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In this work, we propose a novel approach for wafer-scale integration of 2D materials on CMOS 17 

photonics chip utilising methods of synthetic chemistry and microfluidics technology. We have 18 

successfully demonstrated that this approach can be used for integration of any fluid-dispersed 19 

2D nano-objects on silicon-on-insulator photonics platform. We demonstrate for the first time 20 

that the design of an optofluidic waveguide system can be optimised to enable simultaneous in- 21 

situ Raman spectroscopy monitoring of 2D dispersed flakes during the device operation. 22 

Moreover, for the first time, we have successfully demonstrated the possibility of label-free 2D 23 

flake detection via selective enhancement of the Stokes Raman signal at specific wavelengths. 24 

We discovered an ultra-high signal sensitivity to the xyz alignment of 2D flakes within the 25 

optofluidic waveguide, which in turn enables precise in-situ alignment detection for the first 26 

practicable realisation of 3D photonic microstructure shaping based on 2D-fluid composites and 27 

CMOS photonics platform while also representing a useful technological tool for the control of 28 

liquid phase deposition of 2D materials. 29 

 30 

The recent development of nanocomposites consisting of fluid-dispersed atomically thin two- 31 

dimensional (2D) materials has sparked a great level of interest as a highly promising in-situ 32 

tailored meta-material device platform for the next generation of multi-functional optoelectronic 33 

systems1–13. Dynamically controlled three-dimensional (3D) self-assembly of fluid-suspended 34 

2D materials not only provides a new breakthrough route for technological applications of 2D 35 

material based 3D device architectures14–16, but also their fluidic nature allows CMOS- 36 

compatible wafer-scale back-end integration on chip using microfluidic technology17–19. The 37 

practical realisation of dynamically reconfigurable 3D material fluid metastructures integrated 38 

into a microfluidic system and coupled with a CMOS photonic circuit (as illustrated in Fig. 1) 39 
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opens up limitless possibilities in the fabrication of compact and low-power systems for 40 

commercially viable, miniaturised, multi-functional light-management devices such as light 41 

emitting sources20, tuneable optical filters21 and nanoantenna phased arrays22. For example, 1D 42 

photonic crystals of graphene which could act as optical filters have been theoretically explored23 43 

but as yet no method exists for the precise reconfigurable control of such structures. 44 

Additionally, self-assembly of fluid dispersed 2D materials represents a remarkable precursor 45 

state for liquid phase deposition of ordered lamellae, stacks and other structures in the solid 46 

phase24–26. Reconfigurability of the metastructures can be achieved by exploiting liquid crystal 47 

technology6,15 with in-situ monitoring used to characterise the metastructure formation. 48 

However, the primary challenge for the first realisation of on-chip controlled assembly of 2D 49 

flakes into functional metastructures is the lack of a reliable and sensitive method for in-situ 50 

characterisation. Such a method is pivotal to the confirmation of the integration of composites in 51 

the device and to enable determination of parameters, such as spatial alignment of incorporated 52 

2D materials, dynamically during device operation. Conventional characterisation methods such 53 

as Raman spectroscopy5,27,28, coherent anti-Stokes Raman spectroscopy (CARS)29 and Fourier 54 

Transform Infrared Spectroscopy (FTIR)30 are not suitable for studies of fluid nanocomposites 55 

with relatively low concentrations of nanoparticles dispersed. In this case, the significantly 56 

greater scattering volume of the host fluid compared to that of the dispersed nanoparticles always 57 

dominates the vibrational signal intensity, rendering the monitoring of the considerably weaker 58 

bands of dispersed nanoparticles impossible.  59 

Here we demonstrate, for the first time, the wafer-scale integration of fluid-dispersed 2D 60 

materials on Si photonics chip utilising microfluidic technology, and their subsequent electrical 61 

and optical manipulation. We also propose and subsequently demonstrate a novel approach for 62 
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ultra-sensitive, label-free, in-situ detection and monitoring of integrated 2D-fluid composite 63

materials on-chip. Specifically, an in-situ micro-Raman characterisation approach, whereby the 64

Raman signal of 2D dispersed nanoparticles is selectively enhanced through the design of 65

optofluidic waveguide geometry on silicon-on-insulator (SOI) platform. It has previously been 66

shown that the Raman signal from micro-structured silicon cavities can be enhanced due to 67

Fabry-Pérot type resonances31–33. Here, the structure is designed to simultaneously enhance 68

different resonant modes relating to different parameters of the optofluidic waveguides, 69

balancing the required enhancement of the signal from multiple vibrational bands with the desire 70

for the greatest achievable intensity for the individual bands. The developed approach 71

demonstrates ultra-high sensitivity to the xyz alignment of 2D nanoparticles within optofluidic 72

waveguides. Hence, for the first time, our findings demonstrate the possibility of monitoring the 73

dynamics of fluid-dispersed 2D nanoparticles on chip. Our work paves the way for the 74

practical realisation of dynamically reconfigurable photonic metastructures based on 2D-fluid 75

composites integrated on CMOS photonics platform with a range of important applications, such 76

77as renewable energy, optical communications, bio-chemical sensing, and security and 

defence technologies4,8,34 or as a precursor to controlled deposition of solid state structures24–26. 78

79

Typically, large-scale CMOS photonics builds on a SOI platform; a high index-contrast 80

waveguide platform which prevents interference between the photonic integrated circuit 81

components and the substrate. Therefore, we use an SOI based Fabry-Pérot type optofluidic 82

waveguide channel, with an open top cladding (Fig. 1 inset) to allow in-situ micro-Raman 83

detection and monitoring of the integrated 2D fluid nanocomposite system during device 84

operation. To optimise the optofluidic waveguide design for facilitating strong confinement of 85
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light on chip and to significantly enhance the Raman back-scattered signal of the individual 86 

incorporated 2D nanoplatelets, we model the variation in the intensity of the Raman bands of 87 

dispersed nanoparticles while varying parameters that can be experimentally controlled, such as: 88 

the waveguide width, w, and the buffer oxide (BOX) layer thickness, hBOX. We consider the 89 

specific case of the D and G bands of 2D carbon-based materials (Fig. 2)- such as graphene and 90 

graphene oxide (GO)- dispersed in a nematic liquid crystal (LC) host, however the proposed 91 

methodology can be utilised for any fluid-dispersed material. The backscattered Raman signal 92 

intensity is numerically determined for wavelengths corresponding to the Raman active bands 93 

using the scattering matrix method [See Supplementary Methods]. The complex variation of the 94 

Raman signal as a result of modifying the optofluidic waveguide parameters can be rationalised 95 

as the superposition of Fabry-Pérot resonance effects in different parts of the geometry. 96 

Enhancement of up to 100x can be observed between maximising and minimising combinations 97 

of the optofluidic waveguide parameters. 98 

In order to experimentally demonstrate the enhancement of the Raman intensity, 2D material- 99 

fluid nanocomposites- consisting of graphene and GO nanoplatelets dispersed in LCs- were 100 

prepared by a liquid phase dispersion method [See Supplementary Methods]. The optimal 101 

parameters for the microfluidic structures were determined from the calculated Raman signal 102 

intensity maps shown in Figure 2. Resonator devices consisting of optofluidic waveguide 103 

channels of different widths were fabricated on SOI wafer with a thick buffer oxide (hBOX=2 µm) 104 

layer and with a silicon device layer of 15 μm. The prepared nanocomposites were integrated 105 

into optofluidic waveguide channels via infiltration reservoirs on the chip (Fig. 3). The selected 106 

microfluidic channels had widths in the ranges 3.7±0.2 µm (narrow channels, strong 107 

enhancement) and 10.5±1.5 µm (wide channels, weaker enhancement). Optical microscopy (Fig. 108 
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3b) and scanning electron microscopy (Fig. 3c-e) both confirmed the successful integration of 109 

the nanocomposite into all channels.    110 

Raman spectra are presented for the GO-LC nanocomposites- with MLC-6608 (Fig. 4a) and 111 

with E7 (Fig. 4b) as the fluid host- at three points in-situ on the chip; more specifically: in a wide 112 

channel (Fig. 4c), in a narrow channel (Fig. 4d) and in an infiltration reservoir (Fig. 4e). Liquid 113 

crystal MLC-6608 exhibits weak Raman bands (see Supplementary Results) that have no strong 114 

overlap with the D and G bands, allowing for clear determination of the GO bands in gathered 115 

spectra. Raman spectra were recorded for individual monolayer flakes of area 1.0±0.1 µm2 in all 116 

cases. For GO dispersed in MLC-6608, the D band Raman intensities were observed in the 117 

approximate ratio 5:8:16 for an infiltration reservoir, 11.6 µm channel and 3.6 µm channel 118 

respectively. For the G band, intensities were observed in the ratio 5:7:16. E7, however, has a 119 

strong Raman active vibrational band at around 1605 cm-1 (see Supplementary Results), 120 

overlapping with the G band. Nevertheless, utilising the proposed signal enhancing design, the 121 

observation of the G band as a broad shoulder on this band is feasible (Fig. 4b). In addition, 122 

similar results were obtained for nanocomposites with graphene instead of GO.  123 

The close agreement, in Figure 4f, between the relative intensities of the D and G bands found 124 

experimentally for all nanocomposites (points) and those determined numerically (solid lines) 125 

verifies the method for predicting the Raman signal enhancement. For both the D and G bands, 126 

the numerically determined enhancement ratio was within the error of the experimental 127 

measurements; slight differences occur due to the flake not being positioned precisely at the 128 

centre of the channel. Therefore, this technique presents an effective tool for maximising the 129 

enhancement of the Raman signal. 130 
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Understanding the dynamics of 2D nanoplatelet spatial alignment is essential for the 131 

realisation of three-dimensional metastructure formation. External stimuli, such as applied 132 

electric field and light coupling6,15 [See Supplementary Results and Supplementary Videos 1-4], 133 

induce dynamic re-ordering of suspended 2D nanoparticles. Here, a Raman laser was exploited 134 

to move a GO flake within a channel (Fig. 5a), while simultaneously being used to monitor the 135 

xyz alignment over time. The variation in the experimental Raman spectra for different flake 136 

positions within the channel is illustrated in Fig 5b.  137 

The effect of the flake position on the Raman signal intensity was modelled by varying the 138 

position of the oscillating dipoles within the optofluidic waveguide channel both laterally and 139 

vertically. The ratio of the D and G band intensities is not constant as the position is varied (Fig. 140 

5c-d). For lateral displacements (Fig. 5c), there are ratios of 11 and 32 between the minimal and 141 

maximal intensities determined numerically for the D and G bands respectively. For vertical 142 

displacements (Fig. 5d), the maximum and minimum values of the average intensity differ by 143 

factors of around four and five times for the D and G bands respectively.  144 

For the lateral displacement of the flake, the ratios of the intensities of the GO D and G bands 145 

were extracted from experimental spectra when a flake was next to the wall and when moved 146 

further towards the centre of the channel. These ratios were then used as a multiplier on the 147 

numerically determined intensity for the flake next to the wall (position 2 in Fig. 5a) to 148 

determine an approximate displacement. Positions approximated using experimental data in 149 

tandem with the numerically determined results are closely matched to the values observed using 150 

optical microscopy techniques (See Supplementary Results), falling within the experimental 151 

error. The lateral position can therefore be determined with similar precision to optical 152 
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microscopy (approx. ±5%) currently, but with scope for the error to be reduced significantly by 153 

improving the signal-to-noise ratio.  154 

For the vertical displacement of the flake, again the ratios of the intensities of the GO D and G 155 

bands were extracted, this time from data with the flake at the bottom of the channel and further 156 

towards the surface. The ratios were then used to multiply the numerically determined intensity 157 

with the flake at the bottom of the channel to determine an approximate displacement. The 158 

numerical analysis covering the effect of vertical flake position shows close agreement with the 159 

experimental data. The vertical position of the flake cannot be determined from optical 160 

microscopy but the close agreement of the positions determined separately from the D and G 161 

bands confirms that the method is accurate. Therefore, the predictions made from the Raman 162 

spectra are the most accurate method of determining the vertical position currently available. 163 

While we propose this technique as a method for monitoring self-assembly of 3D metastructures 164 

comprised of 2D materials, this approach may also find applications in a wide range of other 165 

areas such as controlling flake alignment for liquid phase deposition of 2D materials24,26 or for 166 

spatial monitoring of nanoparticle distributions35. 167 

In summary, we propose a novel approach for integration of 2D materials on CMOS photonics 168 

chip utilising microfluidics technology. We have successfully demonstrated that this approach 169 

can be used for integration of any fluid-dispersed 2D nanoparticles on SOI photonics platform.  170 

The optofluidic system design can be optimised to enable in-situ Raman spectroscopy 171 

monitoring of 2D dispersed flakes during device operation. In-situ label-free 2D flake sensing 172 

via selective enhancement of the Stokes Raman signal at given wavelengths has been determined 173 

numerically and confirmed experimentally. This approach has been applied to monitor the 174 

individual 2D nanoplatelet dynamic within an optofluidic waveguide with high sensitivity, 175 
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enabling precise in-situ alignment monitoring for controlling liquid phase deposition of 2D 
materials as well asthe first practical realisation of 3D photonic metastructure shaping based on 

176

2D-fluid composites and CMOS photonics platform. 177

178
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Figure 1.  A CMOS photonic circuit coupled to a microfluidic layer integrating dynamically 

reconfigurable 2D material metastructures by exploiting liquid crystal technology. In-situ 

micro-spectroscopy detection and monitoring gives information on the formation of the 

metastructures. 

Figure 2. a) Map showing regions where both the D and G bands of 2D carbon-based 

materials are determined numerically to be strongly enhanced in Raman spectroscopy 

measurements. b) Expanded view of the region of interest highlighted in a. The range of 

parameters for which strong enhancement is observed are shown with the white lines 

including fabrication deviation ΔhBOX and Δw. 

Figure 3. a) SEM image of the chip used for Raman measurements, before infiltration with 

the nanocomposite. b) Polarised microscopy image of the structure infiltrated with a 

composite of MLC 6608 and graphene oxide. Integration of the composite, including GO 

flakes, into all microfluidic structures on the chip can be seen. c) SEM of GO flakes 

infiltrated with a host LC into a 3.6 µm channel. d) SEM of GO flakes infiltrated with a host 

LC into an 11.6 µm channel. e) SEM of an 11.6 µm channel, with the LC removed, showing 

the integration of large numbers of GO flakes.  
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 290 

Figure 4. a-b) Normalized Raman spectra showing the enhancement of the D and G bands 

for graphene oxide dispersed in (a) liquid crystal MLC 6608 and (b) liquid crystal E7. 

Spectra are shown for three microfluidic geometries: in (c) an infiltration reservoir of width 

100μm (magenta), in (d) a microfluidic cavity of width 11.6μm (green) and in (e) a 

microfluidic cavity of width 3.6μm (black). Approximate laser spot sizes are shown in (c-e). 

f) Comparison of numerically determined (solid lines) and experimentally measured (points) 

Raman intensities of the graphene oxide D (blue) and G (red) bands. All data is normalized 

to the case where the walls are separated by a distance great enough for Fabry-Pérot 

resonances to have no effect. 

Figure 5. a) GO flake movement induced by the Raman laser. Each image represents the 

change after 10 s exposure time in the order in which they were observed. b) Raman spectra of 

a GO flake dispersed in liquid crystal E7 within a narrow channel (approx. 3.6 µm) at positions 

1 (cyan), 2 (violet) and 5 (grey) as seen in a. c-d) The variation of the Raman intensity of the 

GO D (blue) and G (red) bands for lateral (c) and vertical (d) displacements of a GO flake 

within the microfluidic channel. Solid lines give the numerically determined Raman intensities. 

Flake positions determined from normalized experimental spectra are shown as points. For 

lateral displacements, the error in the experimental measurement is given by the size of the 

symbols. 
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