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Abstract

Can we exploit our burgeoning understanding of molecular evolution to slow the progress of drug

resistance? One role of an infection clinician is exactly that: to foresee trajectories to resistance during

antibiotic treatment and to hinder that evolutionary course. But can this be done at a hospital-wide

scale? Clinicians and theoreticians tried to when they proposed two conflicting behavioural strategies

that are expected to curb resistance evolution in the clinic, these are known as ‘antibiotic cycling’ and

‘antibiotic mixing’. However, the accumulated data from clinical trials, now approaching 4 million patient

days of treatment, is too variable for cycling or mixing to be deemed successful. The former implements

the restriction and prioritisation of different antibiotics at different times in hospitals in a manner said to

‘cycle’ between them. In antibiotic mixing, appropriate antibiotics are allocated to patients but randomly.

Mixing results in no correlation, in time or across patients, in the drugs used for treatment which is why

theorists saw this as an optimal behavioural strategy. So while cycling and mixing were proposed as ways

of controlling evolution, we show there is good reason why clinical datasets cannot choose between them:

by re-examining the theoretical literature we show prior support for the theoretical optimality of mixing

was misplaced. Our analysis is consistent with a pattern emerging in data: neither cycling or mixing is

a priori better than the other at mitigating selection for antibiotic resistance in the clinic.
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Introduction

How best to use antibiotics is a question in

applied evolutionary biology of the most profound

importance for human health and yet it has

been called a ‘conceptually uninteresting’ scientific

problem for evolutionary biologists (Read and

Huijben, 2009). Concepts of how to best treat

with antibiotics remain as controversial as they

are important. For instance, the public is

told by medical professionals to adhere to the

fully prescribed course of antibiotics to prevent

resistance (Tabor, 2008) but this practise is also

said to ‘make no sense’ (Rice, 2008; Taubes, 2008)

based, as it is said to be, on an absence of data.

However, it is increasingly clear from molecular

studies of patient infections that clinical resistancec© The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.
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evolution occurs de novo (Blair et al., 2015;

Mwangi et al., 2007). There is, therefore, a

pressing need for molecular, evolutionary and

theoretical biologists to appropriate questions

posed by medics and to bring them from the

clinic into the laboratory, both wet and dry,

where the full gamut of investigative tools can be

brought to bear to provide the missing datasets

that will resolve debates such as this. We take

this approach with a question from evolutionary

medicine that has been posed many times before

where the answer is thought to be well understood.

We will show it is not. The question is this:

in an attempt to preserve their efficacy, should

hospitals, and intensive care specialists, mix or

cycle their antibiotics? It is now over thirty years

ago that clinicians asked whether a strategy of

antibiotic cycling might alleviate the resistance

problem (Gerding and Larson, 1985; McGowan Jr,

1986) and yet this remains an open problem.

Antibiotic cycling is the crop rotation idea

applied to antibiotics (Kollef et al., 1997).

Different antibiotics are prioritised against specific

infections for a period of time, only for that period

of drug prioritisation to be replaced by one of

restriction at a pre-determined later time, which

could be many months (Brown and Nathwani,

2005). It was hoped that cycling would select

against resistance alleles because one particular

drug would not be encountered by a pathogen

during a restriction cycle and so resistance would

‘reverse’ because of the fitness costs of being drug-

resistant (Kollef et al., 1997; Niederman, 1997).

Michael Niederman summarised this idea in a

question (Niederman, 1997): is the crop rotation

of antibiotics the solution to a resistance problem

in intensive care units? Later, predictions were

made using computer simulations of mathematical

models of different epidemiological scenarios

which claimed that cycling might reduce the

incidence of drug-resistant infection no better

than if we randomly allocated antibiotics to

patients (Bonhoeffer et al., 1997). The latter idea

has come to be known as ‘mixing’ because drugs

are mixed within the patient cohort; drugs are not

necessarily ‘mixed’ within patients. Treatments

which do that are called ‘combination therapies’

and these are used routinely in the clinic.

Comparing cycling against mixing provided a

useful observation about how to measure the

success of novel resistance mitigation strategies

as it provided an appropriate baseline measure.

But it was stated, later still, that cycling

different drugs must be suboptimal because a

strategy of maximal ‘heterogeneous antibiotic

use slows the spread of resistance’ (Bergstrom

et al., 2004). This idea taken literally, of

maximising the heterogeneity of drug prescription,

is now thought of as representing the de facto

theoretical optimum (Levin and Bonten, 2004).

And clinicians state as much (Sandiumenge et al.,

2006) in their work:
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“Mathematical models have shown that heterogeneous
antibiotic use, defined as a balanced use of the different
antimicrobials available, is the most likely way of
reducing the selection pressure that leads to antibiotic
resistance.”

and (Takesue et al., 2010)

“Heterogeneous antibiotic use has been suggested
[by mathematical models] to limit the emergence of
resistance.”

However, we contend that statements like these

are based on an over-generalisation of what the

details of the theory actually predict.

Results

Information is key in a toy model scenario

It is straightforward to see that antibiotic mixing

cannot be the theoretical optimum, at least not

in all theories. To understand why, imagine a

highly simplified, toy scenario whereby medics at

a clinic treat patients for infection by a particular

pathogen. To simplify matters completely so

this is a tractable model, we follow previous

mathematical modelling studies in assuming just

two drugs are available (Bergstrom et al., 2004;

Bonhoeffer et al., 1997), we also assume all

patients are infected and are treated. Previous

theories (Bergstrom et al., 2004; Bonhoeffer et al.,

1997; Levin and Bonten, 2004) do not name

the pathogen and nor do we. However, suppose

we are told that the pathogen exhibits reduced

susceptibility to ‘drug A’ in 90% of prior patient

cases but we do not have access to the diagnoses

capable of telling us which individual patients

these might be; again, nor do prior theories.

Suppose that the same pathogen exhibits reduced

susceptibility to the second drug ‘B’ to which

the pathogen exhibits resistance in only 10% of

prior cases. To simplify the situation even further,

we assume no AB cross resistance and no AB-

combination treatments are given.

Since we know nothing of individual patient

cases we are compelled to argue in terms of

‘patient fractions’ that receive one or other drug.

Now, if we give half the patients drug A and

the half other receive drug B, which is a mixing

strategy, the expected fraction of patients that

receive an appropriate treatment is this: (the

fraction treated with A)×(the fraction infected

by a pathogen susceptible to A) + (the fraction

treated with B)×(the fraction infected by a

pathogen susceptible to B) = 1
2
×(100−90)%+ 1

2
×

(100−10)%=50%. Suppose, on the other hand,

we give everyone drug B, which is not a mixing

strategy, then the expected fraction of patients

that receive an appropriate treatment is 0×(100−

90)%+1×(100−10)%=90%, a greater value than

the previous 50%. Thus the population is treated

appropriately more often, given the information

we have, if the drugs are not mixed within

the patient cohort. Furthermore, the worst thing

we can do is to give everyone drug A because

then only 1×(100−90)%+0×(100−10)%=10%

of patients are given the most appropriate drug.

And what of the resulting evolutionary

dynamics? This simple scenario says nothing

about how our strategy should change as

resistance evolves. So, to remedy this we make

the situation a little more general: suppose a

3
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fraction, a, of patients are given drug A, and

therefore the fraction 1−a receive drug B. Assume

an expected fraction, p, of patients have a drug-A

resistant infection and suppose q have a drug-

B resistant infection, where p 6=q. We now seek

a drug control strategy, a, that maximises the

likelihood of appropriateness of treatment.

The patient fraction treated with A that

exhibits a treatable, A-susceptible infection is

a·(1−p), the fraction treated with A but

with B-susceptibility is a·(1−q), the fraction

treated with B but with A-susceptibility is

(1−a) ·(1−p) and the fraction treated with B

exhibiting B-susceptibility is (1−a) ·(1−q). The

patient fraction treated with a drug that best

contributes to clearance of their infection is,

therefore, a(1−p)+(1−a)(1−q)=1−q+a(q−p).

This calculation is illustrated in Figure 1.

Antibiotic appropriateness is maximised when

1−q+a(q−p) is maximised over all possible

patient fractions, a, which is a number between 0

and 1. Since the quantity 1−q+a(q−p) depends

linearly on a, this means

a=

1 if q>p,

0 if p>q.
(1)

For the strategy defined in (1), max(1−p,1−q)

is the probability of appropriate treatment and

this value is as high as we can make it given

the information we have. We therefore call (1) an

optimal strategy.

As we this scenario knows nothing about

individual patients, according to (1) it is optimal

infected 
patient

1 � p

1 � q

A-resistant

A-susceptible

B-resistant

B-susceptible

drug
A

B
1 � a

drug

fraction of appropriate treatmentchoose a so that this quantity is maximised.
infected 
patient

1 � p

1 � q

A-resistant

A-susceptible

B-resistant

B-susceptible

drug
A

B
1 � a

drug

fraction of appropriate treatmentchoose a so that this quantity is maximised.

FIG. 1. An illustration of the toy scenario. A
patient seeks treatment and one of two antibiotics can
be administered. If the probability of resistant infection
to either drug, p and q respectively, can be estimated,
optimal behaviour maximises the likelihood of appropriate
therapy. This entails finding a that maximises 1−q+a(p−
q) where 0≤a≤1 but since this expression is linear in a, the
maximum occurs when a is zero or one. However, the worst
possible drug deployment protocol comes from minimising
this expression and this also arises when a is zero or one.

to treat everyone with the drug for which

resistance is least likely, even though this is a

population-wide strategy that will be sub-optimal

for some individuals. We can, therefore, improve

upon this solution by getting every individual

treatment decision right which means having

better information on individual circumstances,

from antibiograms for example, but this realistic

possibility is not part of our toy scenario.

We now seek the optimal strategy in the toy

scenario if the pathogens are allowed to evolve in

response to our behaviour as clinicians. Variables

p and q will change over time as a result and we

write p(t) and q(t) to allow this, t being time.

Analogous reasoning shows that the definition of a

in (1) should now be replaced by a time-dependent

4
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optimal strategy, a=aopt(t), where

aopt(t)=


1 if q(t)>p(t),

0 if p(t)>q(t),

give either drug if p(t)=q(t).

(2)

Observe how aopt(t) cycles ‘reactively’ between

drugs depending on which of p(t) or q(t) is

the greater. Note also how this strategy tacitly

requires that p(t) and q(t) can be estimated at all

times and that it leads to the most appropriate

treatment with probability 1
T

∫ T

0
max(1−p(t),1−

q(t))dt if the clinic is observed for a duration of T

time units.

The strategy aopt(t) has appeared before in

other theories: the importance of aopt(t) for

differential equation models of the antibiotic

deployment problem was demonstrated using

mathematical techniques from functional analysis

(Beardmore and Pena-Miller, 2010b). This idea

is also contained within a family of strategies

that was later termed ‘informed switching’ for

noisy differential equations (Kouyos et al., 2011).

Clinically, aopt(t) could be likened to surveillance-

based cycling where antibiotics are restricted

according to patterns in emerging drug resistance

data, an idea that has been trialled in the clinic

(Allegranzi et al., 2002; Gerding and Larson,

1985).

And what of mixing in this toy analysis?

A mixing protocol, amix(t), is a stochastically

fluctuating, knowledge-free strategy that can

fluctuate in time but whose ‘expected value’

(that we denote E) at all times is a number

between zero and one representing a constant,

unchanging bias towards one of the drugs: this

means E(amix(t))=β where β is that biasing

constant. If we are free to optimise the fraction

of appropriate treatments with respect to β

we can determine an ‘optimal mixing strategy’

that treats appropriately with probability 1
T

∫ T

0
1−

q(t)+β ·(q(t)−p(t))dt. But, for any fixed β, this

number is necessarily less than the optimal value

1
T

∫ T

0
max(1−p(t),1−q(t))dt we gave above for

aopt(t). So, our analysis shows, at least given the

assumptions in our toy scenario, it would be wrong

to mix drugs. For example, random mixing (a.k.a.

maximal drug heterogeneity) is the strategy that

sets β=1/2 which gives an appropriate treatment

in a mean fraction 1
T

∫ T

0
1
2
(1−q(t))+ 1

2
(1−p(t))dt

of cases, but this is also necessarily sub-optimal

relative to aopt(t).

This seems clearcut, but things get interesting

when we ask this: what is the worst strategy

possible? Can we determine that too? This is

the unfortunate case that gets the drug usage

decisions wrong with maximal probability. So A

(or B)-resistant infections are treated with drug

A (or B) as often as possible. This occurs when

we exchange a(t) with 1−a(t) in the optimal

strategy above, so the worst thing possible that

can be done in our toy scenario is to use the

cycling strategy abad(t) :=1−aopt(t) which gives

appropriate treatment to the fraction min(1−

p(t),1−q(t)) of patients at any given time.

It is unfortunate from a clinical perspective

5
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that the best and worst antibiotic management

protocols are cycling strategies, with mixing

sitting somewhere in between.

So, to summarise, our scenario manifests the

following ‘ordering property’ in terms of which

behavioural strategies select for resistance by

giving appropriate or inappropriate antibiotic

treatments: the best strategy available (aopt(t))

cycles drugs reactively through time and this

is preferable to the best mixing strategy. But

this, by definition, outperforms the worst mixing

strategy which outperforms the worst strategy

of all those we analysed, namely (abad(t)) which,

we repeat, is a reactive cycling strategy. Thus,

the best possible way of cycling performs better

than the mixing strategies which performs better,

in turn, than the worst cycling strategy. This

dichotomy with cycling and mixing is very hard

to escape (Beardmore and Pena-Miller, 2010b)

whichever modelling paradigm we analyse, as the

next section illustrates.

We first make a brief point concerning the term

‘optimal’. The strategy identified as optimal in

the above scenario may well not achieve what we

hope for. Dual resistance may well sweep through

the pathogen population, it may pass to fixation

and so render both our drugs impotent. It could

well be that the best we can achieve is simply to

slow this process because the long-term outcome

we would hope to engineer (namely, to prevent the

occurrence of resistance mutations) is not possible

once we begin to use the drugs. In other words,

‘theoretically optimal’ does not necessarily mean

‘desirable’ or clinically useful.

Moreover, strategies that are optimal for one

theoretical model need not be optimal for other

theoretical models, let alone have value in

the clinic. Indeed, it is only to be expected

that different optimality criteria, and different

modelling choices, will lead to different optimal

strategies even in the same mathematical model.

(As a technical aside, this issue is central to

condensed matter physics where free energy

is optimised and different optima correspond

to different states of matter.) Above we used

the criterion of maximising the likelihood of

appropriate treatment within a patient cohort

given that everyone is treated, but different

performance criteria might have asked us to

compromise on this. For example, if our criterion

had sought to maintain longevity of the drugs, the

optimal solution could well have drawn us into a

tradeoff of treating fewer infected patients (Foster

and Grundmann, 2006).

A second toy model

The above scenario could be criticised in many

different ways for a lack of realism, but do

its predictions generalise to more sophisticated

mathematical models? We address this question

by applying the theory of optimal control and

computational tools designed to solve dynamic

programming problems (Mitchell, 2008) to the

following differential equation model of antibiotic

6
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stewardship (Reluga, 2005):

d

dt
I1 = m1+I1(1−I1−I2)−γ1aI1, (3a)

d

dt
I2 = m2+I2(1−I1−I2)−γ2(1−a)I2. (3b)

Here a=a(t) is the patient fraction treated with

drug 1, 1−a(t) is the fraction of patients treated

with drug 2, I1 and I2 represent the densities

of patients infected with drug 2- and drug 1-

resistant strains, respectively, γ1 and γ2 are the

clearance rates of infection when patients receive

an appropriate antibiotic and m1 and m2 are

the admittance rates of patients to the clinic

infected by drug 2- and drug 1-resistant strains,

respectively. Finally I1(0) and I2(0) are assumed

known when t=0.

Only the case m1 =m2 and γ1 =γ2 is considered

in (Reluga, 2005) whereas we break this

symmetry, analogous to requiring that p 6=q in

the toy scenario, and consider other cases on the

grounds of realism. It is unlikely, for example, that

the rates of admittance of both patient classes I1

and I2 will be identical at all times. Moreover,

if a definitive ranking of mixing and cycling were

possible and clinically relevant, it would have to be

robust to all reasonable variations of parameters

in the model. We are therefore compelled to test

whether, or not, our conclusions are robust to

parameter changes in models like (3).

Now, the optimal control problem for (3)

asks us to find a function a(t) so that the

totality of infected patient days
∫ T

0
I1+I2 dt is

minimised, where T >0 is some fixed observation

time. Control theory tells us that the optimal

strategy can be determined by solving the so-

called Hamilton-Jacobi-Bellman (HJB) equation

associated with (3) numerically. This numerical

approach determines optimal controls as so-

called ‘feedback laws’ whereby a=φ(t,I1,I2) for

some function φ (see (Mitchell, 2008) and

Supplementary Text for details).

Supplement figs. 1 illustrates that when

m1 =m2 and γ1 =γ2, the optimal control law

approximates the function we determined for the

toy scenario:

a=

1 if I1>I2,

0 if I1<I2.
(4)

However, when m1 6=m2 or γ1 6=γ2, Supplement

figs. 1 shows the optimal law can resemble the

asymmetric control law

a=

1 if I1>θ ·I2,

0 if I1<θ ·I2.
(5)

where θ depends on system parameters.

It must be noted that the strategies (1) and

(4) do not preclude the optimality of antibiotic

mixing, although this point is mathematically

technical. This is because there could be

theoretical cases where I1(t)≈I2(t) most of the

time along optimal solution trajectories, in which

case a near-optimal reactive control a would

oscillate very rapidly between the deployment of

either drug. While this phenomenon known as

‘chattering’ would be irrelevant to the clinic, it

could arise in theory if a mixing solution, whereby

a=1/2, were either very close to being optimal or

7
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else were optimal. However, as we discuss in the

supplementary, this requires mathematical models

to possess special symmetry properties.

A third model of antibiotic use

Although very simple, equation (3) broaches the

limits of what can be gleaned using mathematical,

analytic tools. So, in order to progress, we now

present two other models based on assumptions

that have been articulated elsewhere (Bergstrom

et al., 2004; Bonhoeffer et al., 1997) for which

we cannot determine optimal antibiotic controls

but that we can use to compare mixing and

cycling. We will present synthetic data from both

models in order to illustrate the generality of our

arguments.

The first of these models, equation (6), assumes

two antibiotics are available to treat infected

patients, labelled 1 and 2. It assumes S is the

proportion of patients in the hospital infected

by a drug-susceptible pathogen, that R1 then

represents the proportion of patients infected by

a drug-1-resistant pathogen, similarly for R2, and

then X is the proportion of uncolonised patients.

The model is this:

d

dt
S = µ(m−S)−(τ1+τ2+γ)S+βSX+...

...+σβ(c1R1+c2R2)S, (6a)

d

dt
R1 = µ(m1−R1)−(τ2+γ)R1+β(1−c1)R1X−...

...−σβ(c1S+(c1−c2)R2)R1, (6b)

d

dt
R2 = µ(m2−R2)−(τ1+γ)R2+β(1−c2)R2X−...

...−σβ(c2S+(c2−c1)R1)R2, (6c)

d

dt
X = µ(1−m−m1−m2−X)+(τ1+τ2+γ)S+...

...+(τ2+γ)R1+(τ1+γ)R2−...

...−βX(S+(1−c1)R1+(1−c2)R2). (6d)

Equation (6) contains parameters

(µ, σ, m, m1, m2, γ, β, α, τmax, c1 and c2)

the meanings of which are stated in Table 1.

Note that (6) makes no explicit reference to

mechanisms of drug resistance evolution, whether

de novo mutation in the chromosome of the

pathogen or else through horizontal gene transfer.

Both do occur in the clinic and, we believe, are

likely to require different mitigation strategies.

Now, in (6), τ1 and τ2 represent rates of use

of drugs 1 and 2, where all patients are assumed

treated with one of the drugs. This results in a

constraint, τ1+τ2 =τ , where τ a fixed constant

that plays the role of ‘a’ in our previous discussion.

Following (Bergstrom et al., 2004) we seek a

function, τ1(t), which minimises the total fraction

of patient days observed with a drug-resistant

infection,
∫ T

0
R1+R2dt, where T denotes a fixed

observation time. This, again, is a question in

8
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Table 1. The meaning of the parameters in equation (6).

description parameters

Patients enter hospital in states S,R1 and R2 at rates µm,µm1 and µm2 respectively m,m1,m2

Rate of use of drugs 1 and 2 per unit time (days) τ1,τ2

Fitness cost of resistance to pathogens c1,c2

Relative rate of secondary colonization to primary colonization σ

Rate constant for colonization of uncolonized individuals β

Rate of patient turnover in the hospital µ

Represents physician compliance with cycling program α

Untreated patients colonized by susceptible bacteria remain colonized 1/γ days on average γ

optimal control but not one that can be easily

solved. So, in the absence of any better strategies,

we will apply the reactive cycling solution (4) to

(6) and ask how it performs in relation to mixing.

Before doing this, we first generalise (6) so

that the antibiotic usage protocol, τ1(t), can be

explicitly stochastic. This is done by introducing

a random process into (6) so that τ1(t) represents a

noisy, time-varying deployment protocol such that

E(τ1(t))=α(t) for each t≥0, where E(·) denotes

expectation (see Supplementary Text) and α(t) is

some defined protocol that we expect clinicians

to adhere to; α(t) could, for example, represent a

mixing or a cycling protocol.

The second model we refer to is (7) below

from (Bonhoeffer et al., 1997, Case III). It

uses a slightly different terminological convention

with ‘A’ and ‘B’ for the drug labels and x=

(x,yw,ya,yb). In this model x is the density of

patients uninfected by a pathogen, yw represents

the number of patients infected by a wild-type

pathogen strain, ya denotes the number of patients

with a drug-A resistant strain, similarly for drug-B

resistant yb:

dx

dt
= λ−dx−b(yw+ya+yb)x+rwyw+raya (7a)

... +rbyb+h(1−s)((fa+fb)yw+fayb+fbya),

dyw
dt

= (bx−c−rw−h(fa+fb))yw, (7b)

dya
dt

= (bx−c−ra−hfb)ya+hsfayw, (7c)

dyb
dt

= (bx−c−rb−hfa)yb+hsfbyw, (7d)

where the epidemiological parameters are

(λ, d, c, h, rw, s, ra, rb,b) whose interpretation

is stated in Table 2. There are no multidrug-

resistant strains in (7) and although that case has

been considered in (Bonhoeffer et al., 1997), for

brevity we do not discuss it.

Here fa and fb represent the fraction of the

population treated with drugs A and B and

assuming everyone is treated, meaning fa+fb =

1, following (Bonhoeffer et al., 1997) we seek a

function fa(t) so that the total of all patient

infected-days, i.e.

∫ T

0

yw+ya+yb dt,

is minimised.

9
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Table 2. The meaning of the parameters in equation (7).

description parameters

the fraction of patients treated with antibiotic A and B fa,fb
recovery rates of wild-type, A-res and B-res infected hosts rw,ra,rb

transmission rate of infection b

maximum rate at which patients are treated h

fraction of patients that acquire resistance when treated s

per capita death rate of uninfected hosts d

arrival rate of uninfected hosts λ

infected hosts’ death rate c

The reactive control strategies are, in the case

of (6),

τ1(t)=τ ·a(t), τ2(t)=τ ·(1−a(t))

and, in the case of (7),

fa(t)=a(t), fb(t)=1−a(t).

Typical solutions that equation (7) produces when

supplemented with this reactive control strategy

are shown in Figure 2 (bottom panel, see label ‘1’.

The data for (6) are similar but are not shown

for reasons of brevity.) To produce Figure 2 we

implemented

a(t)=

1 if ya(t)<yb(t)

0 if ya(t)>yb(t)
(8)

in (7) and this figure compares numerical solutions

of the reactive cycling strategy (8) with those of

the optimal mixing protocol determined for (7).

They show, by example, that reactive cycling can

outperform optimal mixing.

However, Figure 2 gives just one comparison

of optimal mixing and reactive cycling. To probe

whether this comparison is representative of the

general case we used a stochastic version of

(7) to determine ‘performance histograms’. To

determine performance histograms we computed

the performance, namely the total number of

infected patient days for a given model (i.e.

with fixed parameters) for both reactive cycling

and optimal mixing strategies using 107 different

numerical realisations of stochastic versions of (6)

and (7). Figure 2 (top panel, see orange histogram

and label ‘2’) then shows the resulting histograms.

Note how reactive cycling outperforms optimal

mixing in almost all the simulations of the

particular model realisation that we tested. (We

determined performance histograms for all cycling

and mixing strategies in a comparable manner, see

the supplementary for details).

Implications of synthetic data in Figure 2 for
clinical trials

There is an important difference between the

reactive cycling strategies, and cycling, used in

theory and cycling in the clinic. Although some

clinical studies have utilised ideas that might be

described as reactive cycling (Allegranzi et al.,

2002; Brown and Nathwani, 2005; Gerding and

Larson, 1985; Takesue et al., 2006, 2010), we

know of no clinical studies that implement reactive

cycling in exactly the way (8) defines it. Rather,

clinical trials make use of scheduled cycling

protocols based on fixed periods of drug rotation

10
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FIG. 2. (top panel) Two performance histograms (orange
and yellow, respectively) illustrate that reactive cycling can
outperform all the scheduled cycling protocols. (bottom
panel) Two timeseries from the stochastic version of (7)
using (1, left) a protocol that cycles reactively between
antibiotics and (2, right) optimal mixing: protocol (1)
outperforms optimal mixing (2) as can be seen in the top
panel. Variables in the legend of (2) are defined in equation
(7) and performance here is the number of observed infected
patients days.

(Brown and Nathwani, 2005; Hedrick et al., 2008;

Martinez et al., 2006; Raymond et al., 2001).

So, to create a fair comparison, we must also

compare (8) with the scheduled drug rotations

that implement fixed, periodic cycles of antibiotic

prioritisation and restriction, and we must then

compare this with antibiotic mixing.

Moreover, clinical cycles of antibiotic

prioritisation and restriction vary considerably

in duration, from one month (P. Toltzis M. J.

Dul C. Hoyen A. Salvator M. Walsh L. Zetts,

2002), to three (Hedrick et al., 2008; Smith et al.,

2008; Warren et al., 2004) to six (Kollef et al.,

1997). Indeed, many clinical cycling studies have

been criticised on the basis of not implementing

repeated periods of cycling (Brown and Nathwani,

2005). Issues like these are difficult to avoid in

practice but they are not relevant to theoretical

studies where we can perform exhaustive searches

using mathematical and computational models.

So, when we simulated theoretical cycling

strategies based on scheduled drug rotation of

fixed cycling periods, we obtained a second

performance histogram, part of which can be seen

in Figure 2 (top panel, yellow histogram). This

histogram shows the performance of entire families

of cycling protocols based on a sampling of many

different scheduled rotations (see supplementary).

Importantly, Figure 2 (top panel) shows that

while reactive cycling outperforms scheduled

rotation, many scheduled cycles outperform

optimal mixing. It also appears as if the

performance histogram of the family of scheduled

cycling strategies contains the performance of

optimal mixing right in its midst. It transpires

this feature is no quirk because mathematical

antibiotic deployment models, like equations (6)

and (7), are compelled to have this property. For

details of the argument supporting this outcome,

see (Beardmore and Pena-Miller, 2010a) and the

supplementary.

Let us explain this feature more carefully. When

differential equation models are used to examine

11
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all cyclings!
(yellow)

all mixings (blue)

optimal!
mixing

worst!
mixing

performance

fr
eq

ue
nc

y

reactive cycling (and possibly other information-rich protocols)

worst 
cycling

optimal 
cycling

FIG. 3. The structure of performance histograms of all
cycling and all mixing protocols for a typical theoretical
model. The shaded regions, each with unit area, illustrate
that the range of performances of the cycling protocols
is at least as wide as that of the mixing protocols and
a series of numerical examples in the text illustrates this
for specific models. Note that the ‘optimal cycling’ and
‘optimal mixing’ performance can coincide in this figure
whereupon the blue and yellow histograms would have
identical ranges. Note also, when illustrating this figure
using mathematical model simulations in the text, we do
not plot the performance histogram for all the mixing
protocols, rather just optimal mixing (coloured green),
worst mixing (red) and random mixing (blue) are indicated.

the question of optimal antibiotic deployment,

the two families of clinical strategies known as

cycling (meaning scheduled rotation) and mixing

(maximal antibiotic heterogeneity) must exhibit

comparable levels of drug resistance in the sense

that their performance distributions can always be

embedded into each other, with complete overlap

of their performance ranges (Beardmore and

Pena-Miller, 2010a). This statement is illustrated

as a schematic in Figure 3. It follows from this that

for each mathematical model and each suboptimal

antibiotic mixing protocol in it, there is a protocol

which cycles antibiotics and which performs better

than that mixing protocol. However, there is also

another antibiotic cycling protocol with a different

cadence of drug cycles which performs worse

than mixing. Moreover, even if optimal mixing

outperforms most cycling protocols, there are still

some cycling protocols that perform nearly as well,

infinitesimally close, in fact, to the performance

of optimal mixing (Beardmore and Pena-Miller,

2010a). So, if we were to ask which is better in

general, cycling or mixing a priori, given this, it

seems hard to say.

FIG. 4. Top and bottom panels show two sets of

performance histograms for (6) for cycling (107 simulations
in total) and three mixing protocols (10,000 simulations
each). Consistent with Figure 3, both panels exhibit
complete overlap in performances as indicated by the
horizontal bars. While both use simulation data from
equation (6), the top panel has different costs of resistance
from the bottom panel that uses ‘symmetric’ parameter
values that bias in favour of random mixing. In the latter, as
the bottom panel shows, there is a low probability of finding
a cycling protocol that can approach the performance
of random mixing, although some do. Note, this figure
does not show the performance histogram for all mixing
protocols in the manner done in Figure 3, rather histograms
determined from stochastic simulations of (6) are shown for
optimal mixing (green), the worst possible mixing (red) and
random mixing (blue). Here (bottom) the blue and green
histograms coincide so only the green one is visible.

All these arguments can be summarised by a

single schematic, which is Figure 3. Figure 3

is derived from theoretical arguments but it is

clinically relevant and it says this: if one were

to randomly select just one antibiotic mixing

protocol and one cycling protocol and implement

both within the same mathematical model, as

if one were making a clinical trial comparison

12
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where very few such comparisons are possible,

one could not be a priori certain (i.e. before the

models are simulated) which strategy will select

most against resistance a posteriori. In a clinical

context, where a limited number of trial conditions

can be tested, in practise just a handful with no

chance of determining performance histograms,

which cycling cadence or mixing strategy should

we choose? This decision is critical to ultimate

performance of that trial but there is no way of

knowing how to optimise this choice a priori, just

as there is no way of doing so in a mathematical

model comparing mixing and cycling.

So why did prior theoretical studies (Bergstrom

et al., 2004; Bonhoeffer et al., 1997; Levin and

Bonten, 2004) conclude that antibiotic mixing

was optimal, both in theory and for the clinic?

First, those studies only showed that mixing could

outperform cycling in exemplar simulations, this

does not show mixing is an optimal strategy,

although it does show that cycling is not. Another

potential answer is an unintentional bias: prior

studies biased the way parameter sets were chosen

with an outcome that is illustrated in Figure 4

(bottom).

To explain Figure 4 suppose, for sake of

argument, that a mathematical model contains

‘rate of recovery when treated’ parameters, ρ1

and ρ2 for either drug, say, but suppose that

ρ1 =ρ2 is assumed. Numerical assumption like

this were used in prior studies because an

argument can be made that such assumptions

engender a parsimonious, like-for-like comparison

between two antibiotics with identical clinical

effects whereby the only point of difference

imposed in that model is that one cycles the

drugs and another mixes them. This argument

does seem appropriate to the question we are

addressing, but it also leads to mathematical

symmetries (Beardmore and Pena-Miller, 2010b)

that produce a systemic bias, as illustrated Figure

4, that is not representative of optimal antibiotic

deployment solutions in the general case. This

kind of symmetry was already an issue in the toy

scenario above whereby we needed a particular

inequality, p 6=q, in order to avoid a triviality in

that discussion.

Please note that Figure 4, and the remaining

figures, do not show the performance histogram

for all mixing protocols in the manner done in

Figure 3, rather they just show histograms for

optimal mixing (coloured green throughout), the

worst possible mixing (in red) and random mixing

(in blue) using 104 stochastic model simulations.

Performance histograms for mixing protocols are

depicted alongside horizontal bars that illustrate

the numerical range of 104 stochastic simulations

for that mixing protocol, where all simulations

are performed with the same noise parameter (see

supplementary).

While Figure 3 is merely a schematic showing

cycling and mixing are impossible to separate

in terms of their overall performance, the

structure of this figure is readily observed in

13
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specific mathematical models when we compute

performance histograms, as Figure 4 illustrates.

Figure 4 also shows that while Figure 3 is

representative of model outcomes irrespective of

particular parameter choices, those choices can

happen to skew in favour of random mixing, and

against cycling, if parameters are chosen to have

the symmetries we mention above. For instance, if

we impose a symmetry of the form m1 =m2,r1 =r2

and c1 =c2 in (6) we can skew our computations in

favour of mixing. The mathematics behind these

symmetries are discussed in detail in (Beardmore

and Pena-Miller, 2010b).

Figure 4 (top) shows a second realisation of

equation (6) that uses different numerical values

for the parameters defined in Table 1. This

figure still highlights how the overlapping nature

of the performance distributions of mixing and

scheduled cycling is present, just as it should be

according to Figure 3. However, the choice of

parameter values when mixing was said to be

optimal (Bergstrom et al., 2004) are symmetric

and have skewed the performance distribution

(Figure 4 (bottom)). This choice ensures highly-

performing cycling strategies are rare and cycles

that are highly performing exchange the drugs

unfeasibly quickly.

To further illustrate that our conclusions,

as embodied in Figure 3, are not model-

specific, we present Figure 5 determined using

equation (7). Consistent with Figure 3, the

performance histograms of mixing and cycling

FIG. 5. (top) This illustrates Figure 3 using performance
histograms determined from equation (7), although only
three mixing histograms are shown (random, optimal and
worst). The range of performances, from the best to worst
mixings, and the range of the cyclings are shown as
horizontal bars: note how they overlap consistent with
Figure 3. (bottom) The random mixing protocol (indicated
with a 2 in top and bottom panels) is deployed into a
stochastic version of (7) and it outperforms one cycling
protocol (label 3) but it under performs another cycling
(label 1). This ordering property is a general feature of
theoretical models like (7).

(i.e. scheduled rotation) protocols are embedded

within each other. For equation (7) the definition

of performance is different, there it is the total

number of infected patient days (Bonhoeffer et al.,

1997), and yet the properties of the ranges of the

performance distributions of mixing and cycling

are just as before, they overlap.

Discussion

Despite the problems, theory is useful when

contrasting antibiotic mixing and cycling. The

manifold decisions made when designing a clinical

trial are almost impossible to standardise, but

one can standardise mathematical models. This is

important. For example, suppose the drug order
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of cefepime, ciprofloxacin, piperacillin-tazobactam

and imipenem-cilastatin in the quarterly cycles

described to tackle drug-resistant Pseudomonas

aeruginosa in (Hedrick et al., 2008) had been

different? Suppose the trial had instead restricted

ciprofloxacin entirely and implemented twice-

yearly cycles? What then? The possibilities are

almost limitless. How could one even hope to

implement the various empirical controls needed

to understand how such changes would impact

on resistance evolution in the clinic? This lack

of standardisation is seen by clinicians as a

driver behind some of the problems in answering

Niederman’s question (Brown and Nathwani,

2005). However, we have shown that determining

a priori which of cycling and mixing selects

best against drug resistant pathogens is still not

possible, even when we carefully standardise the

questions using mathematical models.

Intriguingly, deterministic and stochastic

models of the antibiotic deployment problem have

been said to have different optimal strategies:

deterministic models have mixing strategies,

stochastic models have switching strategies

(Kouyos et al., 2011). As our derivations of

treatments that outperform mixing apply equally,

whether or not the models are stochastic, there

is no such dichotomy here and the theoretical

reasons supporting the existence of such a

dichotomy are not clear. Instead, here, we find

the key theoretical issue is how much clinical

and microbiological information each resistance

mitigation strategy is able to exploit.

A tacit expectation in this field of study is a,

quite reasonable, hope that the construction of

theoretical epidemiological models will definitively

resolve questions on how we should act in the

clinic to prevent antibiotic resistance evolution.

But why should this be so? If the expectation

of modellers had been that we might identify

circumstances in which, say, Figure 6 were

possible, whereby mixing is definitively optimal,

then, unfortunately, this is not the case

(Beardmore and Pena-Miller, 2010a, b) at least

not when using ‘SI models’ commonly applied

in mathematical epidemiology. And equations (6)

and (7) are SI models.

all cyclingsall mixings

worst!
mixing

performance

fr
eq

ue
nc

y optimal!
cycling

FIG. 6. A schematic of impossible performance histograms.
If this outcome were possible in a theoretical model, we
would then be certain that mixing antibiotics outperforms
cycling in a mathematical model, but it has been
shown (Beardmore and Pena-Miller, 2010a, b) that this
arrangement of histograms cannot arise in equations of the
form (6) and (7).

Ultimately, the technical, mathematical reason

(Beardmore and Pena-Miller, 2010b) for the

impossibility of Figure 6 is this: constant functions

(aka mixing) controls can be approximated by

oscillatory functions (aka cycling) as closely

as we like in ‘weak topologies’ of spaces of

antibiotic control functions. When the equations
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of SI models, and their performance criteria,

define continuous mappings with respect to those

topologies Figure 6 cannot apply. Thus, even if

mixing were optimal in such a model, we could

do just as well by cycling drugs quickly and

this forms the main idea for the mathematical

proof (Beardmore and Pena-Miller, 2010a) behind

Figure 3. Whether this has any relevance to the

clinic depends on what the term ‘quickly’ means

in practise. Indeed, one can cycle drugs every day

in a model, one cannot do that in the clinic.

So, mathematic models tell us that some of

the difficulties of comparing mixing and cycling

are inherent to the theory behind Niederman’s

question. They cannot be resolved, not even

within the solution sets of certain mathematical

models, be they deterministic or stochastic. We

should not, therefore, be surprised when clinical

trials designed to rank cycling and mixing also

prove inconclusive. After all, clinical trials cannot

even begin to resolve performance distributions.

This uncertainty likely contributes to the ongoing

community debates as to the relative merits

of cycling and mixing (see http://goo.gl/

Ztywjg). Meanwhile, trials continue, like the

recent multinational study, the Saturn Project,

that is said to be designed to ‘resolve an

issue of high controversy (antibiotic cycling vs.

mixing)’ (see http://www.saturn-project.eu),

whose authors recently stated this about their

data:

‘...there were no statistically significant differences in
the prevalence of antibiotic resistance during mixing
and cycling interventions.’

We propose that Figure 3 might provide a

theoretical explanation of this statement.

Like cycling, mixing has been tested in at least

three prior clinical studies (Ginn et al., 2012;

Takesue et al., 2006, 2010). It did contribute to

a reduction in resistant Gram-negative infections

in a hospital-wide study (Takesue et al., 2010)

but fared less well when implemented in an

intensive care unit (Takesue et al., 2006). It

was partially successful in one study where

it may have contributed to a reduction in

MRSA infection, but without impacting on

Gram-negative infections (Schultsz et al., 2013).

However, such positive outcomes might equally

be attributed to pathogen-specific measures as to

mixing, such as the reduction of carbapenem usage

correlating with reduced carbapenem resistance in

Pseudomonas aeruginosa (Takesue et al., 2010)

or the introduction of infection control measures

known to be effective in limiting fomite-spreading

pathogens like MRSA (Schultsz et al., 2013).

Indeed, a recent clinical study concluded (Ginn

et al., 2012) that ‘...prescribing homogeneity per

se does not appear to be a specific resistance

driver.’ One analysis of over 3.5M patient-days

of antibiotic use data across 42 hospitals ‘found

no significant relationship between [antibiotic]

diversity and the proportion of resistant pathogens’

(Pakyz et al., 2008).
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It is not straightforward to find consistency in

the available clinical data (Brown and Nathwani,

2005; John Jr, 2000; McGowan Jr, 1986) and, in

summary, there is data both for (Sandiumenge

et al., 2006; Takesue et al., 2010) and against

mixing (Takesue et al., 2006) but the same can be

said of cycling. The support for cycling (John Jr,

2000; Martinez et al., 2006; Raymond et al., 2001)

is tempered by others who advocate against it,

or who at least indicate their indifference to it

(P. Toltzis M. J. Dul C. Hoyen A. Salvator M.

Walsh L. Zetts, 2002; van Loon et al., 2005;

Warren et al., 2004). To give one more example,

the cycling of linezolid and vancomycin in an

ICU was called a ‘promising method to reduce

infections with MRSA’ (Smith et al., 2008) but

cycling was also implicated as the cause of an

outbreak of multi-drug resistant Pseudomonas

aeruginosa (Hedrick et al., 2008).

Cycling clearly cannot work if resistance to

antibiotics is not lost after a drug is withdrawn

(Enne et al., 2001) or if it returns to baseline

levels soon after drugs are reinstated (Brown and

Nathwani, 2005). In all this variation, a concensus

has emerged describing the body of trial data

as ‘inconclusive’ (Kouyos et al., 2011). From our

analysis of the theory, and given Figure 3, this

variation is not surprising.

An individual-based treatment model

As a dénouement, we sought a way of bringing

the individual patient into this discussion. It is

individuals that we treat with antibiotics and

yet, to our knowledge, no theoretical treatment

of mixing deals with individuals. Patient-specific

evolution occurs during treatment (Blair et al.,

2015; Mwangi et al., 2007) and this may mean

that individualised treatments (pathogen-specific

and host-specific) will be necessary to properly

optimise antibiotic use. Indeed, the FDA has

approved devices that can target infections based

on a rapid diagnosis of the pathogen from

molecular signatures or blood cultures (Bergeron

and Ouellette, 1998a, b; Jung et al., 2014; Sullivan

et al., 2013), including devices for Clostridium

difficile (Ber, 2008). We predict that if these

approaches are considered within mathematical

studies, mixing will not be the optimal way

of using antibiotics there either because the

principle that better decisions accrue from better

information (Beardmore and Pena-Miller, 2010b)

will apply.

To test this, we implemented an agent-based

computational model (see supplementary) in

which a much-simplified hospital ward contains an

array of ‘beds’ and a randomly ordered ‘queue’

of patients is treated until all have recovered

(Figure 7). When admitted to the ward, patients

are infected with a community-acquired pathogen

that shares an ecological niche and engages in

competition with a commensal bacterium within

the host. We do not name the pathogen, it is

merely a simulation of a bacterium in a framework

for comparing resistance mitigation strategies
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FIG. 7. Illustrating the individual-based model. (a)
This shows ‘health state dynamics’ of a patient during a
sequential antibiotic treatment: blue and green coloured
areas show the drug used and the subsequent load
of drug-resistant and drug-susceptible pathogens in the
host through time. The black line is the density of a
commensal bacterium that competes with the pathogen
for resources. The patients is deemed ‘recovered’ when
the commensals have outcompeted the pathogen. (b) This
shows treatments in a ward of five beds where a queue of
seven patients (labelled {1,2,3,4,5,6,7}) is to be treated.
Coloured boxes indicate the protocol where green and blue
boxes, respectively, denote patients only treated with one of
the two available drugs, a red outline denotes the discharge
of a recovered patient and the arrival of a new patient. (c)
An illustration of the spatial structure in the ward resulting
from one realisation of the model using a queue of twenty
patients and five beds where a seven-day cycling protocol
has been implemented, blue and green colours represent
different drugs used. The relative frequency of each of
the two single-drug resistant pathogens in each patient is
shown in the right-most skyscraper illustrating that drug
resistance is correlated with the drug usage policy. Grey
regions are hosts carrying equal fractions of two different
single-drug resistant pathogens, blue and green colours
indicate that one of the drug resistant strains dominates
the infection of the host in that bed.

where the unit of treatment are individuals rather

than population classes.

The pathogen causes illness but it is not life

threatening and the commensal will eventually

outcompete the pathogen (Figure 7(a)). However,

the rate of patient recovery can be increased by

treating appropriately with one of two antibiotics

and patients are discharged when their infection

is deemed to have reached an ‘asymptomatic’

density threshold. A patient from the queue is

then assigned to the newly-freed bed and treated.

Different protocols are ranked using the mean

length of stay (LoS) statistic for each queue

where shorter LoS statistics represent better

performance.

Different treatment strategies in the clinic
and the individual-based model

We implemented several antibiotic stewardship

protocols in this model following the many

strategies implemented in practise: cycling

(Hedrick et al., 2008; Martinez et al., 2006;

Raymond et al., 2001); mixing based on the

adjustment of future prescription patterns by

monitoring prior prescription data (Sandiumenge

et al., 2006; Takesue et al., 2006, 2010);

surveillance-based cycling (Allegranzi et al.,

2002; Gerding and Larson, 1985); rapid DNA-

based diagnoses with an appropriate drug then

given (Bergeron and Ouellette, 1998a, b); patient-

by-patient rotation of antibiotics (Sandiumenge

et al., 2006) and, finally, the de-escalation of a

combination therapy (Ame, 2005; Smith et al.,

2008). For a review of other clinical protocols, we

refer to (MacDougall and Polk, 2005).

A ‘reactive mixing’ protocol that turns

prior infection data into future stewardship

practise has also been evaluated in the clinic:

the PAMS methodology (‘periodic antibacterial

monitoring and supervision’) maximises antibiotic

heterogeneity because drugs used in the past

gain a low probability of being used in the

future (Takesue et al., 2006). A numerical

index, essentially information entropy, measures
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antibiotic heterogeneity and prescription

maximises this index as time progresses. PAMS

does not account for patterns of resistance that

emerge during a trial, but it is hoped it will

respond to patterns of drug use that might

correlate with resistance.

Based on this survey, the following protocols

were simulated in the individual-based model:

(1.) random sequential treatment: each patient

receives a random drug each day (extreme

mixing that maximises drug heterogeneity);

(2.) empirical treatment: a random drug is

allocated to the patient but not changed

thereafter (also mixing);

(3.) scheduled rotation (periodic cycling): cycles

of prioritisation and restriction are fixed

before any patients are admitted;

(4.) periodic antibiotic monitoring and

supervision (PAMS): the next patient

admitted is treated with the antibiotic that

maximises the heterogeneity of drugs used

so far (mixing);

(5.) surveillance-based rotation: the drug

estimated to have the lowest current

prevalence of resistance from recent

antibiograms is prescribed to all patients

(the strategy from the toy scenario);

(6.) Personalised (DNA-based) treatments: a

rapid assessment is made of the genotype

responsible for infection for every patient.

Reassessments conducted during treatment

yield a sequential monotherapy that

maximises drug appropriateness at all

times, even if resistance emerges in the host

during treatment.

We do include multidrug resistance in this

model but we do not implement combination

therapy as it is not clear how to engineer a fair,

like-for-like comparison of the performance of drug

combinations in a theoretical test of mixing and

cycling.

Individual-based model outcomes

In the absence of treatment, the length of

stay (LoS) data are normally distributed whereas

they are log-normally distributed when everyone

is treated using empirical therapy (Figure 8).

Interestingly, empirical treatment reduces the

mean LoS relative to treating no-one, but it

also increases the LoS variance (Figure 8). So,

although most patients fare better when treated,

empirical treatment exhibits the following tragedy

of the commons (Foster and Grundmann, 2006):

as resistance spreads, some patients fare worse

when everyone is treated empirically than if

nobody had been treated. Empirical treatment of

course works well if it allocates the correct drug,

which happens by chance in 50% of cases, but the

LoS data increases when an inappropriate drug is

administered, also in 50% of cases (Figure 8(b-d)).

This is why treating empirically has such a large

variance in its LoS data.
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Figure 9 shows this model is consistent with the

idea that there is a sweet spot LoS with respect to

antibiotic cycling cadence, so that cycling works

best when neither too fast nor too slow. However,

determining the optimal cycling cadence so we can

profit from this observation would be unfeasible

in practise. Also note how the LoS at the sweet

spot in Figure 9 performs in relation to other

strategies in Figure 10: an LoS of about 7 days

means optimal cycling can perform just as well

as any protocol. However, other cycling strategies

also perform poorly, as bad as having a LoS of two

weeks when the drugs are cycled too slowly.

FIG. 8. Individual model LoS statistics with no
treatment and empirical treatment. (a) The mean
length-of-stay distribution (LoS) when no patient is treated
with antibiotics is a normal distribution with mean
close to 16 days for the parameter values implemented
(see supplementary). (b) The LoS distribution when
treating empirically follows a log-normal distribution in
the same conditions. (c) We grouped patients treated with
empirical therapy into two a posteriori classes: appropriate
and inappropriate, according to the drug administered.
Accordingly, the LoS distribution when drug use is
inappropriate in empirical therapies have both higher mean
and variance. Inappropriate drug allocation is therefore
responsible for the large variance of the empirical treatment
strategy in (b). (d) For illustrative purposes: a Kaplan-
Meier plot illustrating the LoS for the two classes from
(c).

Figure 10 summarises our final main result:

one cannot rank strategies 1-6 outlined above
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FIG. 9. The optimal cycling period for this one particular
instance of the individual patient model is very short at
about 3 days. That it is so small relative to real-world
clinical trials is likely due to the rapid turnover of patients
in the model and the fact that there is no evolution of
resistance among pathogens in the community that supplies
patients to the model.

definitively because their LoS distributions

overlap. Other outcomes are possible in differently

parameterised instances of this model, but the

set of simulations shown in Figure 10 indicates

the patient-specific treatment (strategy 6) can

sometimes produce the lowest mean LoS. Delays

in using DNA tests to determine the pathogen

can decrease performance. For instance, if, during

the delay, empirical therapy is given, a delay of

two days decreases drug appropriateness to 80%

(see Figure 11(a), this model outcome is consistent

with values observed in the clinic (Shorr et al.,

2008)) and LoS performance deteriorates towards

that of empirical therapy as the delay increases

further (Figure 11(b)). Finally, surveillance-based

rotation (that according to the toy scenario should

approximate optimal cycling) and PAMS (a
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reactive form of mixing) have similar performance

in this model (Figure 10).
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FIG. 10. We can improve upon mixing and cycling
cadences by rapidly diagnosing the pathogen
genotype responsible for infection. LoS distributions
for different strategies show the optimal treatment exploits
most of the available information (the rapid, DNA-
based, diagnosis strategy). Empirical treatment, using no
information at all, is the worst performing strategy here,
although it is preferable to cycling with very long cycling
times (see Figure 9).
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FIG. 11. Delaying the availability of pathogen
genotype information leads to deterioration in
performance of the patient-specific treatment. (a)
Delaying the availability of pathogen drug-susceptibility
information decreases drug appropriateness to about 80%
of patients with a two-day delay and to no better than
random (i.e. empirical treatment) with very long delays.
(b) Consistent with this, long delays increase the expected
LoS and give this protocol performances close to empirical
treatment (shown are LoS means ± 95% CI from 1000
model simulations).

We conclude that information-rich, personalised

protocols can outperform antibiotic cycling and

mixing in some mathematical models but, we

should emphasise, this conclusion will depend on

nuanced model circumstances. For example, if all

patients are infected with pathogens susceptible

to both drugs, a personalised strategy will not

outperform mixing because any treatment will

be successful. At the other extreme in terms of

the community prevalence of resistance, if multi-

drug resistance has fixed in the pathogen in the

community and so is present in all infections

before patients begin their treatment, it will

also matter little which treatment patients are

given because none will work. However, before

that stark situation arises, and somewhere in

between these two extremes, our simulation data

shows that targeting appropriate treatments at as

many individuals as possible can outperform both

mixing and cycling.

Supplementary Material

Supplementary Text is available at

Molecular Biology and Evolution online

(http://www.mbe.oxfordjournals.org/).
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