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Geotechnical and mineralogical characterisations of marine dredged 

sediments before and after stabilisation to optimise their use as a road 

material 

Dredging activities to extend, deepen and maintain access to harbours generate 

significant volumes of waste dredged material. Some ways are investigated to add value 

to these sediments. One solution described here is their use in road construction 

following treatment with hydraulic binders. This paper presents the characterisation of 

four sediments, in their raw state and after 90 days of curing following stabilisation 

treatment with lime and cement, using a combination of novel and established analytical 

techniques to investigate subsequent changes in mineralogy. These sediments are 

classified as fine, moderately to highly organic and highly plastic and their behaviour is 

linked to the presence of smectite clays. The main minerals found in the sediments 

using X-rays diffraction (XRD) and automated mineralogy are quartz, calcite, feldspars, 

aluminium silicates, pyrite and halite. Stabilisation was found to improve the 

mechanical performances of all the sediments. The formation of cementitious hydrates 

was not specifically detected using automated mineralogy or XRD. However, a 

decrease in the percentage volume of aluminium silicates and aluminium-iron silicates 

and an increase of the percentage volume of feldspars and carbonates was observed. 

Keywords: marine sediment; physical properties; mineral composition; stabilisation; 

hydraulic binders 

1. Introduction 

Marine clay deposits encountered in the world’s coastal regions are soft in consistency, highly 

compressible with low shear strength. The properties of these deposits are complex, diverse 

and highly dependent on the minerals present and microstructural arrangement of constituent 

particles. Build-up of these fine grained sediments necessitates dredging and in the English 

Channel area alone, 2.1 million m3 is currently disposed of from local ports by immersion at 

sea [1]. Meanwhile, the shortage of construction materials available from quarries is 

compelling civil engineers to explore new solutions for the production of road materials. 
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Previous authors have considered the use of marine dredged sediments in road 

construction [2-14]. However this option is only viable if improvements in mechanical 

performance can be achieved. To this end, stabilisation with lime and hydraulic binders was 

appraised. 

Standard physical characterisation tests used to classify a new and unusual road 

material such as dredged sediment include initial water content, organic matter (OM) content, 

specific gravity (Gs), particle size distribution (PSD), consistency limits (plasticity index). 

The parameters are interdependent and the physical characteristics will in turn influence 

compaction, plasticity, bearing capacity, permeability and capillarity of the material [15-18]. 

In civil engineering, for road construction, the determination of these initial physical 

parameters is the starting point of any study into improvements in mechanical performance. 

The mineralogy and microstructure of a raw material also influence its geotechnical 

properties. The analysis of hydrated cementitious products by X-rays diffraction (XRD) is not 

straightforward due to the presence of many phases, some of which may crystallise as 

different polymorphs which will each have their own XRD pattern [19-21]. Previous studies 

have therefore used techniques such as scanning electron microscopy (SEM) and optical 

microscopy to inform their investigations into the geotechnical properties of harbour dredged 

sediment stabilised with hydraulic binders [22-23]. Whilst automated mineralogy 

(Quantitative Evaluation of Minerals by SCANning electron microscopy QEMSCAN®) has 

been widely used in the mining industry for over 30 years and is gaining increasing 

recognition in other areas of research [24-25], its use in stabilisation and solidification studies 

has not previously been reported. 

This paper presents the evaluation of physical, geotechnical, microstructural and 

mineralogical changes induced on sediments following stabilisation with lime and cement. 
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2. Material and methods 

2.1. Sampling 

Four sediments (S1, S2, S3 and S4) were obtained from four French ports on the Channel 

coast. Sampling methods were constrained by dredging practices. At each port a large sample 

of between 500 and 650 litres of material was collected, transported to laboratory, 

homogenised and dried at 40°C yielding between 150 and 300 kg of dry material per sample. 

Untreated sediments are referred to as “raw sediments” or “sediments” whilst sediments after 

addition of binders are referred to as “stabilised” sediments. Two of the raw sediments (S1 

and S3) have metal concentrations that exceed the relevant GEODE N2 levels (Hg and Pb, 

and Cu respectively) [26], preventing their disposal at sea without suitable disposal 

management techniques [27]. 

2.2. Physical characterisation 

2.2.1. Standard tests 

Standard tests were used to determine the initial physical characteristics of the sediments. 

These included initial water content (ASTM D2216 standard [28]), OM content (ASTM 

D2974standard [29]), specific gravity (ASTM D7263 standard [30]), particle size distribution 

(by sieving according to the ASTM D6913 standard [31] for particles ranging from 80 µm, by 

Berkman Coulter granulometer according to the ISO 13320-1 standard [32] for particles 

ranging from 0.04 to 2000μm), consistency limits and plasticity index (Atterberg limits) 

(ASTM D4318 standard [33]), compaction parameters, optimum moisture content (OMC) and 

maximum dry density (MDD) (standard EN 13286-2 [34]). The Unified Soil Classification 

System (USCS) [35] uses information on the fine fraction (0/80 μm), the liquid limit and the 

OM content to classify the soil. The raw sediments are also subjected to mineralogical 

characterisation, detailed in the following paragraphs. 
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2.2.2. Clay Activity estimation 

The clay activity (AC) allows the risk of shrinkage or swelling of a material due to minerals 

from different clay families (kaolinite, illite or smectite) to be predicted. The activity ranges 

are: AC <0.75, inactive; 0.75≤AC <1.25, normal and AC≥1.25, active. The Atterberg limits 

(ASTM D4318 standard [33]), liquid limit (LL) and the plastic limit (PL), are used to 

calculate the plasticity index (PI = LL – PL) which is then used to calculate the activity of the 

clay fraction (AC) using Equation 1. C2 (%) is the clay fraction (0/2 µm) of the material. 

AC = PI / C2 (Eq. 1) 

2.3. Sediment treatment 

2.3.1. Preparation and treatment 

The sediments contained a large amount of sea water (>100% with respect to dry mass). In 

practice, sediment intended for treatment and use in road construction would dry naturally in a 

storage area until the water content is <20% before treatment. For this study, dehydration was 

accelerated in the laboratory by oven drying (40°C). Clumps formed during this process were 

removed by crushing to disaggregate and sieving to 2 mm. The sediments were not washed: 

the oven drying induces the formation of solid salts. 

Treatment formulations were designed with reference to the French technical guide for 

soil treatment [36] in order to achieve the required performance for sediment use in subgrade 

layer. Lime and cement additions were optimised according to the lime fixation point test 

(lime content to reach a pH of 12.4, a pH at which the formation of cementitious hydrates is 

favoured) (ASTM D6276 standard [37]) and to economic criteria. The sediments were 

stabilised with 3% of quicklime CaO and 6% of cement CEMII/B 32.5R with respect to the 
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dry mass of the mixture (Maherzi [38] from NF P94-093 [39] and ASTM C977 [40] 

standards). 

2.3.2. Sample preparation for mechanical tests and mineralogical analysis 

In the laboratory, the geotechnical behaviour of stabilised sediments is evaluated according to 

the protocol described in the French technical guide for soil treatment [36] and detailed in 

European standards EN 13286 [41-44]. After mechanical tests at 90 days, samples were oven 

dried at 40°C for 7 days for mineralogical characterization. 

2.4. Mineralogical characterisation 

2.4.1. X-rays diffraction (XRD) 

Bulk qualitative powder XRD characterisation was achieved using a Siemens D5000 

diffractometer with Cu-Kα radiation (λ = 1.54184 Å) operating at 40 kV, beam current 30 mA 

in step-scan of 0.02° 2θ steps with 1s per step from 2 to 70°. Prior to analysis, samples were 

ground to <50 μm in a tungsten carbide Tema mill. Approximately 5 g of powder was loaded 

into a plastic sample holder and carefully flattened to avoid preferred orientation. Peak 

profiles were processed using EVA software and estimates of relative abundances made by 

comparison of the intensity of the main peaks. Crystalline phases detected were recorded as 

being either major or minor constituents. 

2.4.2. Automated mineralogy 

Quantitative identification of the minerals and phases in the samples and false colour maps of 

the samples were achieved using the QEMSCAN® 146 4300 system using procedures outlined 

in Rollinson et al. [25]. Data were processed to produce a simplified mineral/phase list using 
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iDiscover software. Mineralogy was inferred from collected chemical spectra using a database 

of known mineral and phase spectra [45]. 

Samples were mounted in cylindrical resin blocks (30 mm diameter x 15 mm). 

Granular samples were prepared by mixing 1g of sample with 1.5 g of pure graphite powder 

to promote particle dispersion and prevent settling bias [46]. Monolith sample volume was 

reduced to 2 x2x2 cm3 before resin mounting. Cold epoxy resin (Epofix) was added to the 

sample in a plastic mould and the mixture was allowed to cure under pressure over night to 

minimize bubble formation. Sample blocks were polished to a 1 μm finish using a water and 

diamond solution and then carbon coated to 25 nm thickness. In particle mineralogical 

analysis (PMA) operating mode used on the particulate samples, each resin block was 

measured for 4 hours using a pixel spacing of 5 μm for the >100 μm fraction and a further 4 

hours using a pixel spacing of 2 μm for the <100 μm fraction. Approximately 2.5 million X-

ray analysis points were taken per sample. In field scan (FS) operating mode used on the 

monoliths of stabilised sediment, the entire block was scanned using a pixel grid spacing of 

10μm. Approximately 1.8-3.2 million X-ray analysis points were taken per sample. Operation 

of the QEMSCAN® follows quality control procedures developed in-house for sample 

preparation, instrument calibration, operation and data processing. 

2.5. In summary 

Figure 1 summarizes the previous informations. 
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3. Results and discussion 

3.1. Raw sediments 

3.1.1. Physical and geotechnical properties 

Physical and geotechnical properties of the sediments are summarised in Table 1. Their initial 

water content is very high, in most cases exceeding 100% of the dry sediment mass, 

preventing use of the sediments in road construction without de-watering. The OM content of 

the sediments ranges from 7.6 to 14.0%. These high percent values of OM may influence the 

physical properties of the raw sediments [4,10,47-50]. The presence of OM, which is lighter 

than the mineral particles, could explain the fact that the Gs was lower than expected from the 

mineral particles which constitute the sediments (≈ 2.65 t.m-3 according to Holtz and Kovacs 

[51], Philiponnat et al. [52] and Robitaille and Tremblay [53]). 

The grain size range was 0/2 mm and the grading curves of all the samples were well 

distributed (Figure 2). The sediments were all fine grained materials since the fine fraction 

(0/80 μm) constitutes more than 62.5% of all four sediments. The clay fraction (0/2 μm) 

represents 3.4 to 8.0% of the sediments. The PSD allows rapid classification and comparison 

of fine sediments with Dmax≤2 mm [54-55]. According to this classification, S1 is silt and 

S2, S3 and S4 are silt loam. 

The liquid limit (LL) values ranged from 55 to 130%, the plasticity index (PI) values 

from 20 to 70%. The sediments were classified as “inorganic silts and organic clays with high 

compressibility” according to the Casagrande plasticity chart using the Atterberg limits. The 

clay activity AC indicated that the four sediments were active and influenced by the presence 

of smectite [56-58]. 

According to this USCS [35], the sediments are classified as high plasticity organic 

clay or silt (OH) (fine fraction>50%, LL>50%, OM>3%). 
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High LL and PI values have been linked by some authors to high OM contents [59-

60]: however, in this study, these parameters were not found to be directly correlated. 

However, the influence of OM was verified using the compaction parameters: an increase in 

OM content would lead to an increase in OMC and decrease in MDD. This is because the OM 

may retain water and prevent compaction [5-6,61]. The water sensitivity of the sediments can 

be determined by the shape of the standard Proctor curves (Figure 3). Water sensitivity is 

important when a weak variation in the water content induces a large variation in the dry 

density. For the sediments, the curves of S4 was the flattest, indicating that the sensitivity of 

the sediment to the water variations in the environment was the weakest. 

3.1.2. Microstructure and mineralogy 

Minerals identified using XRD as being present in the sediment samples as major or minor 

phases are presented in Table 2. Quartz was a major phase in all samples, calcite was a major 

phase in all samples except S4 where it was a minor phase. Halite was present in samples S2 

to S3 but could not be unambiguously identified in S4. Minor phases include aragonite, 

muscovite/illite, clinochlore, spinel and pyrite. 

QEMSCAN® analysis identifies minerals according to their chemistry (Appendix; 

Table 2). Polymorphs such as e.g. calcite and aragonite will be classified in the same 

category, carbonates, and given the same false colour in images. Quartz was identified as a 

major constituent of the four sediments using both XRD and QEMSCAN®
 analysis. XRD 

analysis identified calcite in all samples whilst carbonates were found to range from 2 to13 % 

using QEMSCAN®. Feldspars minerals with similar elemental composition (potassium 

feldspars, albite and anorthite) are grouped together in the QEMSCAN®
 analysis which 

identifies feldspar phases as the largest mineral phase in sediments S1, S2 and S3 ranging 

from 42 to 48%. Sample S2 had a particularly low mica/illite QEMSCAN®
 percentage 
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volume of 2%, this was also the only sample not to have minor levels of muscovite/illite 

identified in the XRD analysis. Gypsum and apatite which were not identified using XRD 

were found to be present using QEMSCAN®
 with the largest amounts in samples S4 and S3 

respectively. Pyrite was found to be present at minor levels in S1 and S3 by XRD and was 

found in all samples using QEMSCAN®, but at >1% only in samples S1 and S3. Very low 

levels of halite, crystallised out from the sea water during de-watering in oven, were observed 

using QEMSCAN®
 analysis compared to the samples analysed using XRD, possibly due to 

the water based polishing method used to prepare the QEMSCAN®
 sample blocks which may 

have re-dissolved the very soluble halite mineral. The QEMSCAN®
 analytical system 

identified mineral phases which are below the limit of detection for XRD analysis. 

QEMSCAN® analysis involves identifying minerals on a spot by spot basis; the limit of 

elemental detection is typically 3% on individual X-ray energies for the elemental spot 

analysis [25,62]. The reporting limit for mineral phases in this study for QEMSCAN® was set 

at 0.01%. In XRD analysis the diffraction patterns from different minerals in a sample can 

lead to low level mixed spectra which are difficult to interpret and may be obscured by the 

peaks from minerals present in greater quantities or those with a well-defined crystal structure 

such as quartz. 

3.2. Stabilised sediments 

3.2.1. Compaction parameters 

Theoretically, due to flocculation and water consumption caused by the addition of lime, the 

OMC should increase and the MDD should decrease following stabilisation with quicklime 

and cement. This assumption is verified for the four sediments (Table 3). Moreover, the 

standard Proctor curves are flatter, indicating a lower sensitivity to the water of the stabilised 

sediments compared to that of the raw sediments.  
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3.2.2. Stengths and elasticity modulus evolution 

Figure 4 presents the unconfined compressive strength (UCS), indirect tensile strength (ITS) 

and elastic modulus (E) evolutions of the stabilised sediments, between 7 and 360 days. 

The mechanical performances of the four sediments increase with time. Judging from 

the curves shape, mechanical performances still developing after 360 days, even slowly. 

The mechanical performance of the stabilised sediments is ranked in the descending 

order as S1 > S2 > S3 > S4, whatever curing time or test performed are. 

At 90 days, curing time at which mineralogical analysis are performed, the hydration 

of the hydraulic binders ensures a strength gain compared with raw sediments (soft and low 

consitency). Mechanical performances at 90 days are given in Table 3. More details in 

performance values and means in terms of use in road construction are given elsewhere 

[38,63-64]. 

3.2.3. Organic matter content influence on stabilisation 

OM content appeared to affect geotechnical performances: where the OM content increased, 

the OMC increased and the MDD, the UCS, the TS and the E decreased (i.e. the susceptibility 

to stress and strain is higher). In the literature, OM is recognised as having disturbing effects 

on sediment stabilisation as it can delay or inhibit the hydration process, preventing 

amelioration of the mechanical charactersitics [5-6,61,65-68]. OM, which is not detectable by 

mineralogical analysis, can influence the development of mechanical performances through 

its effect on the hydraulic binders, hydration, texture and microstructure of the stabilised 

material. 

3.2.4. Mineralogy and microstructure evolution 

The XRD analysis results are presented in Table 4. The three main crystalline phases detected 
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in the stabilised sediments were quartz, calcite and halite, the same three major minerals 

detected in the raw sediments. Minor clinochlore and rutile were observed in the stabilised 

sediments. Minor aragonite, spinel and rutile were found in raw sediments but were not 

detected from the corresponding stabilised sediments. It is also the case for pyrite in S1 and 

S3. Peak profiles matching known cementitious hydrates were not observed using XRD. 

These signals may have been drowned out by the dominant minerals. 

False colour maps generated for the stabilised sediment using the QEMSCAN® 

analytical system are presented in Figure 5 along with charts displaying data for the per cent 

mineral volume in the stabilised and raw sediments. The matrix was very fine consisting 

mainly of quartz (pink), feldspars (blue), carbonates (maroon) and mica/illite (fuschia). Shells 

(carbonates in maroon) and fishbones (apatite in turquoise) were clearly seen. Porosity, shown 

in grey on the false colour images, ranged from 12 for S2 to 22% for S4. Porosity may be due 

to the formation of lumps due to flocculation following the stabilisation treatment but could 

be caused also by sample preparation (shrinkage during resin curing, plucking during 

polishing). Lumps were clearly observed on the false colour images for S2, S3 and S4. 

Quartz has a consistently smaller per cent mineral volume in stabilised than the raw 

sediment. This decrease could be attributed to dilution due to the addition of material during 

treatment (3% quicklime and 6% cement). It could also be attributed to the reaction of quartz 

(SiO2) in the formation of calcium silicate hydrates such as tobermorite 

(Ca5Si6O16(OH)2.7H2O) and jennite (Ca9Si6O18(OH)6.8H2O). These minerals, classified in the 

"other silicates" phase in QEMSCAN® analysis, increased slightly in the stabilised compared 

with the raw phases. 

Pyrite is not detectible in the stabilised sediments using XRD, but it was detected 

using QEMSCAN® in all four sediments at 0.2 to 1.6%, showing an increase after treatment 

for S2 to S3 and a decrease for S4. 
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The feldspar mineral phase in QEMSCAN® includes K-Feldspars (KAlSi3O8) and the 

plagioclase series from albite (NaAlSi3O8) to anorthite (CaAl2Si2O8). There was a consistent 

increase in the percent mineral volume of feldspars phase post treatment; this could be 

attributed to the formation of hydration products such as katoite (Ca3Al2(OH)7.6(SiO4)1.1) and 

gehlenite hydrate (Ca4Al2(OH)12[AlSi(OH)8]2.2H2O) or other phases present in blended 

cements such as gehlenite (Ca2Al2SiO7) and yoshiokaite (Ca5.5Al11Si5O32). These phases are 

classified as feldspar minerals by the QEMSCAN® analytical system because they have 

similar chemistry and thus are not separable using inferred mineralogy by chemistry. If the 

grain size of the minerals is very small (<5 μm) mixed spectra may be produced from the 

electron beam which can confound separation of phases using chemistry [25]. In the stabilised 

sample this may led to very fine grained mixtures of e.g. alite (Ca3SiO5-Mg, Al), belite 

(Ca2SiO4) and aluminate (Ca3Al2O6) being assigned to the feldspar mineral phase as they 

would have a similar spectra to this mineral. 

There was a consistent increase in the carbonate and gypsum phases detected by 

QEMSCAN® after stabilisation. The increase in the gypsum phase, which includes anhydrite 

and phases comprising Ca, S and O (as ettringite), could be due to anhydrite, hemihydrate or 

gypsum present as additional phases in the blended cement using for treatment, possibly 

indicating that these phases were not fully involved in hydration reactions at the time of 

analysis. The increase in the carbonate phases could be due to the presence of calcium oxide 

in the quicklime and of calcite and dolomite as additional phases in the cement added during 

treatment. It could be also due to the carbonation of the cementitious hydrates as portlandite 

by reaction with carbon dioxide CO2. 

High silicates content is an important factor in the evolution of the mechanical 

performances of the stabilised sediments by reacting to form calcium silicate hydrates, CSH. 

These minerals reinforce the links between the sediment grains thus improving the strength of 
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the stabilised material. However, they can have an amorphous structure, which is not detected 

by XRD and are also likely to be fine grained which will affect QEMSCAN® analysis. The 

release of silica and alumina by clay minerals contained in the fine sediments allows 

pouzzolanic reactions over several years which improves long term mechanical strengths due 

to the formation of calcium silicate hydrates, CSH, and calcium aluminate hydrates, CAH. 

4. Conclusions 

This paper gives the physical and mineralogical characteristics of four marine dredged 

sediment before and after stabilisation. The conclusions drawn from this work are listed 

below: 

• The four sediments are fine materials (>62.5% have a gain size of <80 μm), 

moderately to highly organic and highly plastic, classified as high plasticity organic 

clay or silt (OH) according to the USCS. 

• The clay activity of the sediments indicate that behaviour is influenced by the presence 

of smectite clay type; the three main crystalline phases detected by XRD are quartz, 

calcite and halite; the lower detection limits of the QEMSCAN® analytical system 

allow pyrite, feldspars and other aluminium silicates to be detected in addition. 

• Stabilised sediments, with 3% of CaO and 6% of cement, show long term 

improvement of their physical and mechanical properties. 

• The mineralogical changes following stabilisation are not significant enough to be 

detected by XRD analysis; QEMSCAN® analyses show that quartz, Al and Al Fe 

silicate phases decrease following stabilisation, probably due to their reaction to form 

cementitious hydrates, and that feldspar and carbonate mineral phases increase, 

probably due to the inclusion in this phase of hydration products and other phases 

present in blended cements. 
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To confirm these changes, the mineralogy of the stabilised sediments should 

characterised at each mechanical test curing time. Moreover, the use of stabilised sediments in 

road construction should be associated with chemical and environmental follow-up to ensure 

stabilisation has been achieved. 
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Appendix. Mineral categories used in QEMSCAN® analysis 

Mineral Category Mineral Description 

Background All resin mounting media related/edge effects: Cl??, Si Cl?? Carbon, Cl?, Al Metal (block holder, but includes the odd metal sh

Pyrite Fe sulphides, pyrite/marcasite and pyrrhotite 

Rutile Any phase with Ti, O such as rutile, brookite and anatase 

Ilmenite Any phase with Ti, Fe, O possibly with Mn, includes minor titano-magnetite 

Titanite Any phase with Ca, Ti, Si, O and minor Al, F, Fe 

Fe-Ox/CO3 Includes Fe-oxides such as hematite, magnetite, goethite, siderite, limonite, trace chrome/chromite. May include rust and Fe sl

Mn phases Mn Fe oxides & Mn silicates 

REE phases Monazite, trace xenotime 

Zircon Any phase with Zr, Si and O 

Quartz Quartz and other silica minerals/polymorphs 

Feldspar K-feldspars and plagioclase feldspar (incl. albite) 

Mica/Illite Muscovite, biotite and any other mica, includes illite and other similar silicates 

Al silicates Any Al silicate such as kaolinite, andalusite/siliminite/kyanite, may include topaz. May include clays 

Fe Al silicates Includes chlorite, nontronite, tourmaline, and any other Fe Al silicate. May include clays 

Other silicates Any silicates not listed elsewhere, such as clays, serpentine group, hornblende and silicates too fine to be distinguished (bound

Carbonates Calcite, lesser dolomite (Mg rich calcite), ankerite. Includes shell debris 

Ca Ox/CO3/Cl Any phase with Ca, C, O, Cl 

Gypsum Any phase with Ca, S, O 

Apatite Any phase with Ca, P, minor Al 

NaCl Any phase with Na, Cl such as halite 

Porosity Includes pores, holes and cavities that do not connect with the outside edge of the sample (converts background to this catego

Others Any other mineral/phase not included above. Boundary effects, indistinguishable minerals. 
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Figure 2. Particle size distribution of the sediments 
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Figure 3. Standard Proctor curves of the sediments 
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Figure 4. Mechanical behaviour of the stabilised sediments 

 



30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Background
Pyrite
Pyrite (Ox)
Chalcopyrite
Sphalerite
Galena
Arsenopyrite
Barite
Cassiterite
Rutile
Ilmenite
Titanite
Fe-Ox/CO3
Mn phases
REE phases
Zircon
Quartz
Feldspar
Mica/Illite
Al silicates
Fe Al silicates
Other silicates
Carbonates
Ca Ox/CO3/Cl
Gypsum
Apatite
NaCl
Others

Mineral Name

False color image S1 stabilised – 
monolith – porosity 18% 

 

False color image S2 stabilised – 
monolith – porosity 12% 

Minerals composition of the S1 raw 
sediment 

 

Minerals composition of the S1 stabilised 
sediment 

 

Minerals composition of the S2 raw 
sediment 

 

Minerals composition of the S2 stabilised 
sediment 

 

1000 µm 1000 µm



31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

False color image S4 stabilised – 
monolith – porosity 22% 

 

Background
Pyrite
Pyrite (Ox)
Chalcopyrite
Sphalerite
Galena
Arsenopyrite
Barite
Cassiterite
Rutile
Ilmenite
Titanite
Fe-Ox/CO3
Mn phases
REE phases
Zircon
Quartz
Feldspar
Mica/Illite
Al silicates
Fe Al silicates
Other silicates
Carbonates
Ca Ox/CO3/Cl
Gypsum
Apatite
NaCl
Others

Mineral Name

False color image S3 stabilised – 
monolith – porosity 18% 

 

Minerals composition of the S3 raw 
sediment 

 

Minerals composition of the S3 stabilised 
sediment 

 

Minerals composition of the S4 raw 
sediment 

 

Minerals composition of the S4 stabilised 
sediment 

 

1000 µm 1000 µm



32 

 

Figure 5. QEMSCAN® analysis of the stabilised sediments 
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Table 1. Physical and geotechnical characterisation of the sediments 

 S1 S2 S3 S4 

Water content     

Mean initial water content (%) 99 115 235 230 

Range of initial water contents measured 93-104 115-116 233-236 170-333 

Organic matter     

Organic matter (OM) content (%) 7.6 10.3 11.3 14.0 

Specific gravity (or density)     

Specific gravity Gs (t/m3) 2.44 2.39 2.39 2.57 

Grain size     

Gravel (> 2000 µm) (%) 0.0 0.0 0.0 0.0 

Sand (63/2000 µm) (%) 3.6 20.7 33.6 43.8 

Silt (2/63 µm) (%) 88.4 73.5 61.9 52.8 

Clay (0/2 µm) (%) 8.0 5.8 4.5 3.4 

Fine (0/80 µm) (%) 99.6 83.6 75.3 62.5 

Atterberg limits     

Liquid limit LL (%) 55 71 130 70 

Plasticity Index PI (%) 22 35 70 20 

Activity AC 2.74 6.09 15.49 5.87 

Compaction parameters     

Optimum moisture content OMC (%) 20.5 22.6 27.5 30.0 

Optimum dry density ODD (t/m3) 1.68 1.55 1.45 1.26 

Unified Soil Classification System 
(USCS) 

   
 

Class OH OH OH OH 
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Table 2. Mineralogical characterisation of the sediments (by XRD and QEMSCAN® analysis on powder, 0/2 

mm) 

 Sediment code 

 S1 S2 S3 S4 

 XRD QEM.a XRD QEM. XRD QEM. XRD QEM. 

Quartz Mb 28 M 34 M 15 M 37 

Carbonates (calcite C, argonite A, others o) 
C: M 

A: mb 
9 

C: M 

A: m 
13 C: M 2 C: m 5 

Halite M 0.02 m 0.02 M <0.01 - 0.01 

Mica / illite (muscovite, illite, others) m 6 - 2 m 14 m 7 

Feldspars (albite A, orthoclase O, others o) A: m 48 - 45 A: m 42 A: m 27 

Al silicates (kaolinite, others) -c 1.2 - 0.4 - 4.8 - 2.7 

Spinel m - - - - - - - 

Pyrite m 1.6 - 0.4 m 1.7  0.5 

CaOx/CO3/Cl (clinochlore, others) - 0.17 - 0.16 - 0.05 - 0.02 

Fe Al silicates - 4 - 3 - 15 - 18 

Gypsum - 0.5 - 0.2 - 0.7 - 1.2 

Apatite - 0.07 - 0.04 - 1.91 - 0.06 

Rutile - 0.13 - 0.11 m 0.15 - 0.24 

aQEM.: QEMSCAN® analysis 
bM: major; m: minor 
c-: unambiguous identification not possible 

 

 



35 

Table 3. Geotechnical characterisation of the raw and stabilised sediments 

 S1 S1 S3 S4 

Initial moisture content (%) 99 115 235 230 

OM content (%) 7.6 10.3 11.3 14.0 

Compaction parameters of raw sediments 

Optimum moisture content OMC (%) 20.5 22.6 27.5 30.0 

Optimum dry density ODD (Mg/m3) 1.68 1.55 1.45 1.26 

Compaction parameters of stabilised sediments 

(3% CaO + 6% cement) 

Optimum moisture content OMC (%) 21.9 24.9 28.3 31.8 

Optimum dry density ODD (Mg/m3) 1.57 1.47 1.39 1.23 

Unconfined compressive strength at 90 days of stabilised sediments 

Unconfined compressive strength UCS 
(MPa) 

1.1 

(0.1) 

0.7 

(0.1) 

0.6 

(0.1) 

0.5 

(<0.1) 

Mechanical class at 90 days of stabilised sediments 

Indirect tensile strength ITS (MPa) 
0.14 

(0.01) 

0.12 

(0.01) 

0.09 

(<0.01) 

0.06 

(<0.01) 

Tensile strength TS = 0.80 ITS (MPa) 0.11 0.10 0.07 0.05 

Elasticity modulus E (103 MPa) 
1.06 

(0.10) 

0.76 

(0.04) 
NM 

0.31 

(0.03) 

(x): standard deviation 

NM: non measured 
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Table 4. Mineralogical characterisation of the raw and stabilised sediments (by XRD analysis on powder, 0/2 

mm) 

 S1 S2 S3 S4 

 Rawa Stab.b Raw Stab. Raw Stab. Raw Stab. 

Quartz Mc M M M M M M M 

Calcite M M M M M M m M 

Halite M m m M M M - m 

Aragonite mc m m - - - - - 

Muscovite/illite m m - - m M m - 

Clinochlore -d - - - - m - - 

Albite m m - - m M m - 

Pyrite m - - - m - - - 

Spinel m - - - - - - - 

Rutile - - - m m - - - 

aRaw: sediment before treatment 
bStab.: sediment following treatment with 3% CaO and 6% cement 
cM: major; m: minor 
d-: unambiguous identification not possible 

 

 




