnight cultures were prepared in YPD medium (Yeast Peptone Dextrose with 20mg/ml glucose

(2%w/v)) in 4ml volumes in universal tubes, via inoculation of a single colony per tube. Following

18-24 hours incubation at 30oC and 180rpm, overnights were centrifuged and washed once in PBS

solution prior to re-suspension in SC (Synthetic Complete) minimal medium at the appropriate

glucose concentration. SC medium was prepared at 14 different glucose concentrations (0.25–
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32 mg/ml) via autoclaving of media components (excluding glucose and 10% of the final media

volume) prior to the addition of filter-sterilised glucose solution. D-Glucose was dissolved in

distilled, de-ionised water to reach a final concentration of 320mg/ml (32%w/v) and sterilised

through a 0.22µm filter unit. Glucose was diluted appropriately in autoclaved SC media water

used to produce a final volume as required to prepare SC media with 4, 12, 20, 24 and 32mg/ml

glucose concentrations. All other SC medias were prepared from a 200mg/ml (20% w/v) glucose

stock solution. These experiments were repeated in triplicate.

E.coli rK data from 24h/48h cultures

150µL of M9 minimal media was prepared using dilute K2HPO4 (350g), KH2HPO4 (100g) in 1L

of deionised water and dilute trisodium citrate (29.4g), (NH4)2SO4 (50g) and MgSO4 (10.45g)

in 1L of deionised water, autoclaved and diluted accordingly. Filtered, sterilised glucose and

casamino acids were added from a 20% (w/v) stock. All strains were grown in M9 minimal media

supplemented with 0.1% casamino acids and glucose ranging from 0 to 3mg/mL, incubated at

30oC and shaken in a Tecan Infinite Pro for 24h with reads taken every 20min. Inoculating strains

(AG100, MG1655 and rrn operon knockouts derived from MG1655) were prepared from overnight

cultures in liquid LB medium were grown in M9 supplemented with 0.125mg/mL of glucose and

centrifuged prior to inoculation. These experiments were replicated six times.

E.coli K12(AG100, MG1655 and rrn operon knockouts) antibiotic adaptation

protocols

For extended doxycycline and no-doxycycline control treatments at 30◦, a microtitre plate reader

measured OD600nm of cultured bacteria every 20 minutes in 96-well microtitre plates containing

150µL of liquid M9 medium supplemented with glucose (0.2%), casamino acids (0.1%) both with

and without antibiotics. All cultures were shaken in a linear manner before each OD measurement.

Inoculating E.coli were taken from a colony and cultured overnight in M9 (0.2%glucose, 0.1%

casamino acids). At the end of either 12h or 24h, called the length of a ‘season’, a 96-pin replicator

was used to transfer a 1% of volume sample (the volume transferred is approximately 1.5µL) to a
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new plate containing fresh growth medium and antibiotics, thus creating a new season of growth.

The same environment was maintained for each subsequent transfer (8 seasons of treatment in

total) and each replicate population (repeated in triplicate). The resulting OD time series were

imported into Matlab R2013b to subtract the background (blank wells containing only medium)

and generate all other statistics described in this document.

Based on the 24h data in Supplementary Figure S12, the minimal inhibitory concentration (MIC)

of E.coli AG100 when exposed to doxycycline was taken as 0.6µg/ml for the purposes of this

study. This is also called 1×MIC in the main text and 2×MIC is twice this concentration. When

treatments of AG100 are said to be ‘sub-MIC’ in the main text, the doxycycline concentration

was 0.2µg/ml (see Supplementary Figure S12) and this achieves a reduction in population size

over a 24h period of AG100 growth that approximately equates to a 70% inhibition relative to

the same E.coli strain cultured in the absence of doxycycline.

Sequencing and bionformatics protocols

Genetic mechanisms of adaption in antibiotic-evolved populations of E. coli (AG100)

To determine genetic mechanisms that might account for the K-stimulatory effect of the antibiotic

doxycycline on AG100 reported in the main text, we sequenced the genomes of 3 evolved popu-

lations from the treatment which resulted in the highest cell number (measured by OD). These

are indicated in Figure S13. To ensure the genetic changes were the result of antibiotic challenge,

we also sequenced 3 control populations from that figure that evolved under experimental condi-

tions but were not exposed to any antibiotics. We further sequenced 3 replicates of the ancestral

population to ensure conformity between our starting strain and the published AG100 reference.

DNA Extraction

DNA was extracted from frozen samples (150µL culture + 75µL 80% glycerol); a small quantity

(< 1µL) was removed from the frozen population in a microtitre plate well using a sterile tip

and inoculated into M9 media containing the same concentration of nutrients and antibiotic as
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the adaptive condition as that microtitre well, therefore recapitulating the conditions of season 8

in Figure S13. DNA was extracted using an Ambion gene jet DNA extraction kit following the

manufacturers instructions, with an additional ethanol wash step, and additional elution step to

maximise DNA purity and yield. Samples were extracted from populations taken from season 8.

DNA was also processed on a 1% agarose gel to ensure that DNA size was in excess of 10,000bp

and to ensure that there was no protein contamination. DNA was accurately quantitated using the

Qubit system, ensuring yields of over 25ng/µL in 50µL. Paired-end DNA libraries were prepared

by Exeter Sequencing Service, using the Nextera (Illumina) library preparation protocol.

DNA quality control and mapping

Reads were trimmed using FASTQC to ensure a mean phred score of at least 25 at all positions of

the read. Adapter sequence trimming was performed by ESS. All sample reads were mapped to

a previously published E. coli K12(AG100) reference genome available for download at the http

site mentioned in the ‘Annotation’ section below.

Each sequence was indexed to the reference in fasta format using the BWA (Burrows-Wheeler

alignment) index subroutine (BWA 0.7.4). Alignment was also performed using BWA and aligned

files were subsequently sorted into genomic position and indexed using Samtools and filtered

to remove any non-paired end matches. Coverage was analysed using genomeCoverageBed in

Bedtools41 and data were further analysed in Matlab.

Variant calling

Single Nucleotide Polymorphisms (SNPs) were called using VarScan 2.3.8. VarScan uses a heuris-

tic method based on read depth, base quality and variant frequency in order to call SNPs. Filters

were added to SNP calling to ensure that high quality calls were made. These quality filters were:

minimum read depth of 60, with at least 10 reads supporting the alternative variant, a P-value of

0.05 or less and a minimum average quality of 30. Additionally VarScan calls SNPs as homolo-

gous if over 90% of the reads support one or the other variant. VarScan also detected short indels

in the same manner. Pindel was used to detect structural variations, including inversions, rear-
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rangements and indels. Pindel works by detecting breakpoints using a pattern-growth algorithm.

This identities paired reads whereby only one of the reads is able to map to the reference. By

breaking the unmapped read into shorter fragments, and re-mapping, the breakpoint of insertions

or deletions can be detected. Duplication events were determined using CNVnator v0.3, with a

bin size of 100, and MATLAB, using coverage data from Bedtools.

Annotation

Annotation files from the previously published AG100 genome were used in annotation of wild-

type populations of AG100. These files were accessed from EBI:

http://www.ebi.ac.uk/ena/data/view/PRJEB7832

Annotation of the evolved genomes was also performed using RAST for initial web-based viewing,

and PROKKA to annotate the consensus fasta files of all experimental replicates.

Clustering analysis

Given r and K data taken from replicated culture experiments using several genetically distinct

strains of E.coli, we require a rationale to decide which strain optimises r and K. Rather than use

multiple pairwise comparisons, instead we used an agglomerative clustering approach to categorise

the whole phenotypic dataset, r and K, into some number of clusters that represent subsets of the

entire dataset with similar phenotype. A natural prior expectation is that the data from a single

genotype are found within one phenotypic cluster, although one such cluster may contain the data

of two, or more genotypes. With this in mind, we used the following algorithm to determine the

genotype that maximises the phenotypes r and K.

First choose a clustering algorithm that takes a dataset D and returns a categorisation of this

dataset as i distinct clusters, call it C(i,D). Now, given n genotypes and a phenotypic r dataset,

R, to categorise, for all i = 2, ..., n form the output Ci := C(i,R). Let R(·) be the function that

returns the set of phenotypic values for a given cluster.
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We call a cluster viable, with parameter p, if a one-way anova is unable to detect significant

differences, at level p, between all phenotypes in that cluster, this is the set R(C(i,R)). The entire

clustering is said to be admissible if each cluster is itself viable and, moreover, the phenotypes

from any two distinct clusters can be detected by testing with a one-way anova at significance

level p, thus R(C(i,R)) and R(C(j,R)) represent significantly different sets of phenotypic values

for i 6= j.

Then, for each admissible clustering, i∗, choose the cluster label, m(i∗) ∈ {1, ..., i∗}, which contains

the maximal phenotype:

maxR ∈ R(Cm(i∗)).

The optimal genotypes are said to be all those found within Cm(i∗).

The clustering method, C, used for Figure 5(b) is an agglomerative, 1-dimensional clustering

analysis that was performed on the rrn operon mutants for both growth rate (r) and carrying

capacity (K) datasets. To implement this we used the routines clusterdata and anova1, as

implemented in Matlab 2013a, whereby i∗ = 3 was determined to be the number of admissible

clusters in each case when p = 0.05.

For the K dataset, the cluster of optimal genomes corresponding to {3, 4, 5} (and these values

are the numbers of rrn operons present in the genome) were deemed to be optimal according to

the above algorithm, whereas {3, 4, 7} was the analogous set determined for the r dataset. The

intersection of these two sets is {3, 4} which we therefore deem to be the optimal pair of strains

(i.e. rrn strains ∆3 and ∆4) in the sense that these may both be said to maximise r and K across

the entire dataset studied here.

Data availability

Data for figures that do not use genome sequence data is available in Excel spreadsheet format at

http://people.exeter.ac.uk/reb217/rebHomePage/data.html (this link also contains coarse-

grained DNA coverage data used in Figure 7). A complete whole-genome sequencing dataset can

be accessed at http://www.ebi.ac.uk/ena using ENA project accession number of PRJEB15352.
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Figure 1: a) Collated rK datasets are best explained by unimodal datafits; b-d) K, r

and yield datasets in fungi and bacteria are explained by equations (2-7). a) Collated

growth rates (r) from different C. glabrata strains on the y-axis and population size (K) on the x-axis;

each datapoint has a corresponding glucose supply concentration. A unimodal regression based on

a scaled Poisson distribution function (r(K) = p · exp(n · lnK − K − ln Γ(n + 1)) where p and n

are shape parameters, Γ is the gamma function) and a robust linear regression are shown. Based on

the corrected Akaike Information Coefficient, AICc, the relative likelihood of the two regressions is

< 10−15: the unimodal fit is significantly more likely. b) Biomass per mg of glucose supplied (i.e.

yield) on the z-axis for C. glabrata and Escherichia coli, with glucose supply on the x-axis and strain

labels on the y-axis. Datapoints are dots whereas predictions from equation (5) are lines (adjusted

R2 ≈ {0.995, 0.98, 0.99, 0.95, 0.98} for the Candida strains). Analogously, c) and d) show r and

K on the z-axis, respectively, indicating their dependence on the supply of glucose (x-axis). Model

predictions (solid lines) are obtained by fitting equations (2-7) to data using NonLinearModel.fit in

Matlab.
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Figure 2: Empirical and theoretic rK relationships (in a) and r-yield relationships (in

b); dots are data, sold lines are theoretical model fits. Consistent with theory, these are

skewed parabolae for all the strains of E.coli K12(MG1655) wild-type and rrn knockout strains used

in this study, bar the one with fewest rrn operons. The strain with only 2 such operons (smallest dots

shown) does not conform to this geometry and, unlike the other strains, has an rK tradeoff with no

trade-up region.
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Figure 3: A demonstration that rrn operon copy number controls r and K by mediating

yield: to turn K into yield, divide by 2mg/mL glucose. a) The relationship between the

number of ribosomal RNA (rrn) operons, carrying capacity (K, left) and growth rate (r, right) for one

glucose concentration (2mg/mL; Figures 4 and S8 contain more). Linear and quadratic regressions

are shown, respectively, as lines ± estimated 95% CI (3 replicates). These data indicate greater

K results from fewer operons for fixed glucose supply and that r can be maximised at intermediate

operon number. b) A scatterplot of collated (r,K) values for all rrn knockout strains for one glucose

concentration showing a quadratic relationship is a better descriptor of data than a linear regrewsion;

note, this also serves as a between-genotype rate-yield plot. The size of the dot for each datum

corresponds to rrn operon number, as per a).
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Figure 4: Determining the rrn operon copy number that maximises growth rate of

the E. coli rrn mutants. Growth rate (r) is shown on the y-axis as a function of ribosomal RNA

operon copy number (x-axis) for different glucose supply concentrations. We sought a relationship

between growth rate and operon copy number using linear and quadratic regressions and plotted the

regression with the better fit to data according to adjusted R2 value (solid black line, outer lines are

the prediction ± 95% CI). These data indicates that intermediate rrn operon numbers can optimise r

under some environmental conditions, although higher numbers of operons (the wild type E.coli strain

has 7) can also optimise r under other conditions. For completeness, using the quadratic regression

we computed 95% confidence intervals for r-optimal rrn copy numbers for {0.5, 0.75, 1, 2, 3}mg/mL

glucose, these are, respectively, {5.26± 0.47, 4.22± 0.24, 4.60± 0.02, 4.89± 0.11, 5.53± 1.21}. This

shows that 7 operons is not optimal for growth under all environmental conditions, although it optimal

for some (0.25 and 3 mg/mL glucose). Red dots in the bottom-right panel indicate populations that

optimise K from all glucose concentrations tested.
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Figure 5: E.coli K12(MG1655) rrn knockout strains ∆3 and ∆4 optimise population

size, K, when glucose is high in concentration without paying a growth rate cost.

a) Empirical data (dots) and theoretical predictions (lines using models in main text) for each rrn

knockout strain show the variation in K (y-axis) as a function of yield (x-axis) and ribosomal RNA

(rrn) operon copy number (dot size). The cluster of combinations of rrn operon number and glucose

supply concentration that maximise K are highlighted as red dots: self-evidently, K is greatest when

glucose supply is greatest and growth is efficient, meaning few rrn operons (see Supplementary Figure

S8). As K / yield = glucose concentration, when glucose concentration is fixed, the collated data for

all strains lie on straight lines that pass through (yield,K) = (0,0). The highest yield outcome is marked

as a large red circle: the WT strain cultured at the lowest glucose concentration. b) An agglomerative,

1-dimensional clustering analysis (Supplementary Methods) shows that the highest population sizes

found at the highest glucose concentration tested (K-cluster II, shown left) are also achieved at the

highest observed growth rates (r-cluster I, shown right). As a result, operon copy numbers that

simultaneously optimise r and K are highlighted with red circles (3 and 4 copies of rrn). c) There is

no between-strain tradeoff in r and K: dot sizes indicate different rrn copy number (as Figure 2) with

each datum each representing observed r and K at high (left) and low (left) glucose concentration.

Linear regressions (black lines) indicate that r and K can be both positively and negatively correlated,

depending on the environment (Supplementary Figure S9 shows more glucose concentrations).
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Figure 6: Simultaneous rK-adaptation from an antibiotic challenge where drug re-

sistance also increased. K (in a, units of OD600nm) and r (in b) for three strains of E. coli

K12(AG100) labelled ‘Ancestral’, ‘Media Adapted’ and ‘2×MIC’ Adapted (Supplementary Methods

describe protocols). The latter two strains were derived from Ancestral by ∼60 generations adaption

to media containing either no antibiotic (then labelled Media Adapted) or else in two times the min-

imum inhibitory concentration of doxycycline (then labelled 2xMIC Adapted); this is a clinical dose.

All three strains were then cultured for one day (the ‘day 9’ data indicated) in media containing either

no antibiotic (filled circle), a dose of doxycycline equivalent to the MIC (1×MIC, thin open circle)

or twice the MIC (thick open circle). We tested whether differences in K (in a) and r (in b) were

significant (green star) or not (red star) with respect to the Ancestral strain under identical day 9

conditions (t-test, p < 0.05 in each case). (a) Unexpectedly, the greatest K was observed when

‘2×MIC Adapted’ was cultured either in the absence of doxycycline or with doxycycline present at

1×MIC. (b) Unsurprisingly, the greatest r was observed when Media Adapted was cultured in media

with no doxycycline; ‘2×MIC Adapted’ had an r phenotype in the presence of doxycycline at a 2×MIC

concentration that could not be distinguished from Ancestral cultured in the absence of doxycycline;

when doxycline was withdrawn, the r of strain ‘2×MIC Adapted’ was larger than Ancestral. Thus,

drug-resistance adaptation has restored r above ancestral values while also increasing K.
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Figure 7: A DNA coverage plot for E. coli K12(AG100) following ∼60 generations

(96h) of growth in the presence and absence of doxycycine. Data in the presence (3

inner annuli, ‘Dox’) and absence (3 outer annuli, ‘no-Dox’) indicate potential genetic mechanisms

supporting positive r, K and resistance adaptation. A change in DNA detected in the sequencing

protocol is shown in red (reduction) and blue (increase; and white is complete loss), respectively, with

respect to no mean change (in grey). The inner ring (black) indicates genome position and three

replicates for each treatment were sequenced (indicated in Figure S13). The white region marked

dlp12 shows the deletion of prophage dlp12 only during doxycycline treatment. The outer text labels

summarise the estimated frequencies of mutations common to all three replicate populations, indicating

positive selection for the doxycycline efflux operon, acr, with the prophage deletion at even higher

frequency.
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Supplementary Figure S1: Representative raw OD data (coloured lines) of the strains

of C. glabrata. Each subplot represents the growth of the cultures over a 24h period in SC media

supplemented with 0.25-32mg/mL of glucose. We used the logistic model, shown in grey but obscured

by data in most cases, to calculate growth rate (r) and carrying capacity (K).
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Supplementary Figure S2: Representative raw OD data (coloured lines) of E. coli rrn

knockouts. Each subplot represents the growth dynamics of a 24h culture in minimal M9 media

supplemented with 0-3mg/mL of glucose and casamino acids. The logistic model (grey) is used to

calculate growth rate (r) and carrying capacity (K).
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Supplementary Figure S3: The relationship between the rate-yield and rK parabolae:

one theory that morphs from a tradeup (blue) to a tradeup-tradeoff switch (orange).

Starting with the expression (5) for yield: c(S) = (chi + pclo · S)/(1 + pS), note that this is a within-

strain rate-yield tradeoff (RYTO) if and only if clo < chi. Panel (a) shows a plot of c(S) for the values of

chi, measured in log10 cells per µg, as indicated in the panel legend, with log10(clo) fixed at 5. Typical

realisations of equation (7), the rate-yield relationship, then have the form shown in (b). Analogous

rK relationships from (6) are then shown in (c); the two panels in (c) are identical, except one has

linear and one has log-linear x-axes. As growth rate is defined to be r(S) = c(S) ·VmaxS/(km+S) and

recalling that K = c(S) ·S, an algebraic condition for an rK tradeoff can be derived on the parameters

in this model from the requirement that there is an S∗ for which growth is locally maximal: dr
dS (S∗) = 0.

Models in (c) both do, and do not, meet this condition. For those that do not, r increases with K and

we have an rK tradeup, where this condition is met, the rK-curve has a tradeup part that gives way to

a tradeoff at large enough values of K. Panel (d) shows the two functions r(S) and K(S) = S · c(S)

in the definition of equation (6) for the same parameter values as panels (a-c). Note how in (d-right)

the relationship between population size and the glucose supplied can be nonlinear.
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Supplementary Figure S4: Robustness of the skewed rK/rate-yield parabolae across

C. glabrata stains. (a) Variation in growth rate (r) on the y-axis as a function of carrying capacity

(K, x-axis) for data pooled from all cultured strains of C. glabrata. Dots are empirical data measured

at different glucose concentrations (shown as different colours). The prediction from the model in

equation (6) in the main text is represented in black. (b) The analogous plot to (a), but for rate-yield

data, not rK data. S6
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predictions from equation (6) are lines. Bottom-right panel: rK profiles for two clinical isolates of C.
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K (predictions from equation (6) have adjusted R2 ≈ {0.982, 0.878}). (inset) An analogous unimodal

rK geometry for E. coli MG1655. b) Putting the five predicted rK parabolas of C. glabrata in one

plot highlights strain 3605 isolated from a diabetic patient with the greatest low-K, high-r skew.
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Supplementary Figure S6: r, K and yield for E. coli rrn knockout strains cultured at in-

creasing glucose concentrations Growth rate (r, top left), yield (top right) and carrying capacity

(K, centre) on the y-axis (dots) at different glucose concentrations (x-axis) alongside predictions from

equations (5-7) (grey). For each concentration of glucose, between-strain differences in phenotype

within each condition (i.e. for each fixed glucose concentration) were tested using a one-way ANOVA.

Whether or not (green or red) these differences are significant (p < 0.05) is indicated by symbols above

the data. If the symbol is a triangle, its orientation (as an up or down arrow) shows if the number of

rrn operons is positively (up) or negatively (down) correlated with the phenotype in each plot and a

square, not a triangle, is shown when no significant correlation is found either way. As a result, this

analysis shows r, K and yield are negatively correlated with operon number in most conditions tested,

however not all, and more details associated with these correlations can be found in Supplementary

Figures 4 and S8.
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operons present in the genome, sizes as Figure 4.
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Supplementary Figure S8: Increasing copy number of the rrn operon reduces yield in

E. coli rrn mutants. The dependence of biomass yield of the rrn knockout strains (y-axis) is shown

as a function of rrn operon copy number (x-axis). Linear regressions (solid black line, the outer lines

show the prediction ± 95% CI, n = 3) determine whether yield and operon copy number are correlated.

The correlation is significantly negative in each case: note the x-axis has a negative orientation. To

obtain the analogous plot for the K phenotype, multiply y-axes by the amount of

glucose in each panel, this does not change the qualitative form of each plot but it

does scale the y-axis.
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Supplementary Figure S9: Seeking between-strain tradeoffs and tradeups in E. coli rrn

mutants: correlations between growth rate (r, y-axis) and carrying capacity (K, x-axis) are shown

as a function of glucose supply (colour-coded) and rrn operon copy number (dot size). Using linear

regressions (black line), we tested whether r and K are correlated. Clearly both negative and positive

correlations are observed, depending on the glucose supplied and there is, therefore, no evidence of a

rate-yield tradeoff between strains consistently across all environmental conditions. To obtain the

analogous plot for the K phenotype, multiply x-axes by the amount of glucose in

each panel: this produces Supplementary Figure S10.
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Supplementary Figure S10: Between-strain rK data in E. coli rrn mutants: this is a direct

analogy of Supplementary Figure S9 but with K plotted on the x-axis instead of yield. A quadratic

datafit is a better descriptor of the data than a linear regression in most cases (based on adjusted

R2values), but note how the form of quadratic is inverted at the highest glucose. The reasons for this

are not known.
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Supplementary Figure S11: Effect of copy number variation on the lag phase of E.

coli rrn mutants. a) Duration of the lag phase (y-axis) as a function of rrn operon copy number

(negatively oriented x-axis). Linear regressions (black line) determine whether lag and operon copy

number are correlated, evidently the correlation is negative in all cases. b) A comparison of the

growth kinetics of the wild-type strain of E. coli K12(MG1655) and the knockout strain with four rrn

deletions (∆4), where the y-axis shows the dynamics of optical density (OD600nm) over a 24h period.

We note that the removal of rrn operons does not alter the observed growth rate significantly in the

case shown when 2mg/mL of glucose are supplied to the media (two-sided t-test, t = −2.52, df = 4

and p ≈ 0.065). It does increase, however, both the length of the lag phase (t = −5.58, df = 4

and p ≈ 0.005) and the carrying capacity (t = −14.39, df = 4 and p ≈ 0.0004). Other glucose

concentrations produce analogous observations. S13
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Supplementary Figure S12: Doxycycline dose-response profiles for E.coli K12(AG100),

aka ‘Ancestral’ in the main text. E. coli K12(AG100) OD600nm on the y-axis during a growth

cycle where measurements have been taken at two time points, one at 24h and one at 40h. The

doxycycline concentration supplied is shown on the x-axis. Of note is the qualitatively different form

of dose-response at the two different time points, particularly the large densities in the 40h dose-

response curve. Thus, from these data, doxycycline can be a stimulant of optical density over periods

longer than 24h incubation. For example, comparing OD in the zero dox condition against the OD in

the 0.2ug/mL dox condition at 24h we obtain t ≈ −1.08, df = 4, p ≈ 0.34: no significant difference.

Whereas comparing the OD of the zero dox condition versus that of the 0.2ug/mL dox condition at

48h we obtain a significant difference: t ≈ −9.52, df = 4, p ≈ 7 × 10−4. OD is therefore maximised

in a drug treatment and not in the absence of drug. Importantly, the dose inhibiting cell growth by

50% relative to the no-drug condition (written IC50) varies significantly depending on the incubation

time (t ≈ −45.88, df = 2 and p ≈ 0.0004). Based on the 24h data in this figure, as is

standard, we take the minimal inhibitory concentration (MIC) of AG100 exposed to

doxycycline to be 0.6µg/ml for the purposes of this study. This is also called 1×MIC

in the main text; 2×MIC is double this value.
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Fig. 3.2: Evolution of an AG100 dose response curve to Doxycycline, in exponential phase. Season one shows a standard monotonic decrease in
absorbance as the drug concentration increases. After adaptation, however, there is a drug concentration that strongly mediates high growth,
to a level exceeding the drug free control.

48

Supplementary Figure S13: The course of adaptation of an E. coli K12(AG100) dose-

response to doxycycline for ∼60 generations. Empirical dose-response data showing the

growth of AG100 is represented on the y-axis, quoted as the mean optical density at 600nm (OD600nm±

s.e. (the grey area), n = 6) with doxycycline on the x-axis. Treatment lasted four days with a new

drug treatment every 12h, each period of which is termed a ‘season’ of growth: there are 8 seasons

corresponding to each subplot in this figure. Note the ‘non-monotonic overgrowth’ feature of the later

curves whereby some of the drug-treated populations can be as high as the density of the untreated

control populations. The drug-treated sample highlighted by a red circle was subjected to whole-

genome sequencing, as was the no-doxycycline treatment at the same timepoint.
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Supplementary Figure S14: Comparison between the ‘Ancestral’, ‘Media Adapted’

and ‘2×MIC Adapted’ strains of E. coli K12(AG100) described in the main text. a)

Differences in lag phase, shown on the y-axis, for the three strains determined in three different envi-

ronmental conditions: (1) in M9 media with glucose and casamino acids (called ‘Media’ or ‘noDox’),

(2) the same media with doxycycline at 1×MIC (called ‘1×MIC Dox’) and (3) the same media sup-

plemented with doxycycline at 2×MIC (called ‘2×MIC Dox’). A two-sided t-test, with p < 0.05,

determined whether differences in lag were statistically significant (green star) or not (red star) from

the Ancestral strain in the same media. Note the absence of lag phase when the Ancestral and Media

Adapted strains are grown at 1x and 2xMIC: they do not growth in these conditions. b) Growth curves

of the Ancestral, Media Adapted and 2xMIC Adapted strains cultured in the absence of antibiotic

over 24h (left). Note how the growth of the 2xMIC Adapted strain is as fast as the other two and it

reaches a greater population size in all three replicates (statistics on next page). (right) Note how the

addition of 0.4µg/mL of doxycycline to media leads to a significant increase in lag phase of Ancestral’s

(AG100) growth (t = −34.93, df = 2 and p ≈ 0.0008) and carrying capacity (t = −8.08, df = 2 and

p ≈ 0.015), importantly with no significant penalty in growth rate (t = 1.19, df = 2 and p ≈ 0.35).

Thus doxycycline here serves to increase lag phase, not decrease exponential growth rate.
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Statistics required for Supplementary Figure S14(b):

T-test values that ‘Media Adapted’ has a greater r phenotype than ‘2xMIC Adapted’:

t ≈ 10.97, df = 6, p ≈ 3.4× 10−5.

t-test values that ‘Ancestral’ has a lower r phenotype than ‘2xMIC Adapted’:

t ≈ −3.50, df = 6, p ≈ 0.012.

t-test values that ‘Media Adapted’ has a smaller K phenotype than ‘2xMIC Adapted’:

t ≈ −23.37, df = 6, p ≈ 4.02× 10−7.

t-test values that ‘Ancestral’ has a smaller K phenotype than ‘2xMIC Adapted’:

t ≈ −28.12, df = 6, p ≈ 1.34× 10−7.

S17



1 2 3 4
0

0.5

1

1.5

2

m
e

a
n

 b
in

n
e

d
 c

o
v
e

ra
g

e
 (

2
0

0
1

 b
in

s
)

96h Dox replicate

 

 

f ≈ 21%, p ≈ 5.44e−21

f ≈ 88%, p ≈ 5e−94

1 2 3 4
0

0.5

1

1.5

2
96h Dox replicate

 

 

f ≈ 42%, p ≈ 1.68e−82

f ≈ 78%, p ≈ 4e−67

1 2 3 4
0

0.5

1

1.5

2
96h Dox replicate

 

 

f ≈ 25%, p ≈ 1.16e−46

f ≈ 84%, p ≈ 4e−122

1 2 3 4
0

0.5

1

1.5

2

genome position (Mb)

m
e

a
n

 b
in

n
e

d
 c

o
v
e

ra
g

e
 (

2
0

0
1

 b
in

s
)

96h no−Dox replicate

1 2 3 4
0

0.5

1

1.5

2

genome position (Mb)

96h no−Dox replicate

1 2 3 4
0

0.5

1

1.5

2

genome position (Mb)

96h no−Dox replicate

Supplementary Figure S15: Illumina DNA coverage data for different treatments as-

sociated with Figures S13 and 7. (top) This shows Illumina whole-genome coverage data

determined for the three doxycycline-treated replicates highlighted with a red circle in Figure S13. It

shows the loss of a dlp12 prophage region (in black) and the amplification of a large genomic region

(in blue) containing the acr antibiotic efflux operon. The estimated frequencies of these mutations

in each population are shown in each figure legend as an ‘f’ value. (bottom) This is analogous to

the top figure but now for populations taken from Figure S13 at 96h that have not be exposed to

doxycycline. Note the greater uniformity of coverage of Illumina reads across the genome: there is no

detected loss of the dlp12 prophage region nor duplication of the same acr efflux pump in the absence

of doxycycline.
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