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ABSTRACT 
  

In this thesis, the results of time-resolved magneto-optical imaging experiments, 

micromagnetic simulations and analytical theory will be presented.  These three approaches 

were used in order to understand how spin waves can be both excited and steered using 

magnetic non-uniformities (which gives rise to the graded magnonic index).  The latter 

quantity refers to the smooth spatial variation of both the effective magnetic field and 

magnetization, and is naturally associated with any non-uniform magnetic configuration.  The 

samples (continuous or geometrically patterned) studied in this thesis are composed of either 

Permalloy (a nickel-iron alloy) or Yttrium-Iron-Garnet (YIG).  The Permalloy films are 

studied using one of two pump-probe techniques, which are distinguished by the character of 

the pump.  The first technique – time-resolved scanning Kerr microscopy (TRSKM) - uses a 

fast magnetic field delivered by a coplanar waveguide, in order to pump magnetization 

dynamics, whereas the second technique – time-resolved optically-pumped scanning optical 

microscopy (TROPSOM) - instead uses an ultrashort optical pulse.  In both systems, an 

optical probe is used to image the excited dynamics via the magneto-optical polar Kerr effect.  

The experimental realization of both systems will be extensively discussed, and the results 

acquired using these two techniques underpin the work discussed in two distinct chapters.  

The YIG samples, in contrast, were studied using Brillouin light scattering microscopy.  In 

order to complement and understand the experimentally-acquired results, and furthermore to 

circumvent the diffraction-limited resolution associated with optical experiments, the 

magnetization dynamics in both the Permalloy and YIG samples were extensively modelled 

using micromagnetic calculations.  In all these studied samples, a non-uniform magnetic 

configuration - giving rise to the graded magnonic index - was generated through either 

geometrical patterning or thermal modification of the magnetization.  There are four key 

findings that are discussed in this thesis.  The first involves the fact that the graded magnonic 

index gives rise to a spatially-varying frequency of resonance.  By therefore exciting the 

entire sample with a spatially-uniform temporally-harmonic microwave magnetic field (as 

delivered, for example, by a wide current-carrying strip), one can efficiently excite resonance 

within a targeted region of magnetization.  The resonantly-excited magnetization 

consequently, via the magnonic dispersion mismatch, emits propagating spin waves into the 

adjacent regions of the sample.  Depending on the spatial character of the graded magnonic 
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index, the generated spin waves either take on the form of tightly-focused beams, or more 

traditional plane waves.  Importantly, it is shown that this scheme of excitation can be used to 

excite spin waves with nanometric wavelengths, despite the exciting field having very large / 

infinite spatial extent.  Alongside the proof-of-principle experimental and numerical 

measurements, a hybrid numerical/analytical model is constructed, allowing the distribution 

of local resonances to be mapped across any arbitrary (but stable) micromagnetic 

configuration.  The second key finding discussed in this thesis relates to the capability of the 

graded magnonic index to continuously steer propagating spin waves.  In order to understand 

the results obtained from both experiment and micromagnetic simulations, the propagation of 

spin waves across magnetic landscapes is interpreted as a result of adiabatic adjustment of the 

spin-wave group velocity, arising from the continual need for the spin-wave dispersion to 

adapt with the variation of both the effective magnetic field and the magnetization.  Again, 

this finding is general indeed, allowing the path of spin waves to be predicted and explained 

across any landscapes with continuous variation of magnetic parameters.  The third key 

finding involves the lateral confinement, and dispersive conversion, of propagating spin 

waves.  If a spin wave propagates along a stripe (i.e. a waveguide), the magnonic dispersion 

shifts, such that there is overlap between the dispersive spectra characterizing the spin waves 

that are propagating parallel and orthogonal to the magnetization.  By therefore joining two 

orthogonal waveguides so as to form a T-junction, one can realize a magnonic beam splitter – 

this is the building block of parallel magnonic circuitry.  The fourth and final set of results 

discussed in this thesis concerns the magnetization dynamics that are excited within a 

Permalloy film by a tightly-focused optical pulse.  The interpretation of the presented data is 

not yet complete, at the time of writing, but it is clearly observed that the optical stimulus 

gives rise to both a non-propagating quadrupolar pattern and propagating quasi-circular 

ripples in the measured magneto-optical Kerr response.  These results, in particular, are 

relevant to the design of spin-wave devices involving optical stimuli.  Overarching these four 

findings is the theme of “graded-index magnonics”, which involves the study of spin waves 

hosted by continuously-varying magnetic landscapes.  The results presented in this thesis, as a 

whole, reveal that the graded magnonic index not only can be exploited either to excite or 

steer propagating spin waves in a deliberate manner, but is in fact a ubiquitous feature that 

needs to be taken into account when considering any dynamical phenomena in nano- and 

micro-magnetism.   
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CHAPTER 1 
 

INTRODUCTION 

In 1965 and 1975, Gordon Moore forecasted that the density of transistors within 

integrated circuits would double annually6 and biennially7 respectively.  In the five decades 

that have followed these predictions, electrical engineers, condensed-matter physicists and 

semiconductor manufacturers have consistently sought to achieve “more Moore”, and this 

pursuit has been largely responsible for the rapid and dramatic development and 

miniaturization of technology.  It is now becoming increasingly evident, however, that the 

seemingly inexorable improvement of conventional semiconductor-based computational 

architecture is unsustainable.  Indeed, indications of the plateauing of Moore’s exponential 

law are already beginning to emerge,8 with the clock rate of modern processors having not 

improved since 2004.  More recently, Intel have formally announced9 that their biennial “tick-

tock” strategy10 of chip development is being revised to a triennial “process-architecture-

optimization” model, due to the difficulties associated with manufacturing integrated circuits 

boasting feature sizes below 22 nm.   

As part of the drive to fulfil Moore’s law, a global consortium of integrated device 

manufacturers established in 1998 the International Technology Roadmap for 

Semiconductors.11  This is a set of documents published biennially, which identifies potential 

bottlenecks in the upcoming manufacture of integrated circuitry, and advises where efforts in 

research should be devoted.  In particular, since 2015, the Roadmap concentrates on seven 

topics - one of these topics is devoted to the discussion of “beyond-CMOS” technologies,12 

which could compliment and / or supersede conventional integrated circuits.  Potential 

candidates currently being studied include spintronics,13 graphene nanoribbons,14 tunnel 

junction devices,15 memristors,16 and molecular electronics.17  Another area of research, 

which has recently begun to garner significant attention, involves the development of 

magnonic technology,18 which uses spin waves (and their quanta, magnons) to both transmit 

and process data.   
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Magnonic technology boasts several properties that give it a distinct advantage over its 

electronic counterpart.19  Electronics is restricted in the sense that information is transmitted 

using only one scalar variable (charge).  In contrast, wave-based signal carriers allow 

computational operations to be performed with vector variables (amplitude and phase).  This 

second degree of freedom enables computing architecture to be reduced both in size and 

complexity.  Specifically with regard to spin waves, magnetization is an inherently non-

volatile quantity, and so no power is drawn by the magnonic circuit during standby. 

Moreover, since spin waves do not necessitate the translational transfer of particles, the 

energy required to drive magnonic technology is dramatically reduced.  This causes spin 

waves to be free of the Joule heating associated with electronics, and could therefore enable 

the circumvention of the heating problem, which has stalled the growth of electronic clock 

rates since 2004.8  This increased clock rate is further augmented by the quadratic dispersion 

of exchange spin waves, whereby the miniaturization of magnonic wavelengths causes the 

operating frequency to increase by a power of two.  To illustrate this comparison between 

electronic and magnonic technology more quantitatively, one can consider the example of a 

full adder circuit.20  Using CMOS-based technology, with a 32 nm node, such a device has a 

footprint of 6.4 μm2, requires 28 transistors, and draws 10 fJ of energy.  In contrast, the 

magnonic counterpart, using a wavelength of 32 nm, has a spatial footprint of 0.026 μm2, and 

just requires three majority gates and 24 aJ to function.  Magnonic technology, in light of 

these numerous technical advantages, therefore possibly offers a viable pathway through 

which Moore’s law can be prolonged.   

In addition to the aforementioned advantages of magnonic technologies, the properties 

of spin waves and magnons can be substantially engineered using a wide variety of tuning 

parameters.  This offers a broad toolbox, using which all kinds of magnonic devices can be 

fashioned.  For example, by periodically modulating a spin-wave waveguide, one can 

construct a reprogrammable magnonic crystal,21 which supports and forbids the propagation 

of spin waves with certain frequencies.  Alternatively, by driving the precession of 

magnetization with a stronger excitation, one can enter the non-linear regime, giving rise to 

the excitation of solitons22 and the possibility of high harmonic generation.23  In keeping with 

the current exploration of the rich playground of magnonics, this thesis is devoted to 

investigating how propagating spin waves can be excited and steered using non-uniformities 

in magnetic bodies.   
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The ubiquity of non-uniformity complicates our understanding of the world around us 

in an immeasurable number of ways.  If however the influence of non-uniformity is properly 

understood, it can be exploited to realize more sophisticated applications.  In transformation 

optics, for example, a spatially-varying refractive index is used to steer rays of light in 

particular directions.  In magnonic systems, the potential landscape across which spin waves 

propagate is given by both the smoothly-varying distribution of the magnetization and the 

effective field.  These two ingredients, combined, give rise to a magnonic index (the spin-

wave analogue of the refractive index).  By designing a system in which there is a graded 

magnonic index, it is straightforward to envisage the steering of propagating spin waves.   

The optical refractive index is limited in the sense that it is only capable of guiding 

beams of light.  In a magnonic system, in contrast, the magnetization is capable of precessing 

at a resonant frequency, dictated by the length and orientation of the magnetization and 

effective field vectors.  In a system with a graded magnonic index, therefore, there is also a 

spatially-varying frequency of resonance.  By exciting the entire magnonic system at a 

particular frequency, the exciting field is only able to couple most efficiently with particular 

regions of magnetization.  This local but resonant excitation therefore serves as a spin-wave 

source, capable of injecting propagating spin waves into the adjacent regions of 

magnetization.24  The graded magnonic index therefore not only enables the path of 

propagating spin waves to be altered, but it also allows the very generation of said 

propagating spin waves.   

In this thesis, a combination of experimental measurements, micromagnetic 

calculations and analytical theory is used to explore how the graded magnonic index can be 

exploited to excite and steer propagating spin waves.  In a similar vein to the electromagnetic 

applications that are already being developed using transformation optics, it is hoped that the 

field of graded-index magnonics will similarly prove useful in the design and construction of 

magnonic devices.  Indeed, as the magnonic technology continues to miniaturize, non-

uniformity – and by association the principals of graded-index magnonics - will become 

increasingly important.   

In Chapter 2, the concepts underpinning magnetism and spin-wave dynamics are 

reviewed.  All the results and measurements discussed in this thesis concern ferromagnetic / 

ferrimagnetic materials, and so the background concepts pertaining to these substances are 

focused on.  The phenomena of ferromagnetism can be partially understood using a 
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phenomenological mean field theory.  However, in order to fully understand ferromagnetic / 

ferrimagnetic behavior, it is necessary to discuss the results of quantum mechanics, and in 

particular the exchange / super exchange interaction.  The interactions that govern the static 

distribution of magnetic configurations – specifically, the Zeeman, demagnetizing, exchange 

and magneto-crystalline interactions – are then reviewed in turn.  Together, these interactions 

give rise to an effective field, which is associated with any magnetic system.  Once the 

principles relating to the static behavior of magnetization has been outlined, the dynamics are 

discussed.  Magnetization dynamics, in general, are governed by the Landau-Lifshitz 

equation, which describes the precession of magnetization about the effective field.  Using the 

Landau-Lifshitz equation, the dynamics can be discussed in two distinct regimes.  When the 

magnetization oscillations are free, the Kittel equation characterizing the fundamental mode 

of resonance can be derived.  If instead the magnetization is driven by an exciting magnetic 

field, the dispersion of dipolar spin waves (in the magnetostatic limit) is obtained.  This 

dispersion is characterized by a peculiar anisotropy, drastically depending on the relative 

orientation of the magnetization and the direction of spin-wave propagation.  To include the 

influence of the isotropic exchange interaction, one can use the dipole-exchange dispersion 

relation.  Using these dispersion relations, it is possible to construct isofrequency curves, 

which correspond to the distribution of the wave vector solutions that satisfy the spin-wave 

dispersion at a certain frequency.  These curves are used extensively throughout this thesis in 

order to characterize and explain the behavior of the propagating spin waves.  This chapter 

concludes with a brief review of spin-wave width-modes, which are supported by magnonic 

waveguides.   

In Chapter 3, the experimental and numerical techniques used to acquire the results 

presented in this thesis are intensively discussed.  The chapter begins with a brief description 

of the magneto-optical Kerr effect, which was used throughout to experimentally image 

magnetization dynamics within Permalloy samples.  Once this background has been 

established, the experimental details of the two magneto-optical microscopes used by myself 

at the University of Exeter are extensively detailed.  Both microscopes are based on a pump-

probe technique, but differ significantly in the character of the pump.  The first microscope – 

the time-resolved scanning Kerr microscope (TRSKM) – uses a magnetic field delivered by a 

coplanar waveguide to stimulate magnetization dynamics, whereas the second microscope – 

the time-resolved optically-pumped scanning optical microscope (TROPSOM) – uses 

ultrashort optical pulses as the pump.  The implementation of both techniques is discussed in 
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turn.  Some measurements presented in this thesis were acquired by collaborators using 

Brillouin light scattering (BLS) microscopy – the third section of this chapter, therefore, is 

devoted to a brief description of the concepts underpinning BLS microscopy.  In the fourth 

and final section of this chapter, the principles of micromagnetic simulations are discussed.  

The micromagnetic package Object-Oriented Micro-Magnetic Framework (OOMMF) was 

extensively used throughout this thesis to complement and understand the experimental 

measurements, and furthermore as a stand-alone tool to study systems which could not be 

directly studied using experiment.  This section therefore discusses the principles 

underpinning the operation of OOMMF, and details how the magnetic interactions are 

integrated within the micromagnetic package.   

In Chapter 4, the graded magnonic index is exploited in order to excite propagating 

spin waves.  In the introduction of this chapter, I discuss the Schlömann mechanism of spin-

wave excitation, which was first outlined in 1964.  This mechanism involves the efficient 

coupling of a spatially-uniform exciting magnetic field with targeted regions of 

magnetization, which consequently launches spin waves of finite wave vector into the 

neighboring regions of magnetization.  In the first section of this chapter, a patterned Yttrium-

Iron-Garnet (YIG) film was studied using both BLS microscopy and micromagnetic 

simulations.  Specifically, the YIG film contains an embedded isolated antidot, but is 

otherwise continuous.  Due to the static demagnetizing field generated by the magnetized 

antidot, the internal field immediately adjacent to the antidot is raised, compared to the 

internal field far from the antidot.  This therefore enables the graded magnonic index to be 

used to excite spin-wave caustic beams, originating from the resonantly-excited magnetization 

immediately adjacent to the antidot.  In the second section of this chapter, a miniaturized 

antidot system was studied using the same methodology.  Due to the increasing dominance of 

the exchange interaction, the excited spin waves are instead observed to be more isotropic.  

The dynamic demagnetizing field has hitherto been neglected entirely from the discussion.  A 

wide longitudinally-biased stripe (modelling a semi-infinite film) was therefore investigated, 

and it is shown that the dynamic demagnetizing field can similarly be used to excite plane 

propagating spin waves from the edges of a patterned film.  In the third and final section of 

this chapter, a hybrid numerical / analytical model was developed in order to evaluate the 

local frequency of resonance across a magnetic ground-state, offering to therefore explain all 

the results discussed in this chapter.   
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In Chapter 5, the graded magnonic index is used to steer propagating spin waves 

across a network of Permalloy waveguides.  Specifically, a T-junction of waveguides was 

transversely biased using a spatially-uniform magnetic field.  The non-uniform distribution of 

the demagnetizing field across the structure caused there to be two dominant modes of 

resonance, separated in frequency, and moreover each spatially confined to either the leg or 

the arms of the junction.  Upon exciting the structure with a spatially-uniform exciting field, 

resonance was excited within the leg of the T-junction, exciting spin-wave caustic beams 

propagating across the arms via the Schlömann mechanism.  Extensive TRSKM 

measurements and OOMMF simulations were used to image and understand the character of 

the excited spin waves.  When the bias field was applied symmetrically across the structure, 

two spin-wave beams were symmetrically excited, both propagating along the left and right 

arms of the junction.  If instead the external bias field was rotated by just 15°, only one spin-

wave beam was observed propagating across one arm.  This observed spin-wave beam was 

identified as undergoing continuous refraction and distributed scattering, due to the graded 

magnonic index.  A hybrid numerical / analytical model was constructed in order to 

understand both the propagation path of the observed spin wave, and the absence of the other 

spin wave.  Using this model, it was identified that a second spin-wave beam was in fact 

generated via the Schlömann mechanism, but the graded magnonic index caused the beam to 

undergo “anomalous reflection”.  Hence, it was not observed propagating across the other arm 

of the T-junction.   

In Chapter 6, the graded magnonic index was used to transform the modes of 

propagating magnetostatic width-modes from one dispersive type to another, across a T-

junction of YIG waveguides.  This system was extensively studied using BLS microscopy and 

OOMMF calculations.  In a wholly continuous thin film, the dispersion of spin waves 

propagating in the plane of the film, but at a direction either parallel or orthogonal to the 

magnetization, do not overlap at all.  In a waveguide, in contrast, it is possible to excite width-

modes, corresponding to laterally-confined propagating spin waves.  Across these 

waveguides, one can identify significant overlap between the two spin-wave bands, arising 

from effects introduced solely by the finite width of the film.  This overlap, therefore, was 

exploited to efficiently convert spin-wave width-modes across the T-junction of YIG 

waveguides.   
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In Chapter 7, the magnetization dynamics induced by the optical excitation of 

Permalloy films are studied.  The graded magnonic index, in the context of this chapter, refers 

to the spatially varying magnetization induced by the thermal load delivered by the optical 

pulse, but no clear graded-index effects were definitively observed in this chapter.  In the 

TROPSOM setup, two laser beams (of different wavelength) were focused to form tightly-

focused spots on the surface of a Permalloy film.  One of the beams acts as a pump for 

magnetization dynamics, and the other serves as a probe.  Measurements of both the transient 

reflectivity and magneto-optical Kerr signal were acquired.  In the first section, the measured 

spatiotemporal dynamics across a 20 nm thick Permalloy film are discussed.  Here, a 

monopolar signal was detected in the transient reflectivity channel, which was assumed to 

correspond to the nominally-Gaussian spatial profile of the pump spot.  In the Kerr channel, 

in contrast, a quadrupolar signal was consistently observed: the origin of this signal’s 

symmetry is currently unknown.  In the second section, similar dynamics excited within a 50 

nm thick Permalloy film are studied.  The Kerr signal was similar to that observed in the 20 

nm thick film, but here the reflectivity signal was frequently dipolar.  Again, the dipolar 

signal is not understood in its physical origin.  In addition to the aforementioned non-

propagating signals, propagating ripples were detected in the Kerr channel.  In the third and 

final section of this chapter, the results acquired using TROPSOM are generally and 

speculatively discussed.  Finally, the results of the research presented in this thesis are 

summarized in Chapter 8, alongside some speculative discussion of future research directions 

in the field of “graded-index magnonics”.   
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CHAPTER 2 
 

BACKGROUND CONCEPTS OF MAGNETISM AND SPIN-

WAVE DYNAMICS 

 

2.1 Introduction 

 In this chapter, my aim is to introduce the background concepts essential for the 

understanding of the further material presented in this thesis.  I begin this chapter by briefly 

discussing the classifications of magnetic phenomena – namely, diamagnetism, 

paramagnetism and ferromagnetism.  Since the experimental measurements, numerical results 

and theoretical descriptions discussed in this thesis all concern ferromagnetic and 

ferrimagnetic materials, I then discuss the key results arising from the semi-classical Weiss 

model of ferromagnetism.  Despite this model being wholly phenomenological, it can be used 

to explain the temperature-dependence of ferromagnetic substances with substantial success.   

I will then introduce and extensively discuss the quantum mechanical exchange interaction, 

which underpins the modern understanding of ferromagnetism.  Extending from this, I will 

then outline the concept of superexchange, which gives rise to the phenomena of 

ferrimagnetism.  Following this discussion of the origins of magnetism, some discussion is 

then given about the properties and character of the two magnetic materials – Permalloy and 

YIG – that are studied in this thesis.   

Subsequently, I will then discuss the static and dynamic behavior of magnetization.  

The static magnetization of a substance is defined by the stable energetic equilibrium reached 

by a set of magnetic interactions, which all seek to minimize their individual energies.  The 

magnetization dynamics of a magnetic body is governed by the Landau-Lifshitz equation, 

which is used in this chapter to derive the equations characterizing ferromagnetic resonance, 

the ferromagnetic Polder susceptibility, and the magnetostatic spin-wave dispersion.  In 

addition to the lattermost dispersion, the dispersion relation characterizing dipole-exchange 
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spin waves is then briefly outlined, and the isofrequency curves characterizing the various 

spin-wave types are discussed.  To conclude this chapter, I then briefly review the properties 

of spin-wave width-modes (propagating spin waves that are albeit laterally confined within 

waveguides).  Note that, throughout this thesis, I consistently use the Gaussian unit system.   

2.2 Semi-classical models of magnetism 

 In this section, I begin by discussing the models introduced by Langevin to explain the 

phenomena of diamagnetism and paramagnetism.  Then, the mean field theory introduced by 

Weiss, to account for ferromagnetism, is discussed in more detail.  This section then 

concludes with a brief description of the failings of the aforementioned semi-classical models.   

2.2.1 Diamagnetism and paramagnetism 

From the viewpoint of magnetism, all matter (including materials that are commonly 

considered to be “non-magnetic”, such as wood, water, and hydrogen) can be ultimately 

classified as being either diamagnetic or paramagnetic.  The difference in classification 

emerges when an external magnetic field is applied across the substance.  In diamagnetic 

materials, the induced magnetization opposes the external magnetic field, whereas in 

paramagnetic materials, the induced magnetization rather aligns with the external magnetic 

field.  Upon removal of the said magnetic field, the magnetization of both diamagnetic and 

paramagnetic materials is entirely lost.   

The phenomena of diamagnetism and paramagnetism can be qualitatively understood 

using the semi-classical theory of orbital magnetic moments, first put forward by Paul 

Langevin in 1905.25  The discussion given here follows those given by the textbooks written 

by Bates,26 Morrish,27 Aharoni28 and Jiles.29  An electron orbiting a nucleus in a closed loop, 

in the absence of any external magnetic field, will intrinsically have an orbital magnetic 

moment 

nμ ˆ

2

Tc

re 
 , (2.1) 

where e is the electronic charge, r is the orbital radius, T is the orbital period, c is the speed of 

light, and n̂  is the unit vector normal to the plane across which the electron moves.  The 

magnetic moment per unit volume V defines the magnetization M of a substance 
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V

μ
M  . (2.2) 

Upon applying an external magnetic field across a substance, the magnetization of a 

diamagnetic or paramagnetic substance will align parallel or antiparallel to the external bias 

respectively.  The magnetization induced by a unit magnetic field is given by the magnetic 

susceptibility 

BH

M
 , (2.3) 

and so the diamagnetic and paramagnetic susceptibilities are negative and positive 

respectively.  The magnitude of the diamagnetic susceptibility is typically on the order of 

1×10
-5

, whereas the paramagnetic susceptibility is about 1×10
-3

.  As already noted, all 

substances in existence are diamagnetic to some degree, but only some are paramagnetic – 

examples in the latter category include iron ions, or rare-earth ions.   

While the magnetic susceptibility of a substance is independent of the external field, 

there is some dependence on the temperature T.  For a diamagnetic substance, the temperature 

only indirectly enters the expression for the diamagnetic susceptibility χ
dia via the orbital 

radius.  The orbital radius is only weakly dependent on T, and so the diamagnetic 

susceptibility is almost independent of the temperature.  In contrast, the paramagnetic 

susceptibility χ
par varies inversely with the temperature according to the Curie (or Curie-

Langevin) Law 

T

C
par  , (2.4) 

where C is the Curie constant.  The material-specific Curie constant is given by 

Bk

N
C

3

2
 , (2.5) 

where N is the number of particles within the paramagnetic substance, and k
B
 is the 

Boltzmann constant.  When subjected to both a high magnetic field and a very low 

temperature, the magnetic moments within a paramagnetic substance align completely with 

the magnetic field, and so the substance can be magnetically saturated.  If the temperature is 

then raised, the thermal energy of the magnetic moments increase, which reduces the 
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alignment of the moments.  If the temperature is raised high enough, the thermal energy of the 

magnetic moments can dominate, destroying any and all net magnetization.   

2.2.2 Ferromagnetism 

The magnetic moment associated with paramagnetic materials aligns parallel to an 

externally-applied bias field, but upon removal of the external bias, the alignment of the 

ensemble of magnetic moments is entirely lost.  This behavior implies there is no coupling 

between the magnetic moments.  If instead it is supposed that the moments are strongly 

coupled, they can retain their collinearity upon removal of the bias field – this gives rise to the 

class of ferromagnetic media, which have a spontaneous magnetization in the absence of a 

bias field.  To explain the origin of ferromagnetism, Pierre Weiss, in 1907, extended 

Langevin’s model of paramagnetism to construct a mean field theory.30  In his theory, Weiss 

postulated that, in addition to the externally-applied field H
B
 acting to align the magnetic 

moments, there exists a phenomenological “Weiss molecular field” intrinsic to a 

ferromagnetic sample.  This is given by MH  WeissWeiss  , where λ
Weiss

 is the molecular field 

constant (also referred to as the Weiss constant).  Once the magnetic moments achieve some 

form of alignment, the magnetic moments generate a Weiss field, which further improves 

their alignment.  This self-consistent ordering continues until thermal jitter impedes any 

further progress.   

 To describe the temperature dependence of a ferromagnetic substance at high 

temperature, the transformation WeissBB HH H   can be simply inserted within the Curie 

Law to yield the equation 

T

HH
CM WeissB 

 . 
(2.6) 

Solving this for the ferromagnetic susceptibility leads to the Curie-Weiss Law 

CTT

C


 , (2.7) 

where Tc = Cλ
Weiss

 is the Curie temperature.  This is the critical temperature above (below) 

which the substance exhibits paramagnetic (ferromagnetic) behavior.  Note that the Curie-

Weiss Law is only applicable in describing the magnetic susceptibility of a ferromagnet in the 
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paramagnetic regime (when T > Tc).  In the ferromagnetic regime (when T < Tc), the 

magnetization is described by the transcendental equation27 

 
  





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1
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The expression within the square bracket in Eq. 2.8 corresponds to the Langevin function, 

such that Eq. 2.8 is of the form 

   aLN
a

aNM  









1
coth , 

(2.9) 

where   TkMHa BWeissB   .  Eq 2.9 cannot be solved analytically for M – rather, it must be 

numerically solved.  To do this, two coupled equations for M, in the absence of an external 

bias field, can be obtained using Eq. 2.9 and the argument of the Langevin function 

Weiss

BTka
M




 . (2.10) 

By plotting both M and L as functions of a (and therefore as functions of the inverse 

temperature), the points of intersection between the two curves correspond to the permitted 

magnetization.  This graphical approach is outlined in Fig 2.1.   

 

Fig. 2.1 Graphical solutions of Eq. 2.8.  Curve (1) corresponds to Eq. 2.9, and the straight 

lines (2) - (4) correspond to Eq. 2.10 with different values of a (and, by extension, 

T).   
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Using the graphically-derived solutions shown in Fig. 2.1, one can draw several 

conclusions.  Firstly, as a increases (T decreases), the Langevin function (curve (1) in Fig. 

2.1) tends toward the asymptote M = Nμ ≡ Ms, where Ms is the saturation magnetization.  

Such temperature dependence is characteristic and expected of a ferromagnetic substance.  

Secondly, at the Curie temperature, the straight line (2) lies at a tangent to the Langevin 

function at a = 0, and so at and above this critical temperature there is zero spontaneous 

magnetization.  In this regime, the previously-ferromagnetic substance is now paramagnetic.  

Through equating the gradient of the straight line (2) with the gradient of curve (1) as 0a , 

one can obtain a more exact expression for the Curie temperature 

Weiss
B

C
k

N
T 



3

2

 . (2.11) 

This is the critical temperature which divides the paramagnetic and ferromagnetic regimes, as 

indicated in Fig. 2.1.  At finite temperatures below the Curie temperature, there are two 

intersections between curve (1) and the straight line (3), at zero and finite magnetization.  

Only the latter represents a stable solution for the system, and so this is the spontaneous 

magnetization of the ferromagnetic substance.   

2.2.3 Breakdown of the semi-classical models 

The semi-classical models discussed in Sections 2.2.1 - 2.2.2 reasonably describe the 

phenomena of diamagnetism, paramagnetism and ferromagnetism.  Broadly speaking, many 

experimental studies obtained results which agreed reasonably well with the classical models.  

However, there were two significant failings of the semi-classical theories, which indicated 

that a more complete model needed to be developed.   

The first significant failing was pointed out by Niels Bohr in 1911, Hendrika Johanna 

van Leeuwen in 1919, and by John Hasbrouck Van Vleck in 1932.31  In Langevin’s 

description of both diamagnetism and paramagnetism, it was assumed that the magnetic 

substance could not rotate.  At a finite temperature, there would be a distribution of electronic 

velocities, but the average velocity would be zero.  Upon applying a magnetic field across the 

substance, the distribution of electronic velocities would be modified, but the average velocity 

(at thermal equilibrium) would still be zero, and so the applied magnetic field cannot generate 

any net magnetic moment.32  Consequently, diamagnetism, paramagnetism and 

ferromagnetism cannot be explained using a classical / semi-classical approach.   
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The second failing of the classical models relates to the postulated Weiss field.  By 

measuring the Curie point, one can directly deduce Weiss  via Eq. 2.11.  For example, iron was 

measured as having a Curie temperature of about 1000 K, leading to a Weiss field of strength 

10 MOe.  A field of such strength cannot be explained at all using a classical approach – the 

dipole-dipole interaction (which will be discussed in detail in Section 2.4.3) generates a field 

on the order of 1 kOe, at distances comparable to the lattice constant.  The origin of this 

gargantuan Weiss field therefore cannot be accounted for using a classical approach.   

To address both these failings, it is necessary to introduce a quantum mechanical 

model of magnetism.  This will be the subject of discussion in Section 2.3.   

2.3 Quantum mechanical models of magnetism 

In the previous section, the failings of the classical models of magnetism were pointed 

out.  To resolve these problems, it is necessary to introduce a quantum-mechanical model of 

magnetism.  The information given here was mostly obtained from the textbooks written by 

Morrish27 and Jiles.29   

2.3.1 The magnetic moment 

 In the classical atomic model, electrons were naively interpreted as orbiting the 

nucleus in a manner similar to how the earth orbits the sun, with the electronic radius being 

free to take on any value.  The expression for the total energy E of a simple classical particle, 

with mass m and linear momentum p, moving in a potential V, is given by the Hamiltonian 

V
m

p
H 

2

2

. (2.12) 

Quantum mechanically, however, particles are defined through their wave function  r .  The 

observable properties of the wave function – eigenvalues - are obtained through applying 

suitable operators to  .  The linear momentum of a wave function is obtained through 

applying the operator 
i

p


ˆ , thus leading to the time-independent Schrodinger’s equation 

(the quantum analogue of Eq. 2.12) 
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2

2


. (2.13) 

The value of ψ for different values of E represents different states of the system.  In general, 

electrons within an atom can be uniquely described using just four quantum numbers - the 

principal quantum number n (defined by Niels Bohr33), the orbital angular momentum 

quantum number l (defined by Arnold Sommerfeld34), the magnetic quantum number m
l
, and 

the spin quantum number ms.  These respectively refer to the electronic energy level, the total 

angular momentum arising from the electron’s orbital motion, the projection of the orbital 

angular momentum along a predefined axis, and the intrinsic angular momentum (also 

referred to as the spin or self-rotation) of the electron.  These quantities, characterizing the 

fermionic electrons, are restricted to certain values, as outlined in Table 2.1.   

Quantum number Range of values 

n 1 ≤ n 

l 0 ≤ l ≤ n-1 

ml -l ≤ ml ≤ l 

ms -s ≤ ms ≤ s 
 

Table 2.1 The quantum numbers, and the discrete set of values they can take.   

The energy En of an electron is given by 

22
0

2

42
1

8 nh

emZ
E e

n 


, 
(2.14) 

where Z is the atomic number, me is the electronic mass, and ε
0
 is the permittivity of free 

space.  The total orbital angular momentum is given by 

 1 llL  , (2.15) 

therefore endowing the electron (via Eq. 2.1, in combination with the classical definition of 

the angular momentum) with an orbital magnetic moment 

 1
2

 ll
m

e
g

e

LL


 , 

(2.16) 
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where g
L
 is the electron orbital g-factor (g

L
 = 1).  The quantity 

em

e

2


 is often referred to as the 

Bohr magneton μ
B
.  The projection of the orbital magnetic moment onto the bias magnetic 

field H
B
 is given by 

lBLLz mg   . (2.17) 

The spin of the electron also imparts an additional magnetic moment 

sBsSz mg   , (2.18) 

where gs is the electron spin g-factor (gs ≈ 2.002), and the spin s is always restricted to ±½ for 

a fermionic electron.  The discrete character of these angular momentum-related quantum 

numbers is illustrated in Fig. 2.2 (a) - (c).  If two or more electrons have the same energy, but 

different quantum numbers, the electron state is said to be degenerate.  In the degenerate case 

when two electrons (subjected to a bias field) are both characterized by l = 0, and ms is +½ 

and -½ for each electron respectively, the two electron states are energetically separated by 

BBe HgE  . (2.19) 

This is referred to as the Zeeman Effect,35 whereby a degenerate two-electron system can be 

split in energy (as shown in Fig. 2.2 (d)) through the application of a magnetic field.   

 

Fig. 2.2 (a)  Precession of the orbital angular momentum L about the bias field HB.  (b) 

Quantization of the magnetic quantum number ml (the projection of the orbital 

angular momentum onto HB).  (c)  Quantization of the projection of the spin 

angular momentum ms onto HB.  (d)  A schematic of the Zeeman effect.   

 The net angular momentum J of a light atom is obtained using the Russell-Saunders 

(L-S) coupling scheme.  The orbital and spin angular momentum belonging to all the 
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electrons are separately summed, giving rise to  
i

ilmL and  
i

ismS , and then these 

quantities are then combined to yield the net angular momentum SLJ LS .  As a 

consequence, J is restricted to have a value within a group of levels 

       SLSLSLSLJ  ,1,...,1, . (2.20) 

Such a group of levels is commonly referred to as a multiplet.  The total magnetic moment 

belonging to an atom is 

 1 JJg BJ , (2.21) 

where g
J
 is the Landé g-factor 

     
 12

111
1






JJ

SSLLJJ
gg sJ . 

(2.22) 

The projection of the magnetic moment onto the bias field is 

JBJz mg   , (2.23) 

where m
J
 comprises the multiplet     JJJJmJ ,1,...,1,  .   

2.3.2 Quantum mechanical adaptation of the semi-classical models 

The theory put forward by Langevin to explain the origin of diamagnetism suffered 

due to its assumption that the electronic radius was fixed, which cannot be justified on a 

classical basis.  However, the spatial quantization of electronic orbits is a key axiom of 

quantum-mechanics, and it can be shown that the theory of quantum mechanics yields Eq. 2.8 

exactly, for monatomic molecules.27  The theory of diamagnetism therefore (within the 

context of this thesis) needs no further refinement.   

Qualitatively, the classical theory of paramagnetism is also supported by the spatial 

quantization introduced by quantum mechanics.  In contrast to the theories of diamagnetism 

and paramagnetism, however, the quantitative model of ferromagnetism requires significant 

refinement.  Following the approach used in Sections 2.2.3 - 2.2.4, therefore, the Langevin 

theory of paramagnetism will first be refined, from which the Weiss theory of ferromagnetism 

will be extended.   
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When a paramagnetic gas is subjected to a magnetic field H
B
, the net angular 

momentum vector J (rather than the orbital magnetic moment) precesses about H
B
, where the 

projection of the magnetic moment on to H
B
 is m

J
g

J
μ

B
.  The magnetic potential energy is then 

given by m
J
g

J
μ

B
H

B, and the number of atoms with a particular orientation of the magnetic 

moment is therefore determined by the Boltzmann factor  TkHgm BBBJJ exp .  The 

magnetization of the ensemble of atoms is then given by26 

 xBJNgM JBJ  , (2.24) 

where
Tk

HJg
x

B

BBJ  , and  xBJ  is the Brillouin function 
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12
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(2.25) 

If all the magnetic moments of the paramagnetic gas align with the bias magnetic field, the 

total angular momentum quantum number J can assume all values, and so J → ∞.  With this 

condition, the Brillouin function tends towards the Langevin function, and so Langevin’s 

semi-classical model of paramagnetism naturally emerges as a limiting-case of the quantum 

mechanical model.   

 The quantum mechanical analogue of the Weiss model of ferromagnetism can then be 

obtained through applying the transformation WeissBB HH H   within the argument of the 

Brillouin function, such that 

 MH
Tk

Jg
x WeissB

B

BJ  


. (2.26) 

To focus on the regime in which the spontaneous magnetization (
BJs NJgM  ) is present, the 

bias field H
B
 is set to zero, therefore allowing Eq. 2.24 and Eq. 2.26 to be written in the forms 

 xBMM Js , (2.27) 

and 

x
gJN

Tk

M

M

BJWeiss

B

s
222 

 , (2.28) 
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respectively, where 

M
Tk

Jg
x Weiss

B

BJ 


 . (2.29) 

By Taylor expanding the Brillouin function, it can be shown that   x
J

J
xB

xJ
3

1
0





.  The 

same approach as was used to obtain Eq. 2.11 can then be applied to obtain the quantum 

mechanical analogue of the Curie temperature T
f
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 JJ
k

gN
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JWeiss
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
. (2.30) 

Eliminating λ
Weiss

 from Eq. 2.29 and Eq. 2.30 reveals the general equation 

x
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(2.31) 

The behaviour of Eq. 2.31 (for finite values of J) is shown in Fig. 2.3, alongside typical 

results acquired from experiment.36  As can be seen, the curves calculated using J = ½ and J = 

1 agree well with the experimental data, but the best fit of the experimental data is empirically 

of the form 









 2

3

1 TMM s  , 
(2.32) 

where β is a fitting parameter.  Eq. 2.32 – commonly referred to as the Bloch Law - will be 

derived more rigorously in the next section, using the exchange interaction and the theory of 

magnons.   

2.3.3 Exchange interaction 

So far, ferromagnetism has been understood in terms of a mean field theory, which 

extended the Langevin theory of paramagnetism via the introduction of the fictitious Weiss 

field.  Whilst Weiss’ theory was adapted in Section 2.3.2 to incorporate quantum mechanical 

theory, further refinement is required to understand the origin of Eq. 2.32.  In addition, the 

quantum mechanical theory hitherto used has given no insight in to the physical origin of the 

exceedingly large Weiss field.  To therefore account for this field, it is necessary to invoke the 

exchange interaction.   
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The exchange interaction was first introduced by Heitler and London in 1927, in order 

to model the binding energy of a hydrogen molecule.37  In the following year, Werner 

Heisenberg adapted the Heitler-London model to develop a theory of ferromagnetism,38 by 

incorporating spin within the total wave function characterizing a two-electron system.  The 

region of overlap between the two electrons is governed by the Pauli Exclusion Principle, 

which states that no two electrons with identical quantum numbers can occupy the same 

quantum state.  As a result, the spins belonging to the two electrons must be correlated, giving 

rise to magnetic order and thus the exchange energy.   

The exchange energy can be intuitively understood through considering a non-

interacting pair of electrons, each experiencing a known external potential V(r1) and V(r2) 

which is independent of the position of the other.  Assuming (naively) that the electrons are 

distinguishable, the Schrödinger equation characterizing the system of electrons is of the form 

       ErVrV
me













 21

2
2

2
1

2

2


, 

(2.33) 

where the subscripts 1 and 2 refer to either the first or second electron respectively.  The 

solutions of the Schrodinger equation are then given by  

 

Fig. 2.3 The magnetization of a ferromagnetic substance as a function of temperature, 

where the curves were calculated using Eq. 2.32 with J as indicated, and the 

points represent experimental data.27   
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   21 ba  and    12 ba  , (2.34) 

where, for example,  1a  is the one-electron wave function describing the situation when 

electron 1 is in the state a. However, in reality, the electrons are indistinguishable, and so the 

interchanging of the electrons at positions r
1
 and r

2
 cannot be detected.  Thus one can 

immediately deduce 

    21

2

21

2
1,22,1 drdrdrdr   , (2.35) 

where  2,1  is the wave function characterizing the pair of elections.  This therefore implies 

that the wave function can be either symmetric 

   1,22,1   , (2.36) 

or antisymmetric 

   1,22,1   . (2.37) 

In order to satisfy Eq. 2.35, the wave function characterizing the two-electron system must be 

a linear combination of the single-electron wave functions 

          1221
2

1
2,1 babasymm   , (2.38) 

or 

          1221
2

1
2,1 babaanti   , (2.39) 

where all the single-electron wave functions have been individually normalized, and the 

subscripts “symm” and “anti” refer to the net wavefunction being symmetric or antisymmetric 

respectively.   

 So far, the electronic wave function has been treated as a function of space only.  

However, the spin angular momentum also contributes to the wave function.  The wave 

function should therefore be written in the form 
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spinspace  , (2.40) 

where space  is the space-dependent solution to the Schrodinger equation for an electron 

devoid of spin (therefore described by the quantum numbers n, l and ml), and the spinor spin

is a function of the electronic spin (ms) only.  Since 21sm  for an electron, the single-

electron spinor can only be 21 .  The combination of spinors belonging to the pair of 

electrons can therefore be understood as being symmetric symm

spin
  or antisymmetric

anti

spin
 , in a 

similar manner as the spatial wave functions.  Now, the Pauli Exclusion Principle directly 

states that the two-electron wave function must be antisymmetric (the two electrons cannot 

have identical quantum numbers), and therefore be given by Eq. 2.39.  To satisfy this 

condition, the two-electron wave function must have spatial and spinor parts with opposite 

symmetry, which can be achieved through the combinations 

anti

spin

symm

spaceI   , (2.41) 

or 

symm
spin

anti
spaceII   , (2.42) 

where the two-electron spinors are given by the linear combination of the single-electron 

spinors 

        1221
2

1
 

symm
spin , (2.43) 

and 

        1221
2

1
 anti

spin . (2.44) 

When the two electronic spins are antiparallel, the two-electron wave function is in the so-

called singlet state 

          
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1sin  babaglet A , (2.45) 
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where A is a normalizing constant.  Alternatively, the two electronic spins can be parallel, 

leading to the triplet state, whereby the two-electron wave function can take one of three 

forms 

          
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 babatriplet B , 
(2.46) 

where B is a normalizing constant.   

The two-electron system is now extended so as to comprise two hydrogen atoms, 

constituting a H2 molecule.  The Hamiltonian of the H2 molecule is defined electrostatically 

by 

22111212
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


 , (2.47) 

where 
1nr , 

2nr ,
1er  and 

2er  is the position of the first and second nuclei, and the position of the 

electron orbiting the first and second nuclei respectively.  By then considering Ĥ  as an 

electrostatic perturbation of the two-electron system, the energy of the singlet E
singlet

 and 

triplet Etriplet
 states are given by 

 exglet JKAE  2
sin , (2.48) 

and 

 extriplet JKBE  2 , (2.49) 

where K is the average Coulombic energy 

        21
**

2121 drdrHK baba  , (2.50) 

and Jex is the exchange integral 

        21
**

1221 drdrHJ babaex  . (2.51) 
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The exchange interaction is therefore a direct consequence of the indistinguishability of the 

two electrons.  This gives rise to a corresponding exchange energy, equal to the difference in 

energy between the two-electron systems with parallel and antiparallel spins.  This energy, 

and its associated field, directly accounts for the postulated Weiss field invoked in the semi-

classical description of ferromagnetism 

 For the hydrogen molecule, Jex is negative, and so the spins of the molecule in its 

ground state are antiparallel.  Hydrogen is therefore classified as antiferromagnetic, by which 

the net magnetization is formed of two sublattices of magnetization, both equal in magnitude 

but antiparallel in orientation.39  In contrast, a ferromagnetic material requires that Jex be 

positive.*  This property can be qualitatively understood by considering the spatial wave 

functions a  and b  to be wholly positive in the region of appreciable electronic overlap.  

Consequently, Jex is positive if 
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





, (2.52) 

which physically states that the repulsion between the nuclei and between the electrons is 

stronger than the attraction between the nuclei and their associated uncompensated electrons.  

Such a circumstance occurs when the distance between neighbouring atoms in the crystal is 

less than the distance between the nuclei and the uncompensated electrons.  This is 

characteristic of iron, cobalt and nickel, and also rare-earth elements, as shown in Fig. 2.4.   

Importantly, the exchange interaction indicates that ferromagnetism originates not 

from atomic properties, but rather from electronic structures.  This therefore possibly 

explains, through the modification of interatomic distances, how some substances (including, 

for example, Chromium-based compounds40 and the class of Heusler alloys41-42) can be 

ferromagnetic, despite all the constituent elements of the substance not being ferromagnetic.   

 

                                                           
* It is important to note that the description of the exchange interaction given here corresponds to the 

simplest system possible (a hydrogen molecule).  For more complicated multi-electronic system, the 

above approach of calculating the spin coupling (based on the Heitler-London model) is 

fundamentally inadequate.27  The question of deriving from first principles more general values of Jex 

is still unresolved.   



45 
 

 

Fig. 2.4 The variation of the exchange integral as a function of the interatomic distance

12 nn rr  , corresponding to the Bethe-Slater curve.43  The exchange integrals 

belonging to several magnetic elements are indicated.   

2.3.4 Magnons and exchange spin waves 

The concept of a quantum mechanical spin wave was first introduced by Felix Bloch 

in 1930.44  This primitive excitation of magnetization can be understood by considering a 

ferromagnetic substance at absolute zero as a one-dimensional chain of spins, extending to 

infinity.  As there is no thermal agitation, the spins are all aligned parallel to the axis of 

quantization (for the sake of argument here, pointing upwards), therefore defining the ground 

state of the system with an energy given by the Heisenberg Hamiltonian 

  
ji

jii,jexHeisenberg JH
,

2 SS . (2.53) 

where Si,j are adjacent spins.  Now, the temperature is raised very slightly, so as one spin is 

flipped.  The exchange interaction will seek to parallelize all the spins, and so the flipped spin 

will revert back to pointing upwards, but at the cost of flipping its neighbouring spin.  This 

spin-flipping will then propagate across the chain of spins, giving rise to a propagating spin 

wave.  Using Eq. 2.53, and assuming that the exchange integral Jex is spatially uniform, it is 

possible to derive a dispersion relation for exchange spin waves27 

22 kaJex  , (2.54) 

whereby the exchange spin wave (of frequency ω and wave vector k) propagates across a 

simple cubic lattice (of lattice constant a).  Because spin waves, on a quantum level, are 

propagating packets of flipped spins, they are referred to as magnons, analogous to photons 

and phonons.  As with all particles, magnons have an associated energy Ek and momentum p
k
.  
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Since the chain of spins is symmetric in energy with regard to the interchanging of two 

reversed spins, magnons are classified as bosons, and therefore are described by Bose-

Einstein statistics.  Furthermore, since there is no limit on the total number of spin waves that 

can propagate across the chain of spins, magnons are wholly degenerate.  Their energy is 

quantized in terms of the discrete vibrational quantum number nk 

kknE  , (2.55) 

and the average value of the vibrational quantum number ( kn ) at a particular temperature is 

given by the Bose-Einstein distribution 

1

1




TkEk
Bke

n . 
(2.56) 

 The magnons can also be understood semi-classically, whereby the chain of N spins 

are classical vectors S, each capable of precessing about the upward-pointing axis of 

quantization.  In the ground state, all the spin vectors (of length M(T=0), where M is a 

function of temperature) are pointing upwards.  Now, upon introducing slight thermal 

agitation, the spin, instead of being flipped, is instead slightly canted from the axis of 

quantization.  This spin vector will then precess, inducing (via exchange coupling) the 

neighbouring spin to also cant and precess, albeit with a lag in phase.  In this fashion, the spin 

wave consists of a phase-coherent collective precession of spin vectors, with a dispersion 

given by27 

  kaJ ex cos12  . (2.57) 

By Taylor expanding Eq. 2.57 for small k, one can obtain Eq. 2.54, indicating that both the 

quantum and semi-classical descriptions of exchange spin waves are consistent, and can be 

used interchangeably.   

2.3.5 Quantum model of ferromagnetism 

At the end of Section 2.3.2, it was highlighted that Weiss’s theory of ferromagnetism, 

with quantum mechanical refinement, was unable to account for the Bloch Law, which best 

described the results presented in Fig. 2.3.  In order to reveal the origin of Eq. 2.32, it is 

necessary to invoke the theory of magnons.  The total number of magnons magnonsn  across a 
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chain of spins is found by summing kn  across all the k-states supported by the system.  Now, 

the number of states within an infinitesimally small wave vector range dk is given by 

 
k

k

V

dV
dkkD  , (2.58) 

where  kD is the density of states, dkkdVk
24  is the volume of a spherical shell in reciprocal 

space, and  32 LVk  is the volume of a single state (of side-length L).  Using the magnonic 

dispersion relation (Eq. 2.54), Eq. 2.58 can be reformulated in terms of energy 

  dEE
Ja

V
dEED

ex

k 21

23234 
 , (2.59) 

where D(E) is the density of states in terms of energy.  Integrating both sides of Eq. 2.59 leads 

to the equation 
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2323 14 
, 

(2.60) 

and by making the substitution TkEx B , Eq. 2.60 can be solved through a series expansion 

to reveal27 
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Now, the excitation of spin-flipping magnons corresponds to a change in the net 

magnetization, given by 
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and so it is possible to show27 
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This is the more complete form of the Bloch Law,45 and successfully describes the 

experimentally-observed thermal dependence of magnetization.  This therefore indicates that 

the quantum-mechanical description of exchange energy and exchange spin waves 

successfully describes the temperature-dependent behaviour of ferromagnetic substances.   

2.3.6 Superexchange interaction, and ferrimagnetism 

While the exchange interaction is able to explain the phenomena of ferromagnetism 

and antiferromagnetism (Jex being positive and negative respectively), there are further 

exchange-related interactions that need to be used in order to explain the magnetic behavior of 

more complex crystalline structures.  Manganese Oxide, for example, is observed to possess 

antiferromagnetic order, despite the fact that the antiferromagnetically-coupled Mn2+ ions are 

separated by a diamagnetic O2- ion.  To explain this behavior, Hendrik Kramers proposed in 

1934 the superexchange interaction,46 which was refined by Phillip Anderson in 1950.47   

The superexchange interaction is most commonly explained through the interaction of 

the four free electrons within Mn
2
O.  The ground state of this molecule consists of two Mn2+ 

and one O2- ions arranged adjacently.  The electron in the leftmost Manganese ion has a 

particular spin (for the sake of argument, up).  This compels, via the exchange interaction, the 

overlapping electron belonging to the neighbouring Oxygen ion to have antiparallel spin 

(down).  The second electron in Oxygen then aligns up, inducing (again via the exchange 

interaction) the neighbouring electron belonging to the Manganese ion to have downward 

spin.  The Oxygen, in short, serves as an intermediary for the exchange interaction, allowing 

the said interaction to act across larger distance (hence the term “superexchange”).   

The superexchange interaction, in Manganese Oxide, gives rise to antiferromagnetic 

order.  However, if the two antiferromgnetically-coupled ions bridged by the intermediary 

have different spin, net magnetic order can be generated.  This leads to the class of magnetic 

materials termed ferrimagnets.  A ferrimagnetic substance consists of two sublattices of 

magnetization, where both sublattices have a difference in strength, and are oriented 

antiparallel to each other (as dictated by the superexchange interaction).  One example of this 

material, which is discussed frequently throughout this thesis, is YIG (Ytrrium Iron Garnet).  

The properties and character of this material will be discussed in more depth in Section 2.5.2.   
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2.4 Energetics of a ferromagnetic system 

The static and dynamic behavior of a ferromagnetic system is governed by a variety of 

competing interactions, all seeking to contribute towards the minimization of the total free 

energy density w of the magnetized system.  In equilibrium, the static magnetization M0 of a 

ferromagnetic system is given by Brown’s differential equation48 

00,0  effHM , (2.64) 

where Heff,0 is the static effective magnetic field, defined as the functional derivative of the 

free energy density with respect to the magnetization28 

M
H



w
eff 0, . (2.65) 

The free energy density is composed of the energy densities associated with all the magnetic 

interactions existing within the magnetic system.  By therefore considering the free energy 

associated with each magnetic interaction, the total free energy can be split into its constituent 

parts 

otheranidemagexZee UUUUUU  , (2.66) 

where U
Zee

, U
ex

, U
demag

 and U
ani

 are the energies of the Zeeman, exchange, demagnetizing and 

magneto-crystalline anisotropic contributions respectively.  The final term U
other

 represents 

the contribution from all other magnetic interactions, originating from (for example) 

magnetoelasticity49 or Dzyaloshinskii-Moriya coupling.50  In the following sections, the 

Zeeman, exchange, magneto-dipole and crystalline anisotropy energies will be discussed in 

turn.   

2.4.1 Zeeman energy 

Upon application of an external magnetic field, the magnetization of paramagnetic and 

ferromagnetic media will tend to align parallel to the external bias, in order to minimize the 

potential energy of the permanent magnetic moments – this potential energy is referred to as 

the Zeeman energy.  The Zeeman energy is given by 

   ttU BZee ,, rHrM  . (2.67) 
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2.4.2 Exchange energy 

As was discussed in Section 2.3.3, ferromagnetic substances possess spontaneous 

magnetization due to the quantum mechanical exchange interaction, which originates from the 

difference in energy between the parallel and antiparallel alignment of two coupled spins.  By 

considering the jth spin to be misaligned from the immediately-adjacent ith spin by an angle ij , 

the exchange energy (defined in Eq. 2.53) is given by 


j

ijsexex MJU cos2
2

. (2.68) 

By assuming the neighboring spins are only slightly canted relative to each other, Eq. 2.68 

can be expanded as a series, hence revealing27 

      22222
2 zyxsexex MMMaMJU  , (2.69) 

across a cube of side-length a.  Using the vector identity 

         02222
 uuzyx uuu , (2.70) 

Eq. 2.69 can be rewritten as 
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giving rise to the exchange energy density 
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This then leads to the convenient definition51 of the exchange field 

MH
2

s
ex

M

D
, (2.73) 

where 
sex MAD 2  is the exchange stiffness, and aJA exex   is the exchange constant.   

An important point concerning the exchange field relates to its range of influence.  As 

indicated in Fig. 2.4, the term Jex rapidly shrinks for increasing interatomic distances.  The 

exchange interaction therefore acts predominantly across length scales on the order of several 

nanometres.  To quantify the spatial extent across which the exchange interaction dominates, 

the exchange length is given by52 
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The exchange length is invariably on the nanometric scale.  For example, the material 

parameters of Permalloy (Aex = 1.3 μerg / cm, Ms = 800 G) and YIG (Aex = 0.3 μerg / cm, Ms = 

140 G) lead to an exchange length of 5.7 nm and 15.6 nm respectively.52   

2.4.3 Dipolar energy 

The interaction between the magnetic dipoles of atoms is described by the 

magnetodipole (or dipolar) interaction.  The magnetic field Hdipole,i generated by an isolated 

dipole moment μ
i
, measured at a point r relative to the moment’s position r

i
, is of the form28 

   







 rμrμrH iiidipole

rr 23,

31
. (2.75) 

If a second dipole moment μj is positioned at a second point rj, and r is now the distance 

between the two moments ij rrr  , the dipolar energy Edipole between the two dipoles is 

given by 

    
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23

31
,, . (2.76) 

To obtain the dipolar energy between more than two magnetic moments, Eq. 2.76 merely 

needs to be summed across all dipole-dipole pairs.   

 Across a uniformly-magnetized sample, spatially extending to infinity in all three 

dimensions, the dipolar fields created by all the moments compensate and therefore annul 

each other.  However, upon introducing discontinuity across the magnetic system (through, 

for example, finite volume or magnetic inhomogeneities), such compensation is lost, and net 

dipolar fields are induced.  Inside and outside the magnetic body, this dipolar field is referred 

to as either the demagnetizing field or the stray field respectively.  To describe further the 

influence of the static demagnetizing field Hdemag, the Maxwell equations53 need to be 

considered 

4 E , (2.77) 
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0 B , (2.78) 
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, (2.79) 
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14
, (2.80) 

where E and B are the electric and magnetic fields respectively, ρ is the electric charge 

density, and J is the electric current density.  Since dipolar spin waves have a much smaller 

frequency compared to light (for the same wave vector), one can employ the magnetostatic 

approximation, leading to the magnetostatic Maxwell equations (in the absence of a current 

density) 

  0 M4HB demag
, (2.81) 

0 demagH . (2.82) 

From Eq. 2.82, the rotationless demagnetizing field can be defined as the gradient of a 

magnetostatic scalar potential Ψ, via demagH .  This gives rise to the magnetostatic 

Poisson equation 

    M42
, (2.83) 

where   is a “fictitious” magnetic charge density.  It is important to note that Eq. 2.78 

implies that no magnetic monopoles can exist – hence magnetic charges are “fictitious” - but 

the concept of magnetic charges frequently lends itself well to the qualitative description of 

magnetic phenomena.   

The magnetic charge density can be separated into its volumetric contributions 

Mv  (arising from nonuniformities in the magnetization strength or orientation) and 

surface contributions nM ˆs  (originating from the magnetization having non-zero projection 

onto the outward-pointing vector n̂  normal to the sample surface).  For a magnetic body of 

finite volume, therefore, Eq. 2.83 can be solved to obtain28 

   

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 rdrd sv 23

rrrr
r


. (2.84) 
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Across the volume of a sample, the demagnetizing field generally attempts to align 

antiparallel to the magnetization.  At the edges of the sample, the magnetization will seek to 

minimise the strength of energetically-expensive stray fields, and so will attempt to align 

parallel to the edges.  The latter contribution leads to a tendency for magnetization to align 

parallel to the long axis of a magnetic stripe - this is commonly referred to as shape 

anisotropy.   

 In general, the space-dependent demagnetizing field is difficult to calculate.  However, 

for the special case of a uniformly-magnetized ellipsoid, the distributions of the magnetization 

and demagnetizing field are both uniform.  The latter has no volumetric contribution, leading 

to the expression 
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
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2ˆ

rr

nM
H . (2.85) 

Since the demagnetizing field depends linearly on the magnetization, one can therefore define 

MH Ndemag


 , (2.86) 

where N


 is the demagnetizing tensor.  The demagnetizing tensor is defined entirely by the 

shape of the magnetic body, and has a trace of 4π.  When the principal axes of N


 coincide 

with the principal axes of the ellipsoid, the off-diagonal elements of N


 are zero.  By 

extending the ellipsoid to construct certain geometries, one can analytically calculate the 

diagonal elements of N


 - typical examples of special ellipsoidal shapes, and their 

corresponding demagnetizing tensor elements, are shown in Table 2.2.   

Geometry Nxx Nyy Nzz 

Sphere 1/3 1/3 1/3 

Cylinder extending along z-axis 1/2 1/2 0 

Film extending across x-y plane 0 0 1 
 

Table 2.2 The diagonal elements of the demagnetizing tensor characterizing well-

defined ellipsoidal geometries (magnetized uniformly along the z-axis).  

Note all elements shown here have been normalized by 4π.   

In addition to the demagnetizing tensor elements shown in Table 2.2, the elements of 

the demagnetizing tensor associated with uniformly-magnetized ellipsoidal bodies - with 
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semi-principal axes of general length - have been numerically calculated.54  In the general 

case, however, for non-ellipsoidal samples, the demagnetizing tensor is impossible to 

analytically determine, and micromagnetic simulations offer the only way for the strength and 

distribution of real demagnetizing fields to be reasonably estimated.  Due to the 

demagnetizing field, the magnetization within a sample is not exposed to solely the bias 

magnetic field - a useful measure of the net field generated within a patterned magnetic 

sample is therefore given by the internal field Hi 

demagBi HHH  . (2.87) 

2.4.4 Magneto-crystalline anisotropic energy 

Across an infinitely-large magnetic body, the magnetization is free to align along any 

nominated direction, as dictated by the orientation of the bias field and / or the magnetic 

history of the sample.  By confining the body in some way, it is possible to introduce shape 

anisotropy.  In addition to this, the spin-orbit interaction directly links the lattice of 

magnetization to the sample’s crystalline lattice, and so it is possible for the magnetization to 

tend to align parallel or orthogonal to certain crystallographic axes, regardless of the sample’s 

shape.  If the magnetization tends to align parallel (orthogonal) to a certain axis, this is 

referred to as an easy (hard) axis.  This effect is known as magneto-crystalline anisotropy, and 

can be detected and measured by applying a bias field along a certain direction of a magnetic 

body, and measuring the magnetization that is projected onto the bias field.27  The energy that 

is associated with magneto-crystalline anisotropy can be phenomenologically expressed as a 

power series of the magnetization, which must be even due to symmetry considerations.  For 

example, a crystal boasting uniaxial magneto-crystalline anisotropy (of strength K1 and 

orientation n̂ ) has an energy term 

2
1 sinKUani  , (2.88) 

where θ is the angle extended between the magnetization and n̂ .   

2.5 Material properties and character of Permalloy and YIG 

 In this thesis, the studied samples are composed of either Permalloy or YIG.  In the 

following two sections, therefore, I will discuss the properties of these materials.   
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2.5.1 Permalloy 

 Permalloy consists of a Nickel-Iron alloy, both constituent elements of which have 

cubic structure.  The properties of this metallic material vary considerably, depending on the 

relative concentrations of the two elements.  If the Nickel content is below 30%, Permalloy 

has body-centred cubic crystalline structure, whereas if it is above, Permalloy has instead 

face-centred cubic (fcc) crystalline structure.   

While the Permalloy discussed throughout this thesis has fcc crystalline structure, the 

magnetic properties of the alloy still depends heavily on the ratio of the elements.  Pure 

Nickel (Iron) has a saturation magnetization of 488 G (1713 G) at room temperature,55 and so 

Ni80Fe20 – the alloy that was nominally studied in this thesis – has a weighted average 

saturation magnetization of 733 G.  The large gap between Ms,Ni and Ms,Fe makes Ms,Py 

sensitive to the ratio of the Nickel and Iron elements.  Ni75Fe25, for example, has a weighted 

average saturation magnetization of 795 G.  For this reason, the saturation magnetization of 

Permalloy (the generic alloy) quoted in the scientific literature varies between 700 G and 860 

G.56-57  The ratio of the Nickel and Iron elements also influences significantly the 

magnetostriction and magnetocrystalline anisotropy of Permalloy.58  Magnetostriction refers 

to the phenomenon where a stress / strain applied to a magnetic material gives rise to a 

magnetostrictive anisotropy.  For a cubic material, the magnetostrictive constant is given by 

λ100 and λ111, which defines the response to stress applied along the [100] and [111] crystal 

axes respectively.†  In Nickel, λ100 = -46×10-6 and λ111 = -25×10-6, and for Iron, λ100 = 21×10-6 

and λ111 = -22×10-6.  In Permalloy where the Nickel content ranges from 30% to 100%, the 

magnetostriction coefficients range between +40×10-6 and -60×10-6.  In the special case of 

Ni80Fe20, both magnetostriction coefficients become close to zero.  As for the cubic 

magnetocrystalline anisotropy of Permalloy, the leading anisotropy constant K1 ranges 

between +20×10-6 ergs/ cm and -60×10-6 ergs / cm, when the percentage of Ni varies between 

30% and 100%.  Again, K1 passes through zero for the special case of Ni80Fe20.   

 Permalloy is typically characterized as having an exchange constant of 1.3 µerg / cm, 

and a gyromagnetic ratio of 2.92 MHz / Oe.59  An important property of Permalloy, relevant 

to investigations of magnetization dynamics, concerns its damping.  In Permalloy, the Gilbert 

damping parameter is about 0.008, causing spin waves to propagate across distances on the 

                                                           
† If λ > 0, the induced magnetization aligns parallel to the applied strain, whereas if λ < 0, the induced 

magnetization aligns orthogonally to the applied strain.   
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order of 10 µm.  While Permalloy is metallic, making it suitable for integration within 

convential CMOS-based computational architecture, the damping certainly needs to be 

reduced further, in order to make magnonic technology more viable.  Very recently, progress 

has been reported in further reducing this parameter in the metallic alloy Fe
75

Co
25

,60-61 and so 

it could be anticipated, perhaps, that future research in the field of magnonics may shift 

towards using Fe
75

Co
25

 instead as the material of choice, rather than Permalloy.   

2.5.2 YIG 

 YIG – Yttrium Iron garnet (Y3Fe5O12) – posseses a wide range of magnetic properties 

which render it extremely useful for investigations of magnetization dynamics.62  It is a 

ferrimagnetic monocrystalline material, which entirely owes its magnetization to the Fe3+ 

ions, since Y3+ and Oxygen are both diamagnetic.63   Per unit cell, of lattice constant 12.376 

Å, there are 80 atoms, twenty of which are Fe3+ ions.  The Fe3+ ions form two distinct sub-

lattices (octahedral and tetrahedral structures), with different configurations of neighbouring 

O2+ ions - these Oxygen ions are responsible for the superexchange interaction that exists in 

YIG.  The octahedral (tetrahedral) sublattice hosts eight (twelve) Fe3+ ions.  The two 

sublattices of Iron have magnetization oriented antiparallel to one other, and so are partially 

compensated, giving rise to a net magnetic moment.   

Electrically. YIG has a rather large band gap (about 2.9 eV), making it a dielectric.  

This, unfortunately, has the disadvantage of making it incompatible with current 

semiconductor-based CMOS technology.  Due to it being ferrimagnetic, YIG has a 

substantially smaller saturation magnetization compared to Permalloy.  At room temperature, 

Ms,YIG = 140 G.  The exchange constant64 of YIG is about 0.3 µerg / cm, giving rise to an 

exchange length of about 16 nm.  It has a gyromagnetic ratio of 2.810 MHz / Oe, and and no 

significant crystalline anisotropy.  Arguably the most important property of YIG lies in its 

low damping of spin waves.  The Gilbert damping parameter (linewidth) of YIG is on the 

order of 1×10-4 (0.5 Oe), allowing spin waves to propagate along distances on the order of 

centimeters, and to have a lifetime of 100s of nanoseconds.   

2.6 Magnetization dynamics 

In the following sections, I will discuss the equations that characterize the dynamic 

behavior of a magnetic system.  The information given here lends heavily from the textbook 

written by Gurevich and Melkov65 and the review article written by Lock.66   
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2.6.1 Equations of motion 

The dynamical behavior of magnetization within a ferromagnetic material is described 

by the Landau-Lifshitz (LL) equation67 

 
  RHrM

rM





efft

t

t
,

,
 , (2.89) 

where R corresponds to a damping term.  This equation of motion was first proposed by Lev 

Landau and Evgeny Lifshitz in 1935.  Further terms can be added to the right-hand side of Eq. 

2.89, to describe (for example) thermal fluctuations68-72 and spin-transfer torque,73-74 but in 

this thesis no such additions are considered.  Moreover, the effective field, defined in Eq. 

2.65, can also be understood as the vector sum of all the fields interacting with the 

magnetization.  This therefore leads to the alternative definition of the effective field 

otheranisotropydemagexcZeeeff HHHHHH  . (2.90) 

For simplicity, considering the case where damping is absent (so R = 0 in Eq. 2.89), the 

magnetization will precess indefinitely about the effective field.  This situation is shown in 

Fig. 2.5 (a), where the tangential velocity as defined by Eq. 2.89 is indicated.   

 

Fig. 2.5 Graphical representations of the magnetization trajectory as dictated by the 

Landau-Lifshitz equation (a) with no damping, and (b) with a phenomenological 

damping term R included.   

In real systems, the magnetization will be unable to precess indefinitely, due to 

damping.  In general, the damping of magnetization precession involves the transfer of energy 

from the spin bath to the phononic and electronic baths. 75  This can be mediated, for example, 

by magneto-elastic coupling,76-77 scattering of spin waves from electrons,78 and the generation 



58 
 

of eddy currents.79  In lieu of a microscopic understanding of such dissipation mechanisms, 

Landau and Lifshitz introduced in 1935 the damping term 

     eff

S

LL tt
M

HrMrMR  ,,
2


, (2.91) 

where λ is a phenomenological coefficient.  This vector triple product directs the 

magnetization towards the axis defined by the effective field, causing the magnetization to 

spiral inwards towards the effective field (as shown in Fig. 2.5 (b)) until eventually the 

magnetization is both static and parallel to the effective field.   

 The damping term introduced by Landau and Lifshitz, however, suggested that the 

frequency of precession scaled positively as λ increased, which is unphysical.80  So, in 1955, 

Thomas Gilbert81 derived the Landau-Lifshitz equation using Lagrangian mechanics, and 

obtained the damping term 

 
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LLG
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rM
rMR


, (2.92) 

where α is the Gilbert damping coefficient.  It is straightforward to show that the two damping 

terms RLL and RLLG are equivalent, as 0 .75  However, more importantly, the Gilbert 

damping term results in the physically more plausible scenario where the precessional 

frequency tends towards zero as  .   

2.6.2 Free magnetization oscillations 

The Landau-Lifshitz-Gilbert equation is generally non-linear, due to the dependence 

of the demagnetizing, anisotropy and exchange fields on the magnetization.82  This gives rise 

to a wide variety of non-linear phenomena (including, for example, the formation of spin-

wave solitons83 and spin-wave bullets,84 and high harmonic generation23), all of which are 

united by the cone angle of the precessing magnetization being relatively large.   The majority 

of the work presented in this thesis stays within the linear regime, however, where the cone 

angle of the dynamic magnetization is small, and so this section is restricted to the discussion 

of linear spin dynamics.  To describe such dynamics, the Landau-Lifshitz-Gilbert equation is 

linearized, by considering only the influence of small time-varying perturbations to the static 

magnetization and effective magnetic field.  This allows one to separate the magnetization 

and effective magnetic field into their static and dynamic parts 
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   t,0 rmrMM  , (2.93) 

   teffeffeff ,0, rhrHH  , (2.94) 

where 0,effeff Hh   and 0Mm  .  Note that the co-ordinate system to be used henceforth is 

transformed such that zH ˆ
0,0, effeff H  and zM ˆ

00 M .   

 The dynamic terms within Eqs. 2.93 - 2.94 are assumed to have components only in 

the x-y plane.  It is of course possible to consider dynamics along the z-axis, parallel to the 

static magnetization: physically, this corresponds to the variation in the modulus of the 

magnetization (which can be achieved through heating85-86 of the magnetic body, for 

example), and can be characterized by the Landau-Lifshitz-Baryakhtar87 or Bloch-

Bloembergen88 equations, among others.  In this section, however, it will be assumed that 

there is no variation in the magnetization along the z-axis, and so zM ˆ
0 sM .  Furthermore, it 

will be assumed that the system is dissipationless, which will simplify the following 

treatment.  The influence of non-zero damping will be discussed later on.   

 Substituting Eqs. 2.93 - 2.94 into the LL equation yields 

   effeffeffeff
t

hmHmhMHM
mM





0,00,0

0  . (2.95) 

In the zeroth approximation, where only zero-order (static) terms are retained, Eq. 2.95 

reduces to 00,0  effHM .  This merely reiterates that the static magnetization is parallel to 

the static effective field, when the system is in its ground equilibrium state.  In the first 

approximation, the first-order dynamic components of Eq. 2.95 are retained, which leads to 

the equation 

0,0 effeff
t

HmhM
m





 . (2.96) 

The dynamic components of the magnetization and effective field are now assumed to have 

temporal plane-wave solutions, such that      tit exp, rmrm   and      tit exp, rhrh  .  This 

leads to 

0,0 effeffi HmhMm   . (2.97) 
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The effective field can also be separated further in terms of the Zeeman field and the 

demagnetizing field, using the demagnetizing tensor described in Section 2.4.3 to define the 

latter (note that N  is pre-multiplied by a factor of 4π, so now the trace of N  is unity) 

00, 4 MHH NBeff  , (2.98) 

mhh NBeff 4 . (2.99) 

Substitution of Eqs. 2.98 - 2.99 into the linearized LL equation (Eq. 2.97) therefore leads to 

the equation 

000 44 MmHmmhMm NNMi BB   . (2.100) 

It is the purpose of this section to consider free (undriven) oscillations of the magnetization, 

and so 0Bh .  Eq. 2.100 then corresponds to a pair of homogeneous equations, and thus can 

be solved for the eigenfrequency 
FMR   such that 

        yxxySyyzzSBxxzzSBFMR NNMNNMHNNMH
2

444   . (2.101) 

For the case of a uniformly-magnetized ellipsoid, in which HB (and M0) is directed along one 

of the symmetry axes of the ellipsoid (which is itself parallel to the z-axis), the demagnetizing 

tensor is diagonal, reducing Eq. 2.101 to the Kittel equation89 

     zzyySBzzxxSBFMR NNMHNNMH   44 . (2.102) 

For a continuous thin film magnetized in-plane, and transformed such that the x-axis 

corresponds to the normal of the film, it can be deduced that Nxx = 1 and Nyy = Nzz = 0.  Thus 

 SBBFMR MHH  4 . (2.103) 

The solutions shown in Eqs. 2.102 - 2.103 all correspond to the frequency of 

ferromagnetic resonance (FMR).  Physically, FMR is defined as the collective phase-coherent 

precession of magnetization in a single-domain state - the uniform mode of magnetization 

precession - and therefore corresponds to a spin wave of infinite wavelength.   

2.6.3 Driven magnetization oscillations 

In Section 2.5.2, the discussion was restricted to the study of free oscillations within 

magnetic samples, by fixing 0Bh  after obtaining Eq. 2.100.  This enabled the frequency of 
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FMR – characterizing a spin wave of infinite wavelength – to be determined.  In order to 

excite harmonic spin waves with finite wave vector across a uniform magnetic system, it is 

necessary to drive the magnetic system using a dynamic field, such that 0Bh .  This leads to 

an inhomogeneous system of equations being defined by Eq. 2.97 


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
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
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






















 xBS

yBS

y

x

B

B

hM

hM

m

m

iH

Hi

,

,


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. (2.104) 

Solving Eq. 2.104 for the dynamic magnetization reveals the Polder susceptibility tensor 

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, (2.105) 

where 

22,








H

HM
yyxx , (2.106) 

22,








H

M
yxxy i , (2.107) 

and 

SM M  , (2.108) 

BH H  . (2.109) 

Physically, the Polder susceptibility tensor characterises the response of a ferromagnetic 

material to a dynamic magnetic field. 

If the frequency of excitation ω is equal to ω
H
, the denominators of Eqs. 2.106 - 2.107 

tends to zero, and the Polder susceptibility becomes ill-defined.  This is a consequence of 

assuming the system was dissipationless.  By introducing a non-zero Gilbert damping 

coefficient in Eq. 2.95, the corresponding equations characterizing the frequency of FMR and 

the Polder susceptibility can be obtained via the transformation 

 iHH  . (2.110) 

As a result, the frequency of FMR in an entirely unbounded ferromagnet is given by 



62 
 

21 





 H

FMR , (2.111) 

and the elements of the Polder susceptibility tensor (in the presence of damping, and to first 

order) are given by65 

 
   

 
   22

22

22

22
22

22

,

22 HH

HM

HH

HHM
yyxx i


















 , (2.112) 

 
       22

22

2

22
22

22

,

2

2

2 HH

HM

HH

HM
yxxy i
















 . (2.113) 

The typical variation of the real and imaginary parts of the modified Polder susceptibility 

elements yxxy ,  as a function of the frequency is presented in Fig. 2.6.  Note that the real and 

imaginary profiles of 
yyxx,  are broadly similar to those shown in Fig. 2.6, but there are modest 

quantitative differences (as evident in Eqs. 2.112 – 2.113).   

 

 

Fig. 2.6 The typical variation65 of the real and imaginary parts of the Polder susceptibility 

tensor elements χxy,yx on the electromagnetic frequency, with non-zero damping.   

By substituting Eq. 2.111 into Eqs. 2.112 - 2.113, one can identify certain resonance 

conditions.  Specifically, when the system is driven at resonance, the real parts of χ
xx,xy,yx,yy

 

pass a zero-crossing, and the absolute imaginary parts of χ
xx,xy,yx,yy

 maximize.  These 

conditions underpin the interpretation of results acquired using vector-network-analyser 

ferromagnetic resonance experiments.90   
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2.6.4 Magnetostatic spin waves 

Using the Polder susceptibility tensor in the absence of damping, one can define the 

complex amplitude of ac magnetic induction 

 

h

hh

mhb

















4

4

 (2.114) 

where the magnetic permeability tensor is defined as  


4 I .  Upon substituting Eqs. 

2.106 - 2.107 into Eq. 2.114, one obtains a more complete solution for the magnetic 

permeability tensor 



















100

0

0





 i

i


, (2.115) 

where 

22
1









H

HM , (2.116) 

22








H

M , (2.117) 

and SM M  4 .  Using Eq. 2.114, one can also define a scalar potential ψ via 

h . (2.118) 

Eqs. 2.114 and 2.118 can then be combined with Eq. 2.78 to derive the Walker equation91 
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
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
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








zyx


 . 

(2.119) 

To solve Eq. 2.119, it is necessary to introduce some boundary conditions.  These are 

obtained, for example, by restricting the ferromagnetic system so as to form a film, extending 

to infinity in the y-z plane, and having a finite thickness s across the x-direction.  This 

configuration is shown in the inset of Fig. 2.7 (a).  Now, when 0 , the Walker equation can 

be solved for an arbitrary potential, independent of z, yielding the frequency of FMR as 
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defined in Eq. 2.103.  If, instead, 0 , the Walker equation describes spin-waves of finite 

wave-vector.   

  The two interfaces introduced by the finite thickness of the film leads to the potential 

taking the form of ψi or ψe inside and outside the film respectively.  The Walker equation 

therefore becomes 

0
2

2

2

2

2

2
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


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
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


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


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



zyx

iii 
 , (2.120) 

0
2

2

2

2

2

2


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











zyx

eee 
. (2.121) 

Also, the continuity of the magnetic induction normal to the surfaces, and the continuity of 

the magnetic field parallel to the surfaces, must be maintained.  These two statements lead to 

the boundary conditions  

xy
i

x

eii













 



 , (2.122) 

ei   , (2.123) 

at x = 0 and x = s.  Inside the film, the potential must satisfy the Walker equation, whereas the 

potential outside of the film must obey Laplace’s equation (Eq. 2.83, but with M = 0).  The 

magnetic potentials can be assumed to have plane wave solutions 

      zikyikxkBxkA zyxixii  expcossin , (2.124) 

 zikyikxkC zyxee  exp1 , (2.125) 

 zikyikxkD zyxee  exp2 , (2.126) 

where kxe, kxi, ky and kz are the wave-vector components along the respective co-ordinate axes, 

and A, B, C and D are arbitrary coefficients.  Substitution of Eqs. 2.124 - 2.126 into Eqs. 

2.120 - 2.121 leads to the system of equations 
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xixiyxyxixixixxxexe

cossinexp
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

. (2.127) 

Solving these equations reveals the dispersion equation for magnetostatic spin waves 

  0cot2
22222
 yxyxixxxixexixxxe kkskkkk  . (2.128) 

By substituting Eqs. 2.124 - 2.126 into Eqs. 2.122 – 2.123, one can obtain expressions for kxi 

and kxe in terms of ky and kz 




22

yz

xi

kk
k


 , (2.129) 

22
yzxe kkk  , (2.130) 

thus allowing the implicit dispersion relation to be written more clearly in terms of ky and kz 
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 . (2.131) 

Since Eq. 2.131 is an implicit function, it must - in the general case - be solved numerically.  

By solving this in such a fashion, one can obtain the dispersion of magnetostatic spin waves 

as a function of ky and kz - presented in Fig. 2.7 (a) is a sketch of the allowed solutions (which 

was first published92 by Richard Damon and John Eshbach in 1961).   

The most striking feature apparent in Fig. 2.7 (a) is the anisotropy of the magnetostatic 

dispersion.  Depending on the frequency of excitation, one can excite certain spin-wave types, 

propagating at a particular direction relative to the magnetization.  If the frequency of 

excitation is above that of the frequency of FMR, magnetostatic surface spin waves (MSSWs) 

propagate.  These spin waves have positive dispersion, and are only capable of propagating at 

and above a certain angle  Hc  1tan  relative to the magnetization, as indicated in Fig. 2.7 

(a).  Moreover, it is possible to derive analytically the magnetostatic spin-wave dispersion in 

the limit of 0zk , whereby the spin-wave propagation is wholly orthogonal to the 

magnetization (in this configuration, the spin waves can have maximum frequency).  By 
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setting 0zk , one can reformulate the Walker equation with the assumption of plane wave 

solutions  rk  iexp  in space to obtain 

  0
22
 yx kk . (2.132) 

The solutions of Eq. 2.132 are either 0  or 22

xy kk  .  Since the former solution does not 

permit finite wave-vector solutions, one can deduce that, because ky needs to be real, kx must 

be imaginary.  Thus, the out-of-plane component of such a spin wave is a decaying 

exponential, where the spin-wave amplitude is maximised at one surface of the film, and 

attenuates according to yk1  as the depth increases (as shown in the inset of Fig. 2.7 (b)).93  

After extensive rearrangement of Eq. 2.131, the analytical dispersion for spin waves 

propagating transversely wholly orthogonally to the magnetization has the form92 

   122
coth22


 sk yMMHH  , (2.133) 

which simplifies to 
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 . (2.134) 

This dispersion relation is graphed in Fig. 2.7 (b), and is bound between the frequency limits

FMR  and 2MH   .  Notice that the dispersion becomes flat as the frequency tends 

towards the latter limit, indicating that the group velocity decreases with increasing 

frequency.   

If instead the frequency of excitation is below that of the frequency of FMR, 

backward-volume magnetostatic spin waves (BVMSWs) are excited, capable of propagating 

at any non-orthogonal angle relative to the magnetization.  These spin waves, in contrast to 

MSSWs, have negative dispersion and converge towards ω
H
 at high wave vector.  The 

dispersion of BVMSWs propagating entirely parallel to the magnetization can be obtained by 

setting 0yk  within Eq. 2.131, yielding 

0
22
 zx kk . (2.135) 
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Due to the requirement that 0 , plane waves are excited normal to the film.  Note that, so 

far, no assumptions have been made so far about whether the magnetization is “pinned” or 

“unpinned” at the surfaces of the film – the profile of dynamic magnetization across the 

thickness of the film can therefore be rather complex, strongly depending on the wave vector, 

and the degree of magnetization-pinning at the film surfaces.94-95  In the simplest case, the 

spin-wave dispersion (when the propagation is entirely parallel to the magnetization) can be 

reduced to the form96 
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 2

1

2
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nsk z . 
(2.136) 

where n is the non-zero integer number of antinodes spanning the dynamic magnetization 

across the thickness of the film.  This antinodal number defines the multiple volume modes 

shown in Fig. 2.7.   

An important point related to spin waves concerns their reciprocal character.  MSSWs 

are generally classified as non-reciprocal.  By exciting MSSWs with an excitation uniform in 

profile across the thickness of a film, MSSWs will be observed propagating in both directions, 

but localized in amplitude to each surface of the film, and with opposite phase.  The surface 

 

Fig. 2.7 (a) The mode spectrum of magnetostatic waves capable of propagating 

in a continuous film of finite thickness.92  Inset: schematic of the co-

ordinate system used.  (b) The dispersion of the surface mode (blue 

line), where k|| = ky and kz = 0, and the backward-volume modes (red 

line), where k|| = kz and ky = 0.  Inset: the characteristic profile of 

dynamic magnetization for MSSWs across the thickness of the film.   
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across which the MSSWs localize can be switched by reversing the polarity of the 

magnetization - such behaviour was experimentally detected by Schneider et al.97  This non-

reciprocity can, in principle, be eliminated by exciting spin waves with longer wavelengths 

(so 1sk y ).  However, it was noted by Demidov et al98 that counterpropagating MSSWs of 

differing amplitude can still be excited when 1sk z , when MSSWs are excited using a 

microstrip - the out-of-plane component of the exciting field has opposite phase on either side 

of the microstrip, and so the torque responsible for spin-wave generation on either side of the 

microstrip is either boosted or reduced.   

In contrast to MSSWs, BVMSWs are classified as reciprocal when propagating 

wholly parallel to the magnetization.  The local excitation of a magnetic film leads to the 

excitation of BVMSWs travelling both parallel and antiparallel to the magnetization, with no 

difference in amplitude or phase.97  This classification becomes more nuanced however when 

the BVMSWs propagate at an angle relative to the magnetization.  When 0yk  and 1sk z , 

there is consistently some degree of non-reciprocity.94  Significantly, when the BVMSW 

travels at the critical angle c  with a wavelength such that 1sk z , the BVMSW mode has 

maximum amplitude on one side of the film, but zero amplitude on the other – such a 

backward-volume mode is hence wholly non-reciprocal.   

It should be pointed out that it is also possible for spin waves to propagate across a 

film where the magnetization points normal to the film – these are classified as forward-

volume magnetostatic spin waves.96  No further detail will be given regarding these waves, 

however, as they do not feature in the results presented in this thesis.   

2.6.5 Dipole-exchange spin waves 

The dispersion relation characterizing exchange spin waves is isotropic, which 

contrasts starkly with the anisotropy associated with the magnetostatic spin waves 

propagating across thin films magnetized in-plane.  Of course, these are both approximations: 

in real magnetic systems, both the exchange and demagnetizing terms coexist, and therefore a 

unifying dispersion, which puts both interactions on an equal footing, would be most ideal.   

Such a unifying dispersion relation was derived using classical perturbation theory by 

Boris Kalinikos and Andrei Slavin in 1986.99  The dispersion relation for dipole-exchange 
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spin waves (propagating wholly across the plane of the film, which is itself magnetized in-

plane) is of the form 

      skFMDkHDkHsk ppsii ,,4,, 22   , (2.137) 

where θ is the angle between the magnetization and spin-wave wave vector.  The net wave 

vector is then given by 

22
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2
pkkk  , (2.138) 

where k|| is the in-plane wave vector, and kp is the quantized out-of-plane wave vector 

component (which has p antinodes) 
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  (2.139) 

where p can equal zero or any positive integer.  Fpp is the dipole-dipole matrix element, which 

corresponds to the p-th quantized perpendicular standing spin-wave mode, and is defined by 
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When the magnetization at the surfaces of the film is completely unpinned, Ppp is given by the 

explicit expression 
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For the first perpendicular mode (p = 0), P00 reduces to  

 
sk

sk
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00

exp1
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
 . (2.142) 

Notice however that it was assumed that the dipole-exchange spin wave described by Eq. 

2.142 had uniform profile across the thickness of the film (since p = 0).  As such, the 

Kalinikos-Slavin dispersion relation (in the absence of exchange) reduces very accurately to 

the magnetostatic relation only when describing spin waves with a wavelength significantly 

larger than the film thickness.   
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Shown in Fig. 2.8 (a) is the typical dispersion given by Eq. 2.137 for dipole-exchange 

spin waves propagating across a 10 nm thick continuous film of Permalloy (in which Ms = 

800 G and Aex = 1.3 μerg / cm).  For this calculation, the film was considered to be biased by 

a magnetic field of strength 500 Oe, applied along the z-axis.  By examining the projections of 

the dispersion onto the ky and kz axes, as shown in Fig. 2.8 (b), the unifying character of the 

Kalinikos-Slavin dispersion relation is more obvious.  At low wave vector, the dispersion 

resembles that of the anisotropic magnetostatic type, but at high wave vector, the two 

branches converge towards a function of k2, reflecting the isotropy of the exchange 

interaction.   

 

Fig. 2.8  (a) The dispersion of propagating dipole-exchange spin waves supported by a 

continuous film of Permalloy, of thickness 10 nm.  The film was defined as 

having the material parameters Ms = 800 G and Aex = 1.3 μerg / cm, and was 

assumed to possess an internal field Hi = 500 Oe directed parallel to the z-axis.  

(b) Projections of the dipole-exchange dispersion along ky (solid line) and kz 

(dashed line).   

2.6.6 Isofrequency curves 

The dispersion relations discussed in Sections 2.3.4 and 2.6.4 – 2.6.5 all describe the 

propagation of plane spin waves.  Implicit in these sections was the assumption that the 

driving field h, responsible for exciting the considered spin waves, was translationally 

invariant along one axis.  However, it is sometimes more desirable to assume that the spin-

wave frequency is fixed, and then identify the wave vector solutions that satisfy the dispersion 

relation.  This approach can be understood merely by inspecting Fig. 2.8 (a), where the 
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identifiable bright yellow and cyan lines show positive wave vector solutions (ky,kz) 

corresponding to frequencies of 7.85 GHz and 7.23 GHz respectively.  This is an example of 

an isofrequency curve (or surface in the three-dimensional case), which can be plotted for 

constant frequency in reciprocal space.  In reciprocal space, the wave vector (ky,kz) is parallel 

to the phase velocity  kph kv ˆ , whereas the group velocity is the gradient of the angular 

frequency with respect to the wave vector  kv  g
.  The group velocity is always 

orientated normal to the isofrequency curve.   

 The dispersion relations for magnetostatic and dipole-exchange spin waves cannot be 

reformulated such that  ,,, yzzy kk , and so the isofrequency curves must be calculated 

numerically.  For magnetostatic spin waves, the separation of spin-wave manifolds above and 

below the frequency of FMR causes there to be two types of isofrequency curves.  Shown in 

Fig. 2.9 (a) are exemplary isofrequency curves characterizing MSSWs propagating at 

frequencies of 5.4 GHz and 5.6 GHz within a 7.5 μm-thick film of Yttrium-Iron-Garnet (Ms = 

140 G).  The considered film was biased by a spatially-uniform magnetic field 1250 Oe 

directed along the z-axis, consequently leading to the film having the frequency of resonance 

f
FMR

 = 5.36 GHz.  The isofrequency curves are composed of two open linear segments, 

connected by a smooth inflexion.  The magnetization orientation dictates the axis of 

symmetry between the two curves (in this case, the line ky = 0).  Upon increasing the 

frequency of excitation (or instead reducing the internal field), the isofrequency curves are 

both deformed and pushed apart.  Two example group and phase velocity vectors are shown 

in Fig. 2.9 (a).  For MSSWs, the projection of the group velocity onto the wave vector is 

positive (reflecting the positive dispersion).  Note the anisotropy of the magnetostatic 

dispersion generally causes the group and phase velocities to be non-collinear (except for the 

special case when kz = 0).   

 For BVMSW modes, the isofrequency curves have significantly different character.  

Presented in Fig. 2.9 (b) are the isofrequency curves belonging to the same system as was 

studied in (a), but here the frequency of excitation is 5.33 GHz.  Since the frequency of 

excitation is below that of the frequency of FMR, the two open curves are now arranged so as 

their axis of symmetry (the line kz = 0) is orthogonal to the magnetization.  Note there are also 

multiple pairs of isofrequency curves, corresponding to the different volume modes (only the 

first two modes are shown in Fig. 2.9 (b)).  In contrast to the surface modes, increasing the 
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frequency of excitation (or reducing the internal field) moves the curves closer towards the 

line kz = 0.  The group and phase velocities are again generally non-collinear, but in this case, 

the projection of the group velocity onto the wave vector is negative.  Also important to 

emphasize is that the curves become increasingly straight at higher values of |ky|.   

 

Fig. 2.9  Isofrequency curves, calculated using Eq. 2.131, characterizing the propagation 

of magnetostatic spin waves supported by a continuous film of YIG (7.7 μm 

thick).  The YIG was assumed to have the material parameter Ms = 140 G, and to 

be biased by HB = 1225 Oe (directed along the z-axis).  Example unit vectors 

showing the directions of the wave vector and corresponding group velocity are 

indicated. (a)  Surface spin waves are shown, with the frequencies of excitation 

5.4 GHz (blue line) and 5.6 GHz (red line).  (b)  Volume spin waves with a 

frequency of 5.33 GHz are shown.  The first two volume modes are shown, where 

n is the number of antinodes belonging to the dynamic magnetization across the 

thickness of the film.   

 The magnetostatic isofrequency curves are very similar to those derived by the 

Kalinikos-Slavin dispersion relation at low wave vector.  However, the inclusion of the 

exchange interaction causes the formerly open curves to become closed.  Shown in Fig. 2.10 

(a) are the isofrequency curves characterizing the spin waves propagating across a 10 nm 

thick film of Permalloy, biased uniformly by a magnetic field HB = 500 Oe along the z-axis.  

The spin-wave frequency is set to either 9 GHz (blue line) or 18 GHz (red line), and the FMR-

mode supported by the film is of frequency f
FMR

 = 6.4 GHz.  As the frequency of excitation 

increases, the anisotropy of the isofrequency curves reduces, and the isofrequency curve takes 
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on more elliptical shape.  As the frequency increases further, they tend towards the curves 

described by the exchange dispersion.   

 In the limit of exchange only, the isofrequency curves are straightforward to describe.  

Shown in Fig. 2.10 (b) are the isofrequency curves characterizing spin waves of 

electromagnetic frequency 25 GHz and 50 GHz, propagating across a 3 nm-thick film of 

Permalloy, biased at 500 Oe (f
FMR

 = 6.4 GHz).  The isofrequency curves are completely 

circular and isotropic, with a radius  
D

H
k B


 .  The group velocity in this case is always 

parallel to the phase velocity.   

 

 

Fig. 2.10  Isofrequency curves, calculated using Eq. 2.135, characterizing the 

propagation of dipole-exchange and exchange spin waves within a 

continuous film of Permalloy (Ms = 800 G, Aex = 1.3 μerg/cm) biased at HB 

= 500 Oe applied along the z-axis.  The magnetization is aligned parallel to 

the z-axis, and example directions of the wavevector and corresponding 

group velocity (vg) are indicated.  (a)  Dipole-exchange spin waves of 

frequency 9 GHz (blue line) and 18 GHz (red line), propagating in a film of 

thickness 20 nm, are shown.  (b)  Exchange spin waves of frequency 25 

GHz (blue line) and 50 GHz (red line), propagating in a Permalloy film of 

thickness 3 nm, are shown.   
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2.6.7 Spin-wave width-modes 

When deriving the dispersion of propagating magnetostatic spin waves, Damon and 

Eshbach assumed that the spin waves travelled across a film which was isolated, 

translationally invariant and uniformly magnetized.  However, this is not an assumption one 

can normally make.  The dispersion of propagating spin waves in an infinitely-extending thin 

film can be modified, for example, by the presence of a dielectric underlayer.100  Moreover, 

thin films can be restricted (with symmetrical boundaries) in either one or two dimensions, 

giving rise to a stripe or square respectively.  The boundary conditions associated with such 

patterned structures causes nodes of oscillation to exist at (or close to) the geometrical edges, 

causing square films to support confined spin-wave modes, for example.82,101-102  Across 

stripes, in contrast, spin waves are capable of propagating along the long axis of the conduit, 

but will be confined across the short axis.  This type of propagating spin wave is commonly 

referred to as a width-mode.   

The behaviour of width-modes has already been extensively studied and reviewed.82, 

103-106  Magnetostatic width-modes are most commonly excited along a longitudinally-

magnetized stripe through the application of a local exciting magnetic field (the exciting field 

is non-uniform in strength across the length and thickness of the stripe, but uniform across the 

width).  Since the direction of propagation is parallel to the magnetization, reciprocal 

backward-volume width-modes would be excited.  The precise position of the lateral nodes of 

oscillation are given by the boundary conditions of the magnetization at the edges of the 

waveguide.107-108  The uniformity of the exciting field across the width of the stripe implies 

that the propagating width-modes must have sinusoidal spatial variation, and further there 

needs to be an odd number n of transverse antinodes.82  At a given frequency of excitation, 

multiple odd modes can be simultaneously excited (albeit with different efficiencies).109  The 

dispersion of width-modes can be obtained rather simply through the adaptation of the 

Kalinikos-Slavin dispersion relation99 to include the transverse wave vector component 

effw

n
k


 , (2.143) 

where weff is the “effective width” of the stripe.107  The effective width, rather than the 

geometrical width, is used in order to take into account the aforementioned boundary 
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conditions at the edges of the waveguide.  As a consequence, the dispersion characterizing 

BVMSW width-modes (where k⊥ > 0) shifts towards higher frequencies, as n increases.   

To excite laterally-confined propagating MSSWs, it is necessary for the waveguide to 

be magnetized transversely.  The consequential non-zero static demagnetizing field leads to 

parabolic non-uniformity in the static internal field across the width of the waveguide.  As a 

result, “potential wells” can be formed at the edges of the waveguide, supporting the 

propagation of localized edge-modes with reduced frequency.51,104-110  If, instead, the 

frequency of excitation is higher than that required to support edge-modes, a MSSW width-

mode will non-reciprocally propagate along the waveguide, spanning the reasonably uniform 

internal field across the central section of the waveguide’s width.  The dispersion of MSSW 

width-modes can be described using either the magnetostatic formulation presented by 

O’Keefe et al,103 or the dipole-exchange formulation.99  In contrast to BVMSW width-modes, 

the dispersion characterizing MSSW width-modes shifts towards lower frequencies as n 

increases.   

2.7 Summary 

In summary, the background concepts pertaining to the static and dynamic behavior of 

magnetism have been introduced.  Special attention was devoted to the theoretical 

descriptions of the spin-wave dispersion, which is crucial for the understanding of the results 

presented in this thesis.  In the next chapter, the experimental and numerical techniques used 

to study the excitation and propagation of spin waves will be discussed in detail.   
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CHAPTER 3 
 

EXPERIMENTAL AND NUMERICAL TECHNIQUES 

 

3.1 Introduction 

In this chapter, I introduce and discuss the principles of operation and implementation 

of the experimental and numerical techniques used to obtain the results presented in this 

thesis.  I begin this chapter by reviewing the magneto-optical Kerr effect, which was primarily 

used to experimentally image magnetization dynamics within Permalloy films.  This is then 

followed by a brief outline of the two- and three-temperature models, which is often 

employed to describe how light interacts with matter (this model underpins the pumping 

aspect of the TROPSOM system).  Following these theoretical descriptions, I will discuss in-

depth the setup of the TRSKM and TROPSOM systems, which were used extensively to 

pump and probe ultrafast magnetization dynamics.  Since some of the results discussed in this 

thesis were obtained using BLS microscopy, a brief description of the underlying principles of 

BLS will then be given.  Note that, since I did not operate the BLS microscopy system, the 

discussion of the system will be brief.  In the final section of this chapter, the principles of the 

open-source micromagnetic package Object-Oriented Micro-Magnetic Framework (OOMMF) 

will be discussed.  This software was extensively used to complement and understand the 

experimentally-acquired results, and also as a standalone tool in order to study the static and 

dynamic behavior of magnetic systems. 

3.2 Magneto-optical effects, and the interaction of light with matter 

As far back as 1816, it was well-understood that light could be polarized (giving rise 

to some measureable interference effects111), and furthermore that the linear polarization of 

light influenced the degree of transmission through a substance.112  Michael Faraday was the 

first to observe, in 1845, that the transmission of linearly-polarized light through heavy glass 

was affected by subjecting the glass to a magnetic field.113  This discovery of the magneto-
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optical Faraday effect was expanded upon by August Kundt in 1884,114 who demonstrated 

that the polarization of linearly-polarized light was also rotated upon transmission through a 

ferromagnetic metal.   

The Faraday effect occurs when linearly-polarized light transmits through a 

magnetized material.  In 1877, John Kerr observed115 that the plane of polarization of linearly-

polarized light, incident on a polished pole of an electromagnet, underwent similar rotation 

upon reflection.  This is known as the magneto-optical Kerr effect.  The decision as to which 

of the two polarization-dependent magneto-optical effects should be used to image 

magnetization is dictated by the opacity of the material to be studied, and also the design of 

the measurement technique.  The magneto-optical Kerr effect was used within all the TRSKM 

and TROPSOM measurements discussed in this thesis.  To interpret the results acquired using 

TRSKM and TROPSOM, it is necessary to develop theoretical understanding of the Kerr 

effect: this will be provided in Section 3.2.1.   

In addition to acting as a probe in both the TRSKM and TROPSOM systems, laser-

generated light was also used to pump magnetization dynamics in the TROPSOM system.  It 

is therefore also necessary to understand how light interacts with matter more generally, and 

how light can stimulate electron, phonon and magnetization dynamics.  In 1956, the two-

temperature model was introduced116 to describe the non-equilibrium state between electrons 

and the lattice.  This model was revised 40 years later by Eric Beaurepaire et al.,117 in order to 

take into account the additional excitation of magnetization.  This three-temperature model 

has been successfully used to account for a wide variety of experimental measurements, in 

which a magnetic substance is optically excited.  In Section 3.2.2, both the two-temperature 

and three-temperature models are reviewed, in relevance to the operation of the TROPSOM 

system.   

3.2.1 Theory of the magneto-optical Kerr effect 

When light is incident on a plane surface, some of the light is transmitted / absorbed, 

and some of the light is reflected.  Assuming that energy is conserved, it is immediately viable 

to state 1 RT  where T and R denote the transmission and reflection coefficients of the 

boundary respectively.  Both the transmission and reflection coefficients are highly dependent 

not only on the optical properties of the boundary, but also the wavelength and polarization of 
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the incident light.  Phenomenologically, the response of a material (the electric displacement 

D) to an electromagnetic field is given by 

ED 


  (3.1) 

where 


 is the permittivity tensor.  For symmetric isotropic systems, the permittivity tensor is 

merely a scalar quantity.  Ferromagnetic materials however, by virtue of their magnetization, 

are intrinsically anisotropic.  For a cubic ferromagnetic material, possessing magnetization m 

with a non-zero projection onto all three Cartesian axes, the permittivity tensor takes the form 
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where Q is the Voigt constant.118  With the magnetization aligned along the z-axis, the 

permittivity tensor simplifies to 
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In accordance with Onsager’s theorem119-120 the magnetization-dependent elements of the 

permittivity tensor must obey certain symmetry constraints  
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 (3.4) 

These state that the diagonal and off-diagonal elements are even and odd functions of m 

respectively.  To first-order, the diagonal elements are independent of m, whereas the off-

diagonal elements are linearly proportional to m.  The off-diagonal elements in Eq. 3.3 are 

therefore at the root of the polarization-dependent magneto-optical Kerr effect used to image 

magnetization dynamics in this thesis.   
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The problem of how light interacts with matter can be considered using the geometry 

presented in Fig. 3.1 (a), in which light incident on a surface (extending along the x-y plane) is 

both reflected and transmitted.  The light is defined as being p- or s- polarized if the 

associated electric field E is parallel to, or orthogonal to, the plane of incidence respectively.  

Now, the electric field components prior to and after reflection are related through the Jones 

matrix formalism 
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where rij are the reflection coefficients.  By solving the Maxwell equations at the surface, with 

appropriate boundary conditions, the reflection coefficients can be derived 
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Fig. 3.1  (a) Geometry used to calculate the general form of the reflection coefficients.121 

(b) A sketch of how the polarization of s-polarized light is modified by the polar 

magneto-optical Kerr effect.   
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where 0  and 1  are the angles of incidence and transmission (relative to the normal of the 

surface) respectively, and n
0
 and n

1
 are the refractive indices of the medium in which the light 

is incident and transmitted respectively.  These coefficients then define the Kerr rotation K  

and ellipticity K  via 
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for incident s- and p-polarized light respectively (as indicated by the subscript in Eqs. 3.10-

3.11).  For a ferromagnetic metal, the off-diagonal elements of r


 are non-zero and complex.  

As a result, s- or p-polarized light incident on a surface (magnetized out-of-plane) is reflected 

with some p- or s-polarization respectively, as is shown in Fig. 3.1 (b).   

Using Eqs. 3.6 - 3.9, it is possible to differentiate between three MOKE geometries, 

depending on the relative orientation between the magnetization of the material and the plane 

of incidence of the incoming light.  In both the polar and longitudinal Kerr effects, the 

magnetization lies parallel to the plane of incidence, but the magnetization is either normal to 

or parallel to the surface respectively.  In both cases, the magneto-optical Kerr effect is 

observed with s- or p-polarized incident light, but in the former pssp rr  , whereas in the latter

pssp rr  .  The polar and longitudinal Kerr effects can be selectively enhanced or diminished 

by adjusting the angle of incidence of the light: at normal incidence, the polar Kerr effect 

(induced when 1zm  and 0 yx mm ) is maximized but the longitudinal Kerr effect (present 

when 1xm  and 0 zy mm ) is zero, and at grazing incidence, vice versa.  In contrast to the 

polar and longitudinal effects, the transverse Kerr effect – achieved when the magnetization 

lies in the plane of the surface, but normal to the light’s plane of incidence (so 1ym  and

0 zx mm ) – does not influence the polarization of the incident light, but instead only alters 

the intensity of the reflected light.  In the first approximation, all three effects are linearly 

proportional to the sample magnetization.  In both the TRSKM and TROPSOM systems 

discussed in this thesis, the polar magneto-optical Kerr effect was exploited.   
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3.2.2 The two- and three-temperature models 

Prior to the seminal study published by Beaurepaire et al. in 1996,117 the evolution of 

the non-equilibrium state between electrons and the lattice was ubiquitously described using a 

two-temperature model.116, 122-127  Upon local illumination of the surface of a metal, a 

significant fraction of the light’s energy ℏω is deposited within the skin-depth of the metal’s 

surface.  This influx of energy leads to the excitation of “hot” transient electrons, with a 

corresponding electronic temperature Te.  The hot electrons then thermalize with the 

unexcited electrons through electron-electron scattering, causing the entire electronic system 

to reach a new thermal equilibrium compared to that prior to illumination.  In Nickel, this 

process takes about 100 fs.128  Across a time-scale of picoseconds, energy is then transferred 

from the electrons to the lattice via electron-phonon scattering.  The lattice therefore also 

thermalizes, with a lattice temperature Tl.  The causality implicit within this description – first 

the electrons are excited to form hot electrons, which then interact with the lattice - arises 

from the different relative masses of electrons and the lattice.‡  The process discussed above 

can be modelled using two coupled differential equations129 
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where S represents the laser source term, Ce and Cl are the heat capacities and ke and kl are the 

heat conductivities of the electron and lattice systems respectively, and Gel (proportional to 

the difference between the transient electron and lattice temperatures) accounts for the 

coupling between the electron and lattice systems.  Since all the input terms aside from S 

depend on temperature, the system of equations given by Eq. 3.12 are non-linear, in general.   

In 1996, Beaurepaire et al. published117 the results of stroboscopic magneto-optical 

experiments, in which a continuous film of magnetized Nickel was optically excited by 

ultrashort laser pulses.  The magnetization of the film was observed to drop rapidly within the 

first picosecond of illumination, and this was attributed to ultrafast demagnetization induced 

by the absorption of significant energy by the spin bath.  Physically, this can be understood 

                                                           
‡ While the electron-electron / electron-phonon collision times are comparable, the transfer of energy 

from electrons to electrons is much faster compared to the rate of energy transfer from electrons to 

phonons.   
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using either the Bloch Law, or the Landau-Lifshitz-Baryakhtar equation,87 whereby the 

thermal energy delivered to the magnetization results in a reduction in the length of the 

magnetization vector.  Beaurepaire et al. phenomenologically explained their results by 

expanding on the two-temperature model, to include a third coupled equation describing the 

spins 

        

        

     lssleses
s

ss

lsslelellll
l

ll

seesleeleee
e

ee

TTGTTG
t

T
TC

TTGTTGTTk
t

T
TC

STTGTTGTTk
t

T
TC
















, (3.13) 

where Ges and Gsl are the electron-spin and spin-lattice interaction constants respectively, and 

Ts is the temperature of the spin bath.  This expanded model can be easily incorporated within 

the physical description given earlier, through considering the fact that hot electrons are 

capable not only of transferring energy to the lattice, but also to the spins.  

3.3 Time-resolved scanning Kerr microscopy (TRSKM) 

 The description of the TRSKM system given here is divided into several sections.  In 

the first section, the entire system will be outlined.  In the subsequent sections, I will then 

discuss in-depth the design of the coplanar waveguide, and the character of the pumping field.  

3.3.1 Time-resolved scanning Kerr microscopy system 

The layout of the optical apparatus used within the TRSKM system is shown in Fig. 

3.2.  The laser source consisted of two parts: a diode-pumped continuous-wave (cw) Millenia 

Pro laser,§ and a pulsed, mode-locked Tsunami oscillator.**  The former was responsible for 

both the initial generation of an infra-red laser beam (of wavelength 1064 nm), and 

subsequent frequency doubling (using a lithium triborate crystal) of the said infra-red beam to 

output a visible green laser, of wavelength 532 nm.  The Tsunami oscillator - composed of a 

folded resonant cavity and a titanium-sapphire (Ti:Sa) crystal - was then pumped by the 532 

nm beam, outputting a pulsed mode-locked laser beam.  The wavelength of this outputted 

laser could be adjusted between 650 nm and 1000 nm, but the output wavelength was tuned to 

                                                           
§ Spectra Physics Millenia Pro 10S 
** Spectra Physics Mode-locked ‘Tsunami’ Ti:Sapphire laser 
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800 nm for all the measurements presented in this thesis.  The pulse duration was also fixed at 

100 fs.   

 For the measurements presented in this thesis, the laser’s pulsing repetition rate 

was always set to 80 MHz.  The temporal and wavelength profile of the laser beam was 

monitored using an APE autocorrelator (AC)†† and OceanOptics spectrometer (SM),‡‡ and the 

                                                           
†† APE autocorrelator pulseCheck USB, Version 150 
‡‡ OceanOptics USB2000+ Spectrometer 

 

Fig. 3.2  (a)  The layout of the optical components which comprise the TRSKM 

system. The abbreviations used correspond to the following: A = Aperture, 

FMM = Flip-mounted mirror, NDF = Neutral density filter, AC = 

Autocorrelator, SM = Spectrometer, BS = Beam splitter, BBO = Beta-

barium-borate, and BD = Beam dump.  (b) A side-on view of the field-

pumped scanning Kerr microscope.  The abbreviations used correspond to 

the following: Pol = Polarizer, BS = Beam splitter, BD = Beam dump, OL = 

Objective lens, CPW = Coplanar waveguide, P = Photodiode (c)  A 

schematic of the polarizing beam splitter (BS).   
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cavity optics of the Tsunami oscillator were adjusted so as to achieve a laser beam with a full-

duration-half-maximum (FDHM) of 100 fs, and a full-width-half-maximum (FWHM) of 10 

nm.  The output power of the laser beam (at 800 nm) was 2.7 W (leading to a single pulse 

having an energy of 33.75 nJ) and s-polarized (with an error less than 1:500).  The spatial 

profile of the beam was TEM
00

.  Nominally, the noise, stability and beam divergence of the 

laser was lower than 0.2 %, 5 % and 0.18° respectively.   

 The laser beam, after leaving the Tsunami oscillator, navigated a series of optical 

elements, mounted and fixed on an optical bench.  An aperture (A) was inserted immediately 

after the oscillator to enable correction of beam drift originating from within the oscillator.  

The first section of the optical bench was devoted to laser beam diagnostics.  The 

spectrometer was positioned to allow the wavelength and FWHM of the scattered 800 nm 

laser beam to be checked at any time (the beam was split by a 50:50 beam-splitter BS1), and 

the autocorrelator was accessed by toggling a flip-mounted mirror (FMM).  A neutral density 

filter (NDF1) was required to reduce the laser power incident on the autocorrelator to a 

reasonable strength (about 100 mW).   

The 800 nm laser beam was then mildly focused by a plano-convex lens onto a crystal 

of beta-barium-borate (BBO).  This is an optically non-linear crystal, which serves to double 

the frequency of the transmitted light, therefore outputting a visible blue laser beam of 

wavelength 400 nm.  The blue beam was then collimated by a plano-concave lens.  Both the 

lenses positioned before and after the BBO crystal were mounted on linear translation stages, 

to assist with the focusing and collimation of the incident and transmitted beams.  Second 

harmonic generation can be an inefficient process, due to factors including the quality of 

focus, the crystalline quality / length of the doubling crystal, and its inherently non-linear 

aspect.  For an input power of 1.35 W at 800 nm, the typical power of the output 400 nm 

beam was 150 mW, corresponding to a conversion efficiency of 11 %.  The output beam from 

the BBO crystal was a mixture of 400 nm and 800 nm wavelengths, and so spectral separation 

was achieved through directing the mixed beam toward a longpass dichroic beam splitter 

(BS2) with a cutoff wavelength of 490 nm.  Nominally, this mirror reflected (transmitted) 

more than 95 % (90 %) of light of wavelength 400 nm (800 nm).  The transmitted 800 nm 

beam was dumped, and the reflected 400 nm beam was directed further across the optical 

bench.  This beam now served as a probe.  All mirrors beyond this dichroic beam splitter were 
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coated broadband dielectric mirrors suited for 350 nm – 400 nm wavelengths, with a nominal 

reflectivity of more than 99 % at angles of incidence between 0° and 45°.   

 Generally, to acquire time-resolution in a pump-probe measurement technique, it is 

necessary to vary the relative time delay between the pump and probe.  To achieve this in the 

TRSKM system, the 400 nm probe beam was directed across a “delay line”, which consisted 

of a retroreflector mounted on a single-axis motorized stage.  The motorized stage was 

capable of linearly translating across a total distance of 60 cm, in nominally minimum steps of 

500 nm.  By therefore moving the retroreflector from one end of the delay line to the other, 

the path length of the laser was increased by 1.20 m, corresponding to a 4 ns delay in the time 

of arrival of the pulse on the sample.  The minimum step size of the motorized stage led to a 

maximum time-resolution of 3.33 fs.   

After traversing the delay line, but prior to entering the Kerr microscope, the power of 

the probe was reduced using a neutral density filter (NDF2), both to avoid burning the sample 

and damaging the detecting photodiodes (the latter devices had a damage threshold of about 

20 mW).  It is also necessary to note that, so far, the beam has been navigating the optical 

bench across a plane maintained 11 cm above the surface of the optical bench.  The entrance 

to the Kerr microscope was about 29 cm above the optical bench, and so a periscope assembly 

was used to raise the height of the probe beam.   

The probe was then directed into the Kerr microscope, the layout of which is presented 

in Fig. 3.2 (b).  Note the viewpoint has been rotated here, compared to that used in panel (a).  

The incident beam was initially passed through a vertically-oriented polarizer, in order to 

eliminate any possible polarization rotation induced by the dielectric mirrors, and then split by 

a 50:50 non-polarizing beam splitter (BS3). The transmitted beam was dumped onto a white 

screen, and the reflected beam was directed toward an objective lens (OL), which was itself 

mounted on a piezo-electric stage, capable of moving 300 μm along all three Cartesian axes, 

in stable and reproducible steps of 10 nm.  The objective lens§§ used to focus the probe beam 

had a numerical aperture of 0.75, which nominally focused the probe into a diffraction-limited 

spot of diameter 340 nm onto the surface of the sample.  Since the probe beam had a diameter 

larger than that of the entrance aperture of the objective lens, the profile of the focused beam 

was unaffected by the lateral translation of the piezo-electric stage.   

                                                           
§§ Zeiss Objective LD Plan-Neofluar 63x / 0.75 Corr Ph2.   
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The sample was mounted on a coplanar waveguide (CPW), positioned underneath the 

objective lens.  Further details regarding the CPW are discussed in Section 3.3.2.  The CPW 

itself was mounted on a piezo-electric stage, capable of stepping by 300 nm in the x-y plane 

up to a maximum of 25 mm along both axes.  The bias magnetic field across the sample was 

delivered by a quadrupole electromagnet, which was assembled by Dr. Yat-Yin Au.  To 

construct this electromagnet, a copper wire was extensively wound about each cylindrical 

steel pole, and each wire was then connected to a 4-port junction box.  Upon driving a dc 

current around the steel poles,*** a net magnetic field was generated between the four poles.  

By switching the direction of the flow of current about the poles, the bias magnetic field could 

be directed along the positive and negative x- and y-axes as required.  The strength and 

direction of the bias magnetic field was measured using a Hall effect sensor††† - by measuring 

the magnetic field generated by the electromagnet, as a function of current, the magnetic field 

was calibrated.  The maximum bias magnetic field that could be delivered across the sample 

was measured to be 729 Oe.   

Upon reflection from the sample surface, the probe beam was collected and collimated 

by the same objective lens, and directed again across the 50:50 beam splitter (BS3).  The non-

polarizing beam splitter dumped 50 % of the beam back out of the Kerr microscope, but the 

50 % transmitted was directed towards an optical bridge detector.  The optical bridge detector 

used in this setup was assembled by Dr. Yat-Yin Au.   

An optical bridge detector contains a polarizing Glans-Thompson beam splitter (BS4) 

and two photodiodes (P1 and P2).‡‡‡  The former optical element was itself composed of two 

cemented birefringent crystals of calcite, aligned so that their optical axes are parallel.  

Birefringent crystals are generally characterized by two distinct refractive indices n|| and n⊥, 

depending on whether the incident light has an electric field parallel or orthogonal to the 

crystal’s optical axis respectively.  The crystal was cut in such a fashion so that n|| < n⊥ - 

hence the beam with an electric field parallel to the optical axis was unaffected in its path, 

whereas the beam with orthogonal polarization was deflected at 45°.  This mechanism of 

polarization splitting is schematically shown in Fig. 3.2 (c).  The two separated beams were 

then detected by two balanced silicon photodiodes of diameter 0.8 mm (which have a 

                                                           
*** The current was delivered by a XHR 100-10 DC Power supply.   
††† Lakeshore Model 421 Gaussmeter.   
‡‡‡ Strictly speaking, the silicon photodiodes were outside the bridge detector, and two fibre-optic 

cables were used to direct the collected light into the photodiodes.   
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responsivity of 0.14 A/W at 400 nm).  Transimpedance amplifiers, with a gain of 106 Ω, were 

then used to convert the currents generated by the illuminated photodiodes into voltage 

signals.§§§   

Prior to applying any excitation across the magnetic sample, the optical bridge 

detector was rotated such that the voltages recorded by the two photodiodes were equal.  By 

monitoring the spatial distribution of the dc voltages in each photodiode, one can acquire 

images of the sample’s surface, enabling the beam to be effectively focused.  Now, upon 

exciting the magnetic sample, a small out-of-plane dynamic component of magnetization is 

generated, which rotates the plane of polarization of the incident light upon reflection by an 

angle K .  The difference of the intensity of light detected by P1 and P2 is therefore 
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Using the trigonometric identity    sinsincoscoscos  , and the small angle 

approximation, Eq. 3.14 reduces to 

  K
PP II  21  (3.15) 

Since the Kerr angle is linearly proportional to the magnetization, the difference  21 PP II 

represents the change in the out-of-plane component of magnetization.   

The hierarchy of the electrical circuitry underpinning the TRSKM system is shown in 

Fig. 3.3 (a).  A master clock**** synchronized the repetition rate of the Tsunami oscillator (80 

MHz) with the frequency of a microwave generator.  The microwave generator outputted 

electrical signals of either pulsed†††† or continuous-wave‡‡‡‡ character (in the latter case, the 

frequency needed to be an integer multiple n of the Tsunami oscillator’s repetition rate).  The 

output from the microwave generator was further modulated by a function generator,§§§§ 

which imparted a microwave current of frequency 3 kHz with periodic rectangular form.  This 

modulation of the pump served to modulate the measured signal, enabling lock-in detection to 

be used.  The electrical signal derived from the optical bridge detector was then measured 

                                                           
§§§ The silicon photodiodes / transimpedance amplifier were integrated within a Thorlabs Balanced 

Amplified Photodetector, model PDB450A.   
**** AtlanTecRF Low Phase Noise Oscillator Instrument.   
†††† Picosecond Pulse Labs Impulse Generator, Model 3600.   
‡‡‡‡ Rohde & Schwarz SMF100A Microwave Signal Generator.   
§§§§ Agilent Technologies 33120A Function Generator (discontinued).   
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using a lock-in-amplifier***** at the reference frequency of 3 kHz (lock-in detection was 

required due to the small size of the signal, which was on the order of microvolts).  The 

relative timings of the electronic devices are shown in Fig. 3.3 (b) – (f).   

                                                           
***** Signal Recovery DSP Lock-In Amplifier, Model 7265.   

 

Fig. 3.3  (a)  A schematic of the electrical circuitry underpinning the TRSKM 

system.  (b)-(f)  The relative timings between the electronic and optical 

signals interacting in the TRSKM system.  Panel (b) shows the 80 MHz 

signal from the master clock, which is used to synchronize the timing of the 

pump and probe.  Panels (c) and (d) show the electrical currents (pulsed and 

harmonic respectively) driven across the coplanar waveguide, used to pump 

magnetization dynamics.  Panel (e) shows the optical pulse, which is used to 

probe the magnetization dynamics across an adjustable time of 4 ns.  Panel 

(f) shows the rectangular electrical signal, used to modulate the pump at a 

frequency of 3 kHz.   
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3.3.2 Coplanar waveguide 

The pumping field used within the TRSKM system was delivered by a coplanar 

waveguide.  A schematic of the coplanar waveguide is given in Fig. 3.4.  The coplanar 

waveguide consists of a printed circuit board (PCB), which is geometrically divided into three 

sections.  On the left and right sides of the PCB, the regions are grounded (ground), and in the 

center, the region is electrically active (signal).  The signal and ground lines were separated 

by air gaps of width 250 μm, and the width of the signal line was 500 μm.  For the TRSKM 

measurements discussed in this thesis, the magnetic sample was always mounted on a glass 

cover slip, of thickness 0.17 mm.  The electrical current, of either pulsed or harmonic 

temporal character, was delivered to the signal line via SubMiniature version A (SMA) 

connectors of fixed impedance 50 Ω.  The static bias field was delivered by the quadrupole 

magnet (discussed in Section 3.3.1).   

 

 

 

Fig. 3.4  A sketch of the coplanar waveguide, upon which the magnetic sample was 

mounted.  The magnetic sample was uniformly biased by the static field HB, 

pumped by a microwave field h, and the focused optical probe was scanned 

across the sample surface in order to measure the dynamic out-of-plane 

component of magnetization via the magneto-optical Kerr effect.   
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3.3.3 Character of the pumping field 

The pump magnetic field generated by the signal line of the CPW was regularly 

changed, depending on the type of measurement that was being performed.  The first type of 

pump field employed to excite magnetization dynamics had pulsed temporal character, 

consisting of a train of pulses, each with a full-duration half-maximum (FDHM) of 70 ps.  

This train was synchronized with the Tsunami oscillator, so the repetition rate was similarly 

80 MHz.  The FDHM of 70 ps leads to an excitation which dramatically decreases in strength 

at frequencies above 10 GHz.  The second type of pump field had harmonic temporal profile, 

which was again synchronized with the Tsunami oscillator.  The microwave generator used 

was capable of delivering continuous-wave excitations up to 20 GHz.  To achieve 

synchronization with the Tsunami oscillator, the frequency of the continuous-wave excitation 

needed to be an integer multiple of 80 MHz.   

 Due to the sample usually being mounted on a glass substrate, and therefore being 

separated from the CPW by a distance of about 0.17 mm, the magnetic field generated by the 

current across the signal line had significant spatial nonuniformity.  Assuming the distribution 

of current across the cross-section of the signal line is uniform, the spatial distribution of the 

in-plane (hy) and out-of-plane (hz) components of the field generated by a current-carrying 

strip (of width w2  and thickness ms2 , conducting a current I) is130 
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as defined for the co-ordinate system shown in the inset of Fig. 3.5.  One can therefore use 

Eqs. 3.16 – 3.17 to model the magnetic field generated by the CPW system (which was 

assumed to have an impedance of 50 Ω, and power of 22 dBm), at a distance of 170 μm above 

the signal line.   

The field profiles presented in Fig. 3.5 are characteristic of the magnetic field 

generated by a microstrip - due to the symmetry of the microstrip, hy (hz) is symmetric 

(antisymmetric).  Because there is significant distance between the PCB and the magnetic 

sample, hy and hx are relatively non-uniform.  However, since the samples investigated 

typically spanned micron length-scales, the exciting field was assumed to be spatially 

uniform.  Furthermore, the sample was always positioned at (or close to) the center of the 

signal line, and so it was reasonable to assume there was negligible out-of-plane excitation of 

the sample.   

 

Fig. 3.5  The spatial distributions of the in-plane (blue line hz) and out-of-plane (red 

line hy) magnetic field generated by a microstrip mimicking the signal line 

of the CPW, as calculated using Eqs. 3.14 - 3.15.  The fields were calculated 

for a 500 μm-wide microstrip carrying a current of 210 mA, at a height z = 

170 μm above the signal line.  Inset: the geometry of the system described 

by Eqs. 3.16 - 3.17.   
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3.4 Time-resolved optically-pumped scanning optical microscopy (TROPSOM) 

In this section, I will discuss the TROPSOM system, which was first assembled by Dr. 

Toby Davison, Dr. Yat-Yin Au, and Prof. Volodymyr Kruglyak.  Since I have substantially 

modified the experimental setup from its first design, I will discuss both the implementation 

and alignment of the TROPSOM system.   

3.4.1 Time-resolved optically-pumped scanning optical microscopy system 

The TROPSOM system shares the same optical bench as the TRSKM system, and the 

layout of the apparatus is shown in Fig. 3.6 (a).  The Millenia pump, Tsunami oscillator, and 

the beam diagnostic equipment were unchanged from the TRSKM system.  However, from 

this point on, significant changes to the setup were made.  In TROPSOM’s first design,131-132 

the 800 nm (400 nm) beam was used as the optical pump (probe).  In the setup discussed in 

this section, the roles of the 800 nm and 400 nm beams were switched, so as the 800 nm (400 

nm) acted as the optical probe (pump).  The main motivation for implementing this change to 

the previously-constructed TROPSOM system involved the sensitivity of the detection 

mechanism.  The responsivity of the silicon photodetectors to 800 nm and 400 nm light was 

0.53 A/W and 0.14 A/W respectively -therefore, by switching the roles of the 800 nm and 400 

nm beams, it was anticipated that the signal-to-noise ratio (SNR) in the detected signals 

would improve by a factor of about 4.  Of course, the disadvantage associated with this 

change was that the spatial resolution of the acquired images was sacrificed by a factor of 

two, but this represented a trade-off for the improved SNR.   

 Considering first the pumping aspect of the TROPSOM setup, the path of the 400 nm 

beam was rerouted so that it was contained only on the left-hand side of the optical bench.  A 

neutral density filter (NDF2) and two shortpass color filters (CF1 and CF2, both having a 

cutoff wavelength of 450 nm) were positioned immediately after the dichroic beamsplitter, so 

as to control the beam power and eliminate any remaining 800 nm light.  The beam was then 

directed through an optical chopper, which consisted of a slotted disc capable of mechanically 

rotating at a well-defined frequency, therefore modulating the intensity of the pump.  After 

passing through the optical chopper, the beam was directed across a series of coated 

broadband dielectric mirrors (added to easily adjust the length of the path traversed by the 

pump), and then sent through a polarizer (Pol).  This ensured that light of well-defined linear 

polarization was incident on the sample.  The beam then passed through a quarter wave-plate 
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(λ/4), which was occasionally used to convert the polarization of the pump light from linear to 

circular.  The 400 nm pump was then focused through the sapphire substrate on the underside 

of the magnetic sample by an objective lens††††† (OL1), of numerical aperture 0.75, in order to 

form a diffraction-limited spot of diameter 340 nm on the surface of the sample.  The 

objective lens had a correction collar, which nominally enabled the path of the focused beam 

to be corrected for the refraction through the sapphire substrate.  To assist with the focusing 

and alignment of this pump beam, the objective lens was mounted on a motorized translation 

stage, capable of moving along the x-axis by 25 mm.   

In contrast to the 400 nm pump beam, the 800 nm probe beam occupied the majority 

of the space across the optical bench.  Prior to its arrival at the sample, it was directed across 

the delay line (thus giving temporal resolution), and passed through a polarizer, again to 

ensure vertical polarization.  The beam was then split by a 70:30 non-polarizing beam splitter 

(BS3), which dumped 70 % of the transmitted beam, and directed the remaining 30 % 

                                                           
††††† Zeiss Objective LD Plan-Neofluar 63x/0.75 Corr Ph2 

 

Fig. 3.6  The layout of the optical components which comprise the TROPSOM system.   

The abbreviations used correspond to the following: A = Aperture, FMM = Flip-

mounted mirror, NDF = Neutral density filter, AC = Autocorrelator, SM = 

Spectrometer, BS = Beam splitter, BBO = Beta-barium-borate, BD = Beam 

dump, CF = colour filter, Pol = Polarizer, λ/4 = Quarter-wave plate, OL = 

objective lens, and P = Photodiode.   
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towards an objective lens‡‡‡‡‡ (OL2) of numerical aperture 0.8.  The slightly higher numerical 

aperture, in contrast to that used to focus the 400 nm pump beam, allowed the red probe beam 

to be focused to a diffraction-limited spot of diameter 637 nm on the sample surface.  The 

objective lens used to focus the probe beam was mounted on a three-axis piezoelectric stage, 

and this assembly itself was mounted on a single-axis translation stage, to assist with focusing 

and alignment.  The details of the procedures by which the pump and probe beams were 

focused on the sample surface is discussed in Section 3.4.2.  An important point relates to the 

relative delay between the pump and probe beams.  For the probe pulse to impinge on the 

sample both before and after the arrival of the pump pulse, the probe’s minimum path length 

needed to be slightly shorter than the pump’s.  For the measurements discussed in this thesis, 

the pump’s path length was fixed at about 322 cm, and the probe’s minimum path length was 

about 289 cm.  This difference allowed 1.1 ns (2.9 ns) to be recorded at negative (positive) 

time delay, relative to the arrival of the pump.   

Upon reflection from the sample surface, the probe was collimated by the same 

objective lens (OL2), and the beam thereafter was again incident on the 70:30 non-polarizing 

beam splitter.  Now, 30% of the signal-carrying probe was dumped, and the other 70 % was 

filtered (using a longpass color filter, with a cutoff wavelength of 750 nm).  This filter was 

essential in preventing any transmitted pump beam from polluting the detected signal.  The 

filtered probe was then sampled by a 90:10 non-polarizing beam sampler, whereby 10 % of 

the signal was directed toward a single photodetector (labelled P3, intended to measure the 

                                                           
‡‡‡‡‡ Zeiss EC Epiplan-Neofluar 50x/0.80 HD DIC M27 

 

Fig. 3.7  A sketch of the sample holder, upon which the magnetic sample was mounted, 

and the relative orientations of the pump and probe laser beams.   
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transient reflectivity of the sample), and the other 90 % was directed towards the same optical 

bridge detector as was used in the TRSKM system.   

The electrical plumbing of the TROPSOM system was simpler compared to that used 

in the TRSKM system, due to the optical character of both the pump and probe.  The 

mechanical chopper, used to modulate the intensity of the pump beam at a frequency of 800 

Hz, was synchronized with the two lock-in amplifiers used to measure the transient 

reflectivity / Kerr signals.  The hierarchy of the electrical circuity is presented in Fig. 3.8 (a), 

and the relative timings in Fig. 3.8 (b)-(e).   

3.4.2 Aligning and focusing the pump / probe beams 

There were two key challenges associated with using the TROPSOM system.  The 

first was related to the alignment of the setup.  To optimally use the system, the pump and 

probe beams needed to be parallel to each other, and also share the same focal point in all 

three dimensions (prior to scanning).  The second involved the maintenance of a stable 

 

Fig. 3.8  (a)  The circuitry which underpins the TROPSOM system.  (b)-(e)  The relative 

timings of the signals in the TROPSOM system.  Panel (b) shows the 80 MHz 

signal from the master clock, which is used to synchronize the timing of the pump 

and probe.  Panel (c) shows the 400 nm optical pulse, used to pump 

magnetization dynamics.  Panel (d) shows the 800 nm optical pulse, which is 

used to probe the magnetization dynamics across an adjustable time of 4 ns.  

Panel (e) shows the modulation of the pump (800 Hz) introduced by the optical 

chopper.   



96 
 

system.  Due to the TROPSOM setup primarily having three independent, crucial components 

(the two objective lenses and the sample holder) highly sensitive to disturbances, any 

vibrations or fluctuations could induce non-systematic misalignment of all three components.  

Furthermore, since the time constant of the lock-in-amplifiers needs to be at least 500 ms to 

achieve a reasonable signal-to-noise ratio in the detected signals, the TROPSOM system 

needed to be running in a stable manner for several hours.  Vibrations or fluctuations resulting 

in misalignments therefore posed significant problems in recording signals of good quality.  

As part of my redevelopment of the TROPSOM system, I have developed a protocol which 

addresses the challenge of static system alignment, and I will first outline this.  In the 

subsequent section, I will then discuss the different strategies which have been used to 

improve system stability.   

To align the TROPSOM system, the pump and probe beams needed to be aligned 

parallel with identical focal points.  To achieve this, the pump beam was blocked, and the 

probe beam was first aligned so as to form a focused spot on the surface of the mounted 

sample (specifically, the optimum position of OL2 along the x-axis was determined).  

Subsequent optical elements were then aligned so as to direct the reflected probe beam into 

the two detectors.  Once this was achieved (such that a well-focused reflectivity image of the 

sample surface could be obtained), both the magnetic sample and the color filter (CF3) were 

removed.  Using only the optical elements prior to OL1, the path of the pump beam focused 

by OL1 was adjusted, so that the pump beam had similar diameter before and after passing 

through both objective lenses.  A cartoon of this geometry is given in Fig. 3.9 (a).  Again, 

using only the optical elements prior to OL1, the pump beam was then aligned so as to be 

detected by the two signal monitors of the optical bridge detector.  This alignment procedure 

thus enabled the pump beam to be diagnosed in its spatial character, by scanning OL2.  

Generally, two types of optical artefacts were observed.  First, coma aberration led to the 

appearance of the elliptical pump spot shown in Fig. 3.9 (b).  This arose from the pump beam 

being slightly canted away from the x-axis.  Second, clipping of the beam (shown in Fig. 3.9 

(c)) arose from the beam not being centered on all the optical elements.  Upon correction of 

these two optical artifacts, a focused pump spot as shown in Fig. 3.9 (e) was obtained.  Notice 

that the spot does not appear to be diffraction-limited in its diameter: this is due to the two 

objective lenses OL1 and OL2, focusing and collimating the beam, having a slight difference 

in their numerical apertures.  Upon defocusing the pump beam (by moving the probe lens by 

several microns along the optical axis), the pump spot was observed to neither significantly 
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distort nor shift (Fig. 3.9 (d) and Fig. 3.9 (f)), hence leading to the conclusion that the pump 

and probe beams were reasonably aligned across the optical bench.   

 Upon correctly aligning the pump beam with respect to the probe, the sample was 

remounted onto the sample holder, and the color filter CF3 was reinserted.  The power of the 

pump beam was then increased, so as to be visible upon collimation by OL2, and the position 

of OL1 was adjusted along the x-axis so as the diameter of the collimated beam was close to 

the diameter of the beam prior to it entering OL1.§§§§§  The sample was locally ablated during 

this stage of the alignment, but once the suitable x-coordinate of OL1 was deduced, the power 

of the pump was reduced, and then the magnetic sample was moved laterally, so as to probe 

                                                           
§§§§§ Throughout the work discussed in this thesis, the sample was mounted on a sapphire substrate of 

thickness 0.33 mm (nSapphire = 1.79).  This led to a conflict in that the correction collar of all objective 

lenses commercially available is designed for use with glass (nglass = 1.5).  The correction collar was 

therefore adjusted to (0.33×[nSapphire/nglass]) = 0.39 mm.  This seemed to be adequate in forming a 

focused pump spot with a diameter close to that defined by the diffraction limit.   

 

Fig. 3.9  (a)  The geometry which enables the spatial profile and alignment of the pumping 

beam to be diagnosed.  (b)-(c)  Measurements of the pump spot where the optical 

artefacts of coma aberration and clipping have distorted the pump beam 

respectively.  Note these images are not normalized relative to each other.  (d)-(f)  

Normalized images of the correctly-aligned pump beam, recorded when the 

probe’s objective lens was positioned at x = +13 μm, x = 0 μm and x = -7 μm 

respectively.   
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an undamaged surface.  The focus of the pump and probe beams was fine-tuned by iteratively 

recording the transient reflectivity signal on the surface of the sample, for varying positions of 

OL1 and OL2.  It was assumed that the transient reflectivity signal at small but positive time-

delay represented the spatial distribution of the pump spot.  Images of the focused pump spot 

(acquired for a 20 nm-thick film of Permalloy) at varying positions of OL1 are shown in the 

top panels of Fig. 3.10 (a) - (d).  In the bottom panels of Fig. 3.10 (a) - (d), cross-sectional 

slices across the images are presented, revealing quantitatively the spatial-extent of the pump 

spot.  In Fig. 3.10 (c) in particular, the transient reflectivity signal had a cross-sectional full-

width half-maximum of 1.4 μm and 1.8 μm.   

3.4.3 Maintaining system stability 

After aligning the TROPSOM system, preliminary measurements were performed in 

order to gain insight into the signals that one could expect.  This testing revealed a significant 

source of instability in the setup.  Presented in the top panels of Fig. 3.11 (a)-(b) are the DC 

 

Fig. 3.10  Top panels: Spatial images of the transient reflectivity signal.  Bottom panels:  

Cross-sectional slices taken from the top panels, either along the line y = 3 μm 

(red solid line) or z = 3 μm (blue dashed line).  (a) - (d)  The signals acquired 

with a 20 nm-thick Permalloy film, when the objective lens focusing the pump 

was positioned at x = +6 μm, x = +1 μm, x = 0 μm, and x = -3 μm respectively.   
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reflectivity signal (left panel) and the dynamic Kerr signal (right panel), recorded across a 

uniformly-flat surface of Permalloy, far from the pump spot.  Evident in both images are 

bands of increased / decreased signal.  The images were obtained through raster-scanning the 

focused probe across the y-axis, with a time-constant of 1 s, and each pixel took 3 s to record.  

It must be emphasized that the bands are slightly inclined in the shown images.  The images 

were then replotted as a function of time, as shown in the middle panels of Fig. 3.11 (a) - (b), 

and the previously-identified bands clearly correspond to periodic oscillations.  Upon Fourier-

transforming the time-varying signals, the frequency spectra shown in the lower panels of Fig. 

3.11 (a) - (b) were obtained.  The oscillations clearly had a characteristic frequency of 0.4 

mHz.   

 The bands / oscillations observed in Fig. 3.11 are not associated with any signal 

induced by the pump.  Rather, they must either originate from oscillations of the sample, or 

from fluctuations inherent to the laser generated by the Millenia pump / Tsunami oscillator 

system.  To try to identify the source of the oscillations, the power of the laser beam was 

 

Fig. 3.11  (a)-(b)  Top panel: Spatially-resolved DC reflectivity (left) and AC Kerr signals 

(right) respectively, acquired far from the pump spot on a continuous film of 20 

nm-thick Permalloy.  Middle panel: The spatial images as shown in the top 

panels, but given as a function of time.  Lower panel: The Fourier transform of 

the signals shown in the middle panels.   
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recorded at various positions across the optical bench.  The results of this testing are shown in 

Fig. 3.12 (a) - (c), where the top panels show the time-varying oscillation, and the lower 

panels show the corresponding frequency spectra.  The signal shown in Fig. 3.12 (a) was 

recorded immediately after the color filter CF3, corresponding to the probe beam reflected by 

the sample.  Here, the oscillations are very strong, on the order of 25% of the entire beam 

amplitude.  The same signal was then recorded after POL2 but before BS3, corresponding to 

the probe beam prior to incidence on the sample.  In this signal, the oscillations are still 

apparent, but the oscillations are on the order of about 3%.  This indicated that the beam 

reflection led to an eight-fold reduction in the signal-to-noise ratio.   

 

Fig. 3.12  (a)-(b)  The power of the 800 nm beam (upper panels) recorded after and before 

reflection of the beam by the sample surface respectively, and the corresponding 

frequency spectra (lower panels).  (c) The local temperature (upper panel), 

recorded at the same time as the measurement presented in (a), and the 

corresponding frequency spectrum (lower panel).   
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 Along with recording the power of the laser beam, the power meter used was also 

capable of simultaneously recording the local temperature.  Presented in Fig. 3.12 (c) is the 

temperature variation simultaneously recorded alongside the signal shown in Fig. 3.12 (a).  

Apparent are oscillations in the local temperature, with frequencies corresponding to the 

observed bands.  The laboratory was air-conditioned in order to maintain a constant 

temperature of 18 °C.  The fact that the local temperature across the enclosed optical bench 

was about 22.5 °C demonstrated that the Millenia pump, while continuously water-cooled to 

maintain an operating temperature of 18 °C, radiated heat which generally raised the 

temperature of the enclosed TRSKM / TROPSOM system.   

It was therefore hypothesized that the laser diode was improperly chilled, leading to 

weak oscillations in the laser power.  This improper chilling also generated periodic air 

currents across the optical bench, which caused the sample holder to similarly oscillate – this 

latter effect led to the eight-fold increase in the oscillations detected.  Further discussion of 

the approaches used to minimize the impact of this noise will be given in Chapter 7.   

3.5 Brillouin light scattering (BLS) microscopy 

The results of Brillouin light scattering (BLS) microscopy are occasionally referred to 

in this thesis.  These results were collected not by myself, but by Dr. Alexandr Sadovnikov 

and Dr. Sergey Grishin at Saratov State University in Russia.  These experimental 

measurements were used to complement the results of micromagnetic simulations wholly 

performed by myself.  Since I had no part in recording the experimental BLS measurements, I 

will only discuss (very briefly) the theory underlying BLS microscopy, and the experimental 

setup, so as the results referred to can be understood.   

BLS microscopy82 is underpinned by the inelastic interaction between light and spin 

waves.  This can be understood using the particulate description of photons and magnons 

scattering off each other.  Specifically, the energy- and momentum-conservation relations lead 

to the equations 

SWir    (3.16) 

SWir kkk   (3.17) 
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where i , r  and SW refer to the frequency of the incident light, the reflected light, and the 

spin wave respectively, and ik , rk  and SWk refer to the in-plane wave vector of the incident 

light, the reflected light, and the spin wave respectively.  The scattering can take on one of 

two forms, depending on whether the magnon is generated or annihilated (these are referred to 

as Stokes and Anti-Stokes processes respectively).  These two mechanisms are sketched in 

Fig. 3.13.  In the Stokes process, the incident photon creates a magnon, and so the reflected 

photon has a reduced energy, with the shift given by the energy of the generated magnon.  In 

the Anti-Stokes process, the incident photon instead annihilates a magnon, thus causing the 

reflected photon to have an increased energy.   

A schematic showing the basic setup of the Brillouin Light Scattering (BLS) 

microscopy system is given in Fig. 3.14.134  A single-frequency Nd:YAG laser emits light of 

wavelength 532 nm / frequency 564 THz, which is focused onto the sample at close to normal 

incidence.  The spatial resolution of the setup is governed mainly by the numerical aperture of 

the objective lens used to focus the laser – in the experiments discussed in this thesis, an 

objective lens of numerical aperture NA = 0.025 was used, yielding a spatial resolution of 

about 10 µm.  When a spin wave (of frequency ωsw) then propagates across the position of the 

focused laser spot, the reflected light is shifted positively in frequency (ωr = ωi + ωSW) via the 

anti-Stokes process.  To detect the change in frequency, the reflected light is then directed into 

a multi-pass Tandem Fabry-Perot interferometer.133  By changing the width of the etalon, one 

 

Fig. 3.13  Diagrams82 showing (a) the Stokes process, and (b) the anti-Stokes process, by 

which the incident photon creates and annihilates a magnon respectively.   
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can alter the frequency of transmission, and so the spectrum of the transmitted light therefore 

directly reveals the amplitude of the propagating spin wave, in a frequency-resolved manner.   

3.6 Object-Oriented Micro-Magnetic Framework (OOMMF) 

The development of computational power towards the end of the twentieth century led 

to the idea of solving the Landau-Lifshitz-Gilbert equation numerically across a mesh of 

magnetization vectors, discretized in both the time- and space-domain.48  This is the principle 

underpinning micromagnetic packages.  Broadly speaking, micromagnetic packages can be 

split into two groups, depending on the method of discretization.  In finite-difference time-

domain (FDTD) packages, such as OOMMF135 and MuMax3,136 the geometry is divided into 

a regular lattice of cuboid cells, and both the magnetization and effective field are assumed to 

be uniform in each and every cell.  With the finite-element method (FEM), as used in 

NMag137 and FastMag138 for example, the geometry is instead divided into a lattice of 

(generally nonuniform) tetrahedral elements, and M and Heff are calculated at the vertices of 

the tetrahedral elements.  This geometrical difference between the two approaches leads to 

tradeoffs in the computational time required and accuracy of the geometrical modelling, but 

should (in principle) lead to the same results.  In the work discussed in this thesis, all 

micromagnetic calculations were performed using OOMMF.   

 

Fig. 3.14  Schematic134 of the Brillouin Light Scattering (BLS) microscopy system.  The 

abbreviations used correspond to the following: BS = Beam splitter, BD = Beam 

dump, and OL = Objective lens.   
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OOMMF was first released in 1998 by Michael Donahue and Don Porter.135  As noted 

earlier, OOMMF is a FDTD program, and so at the first step the LLG equation is discretized 

such that 
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where wvu ,,M , wvu ,, ,  
wvueff ,,

H , wvu ,, , and  
wvusM

,,  correspond to the magnetization, the 

gyromagnetic ratio, the effective field, the Gilbert damping coefficient, and the saturation 

magnetization at the mesh site (u,v,w) respectively.  The time domain similarly becomes 

discretized in n steps of nt  (the increment nt  is set by the specified solver), causing a point 

in time tn to be described by nn tntt  0  where t0 is the initial time.  The magnetization at the 

point in time tn+1 is then numerically calculated (for all the work presented in this thesis, the 

Runge-Kutta-Fehlberg139 integration method was used), along with an estimation of the error 

associated with the calculation. If the error is within a predefined tolerance, the calculation is 

considered successful, and the solver moves forward to the next point in time.  If, instead, the 

error exceeds that allowed, nt  is reduced, and the entire calculation is repeated.   

Since its public release, OOMMF has been re-released twice, and the versions used to 

derive the work presented in this thesis are versions 1.2 alpha 5 and 6.  A GPU-enabled 

version of OOMMF is now publicly available,140 which offers to quicken simulations by a 

factor as much as 32 compared to the CPU-enabled simulations.  The source code of 

OOMMF is continuously under development by NIST, and extensions to the source code are 

written both by NIST and by other research groups.  Consequently, OOMMF is capable of 

modelling a wide range of three-dimensional systems, incorporating for example periodic 

boundary conditions in one-141 and two-dimensions,142 and additional magnetic interactions 

(such as the Dzyaloshinsky-Moriya interaction143).  Moreover, OOMMF is capable of 

calculating both linear and non-linear spin dynamics.   

3.6.1 Energy terms in OOMMF 

Due to OOMMF being a FDTD solver, the field terms shown in Equation 2.90 need to 

be similarly discretized.  The following descriptions are sourced from the user manual for 

OOMMF.144  The Zeeman term is the simplest of the terms, in that it is completely specified 

by the user 
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        twtvtu
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The Zeeman field is simply calculated on a cell-by-cell basis, independently of the Zeeman 

field across other neighbouring mesh cells.   

 The exchange field, as discussed in Section 2.4.2, is short-range, and dominates only 

across the exchange length.  With a user-specified exchange coefficient A(u,v,w),(x,y,z) mediating 

the exchange interaction between the cells positioned at the mesh sites (u,v,w) and (x,y,z), the 

exchange energy at the mesh point (u,v,w) is given by 
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The exchange energy for one cell in a three-dimensional system is assumed to only be 

influenced by the six neighbouring cells.  Thus, the 6-neighbour exchange energy is given by 

summing the exchange energy defined in Eq. 3.20 across all six of the neighbouring cells.  

While the exchange interaction is assumed to be only occurring across the nearest neighbours, 

it is still possible for the exchange interaction to act across several cells if the said cells fit 

within the exchange length lex.  For Permalloy, the exchange length is about 5 nm - thus, for 

the exchange interaction to be modelled correctly, the cell-size should be fixed at or below 5 

nm (to satisfy exzyxwvu l ,,,, rr ).   

 The energy associated with the uniaxial and cubic anisotropy terms is similar in 

interpretation to the Zeeman energy, in that it is independent of neighbouring cells.  

Depending on whether the crystalline anisotropy constant Ku,v,w is positive or negative, the 

vector û corresponds to the easy or hard axis respectively.  The energy characterising the 

uniaxial anisotropy is given by 
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The expression for the energy endowed by cubic anisotropy is similarly 
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where û1 and û2 are the anisotropy axes specified by the user, and 213
ˆˆˆ uuu  .   

 The demagnetizing field has non-local character, and therefore is described (at a 

particular point) by the superposition of the demagnetizing fields created by all other points 

within the sample.  It can also have contributions from the stray field emanating from a 

second sample, separated in space from the first sample, but still within the same considered 

system.  To calculate this field, OOMMF first computes the demagnetizing tensor.  Upon 

assuming that the magnetization within the cell is uniform, the demagnetizing tensor of a cell 

(of length a, width b and depth c) can be calculated using the equations obtained by Amikam 

Aharoni.145  The demagnetizing tensor characterising all mesh cells is therefore calculated 

(since the demagnetizing tensor depends only on the dimensions of the mesh cell and the 

geometry of the sample, the demagnetizing tensor is calculated just once, directly at the start 

of the simulation).  Then, in the discretised reciprocal space, the Fourier transform of the 

demagnetizing field is calculated through146 

MNH 


4demag
, (3.24) 

where the dashed superscript indicates the corresponding quantity has been Fourier 

transformed.  By therefore taking an inverse Fourier transform of demagH  , OOMMF calculates 

the demagnetizing field in real space.   

3.7 Summary 

In summary, the experimental and numerical techniques used within this thesis have 

been discussed at length.  The setups of the TRSKM and TROPSOM systems have been 

elaborated on extensively.  These systems, used by myself, were capable of imaging 

magnetization dynamics in real-space / time-domain, with a spatial (temporal) resolution of 

about 500 nm (5 fs).  An outline of the BLS microscopy system has also been provided - this 

experimental setup was used to image magnetization dynamics in the frequency-domain, with 

a spatial resolution of about 10 µm.  Finally, the underlying principles of OOMMF have been 

discussed.  The micromagnetic package outputs magnetization dynamics in real-space / time-

domain, with a resolution as specified by the user.  In the following chapters, the results 

acquired using TRSKM, TROPSOM, BLS and OOMMF will be discussed.   
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CHAPTER 4 
 

EXCITING SPIN WAVES USING A GRADED MAGNONIC 

INDEX 

 

4.1 Introduction 

In order to successfully miniaturize magnonic technology, it is essential to have some 

mechanism of exciting spin waves with high wave vector.  Most typically, propagating spin 

waves are excited through the application of a fast-varying magnetic field, delivered by a 

current-carrying electrical element.  Depending on the size and position of the magnetic 

system, with respect to the current-carrying element, the exciting magnetic field can be 

considered (from the perspective of the magnetic system147) to be either spatially uniform or 

non-uniform.  Non-uniform exciting fields are experimentally generated by positioning 

micron-sized electrical elements148-152 on the surface of a larger magnetic body.  The 

frequency of the excited monochromatic spin wave can be tuned via the frequency of the 

delivered microwave current.  This approach can be further adapted in order to excite spin 

waves with fixed wave vector153 or beam-like character,154 merely through patterning the 

current-carrying elements.  Inescapable ohmic losses, however, impose limits on both the line 

dimensions and the impedance range of such spin-wave transducers.155  The former limitation, 

in particular, represents a significant challenge for the future development of miniaturized 

spin-wave-based devices, as transducers of width w excite a locally-uniform field of width w, 

and so the minimum wavelength (maximum wave vector) of any spin wave excited will be 2w 

(π/w).   

 Instead of therefore using non-uniform exciting fields to excite spin waves, it could be 

simpler to excite dynamics with spatially-uniform exciting fields.  Arguably, the simplest 

system one can consider is a continuous, uniformly-magnetized thin film.  Upon exciting the 

film with a uniform magnetic field, the translational symmetry of the system allows only the 
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fundamental spin-wave mode – ferromagnetic resonance - to be excited.  To excite non-

uniform dynamics, the translational symmetry of the magnetic system must be broken, via for 

example patterning of the film geometry.  It is well-understood that, by imposing symmetrical 

geometrical boundaries on the film (giving rise to a stripe or square), confined spin-wave 

modes can be excited51,156-157 where the spin-wave wave vector is inversely related to the 

distance between the film edges.   

In a pair of articles published in 1964, Ernst Schlömann24, 158 theoretically outlined 

how propagating spin waves could be excited using a spatially-uniform exciting magnetic 

field, by breaking the translational symmetry of a magnetized stripe in a particular way.  

Schlömann assumed the strength of the static bias field to be parabolic across the length of the 

magnetic stripe, highest at the stripe’s edges, and lowest at the center.  Via the dispersion 

relation characterizing exchange spin waves, one can then define an effective spin-wave wave 

vector 

     
D

xH
xk B

eff




2

, (4.1) 

with a corresponding frequency ω.  Upon exciting the entire slab with a spatially-uniform 

microwave magnetic field, of frequency BH  , quasi-uniform FMR ( 0effk ) was excited 

most efficiently within a well-defined region close to the stripe’s edges.  The region in which 

the magnetization was most efficiently excited then coupled with the neighboring region of 

magnetization (where H
B
 was reduced), launching spin waves with raised effk  along the stripe.  

This is referred to as the Schlömann mechanism of spin-wave excitation.   

 Direct experimental verification of the Schlömann mechanism of spin-wave excitation 

in micron-sized samples was not presented, however, until 2011.147  Au et al. considered a 

patterned structure - a semi-continuous film connected to a stripe - uniformly biased 

transversely to the stripe’s length.  The non-uniform internal field across the structure caused 

there to be two dominant modes of resonance, each spatially confined to either within the 

semi-continuous film or the stripe.  The structure was then excited by a spatially-uniform 

harmonic magnetic field, tuned in frequency so as to continuously excite the mode of 

resonance in the semi-continuous film, and spin waves (with a wavelength about 36 μm) were 

observed propagating along the stripe away from the semi-continuous film.  The efficiency of 

the coupling between the magnetic field and the dominant mode of resonance within the semi-
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continuous film was further investigated,159 and it was shown that that this mechanism of 

excitation is rather narrow in frequency.   

 In the first two sections of this chapter, I will discuss the results of BLS microscopy 

and micromagnetic calculations, which reveal how the Schlömann mechanism can be 

exploited to provide a source of propagating spin waves.  Through patterning of the magnetic 

thin film, the internal / effective field can be raised in specific regions of magnetization 

(giving rise to a graded magnonic index), therefore enabling spin waves with zero effective 

wave vector to be excited in these targeted regions.  Spin waves, either in the form of caustic 

beams or regular plane-like waves, are then observed propagating across the magnetic sample.  

In the third and final section of this chapter, I will then discuss a hybrid numerical / analytical 

model that allows the local frequency of resonance to be determined more accurately.  This 

model, in principle, could take into account all contributions that can be calculated within 

standard micromagnetic packages.  These results demonstrate that the Schlomann mechanism 

of spin-wave excitation can be effectively and efficiently used to generate spin waves across a 

broad range of frequencies,  and with highly-tunable spatial character.   

4.2 Sample details and experimental / numerical results 

The sample under investigation is schematically shown in Fig. 4.1 (a).  A (2 × 8) mm2 

film of Yttrium-Iron-Garnet (YIG), 10 μm thick, was grown on a substrate of Gadolinium-

Gallium-Garnet****** (GGG) using liquid-phase epitaxy.  This process160 involves the GGG 

substrate (of thickness 500 µm) being dipped into a molten solution of PbO / B203, which is 

supersatured with the components Y2O3 / Fe2O3.  The melt is then rotated, which leads to 

crystal growth.  While liquid-phase epitaxy enables YIG of very high quality to be grown, its 

biggest disadvantage lies in the thickness of the produced defect-free film, which is on the 

order of several micrometres.  Some progress has been recently reported in overcoming this 

restrictrion,161 using (for example) the technique of pulsed laser deposition to fabricate YIG 

films with a thickness as small as 10 nm.162   

A single circular antidot, of diameter 100 μm, was laser scribed at the center of the 

YIG film, and the patterned film was then incorporated within the BLS microscopy system.  

The YIG / GGG bilayer was laid face-down above a 250 μm-wide microstrip, positioned so 

                                                           
****** GGG has a cubic crystalline structure, with a lattice constant of 1.2383 nm, whereas YIG (a 

body-centred cubic crystal) has a lattice constant of 1.2376 nm.  This very small lattice mismatch (7 × 

10-5 nm) therefore renders GGG an ideal substrate for defect-free YIG.   
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the antidot was centered relative to the microstrip.  The entire system was then uniformly 

biased by an in-plane field HB = 500 Oe applied parallel to the microstrip.  Due to both the 

relative width of the microstrip compared to the antidot’s diameter, and the close proximity of 

the microstrip to the YIG film, the microwave magnetic field produced by the microstrip 

antenna was judged to be reasonably uniform in strength and orientation in the vicinity of the 

antidot.   

4.2.1 Characterization of the ground magnetic state 

To understand the ground-state distributions of the internal field and magnetization 

across the antidot system, a thin film of size (2000 × 2000 × 9.99) μm3 was modelled using 

OOMMF.  The gyromagnetic ratio and saturation magnetization of YIG were assumed to be 

γ/2π = 2.80 MHz / Oe and M
S
 = 140 G respectively.  Meshing cells of size (2 × 2 × 3.33) μm3 

were adopted, and the antidot - positioned at the center of the square sample - was modelled 

as a 9.99 μm-thick cylinder, of diameter 100 μm and zero saturation magnetization.  The 

exchange interaction was completely neglected,†††††† and to suppress effects associated with 

the outer edges of the simulated sample (for example, edge-induced magnetization canting 

and demagnetization), two-dimensional periodic boundary conditions142 were implemented 

                                                           
†††††† In YIG, the exchange length is about 15 nm.  Since the dimensions of the YIG sample are so 

much larger than this, however, it was assumed reasonable to neglect the exchange interaction 

entirely.   

 

Fig. 4.1  (a)  The studied sample is schematically shown.  Inset: a photograph of the 

system, courtesy of Dr. Alexandr Sadovnikov.  (b)  The in-plane and out-of-

plane distributions of the magnetic field (hy and hx respectively) generated 

by the 250 μm-wide microstrip antennae, 10 μm above the microstrip, as 

calculated using Eqs. 3.16 – 3.17.   
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across its plane.  In principle, this generated a regular array of widely-spaced antidots, but 

since the spacing between neighboring antidots was 19 times higher than the antidot diameter, 

the influence of inter-antidot coupling on the static behavior was assumed to be negligible.   

For the static micromagnetic simulation163 of the aforementioned YIG system, the 

YIG system was initially magnetized uniformly along the z-axis.  The Gilbert damping 

coefficient was assumed to be 0.5,‡‡‡‡‡‡ and a spatially-uniform bias magnetic field HB = 2000 

Oe was applied along the z-axis.  This field was then reduced incrementally, in stages of 50 

Oe, until HB = 500 Oe, (each stage was considered complete when the maximum rate of 

precession dM/dt across all meshing cells was below 1 °/ns).  Once the ground magnetic state 

was calculated with HB = 500 Oe, the magnetization was further relaxed so as (dM/dt)max < 

0.01 °/ns.  The static spatial distributions of the projections of the demagnetizing and internal 

field onto the magnetization are shown in Figs. 4.2 (a) - (b) respectively.  Immediately above 

and below the antidot, magnetic poles have clearly formed, arising from the demagnetizing 

field opposing the bias.  Expectedly, this reduces the internal field in these two regions.  The 

demagnetizing field, however, must generally form a closed loop so as to avoid the formation 

                                                           
‡‡‡‡‡‡ Here, the system was relaxed by artificially increasing the damping coefficient.  There is also the 

so-called method of ‘steepest descent’, where the magnetization is not allowed to precess, but rather 

forced to evolve toward static equilibrium along the quickest path.  Both methods, in principle, 

generate the same micromagnetic ground state.   

 

Fig. 4.2  (a)-(b) The calculated distributions of the demagnetizing and internal field  

respectively, in the immediate vicinity of the antidot.  The vectors show the 

local orientation (normalized and averaged over 10 × 10 mesh cells) of the 

demagnetizing field / magnetization, and the color scale represents the 

projection of the demagnetizing / internal field onto the static magnetization.   
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of magnetic monopoles, and so the demagnetizing field aligned parallel to the applied bias 

field across the regions left and right of the antidot.  Thus, the local internal field in these two 

regions experience an increase in strength, relative to the internal field far from the antidot.   

The uniform frequency of FMR of a continuous film, magnetized in-plane, is given by 

Eq. 2.103, and is a function of the gyromagnetic ratio, internal field and saturation 

magnetization.  As discussed in Section 3.6, FDTD simulations are underpinned by the 

assumption of uniform effective field and magnetization within each and every mesh cell, and 

so one can crudely use Eq. 2.103 to calculate the distribution of the local FMR frequency 

associated with each mesh cell.164-165  This distribution, corresponding to the studied YIG 

sample, is presented in Fig. 4.3 (a).  Interpreted in this way, the local frequency of FMR 

represents the frequency of FMR in a continuous thin film magnetized uniformly and 

experiencing the same internal field as experienced by the mesh cell.  Physically, the local 

frequency of FMR is the limiting value of the spin-wave frequency as 0effk .  This 

approximation therefore enables qualitative understanding of the quasi-uniform modes of 

resonance confined above and below the antidot, which have been observed and studied 

extensively before.166-168  On the left and right-hand sides of the antidot, in contrast, the local 

frequency of FMR was raised, compared to the local frequency of FMR belonging to the 

otherwise-continuous film (across the continuous film, f
FMR

 = 2.98 GHz).  This non-uniform  

 

Fig. 4.3  (a)  The distribution of the local frequency of FMR, calculated according to 

Eq. 2.103 in the immediate vicinity of the antidot.  (b)-(c)  Binary images, 

where the bright regions of magnetization have local frequencies of 

resonance approximately equal to 3.1 GHz and 3.2 GHz respectively.   
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internal field led to the formation of ring-shaped regions of magnetization with a 

correspondingly higher frequency of resonance, as shown for example in Fig. 4.3 (b) - (c).  

These were plotted within the ranges 3.05 GHz < f
FMR

 < 3.15 GHz and 3.15 GHz < f
FMR

 < 

3.25 GHz respectively.   

4.2.2 Characterization of the dynamic magnetization 

The micromagnetic results presented in Fig. 4.3 suggest that regions of magnetization 

with a raised frequency of resonance existed on the left- and right-hand sides of the antidot, 

originating from the alignment of the demagnetizing field with the bias field.  To validate this 

inference experimentally, the BLS microscopy setup shown in Fig. 4.1 (a) was used.  The 

probing laser beam, of 532 nm wavelength, was focused through the GGG substrate to form a 

spot of diameter 20 μm on the upper surface of the YIG film, and then positioned either on the 

right-hand side of the antidot, or at a distance far from the antidot.  The frequency of the 

temporally-harmonic microwave current driven across the microstrip was increased in well-

defined steps, and at each individual frequency of excitation, the intensity of the inelastically-

scattered light was measured.  This generated the frequency spectra presented in Fig. 4.4 (a)-

(b), measured with frequency steps of 10 MHz and 2.5 MHz respectively.  These spectra not 

only evidence the graded variation of the local frequency of resonance (the signal recorded  

 

Fig. 4.4  Inset: A cartoon of the experimental geometry. (a)  The efficiency of 

excitation measured with the probe focused at point A (red circles) and at 

point B (blue squares), with a frequency resolution of 10 MHz.  (b)  The 

excitation signals obtained in the same fashion as in (a), except with a 

frequency resolution of 2.5 MHz.   
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close to the antidot is consistently raised in intensity higher frequencies), but also reveal an 

offset in frequency of 5 MHz between the maximum responses measured at points A and B.  

This latter observation in particular provides convincing experimental evidence of the local 

frequency of resonance (and by extension the graded magnonic index), immediately on the 

right-hand side of the antidot, being raised.   

 The non-uniform distribution of the internal field – and the corresponding distribution 

of the local frequency of resonance - suggested that the direct resonant excitation of the half-

rings of magnetization (in which the internal field was raised) would lead to the excitation of 

propagating spin waves, via the Schlömann mechanism.  BLS imaging was therefore 

performed, whereupon the microstrip was loaded with 500 ns microwave current bursts, at a 

repetition rate of 500 kHz and with an average power of 1.25 dBm.  The results of the BLS 

microscopy are presented with a logarithmic color scale in the upper panels of Fig. 4.5, where 

panels (a) - (c) show the images acquired when the frequency of excitation was 3.1 GHz, 3.2 

GHz and 3.3 GHz respectively.   

The results shown in the upper panels of Fig. 4.5 (a) - (c) clearly show the excitation 

of spin-wave caustic beams on the right side of the antidot.  These waves originated from the 

finite size of the excited region of magnetization169 - such a source excites spin waves with a 

broad range of kz values, and ky values related by the isofrequency curves shown in the lower 

panels of Fig. 4.5.  The isofrequency curves presented in the lower panels of Fig. 4.5 (a) - (c) 

were calculated using Eq. 2.130  with the frequencies 3.1 GHz, 3.2 GHz and 3.3 GHz 

respectively, with the system parameters Ms = 140 G, HB = 500 Oe, and s = 10 μm.  As was 

discussed in Section 2.5.6, the isofrequency curves characterizing MSSWs are approximately 

straight, and so the group velocities associated with the wide range of allowed wave vector 

solutions are approximately collinear.  This leads to the beaming of the spin-wave amplitude.  

In addition to the spin-wave caustic beams, it should also be noted that there are distinct 

“extinction lines” on the left side of the antidot.151   



115 
 

 To visualize the orientation of the spin-wave wavefronts (the acquired BLS images 

only reveal the direction of the energy flow), dynamic micromagnetic simulations were 

performed.  The system used previously for the static micromagnetic simulations did not lend 

itself well to such dynamic calculations, as the excited spin waves were anticipated to 

propagate across the boundaries of the (2 × 2) mm2 supercell.  The system was therefore 

modified, so as to comprise a thin film of size (8 × 8 × 0.01) mm3, meshed with cells of size 

(4 × 4 × 10) μm3.  The antidot was again modelled as a cylinder of diameter 100 μm and zero 

saturation magnetization, and two-dimensional periodic boundary conditions were again used 

to eliminate geometrical boundary effects.  The same strategy as described earlier was used to 

relax the magnetization with an external bias field H
B
 = 500 Oe.   

 

Fig. 4.5  (a)-(c)  Upper panels: Amplitude-resolved BLS images, acquired at the 

excitation frequencies 3.1 GHz, 3.2 GHz and 3.3 GHz respectively, where 

HB = 500 Oe throughout.  Lower panels: Isofrequency curves corresponding 

to the images shown in the upper panels, calculated using Eq. 2.130 for Ms = 

140 G and s = 10 μm.  Exemplary group velocity vectors are indicated by 

the red arrows.   
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 The spatial distributions of the exciting field generated by the microstrip are 

reasonably given by Eqs. 3.14 – 3.15.  However, this form was cumbersome to define as an 

input within OOMMF, and so the Karlqvist equations170 (originally derived to describe the 

magnetic fields generated by an inductive read / write head) were used instead as an 

approximation, where the equations are of the form 
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The spatial distributions described by Eqs. 4.2 - 4.3 are presented in Fig. 4.6, and approximate 

well the distributions presented in Fig. 4.1 (b).  The time dependence of the exciting magnetic 

field was defined as being harmonic, having the form 

   tfhtht  2sin0 , (4.4) 

where h
0
 = 1 Oe and f = 3.1 GHz, 3.2 GHz or 3.3 GHz.   

Dynamic micromagnetic simulations were then performed, using the exciting 

magnetic field described by Eqs. 4.2 – 4.4.  The calculated magnetization  tzy ,,M  was 

recorded in time steps of
f8

1 , so as to reveal the spatially-resolved magnetization at 8 

 

Fig. 4.6 The spatial distributions of the in-plane hy (red solid line) and out-of-plane 

hx (blue dashed line) components of the magnetic field generated at a 

distance of 10 μm above the microstrip, as described by Eqs. 4.2 – 4.3.   
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equidistant points across one period of the exciting field, for a total of 18 ns.§§§§§§  The static 

out-of-plane component of magnetization  zyM ,x ,0  was then subtracted from  tzyM x ,, , 

yielding the dynamic component  tzymx ,, .  Presented in the middle panels of Fig. 4.7 are 

snapshots of mx, taken about 18 ns after the excitation was initially applied, where the 

distributions shown in panels (a)-(c) were acquired with f = 3.1 GHz, 3.2 GHz or 3.3 GHz 

respectively.  Shown in the top panels of Fig. 4.7 are the results obtained using BLS, 

reproduced from Fig. 4.5, provided here so as to enable straightforward comparison (note the 

simulated snapshots are zoomed out by a factor of about 3, relative to the experimentally-

acquired images).  These results are in good agreement, and confirm that spin-wave caustics 

were indeed being excited on the right-hand side of the antidot (due to the wavefronts being 

canted in the micromagnetic images).  Moreover, plane MSSWs were observed propagating 

on the left-hand side of the antidot, arising because of the non-uniform spatial profile of the 

exciting field.  Further micromagnetic simulations showed that these uni-directional MSSWs 

could be switched to propagate on the right-hand side of the antidot by either reversing the 

polarity of the static magnetization, or by positioning the microstrip above the YIG sample 

(but the direction of propagation did not depend on the chirality of the driving magnetic field).   

To deduce the origin of the experimentally-observed extinction lines, the 

micromagnetic simulations were performed again, except with the antidot “filled in” so that a 

continuous film was being modelled.  For these latter simulations, the dynamic out-of-plane 

component  tzym filmx ,,,  was again deduced (in response to the same excitation fields), and 

then the quantity 

   tzymtzymm filmxxx ,,,, ,  (4.5) 

was calculated, in order to “subtract” the MSSWs.  The spatial distribution of xm  are 

presented in the lower panels of Fig. 4.7, again where the results shown in panels (a) - (c) 

were acquired when f = 3.1 GHz, 3.2 GHz and 3.3 GHz respectively.  These clearly show that 

spin-wave caustics were excited symmetrically about the antidot, while interference of the 

plane spin waves and spin-wave caustic beams led to the experimentally-observed extinction 

lines on the left side of the antidot.   

                                                           
§§§§§§ The magnetization dynamics was observed to be broadly periodic after about 5 ns.   
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4.3 Micromagnetic modelling of miniaturized systems 

The magnetization dynamics discussed in section 4.2 were wholly dominated by the 

dipolar interaction, so much so that the exchange interaction was neglected completely in the 

micromagnetic calculations.  For the results discussed in section 4.2 to be useful 

technologically, however, it would be necessary to significantly reduce the dimensions of the 

system.  Further micromagnetic simulations were therefore performed in order to identify how 

the mechanism of spin-wave excitation evolves upon down-scaling.   

 

Fig. 4.7  The stimulated magnetization dynamics across the YIG sample is shown for 

the excitation frequencies of (a) 3.10 GHz, (b) 3.20 GHz, and (c) 3.30 GHz. 

The upper panels correspond to the experimentally-acquired images 

(reproduced from Fig. 4.5), the middle panels show the numerically-

calculated dynamic out-of-plane component of magnetization xm , while the 

lower panels show xm  as calculated using Eq. 4.5.  Note the images in the 

middle and lower rows have been zoomed out by a factor of about 3, 

compared to the images shown in the top row.   
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4.3.1 Exciting spin waves within miniaturized antidot systems 

 The first system studied consisted of an antidot of diameter 200 nm, embedded within 

a thin film of Permalloy spanning (6 × 6) μm2.  The thickness of the film (s) was set to either 

40 nm, 20 nm, 6 nm or 2 nm, and the system was meshed with cells of size (5 × 5 × s) nm2.  

Two-dimensional periodic boundary conditions142 were used to approximate the continuous 

film.  The exchange stiffness Aex, magnetization of saturation Ms, gyromagnetic ratio γ/2π and 

Gilbert damping coefficient α were set to 1.3 μerg / cm, 800 G, 2.80 MHz / Oe and 0.008 

respectively.171-174  In an identical approach as was discussed in Section 4.2, the ground-state 

magnetic configuration of the film was calculated when the film was subjected to a bias field 

H
B
 = 500 Oe applied parallel to the z-axis, taking into account the magnetic hysteresis.  A 

spatially-uniform exciting magnetic field, identical to that described by Eq. 4.4, was applied 

along the y-axis.  The amplitude and frequency of the excitation was 1.75 Oe and 9 GHz 

respectively, and the magnetization was sampled at time steps
f8

1 , for a total of 18 ns.   

 

Fig. 4.8  Upper panels: Snapshots of the dynamic out-of-plane component of 

magnetization across the Permalloy film, taken 4 ns after the initial 

application of the exciting field, at identical points across the phase of the 

excitation field.  Lower panels: The distributions of the spin-wave amplitude 

mapped in reciprocal space.  (a)-(d) The spin-wave propagation is shown in 

films of thickness 40 nm, 20 nm, 6 nm and 2 nm respectively, where the 

embedded antidot had a diameter of 200 nm.  The Permalloy throughout 

was continuously excited at 9 GHz, and uniformly biased by H
B
 = 500 Oe.   
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 Presented in the upper panels of Fig 4.8 (a) - (d) are snapshots of the dynamic out-of-

plane component of magnetization, across Permalloy films of thickness 40 nm, 20 nm, 6 nm, 

and 2 nm respectively, acquired 18 ns after the initial application of the exciting magnetic 

field.  For the thickest films studied (Fig. 4.8 (a) - (b)), the excited spin waves still had caustic 

character, qualitatively similar in distribution to those presented for YIG in Fig 4.7.  As the 

film thickness was then reduced, the caustic beams reduced in angular divergence, gradually 

becoming more plane-like, as shown in Fig. 4.8 (c) - (d).   

To confirm that the exchange interaction was indeed responsible for the change in 

character of the excited spin waves, the propagating spin waves were mapped in reciprocal 

space.  Presented in the lower panels of Fig 4.8 (a)-(d) are the spatial distributions of the spin-

wave amplitude SA,2D, calculated using 

    zymizymFFTS txtxDA ,, 2,,2,  , (4.6) 

where txm ,  and 2, txm  correspond to the dynamic out-of-plane components of magnetization 

sampled at time steps 90° out of phase with respect to the exciting magnetic field.  The spin-

wave amplitude was universally strongest at ky = kz = 0.*******  This dc contribution was 

therefore subtracted, and the remaining distribution of the spin-wave amplitude was then 

normalized.  The maps presented in the lower panels of Fig. 4.8 are all characteristic of the 

isofrequency curves characterising dipole-exchange spin waves, which were discussed in 

Section 2.5.6.  Furthermore, the spin-wave amplitude was throughout concentrated close to 

the line kz = 0.  As the film thickness decreased, the isofrequency curves became increasingly 

isotropic, reflecting the increasing dominance of the exchange interaction in mediating the 

propagation of the excited spin waves.   

4.3.2 Exciting spin waves within a miniaturized semi-infinite film 

 By making the antidot elliptical in shape, the magnetic poles above and below the 

antidot could be moved closer together or further away from each other.  This would 

significantly influence the strength and distribution of the positive static demagnetizing field.  

Completely neglected so far, however, is the contribution to the spin-wave excitation from the 

                                                           
******* Further micromagnetic simulations, performed by Dr. Fedor Mushenok, have shown that the 

spin-wave amplitude at ky = kz = 0 (the “dc contribution”) could be naturally removed either by 

convolving the sinusoidal excitation with a function of the form exp(-1/[f.t]), or by merely waiting 

long enough for the driven excitation to become completely periodic.   
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dynamic demagnetizing field.  A magnetic stripe – the limiting case of an elliptical dot, with 

its major axis extended toward infinity - was therefore modelled.  Biased longitudinally, the 

stripe had zero static dynamic demagnetizing field, but it is well understood51 that, at the edge 

of the stripe, there is strong dynamic demagnetizing field.  This refers to the demagnetizing 

field generated by the dynamic precession of the magnetization.  In an infinitely-extending 

magnetic body, biased along the z-axis, the magnetization will trace a wholly circular 

trajectory.  If now the medium is severely confined along the y-axis, the magnetization, upon 

tipping towards the y-axis, will instantaneously generate a demagnetizing field parallel to the 

y-axis.  Consequently, the magnetization will instead trace an elliptical trajectory, in order to 

minimize the strength of the dynamically-induced stray field.  The dynamic demagnetizing 

field has been used before to derive boundary conditions for longitudinally-magnetized 

stripes.107  Here, instead, the possibility of exciting propagating spin waves using the dynamic 

demagnetizing field was investigated.   

 The Permalloy stripe - of length 100 nm, width 20 μm, and thickness 40 nm – was 

assumed to represent a semi-infinite magnetic film.  The in-plane cell-size was (5 × 5) nm2, 

and the stripe was assumed to be one-cell thick.  One-dimensional periodic boundary 

conditions141 were applied along the length of the stripe, which was also longitudinally biased 

by H
B
 = 500 Oe.  Since the bias field was applied exactly parallel to the edge, the distribution 

of the static demagnetizing field was uniformly zero.  A spatially-uniform continuous-wave 

magnetic field was then applied along the y-axis, with a frequency of 14 GHz, and the 

magnetization was sampled every 8.93 ps.  Presented in Fig. 4.9 (a) are snapshots of the 

dynamic out-of-plane component of magnetization close to the left edge of the stripe, taken 18 

ns after the exciting field was first applied, and arranged in sequential time steps.  Two points 

can be noted here.  First, the background of the waveguide is observed to resonate.  Second, 

and more significantly, spin waves can be observed propagating from the left edge of the 

waveguide towards the center of the waveguide, with a wavelength of 425 nm.   
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 To map the dispersive character of the excited spin waves, a continuous-wave 

approach (as put forward by Van de Wiele et al.175) was therefore adopted, whereby the 

dynamic continuous-wave micromagnetic simulations were repeated with stepped frequencies 

of excitation.  To automate the running of these series of simulations, a MatLab script was 

used to generate a series of dynamic “.mif” files, where the frequency of the excitation f (and 

the corresponding sampling time
f8

1 ) was adjusted from 7 GHz to 16 GHz, in discrete steps 

of 0.5 GHz.  The MatLab script also generated a sequence of batch files, which were used to 

call OOMMF via the command line and also start the dynamic simulation.  Upon completion 

of the said simulation, MatLab was then called, and a further script was used to calculate the 

one-dimensional Fourier transform across the width of the stripe (using Eq. 4.5).  This 

procedure was then repeated sequentially for every frequency step, enabling the dispersion 

profile shown in Fig. 4.9 (b) to be constructed.  Note that, again, the contribution at ky = 0 was 

zeroed.  This dispersion profile confirms that MSSWs were being excited close to the edge of 

the 40 nm-thick stripe, which was anticipated due to the thickness of the stripe being ~8 times 

larger than the exchange length.  The dispersion corresponding to the spin waves excited 

across a 2 nm-thick stripe was also calculated in the same fashion, and is presented in Fig. 4.9 

(c).  Here, in stark contrast, the dispersion is of quadratic form, revealing that the propagating 

 

Fig. 4.9  (a) Top to bottom:  Snapshots of the dynamic out-of-plane component of 

magnetization across the 40 nm-thick Permalloy film, taken 18 ns after the 

initial application of the exciting field (of frequency 14.0 GHz), given in 

sequential time steps of 8.93 ps.  (b)-(c) Dispersion of the excited spin-

waves excited in the Permalloy stripe of thickness 40 nm and 2 nm 

respectively.  These were calculated using continuous-wave excitation, 

where the spectra corresponding to each frequency has been normalized.   
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spin waves were dominated by the exchange interaction.  These results demonstrate the 

efficiency with which spin waves can be excited using the dynamic demagnetizing field, and 

furthermore the possibility to excite spin waves with a very wide range of frequencies and 

wavelengths.    

4.4 Hybrid analytical / numerical model of the local susceptibility 

 The definition of the local FMR frequency used so far crudely involves the Kittel 

equation, taking into account only the internal magnetic field and the out-of-plane dynamic 

demagnetization.  So, a quantitative model was developed to calculate more precisely the 

local frequency of resonance.   

4.4.1 Analytical generalization of the Polder susceptibility 

 In Section 2.5.2 (specifically, Eqs. 2.98 - 2.99), the demagnetizing tensor was used to 

split both the static and dynamic effective fields into their constituent parts.  Traditionally, the 

effective field in Eq. 2.97 is considered to be composed of only the static Zeeman HB and 

demagnetizing MH Ndemag 4  fields.  Instead, here the demagnetizing tensor is recast as 

the effective demagnetizing tensor
eff

N , which characterizes the response of the 

magnetization to all the contributing magnetic fields (except the Zeeman field) 
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Following the derivation already outlined in Section 2.5.2, it is assumed that the bias field is 

applied along the z-axis.  The effective field can now be split into its static and dynamic 

contributions 
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Substitution of Eqs. 4.8 into Eq. 2.97 yields 
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If the oscillations are assumed to be free, Eq 4.9 reduces to a more complete form of the Kittel 

equation (a more detailed derivation is supplied in Appendix 1) 
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If instead the oscillations are forced i.e. hB ≠ 0, the LLG equation (Eq. 4.9) leads to the system 

of equations 
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Solving this set of inhomogeneous equations leads, in the linear approximation, to the 

effective susceptibility tensor 
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The elements of the effective susceptibility tensor are, to first order, therefore of the form 
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4.4.2 Numerical calculation of the effective demagnetizing tensor 

 The elements of the effective susceptibility tensor defined in Eq. 4.12 requires the 

calculation of the 5 elements of the effective demagnetizing tensor 
eff

N .  Analytically, it is 

generally impossible to calculate the spatial distribution of the elements of 
eff

N  - 

micromagnetic calculations are therefore used to obtain numerical solutions.  The co-ordinate 

system used in all OOMMF calculations (unless otherwise stated) discussed in this thesis is 

shown in Fig. 4.10 (a).   The thin film is assumed to extend in the x-y plane, have thickness 

along the z-axis, and is globally biased along the y-axis.  As a result of some competing 

magnetic interactions, the spatially-varying magnetization is given by a distribution of vectors 

with non-zero projections on all three axes.   

Eqs. 4.9 - 4.17, however, were derived with a different co-ordinate system where the 

static magnetization was assumed to be parallel to the spatially-varying z-axis.  To reconcile 

this difference, a co-ordinate transform was therefore applied to all magnetization vectors 

computed using OOMMF, so that the transformed z-axis (z´) was aligned parallel to the 

magnetization. 

 

Fig. 4.10  (a)  The co-ordinate system typically adopted in OOMMF.  (b)  An example 

magnetization vector characteristic of a mesh-cell (top panel), and the 

transformed co-ordinate system (bottom panel) as defined by Eqs. 4.18 -

4.20.   
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By definition, the x´-y´ plane is orthogonal to z´, but the precise orientation of the x´-y´ axes is 

ambiguous.  Since the magnetization is most frequently lying within the plane of the film, the 

newly transformed y-axis (y´) is defined as being orthogonal to the newly transformed z´-axis, 

but within the plane of the thin film.  Thus the y´-axis is given by 
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The newly transformed x-axis (x´) is then simply given by the cross-product of the y´-z´ axes.   
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An example of this co-ordinate transform is shown in Fig. 4.10 (b).   

 Using OOMMF, the ground-state magnetization was calculated, and then exported and 

manipulated, so that the magnetization was slightly “deflected” along either the x´-axis or y´-

axis.  This was implemented by tipping the magnetization by 
1000

sM
 along the respective 

transformed axes, so that the new magnetic ground states are given by 
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where the subscripts “ip” and “oop” refer to whether the deflection was applied in or out of 

the plane of the film respectively.  The magnetization distributions defined by Eqs. 4.21 -4.22 

were then loaded into OOMMF separately as new ground-state magnetic configuration, for 

the same magnetic system as considered before.  As already discussed in Section 3.6.1, prior 
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to running any micromagnetic simulation, OOMMF calculates the demagnetizing tensor 

characterizing the sample.  The effective field generated as a response to the applied deviation 

of the magnetization was therefore calculated.  The precise manner in which the 

magnetization was “deflected” (always locally orthogonal to the direction of the static 

magnetization) leads to the system of equations 
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where the dynamic effective / Zeeman fields and dynamic magnetization are projected onto 

the appropriate transformed axes via 
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The elements of the effective demagnetizing tensor are then given by 
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and the tensor component 
eff

zzN  is merely found using the ground state magnetization and 

effective field 

     
2

,,,,,,

s

zzZeemanzeffyyZeemanyeffxxZeemanxeffeff
zz

M

MHHMHHMHH
N


 . (4.34) 

These quantities are then fed into Eqs. 4.13 - 4.14 to obtain the spatial distributions of

eff
yyyxxyxx ,,, .   

4.4.3 Local frequency of resonance across a miniaturized antidot system 

 To test the utility of the model discussed in Section 4.4.2, the model was applied to 

explain the results presented in Sections 4.3.1 - 4.3.2.  The local frequency of resonance was 

calculated for the results presented in Fig. 4.8 (c) involving the 6 nm-thick Permalloy film in 

which a circular antidot was embedded.  Presented in Fig. 4.11 (a) is the distribution of the 

effective field (projected onto the magnetization) in the vicinity of the 6 nm-thick antidot.  It 

was anticipated, and indeed observed, that the magnetization was aligned almost completely 

within the plane of the film (the maximum out-of-plane component of magnetization was 

measured as being 10 mG), due to both the in-plane application of the bias field, and the 

thinness of the film itself.  In Fig. 4.11 (b) - (f), the spatially-resolved effective demagnetizing 

tensor elements are presented.   

 To understand the distribution of the effective demagnetizing tensor elements, it is 

useful to first understand the general properties of the demagnetizing tensor characterizing a 

magnetized cuboid, in the macrospin approximation.145  For a thin film extending to infinity 

in the y-z plane, and of finite thickness along the x-axis, the demagnetizing factor in the x-

direction is unity, and all other demagnetizing factors are zero.  If now the thin film is 

confined in the y-z plane, the demagnetizing factor in the x-direction reduces below unity, and 

the other demagnetizing factors adjust so that the trace of the demagnetizing tensor is unity.  

As the confinement increases, Nxx decreases.  For a sample of size (1 × 1000 × 1000) nm3, for 
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example, Nxx = 0.995, whereas when the sample spans (1 × 100 × 100) nm3, Nxx
 = 0.966.176  

When the sample is confined so as to form a cube, Nxx
 = 1/3.   

The out-of-plane responsive tensor element eff
xxN , presented in Fig. 4.11 (b), is radially 

symmetric about the antidot.  Upon deflecting the magnetization normal to the plane of the 

sample, the induced demagnetizing field was wholly out-of-plane far from the antidot, and so 

the effective demagnetizing tensor element far from the antidot was approximately 1.  Close 

to the antidot however, the geometrical edge causes eff
xxN  to decrease, independently of the 

magnetization’s in-plane orientation.  Hence the radially-symmetric reduction in eff
xxN  is to be 

expected.   

The next two elements calculated, 
eff

xyN  and
eff

yxN , were both very close to zero (with 

absolute values smaller than 6×10-5) - indeed, it could be argued that they merely correspond 

to numerical error, due to their small size.  The distribution of
eff

yyN , shown in Fig. 4.11 (c), 

has significant non-zero value immediately on the left and right-hand sides of the antidot.  

Here, the magnetization is strongly pinned to the antidot (due to the alignment of the 

magnetization with the geometrical boundary), leading to a spatial profile of
eff

yyN  reminiscent 

of the quasi-concentric rings discussed earlier in Fig. 4.3 (b) - (c).  Last but not least, the 

distribution of eff
zzN  (shown in Fig. 4.11 (d)) is strongly similar to the distribution of the static 

effective field shown in Fig. 4.11 (a), as would be anticipated.  The trace of the demagnetizing 

tensor is traditionally always 1, but such a condition is not generally satisfied by Eqs. 4.29 - 

4.33, due to the inclusion of interactions other than that associated with the demagnetization.   



130 
 

 Using the spatial distributions of the elements belonging to the effective 

demagnetizing tensor, the distribution of the local frequency of resonance (Eq. 4.10) was 

calculated, and this is presented in Fig. 4.12 (a).  This distribution is qualitatively similar to 

that shown in Fig. 4.3 (a).  The effective susceptibility elements were then calculated using 

Eqs. 4.14 - 4.15 – shown in Fig. 4.12 (b) is the spatial distribution of the absolute value of

eff
xy  calculated with f = 9 GHz.  The distributions of

eff
xx ,

eff
xy ,

eff
yx  and

eff
yy  were 

all proportional to each other.  The region of magnetization boasting the maximum value of

eff
xy  is most efficiently excited by the spatially-uniform driving magnetic field of frequency 

9 GHz.  Plotted in Fig. 4.12 (c) is the variation of
eff

xy  along the equator of the antidot – by 

inspecting this, it can be deduced that (along the equator of the antidot) the magnetization 25 

nm away from the antidot is most efficiently excited at resonance.   

 

Fig. 4.11  (a)  The calculated projection of the effective field onto the static 

magnetization, in the immediate vicinity of the Permalloy antidot (6 nm 

thick).  (b)-(d)  The distributions of eff
xxN , eff

yyN  and eff
zzN respectively, 

calculated using Eqs. 4.30 - 4.34.   
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4.4.4 Local frequency of resonance across a longitudinally-biased semi-infinite film 

The model discussed in Sections 4.4.2 - 4.4.3 should also be capable of determining 

the local frequency of resonance across a longitudinally-magnetized stripe (hence explaining 

the results discussed in Section 3.4.2).  The analysis discussed in Section 4.4.3 was therefore 

repeated, but for the Permalloy stripe system (of thickness 40 nm) discussed in Section 4.3.2.   

Presented in Fig. 4.13 (a) - (b) is the distribution of the local frequency of resonance 

across the first 2.5 μm and 1 μm from the edge of the stripe respectively, calculated using Eq. 

4.10.  As can be seen, the local frequency of resonance is highest at the edge of the stripe (y = 

0), and rapidly decreases as y increases.  Using this profile, the local frequency of resonance 

of 9 GHz was identified as belonging to magnetization at a distance y = 120 nm from the edge 

of the semi-infinite film.   

The spatial distribution of the susceptibility component eff
yy  is presented in Fig. 4.14 

(c), calculated using Eq. 4.14 with an excitation frequency of 9 GHz.  The imaginary part is 

maximized at y = 120 nm, and the real part is approximately zero at y = 120 nm.  This 

calculation clearly confirms that the dynamic demagnetizing field was indeed responsible for 

the excitation of spin waves observed in Fig. 4.10.   

 

 

Fig. 4.12  (a) The distribution of the local frequency of resonance, calculated using Eq. 

4.10.  (b)  The spatial variation of |χ
xy

eff| across the 1 μm2 region in the vicinity 

of the antidot, calculated for the frequency f = 9 GHz using Eq. 4.15.  (c)  

Cross-sectional profile of |χ
xy

eff| across the equator of the antidot.  The grey 

section corresponds to the width of the antidot.   
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4.5 Summary 

In summary, the method of exciting spin waves (with finite wave vector) using global 

exciting fields has been discussed.  By tuning the frequency of the global excitation, 

specifically-targeted regions of magnetization, with a graded magnonic index, can be 

efficiently excited, leading to the generation of propagating spin waves.  The spin waves can 

manifest in the form of spin-wave caustic beams (when the dipolar interaction dominates), or 

more regular plane waves (when instead the exchange interaction dominates).  A hybrid 

numerical / analytical model has been developed in order to enable the identification of the 

coordinates of different regions of magnetization, within a non-uniformly magnetized 

medium, which most efficiently couple to the exciting magnetic field.  This model can predict 

not only the influence of the static demagnetizing and Zeeman fields on the frequency of 

resonance, but can also incorporate the impact of the exchange field and the geometry of the 

system.  In principle, the model can also take into account all other magnetic interactions that 

can be suitably included within micromagnetic simulations.   

 

Fig. 4.13  (a)-(b) The distribution of the local frequency of resonance across the first 

2.5 μm and 1 μm from the edge of the stripe respectively. (c) The 

distributions of the real (blue line) and imaginary (red line) parts of the 

effective susceptibility tensor eff
yy , calculated at the frequency of 9 GHz, 

using Eq. 4.14.   
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Going beyond the basic mechanism outlined by Schlömann back in 1964, the work 

discussed in this chapter has successfully demonstrated that magnetic non-uniformities can be 

used to excite spin waves, in conjunction with a spatially-uniform temporally-harmonic 

microwave field.  At the time of writing, the most popular scheme of spin-wave emission 

involves micron-sized electrical circuitry – the nonuniformity of the exciting field allows spin 

waves with finite wave vector to be generated.  This scheme does not lend itself to 

miniaturization, however.  Instead, using the nonuniformities of magnetization and effective 

field - i.e. the graded magnonic index - naturally associated with micro- and nano-magnetic 

structures, one can successfully reduce the spin-wave wavelength towards the nanometric 

scale (in Fig. 4.9, for example, a spin-wave wavelength of 90 nm was obtained).  In order to 

extend this work, it is necessary to explore how a wide variety of magnetization 

configurations (such as domain walls, magnetic vorticies etc) influence the distribution of 

fFMR(r).  Then, one can go about constructing and designing suitable spin-wave emitters.   
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CHAPTER 5 
 

STEERING SPIN WAVES USING A GRADED MAGNONIC 

INDEX 

 

5.1 Introduction 

Classically, the trajectory of propagating waves can be understood using the principles 

of geometrical optics.177-178  This approach can be traced back to Fermat’s Principle, and is 

underpinned by four axioms – namely, that wave propagation is both rectilinear and 

reversible, and obeys both the law of reflection and Snell’s Law.  The lattermost law is 

essential for understanding how waves refract across the interface between two dissimilar 

media.  Snell’s Law states that the angles of incidence θ1 and refraction θ2 for light traversing 

an interface between two media (of refractive index n1 and n2 respectively) are connected via 

2211 sinsin  nn  . (5.1) 

Snell’s Law is generally a consequence of electromagnetic boundary conditions – specifically, 

that the component of E parallel to the translationally-invariant interface should be conserved.  

Analogous forms of Snell’s Law, describing the propagation of other types of waves (e.g. 

phonons179 and acoustic waves180 etc.) can also be derived.  For the case of spin waves, 

Snell’s Law has been successfully adapted181-186 to describe the reflection and refraction of 

exchange and dipole-exchange spin waves across a well-defined sharp interface, where the 

two ferromagnetic films on the opposite sides of the interface differ in either their 

magnetization orientation or effective field strength.   

In an extensive series of articles,66, 187-190 Anatoly Vashkovskii and Edwin Lock 

theoretically studied the reflection and refraction of dipolar spin-wave beams across distinct 

boundaries, through considering not Snell’s Law, but rather by ray tracing across 

isofrequency curves.  Specifically, the isofrequency curves characterizing the two coupled 
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ferromagnetic films were constructed, and by assuming the tangential wave vector component 

was conserved, the trajectory of a wave traversing the interface was calculated.  As a 

consequence of the anisotropy of the dipolar spin-wave dispersion, a wealth of counter-

intuitive effects, such as total non-reflection and negative refraction, were predicted (the 

former was recently experimentally observed by Geniusz et al).191   

In optics, the propagation of electromagnetic waves across media with smoothly-

varying refractive index is studied under the umbrella fields of graded-index optics and 

transformation optics.192  By tailoring the spatial distribution of the refractive index, it is 

possible to realize exotic electromagnetic functionalities, such as invisibility cloaking,193 

optical black holes194 and “superlensing”.195  Inspired by such demonstrations, research is 

now being devoted to mapping the concepts of transformation optics onto magnonics.  It has 

already been noticed that, by modifying the ground state magnetization distributions across 

patterned structures, spin waves can be continuously steered around bends.56,196  Moreover, by 

directing spin waves through regions in which the internal field smoothly varies, the wave 

vector can be increased,197 or an “interface-mode” can be generated.198  Finally, Elyasi et al. 

have theoretically demonstrated199 the possibility of magnonic cloaking, whereby non-

magnetic obstacles do not affect the wave fronts of passing spin waves.   

In this chapter, I will discuss experimental and numerical results which demonstrate 

that continuously-varying magnetic parameters can be used to smoothly steer propagating 

spin waves across a T-junction of waveguides.  Throughout, spin waves are excited using the 

Schlömann mechanism (which was studied previously in Chapter 4).  In the first section of 

this chapter, I will discuss the results of TRSKM imaging, which reveal that when the T-

junction is biased symmetrically, symmetrical propagation of the excited spin waves is 

observed across both “arms” of the T-junction.  When the T-junction is instead biased 

obliquely, spin-wave propagation is instead observed along one arm only.  In the second 

section, I then discuss the results of OOMMF simulations, which are used to both corroborate 

and (partially) understand some of the experimentally-observed features.  In the third section, 

I will discuss extensive calculations involving the micromagnetic results, which demonstrate 

that the experimentally-observed behavior emerges as a natural consequence of spin waves 

traversing continuously-varying distributions of the internal field and magnetization – these 

distributions are responsible for steering the spin waves in particular ways.  This 
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interpretation is considered to be part of the theme of research termed “graded-index 

magnonics”, due to it being inspired by the principles of graded-index optics.   

5.2 Sample details and experimental measurements 

 The magnetic sample studied in this chapter is a Permalloy microstructure 

geometrically patterned to form an ‘H’-shape.  The microstructure was fabricated by Dr. 

Sergei Chertapolav using a combination of magnetron sputtering and electron beam 

 

Fig. 5.1 A schematic of the procedure used to fabricate the studied Permalloy 

microstructure.  (a)-(c) A 300 nm-thick layer of PMMA - Poly(methyl 

methacrylate) – was deposited on a glass coverslip, and capped by a thin 

layer of Aluminium.  (d)-(f) Electron-beam lithography was used to pattern 

the PMMA into a mask. (g)-(h) A thin layer of Permalloy was sputtered 

across the entire sample, and the PMMA film was then removed using 

acetone, leaving behind the Permalloy microstructure mounted on the glass 

substrate.   
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lithography.  A schematic of the fabrication process is shown in Fig. 5.1.  In the first stage, a 

thin layer of PMMA (poly(methyl methacrylate)) was deposited on a glass coverslip.  In order 

to remove any charges induced through the electron beam lithography, a further layer of 

Aluminium was deposited on the PMMA using thermal vacuum deposition.  Electron beam 

lithography was then used to geometrically irradiate the PMMA , and the irradiated PMMA 

was then removed using 2-Propanol, 4-Methyl-2-Pentanon, and Ethyl Methyl Ketone.  

Permalloy was then deposited across the entire structure, using a calibrated rate of film 

deposition (3.33 Å /s) to control the final film thickness.  The PMMA layer was then removed 

using acetone, leaving behind the Permalloy microstructure mounted directly on the glass 

substrate.  An optical photograph of the five fabricated microstructures is given in Fig. 5.2.  

The microstructures had a uniform thickness of 100 nm, a fixed waveguide width of 5 μm, 

and were nominally identical, differing only in their relative orientation (by angles of 15°).   

The microstructures shown in Fig. 5.2 were, in the first stage, positioned above the 

500 μm-wide signal line of the CPW discussed in Section 3.3.2, and affixed to the said 

waveguide using Kapton tape.  The mounted structure was then inserted within the TRSKM 

system for further study, and uniformly magnetized along the y-axis by a bias field H
B
 = 729 

Oe.  This bias field - the maximum that can be delivered using the electromagnet integrated 

within the TRSKM system - was applied in order to reasonably saturate the magnetization of 

the microstructures.  This bias magnetic field was then reduced incrementally so as H
B
 = 500 

Oe.  Upon focusing the probing laser beam onto the surface of the microstructures, the pulsing 

 

Fig. 5.2 An optical photograph of the magnetic samples under investigation.  The 

five Permalloy ‘H’-shaped microstructures were nominally identical, 

differing only in their relative orientation as indicated.   
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current as described in Section 3.3.3 was applied across the signal line of the CPW.  The time-

varying signals shown in the left panels of Fig. 5.2 (a) were then recorded, where the upper 

red (lower blue) signals were acquired when the probing laser beam was focused on the center 

of the leg (arm) of the T-junction.  These time-varying signals were all obtained with a time-

step of 3.33 ps, and a lock-in time-constant / sensitivity / gain of 1 s / 10 μV / 20 dB.  The 

time-varying signal has been nulled (during post-processing) prior to the arrival of the 

pumping field, and due to the oscillations decaying mostly within the remaining 3.203 ns, a 

rectangular window function was used to compute the Fourier Transform of the signals.  

These frequency spectra are presented in the right panel of Fig 5.2 (a).  The dominant modes 

of resonance can be clearly identified, where the frequency of the dominant mode in the leg of 

the T-junction (8.25 GHz) exceeds that of the arm (5.75 GHz).   

 Presented in Fig. 5.3 (b) - (k) are the time-varying signals, and their 

corresponding Fourier Transforms, presented in order of increasing angle α of the bias 

magnetic field relative to the leg of the T-junction.  While these are shown sequentially, they 

were acquired in different order.  Specifically, after measuring the response of the system 

when α = 0°, the laser probe was moved to the other two neighboring microstructures, hence 

allowing the signals for α = 15° and α = 30° to be collected.  The sample was then completely 

removed from the TRSKM system, physically rotated above the coplanar waveguide (e.g. by 

22.5°), and reinstalled back within the TRSKM system.  In this fashion, time-varying signals 

for three different values of α were recorded, until the entire data set shown in Fig. 5.2 was 

collected.  To evaluate the frequency of resonance / full-width half-maximum, the frequency 

spectra were fitted with a Lorentzian distribution (this is discussed more fully in Appendix 2).   

The dependence of the frequency of the dominant mode of resonance on the 

orientation of the bias field – summarized in Fig. 5.3 (l) - can be understood as a consequence 

of the static demagnetizing field.200  When the bias field was aligned parallel to the length of 

the considered geometrical element, the static demagnetizing field was approximately zero, 

therefore causing the internal field (and by extension the frequency of the dominant mode) to 

be maximized.  If instead the bias field was orthogonal to the waveguide’s long axis, the static 

demagnetizing field was maximized in strength, causing the internal field / frequency of the 

dominant mode of resonance to be reduced.  At intermediate angles of the bias field relative to 

the waveguide’s length, the frequencies of the two dominant modes approach each other, until 

they overlap when α = 45°.   
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Fig. 5.3  (a) - (k) Left panel: time-varying Kerr signals, acquired when the probing 

laser was focused on the “leg” (red line) / “arm” (blue line) of the Permalloy 

T-junction.  Right panel: the Fourier transform of the time-varying signals.  

Panels (a) to (k) show the signals and spectra recorded with the bias field 

orientation as indicated (HB = 500 Oe throughout).  (l)  The dependence of 

the frequency of the dominant mode of resonance on the orientation of HB.3   
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After acquiring the results presented in Fig. 5.3, the previously-pulsed temporal aspect 

of the driving magnetic field was switched to continuous-wave form.  As already outlined in 

Section 3.3.3, the continuous-wave excitation was harmonic, with a frequency defined as a 

multiple of 80 MHz.  In order to excite spin waves of finite wave vector using the Schlömann 

mechanism, the frequency of excitation was selected so as to correspond closest to the higher 

frequency of the two dominant modes.  For example, when the bias magnetic field was 

applied parallel to the leg of the T-junction (α = 0°), the frequency of the dominant mode in 

the leg was 8.25 GHz, and so the frequency of the harmonic excitation was set to 8.24 GHz.  

For all the experimentally-acquired images presented henceforth, the H-shaped Permalloy 

microstructure was initially magnetized by a reasonably-saturating field HB = 729 Oe which 

was then reduced incrementally such that HB = 500 Oe.  Subsequently, the signal generator 

was used to apply a sinusoidal current of 45 mA across the coplanar waveguide, generating an 

exciting magnetic field across the sample.  With the signal generator synchronized to the 

laser’s ouput, time-resolved images of the dynamic out-of-plane component of magnetization 

across the surface of the sample were then acquired stroboscopically.  The images were 

always recorded with a time-step of 
8

T  seconds, where T was the period of the harmonic 

exciting field, and the lock-in-amplifier’s time-constant / sensitivity / gain was always set to 2 

s / 50 μV / 20 dB.   

 Due to the measured TRSKM images needing both a high resolution and a large 

spatial extent, the TRSKM images presented in this chapter were acquired over a relatively 

long period of time.  Typically, space-resolved steps of (200 × 200) nm2 were used to acquire 

an image spanning (28 × 8) μm2.  Since the signal at each pixel took 7 s to measure, the time 

needed for a single image to be recorded was around 11 hours.  During this time, the TRSKM 

system had to remain stable in all respects, which represented the key challenge associated 

with acquiring the presented data.  To reduce the impact of mechanical drift and temperature-

variation, the images presented in this chapter were all acquired at night and / or over 

weekends (when the shared laboratory was unoccupied, and the otherwise-cyclic central 

heating of the building was switched off).  Some in-plane mechanical drift - whilst minimized 

- was still anticipated and indeed observed, so the imaging was frequently performed across a 

spatial extent larger than that strictly required.  Furthermore, the reflectivity of the imaged 

sample was checked and refocused after every individual image of a series was acquired, so 

as to reduce the impact of mechanical drift in the out-of-plane direction.   
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 Presented in Fig 5.4 are the reflectivity and Kerr images recorded across the T-

junction when HB = 500 Oe and α = 0°.  These images were obtained with an exciting 

continuous-wave magnetic field of frequency 8.24 GHz, and are arranged sequentially from 

panels (a) - (h) in increasing time steps of 15.2 ps.  The left panel corresponds to the 

reflectivity (the intensity of reflected light measured by one photodiode in the optical bridge 

detector).  In the middle panel, the entire raw Kerr image is presented.  In the right panel, the 

reflectivity signal has been used as a mask, to remove the Kerr signal not originating from the 

surface of the Permalloy microstructure.  No Kerr images were calibrated to the cone angle of 

precession.   

 Resonance was successfully excited in the leg of the T-junction, as evidenced by the 

sign of the Kerr signal changing every half-period.  Furthermore, spin waves are observed 

propagating along both arms of the T-junction.  The excited spin waves are approximately 

 

Fig. 5.4  Left panel: reflectivity signal of the imaged microstructure.  Middle panel: 

the raw Kerr image of the out-of-plane dynamic component of 

magnetization within the T-junction, when pumped continuously at 8.24 

GHz.  Right panel: the Kerr image as shown in the middle panel, but 

cropped according to the reflectivity to show only the Kerr signal arising 

from the sample surface.  (a)-(h)  The sequence of TRSKM images, taken in 

increments of 15.2 ps, where the bias field HB = 500 Oe was applied parallel 

to the leg of the T-junction (so α = 0°).   
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equal in amplitude, identical in phase, and have their wavefronts inclined at an angle.  This 

suggests the propagation of spin-wave caustic beams.   

Upon rotating the bias field by ±15° relative to the leg of the T-junction, the 

frequencies of the dominant precessional modes within the leg and arm of the T-junction were 

observed in Fig 5.3 to not vary (some slight variation was anticipated, but the resolution 

associated with the pulsed TRSKM measurements made any such change unobservable).  The 

frequency of excitation was therefore kept at 8.24 GHz, and the piezo-electric stage upon 

 

Fig. 5.5  Left panel: reflectivity signal of the imaged microstructure.  Middle panel: 

the raw Kerr image of the out-of-plane dynamic component of 

magnetization within the T-junction, when pumped continuously at 8.24 

GHz.  Right panel: the Kerr image as shown in the middle panel, but 

cropped according to the reflectivity to show only the Kerr signal 

originating from the sample surface.  (a)-(h)  The sequence of TRSKM 

images, taken in increments of 15.2 ps, where the bias field HB = 500 Oe 

was applied at an angle α = +15° to the leg of the T-junction.   
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which the samples were mounted was moved, so as to bring a neighboring (rotated) 

microstructure within the field of view of the probing lens.  This, in effect, rotated the bias 

magnetic field relative to the microstructure.  The corresponding reflectivity images, Kerr 

images, and Kerr images normalized to the reflectivity (identical in fashion to those presented 

in Fig. 5.4) are presented in Figs 5.5 and 5.6, where the bias field was rotated relative to the 

T-junction’s leg by α = +15° and α = -15° respectively.   

 

Fig. 5.6  Left panel: reflectivity signal of the imaged microstructure.  Middle panel: 

the raw Kerr image of the out-of-plane dynamic component of 

magnetization within the T-junction, when pumped continuously at 8.24 

GHz.  Right panel: the Kerr image as shown in the middle panel, but 

cropped according to the reflectivity to show only the Kerr signal arising 

from the sample surface.  (a)-(h)  The sequence of TRSKM images, taken in 

increments of 15.2 ps, where the bias field HB = 500 Oe was applied at an 

angle α = -15° to the leg of the T-junction.   
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The TRSKM images presented in Figs. 5.5 and 5.6 share some similarities.  In both 

sets of images, the symmetry of the spin-wave excitation and propagation has been broken, 

whereby a single spin wave is observed to propagate along the right (left) arm when α = +15° 

(α = -15°).  The relative angle of the wave fronts appears to rotate across the waveguide.  

Across the other waveguide, in contrast, spin-wave propagation is absent.  Significant 

amplitude of precession is also observed along a distinct “stripe”, localized along the upper 

(lower) edge of the arm when α = +15° (α = -15°).   

The experimentally-acquired images suffer due to the viewing window not being 

symmetrical relative to the leg of the T-junction.  For example, in Fig. 5.5, 14 μm of the arm 

is imaged on the left-hand side of the leg, but only 5 μm of the arm is imaged on the right.  

This was done deliberately, in order to reduce the (already substantial) time required for the 

measurements.  Compensatory images, with equal and symmetrical extension of the arms 

across the viewing window, were therefore acquired to verify the absence of spin-wave 

 

Fig. 5.7  Left panel: reflectivity signal of the imaged microstructure.  Middle panel: 

the raw Kerr image of the T-junction, when pumped continuously at 8.24 

GHz.  Right panel: the Kerr image as shown in the middle panel, but 

cropped according to the reflectivity to show only the Kerr signal 

originating from the sample surface.  (a)-(d)  TRSKM images acquired with 

the bias magnetic field HB = 500 Oe applied at an angle α = +15°,  α = -

165°,  α = +165° and α = -15° relative to the leg of the T-junction.  The 

snapshots were obtained with a relative phase difference of either 0° or 

180°, with respect to the exciting field.   
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propagation.  Furthermore, the bias field was reversed in polarity, in order to check the 

symmetry of the observed spin-wave features.  These measurements are presented collectively 

in Fig. 5.7 (a) - (d), acquired with a phase difference of either 0° or 180° with respect to the 

phase of the exciting field.  These images reveal that the observed spin-wave beam 

propagated along one waveguide consistently, regardless of the polarity of the canted bias 

field.  Moreover, the absence of the spin-wave beam across the other waveguide is certainly 

more pronounced.   

5.3 Micromagnetic modelling 

 The experimentally-acquired results discussed in Section 5.2 were restricted by 

limitations associated with the TRSKM system.  The probing laser beam had a finite 

penetration depth of about 20 nm,201 and so the experimental results only show the 

magnetization dynamics excited across the upper surface of the sample.  Moreover, the finite 

diameter of the probe spot on the surface of the sample also resulted in the detected signal 

being averaged across the spot-size.†††††††  To therefore overcome these restrictions, and 

furthermore to quantitatively study the spin-wave propagation, micromagnetic calculations 

were performed.  The geometry modelled within the micromagnetic simulations was designed 

to mimic the sample described in Section 5.2 - specifically, the H-shaped structure was 

enclosed within a cuboid of size (40 × 40 × 0.1) μm3, and discretized into a mesh of cells of 

size (100 × 100 × 10) nm3.  The exchange interaction was wholly neglected – the justification 

for this approximation will be discussed shortly.  The gyromagnetic ratio γ/2π and saturation 

magnetization Ms of Permalloy was assumed to be 2.8 MHz / Oe and 800 G respectively.  At 

the first step of the micromagnetic calculations, the structure was uniformly magnetized along 

the vector yx ˆˆ01.0  .  The slight tilt of the magnetization was imposed so as to avoid the 

unrealistic micromagnetic “flower” state,202 which is energetically unstable at finite 

temperatures.  The bias magnetic field HB, aligned similarly along the vector yx ˆˆ01.0  , was 

reduced incrementally from 2000 Oe to 500 Oe, in stages of 100 Oe.  The Gilbert damping 

coefficient was inflated to 0.5 for this micromagnetic calculation, in order to reduce the 

computational time required.  Each stage of the micromagnetic relaxation was considered 

complete when the maximum rate of magnetization precession across the entire system 

                                                           
††††††† The laser beam had a Gaussian cross-section, and so the acquired signal strictly represents the 

convolution of the measured Kerr rotation with the nominally diffraction-limited probing spot.   
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decreased below 0.01 °/ns.  Using this approach, the ground-state magnetization 

corresponding to H
B
 = 500 Oe was calculated.   

 

Fig. 5.8 (a)-(b)  The calculated distributions of the static magnetization (arrows) and 

the projection of the internal magnetic field onto the magnetization (color 

scale) are shown when the magnetic field HB = 500 Oe was applied at  α = 

0° and α = +15° to the leg of the T-junction respectively.  Each arrow 

represents the average of (5 × 5) mesh cells, where the mesh-cells were of 

size (100 × 100 × 10) nm3.  (c)-(d)  The calculated distribution of the 

magnitude of the exchange field, and the projection of the exchange field 

onto the magnetization respectively.  These were calculated across a 5 μm 

wide / 100 nm thick waveguide subjected by a bias magnetic field H
B
 = 500 

Oe applied at α = +15°.  The meshing cells were of size (5 × 5 × 5) nm3.   



147 
 

 As part of the micromagnetic calculation of the static magnetization configuration, the 

distribution of the Zeeman and demagnetizing fields were calculated.  The Zeeman field, due 

to the uniformity of the external bias, was uniformly 500 Oe and aligned with the vector

yx ˆˆ01.0  .  In contrast, the static demagnetizing field was strongly non-uniform across the 

transversely-magnetized waveguide, due to the formation of fictitious magnetic charges at the 

waveguide’s geometrical edges.  The demagnetizing field was strongest at the edges of the 

waveguide, and weakest at the center.  As a result, the projection of the internal field onto the 

magnetization was strongly non-uniform across the transversely-biased arm of the T-junction, 

as shown in Fig. 5.7 (a).  The orientation of the magnetization was similarly non-uniform: 

across the center of the arm, the magnetization was crudely parallel to the bias field (i.e. 

transverse to the waveguide), but close to the edges, the magnetization was strongly canted, as 

it was seeking to align with the edges of the waveguide.  Similar character of the projected 

internal field and magnetization was observed when α = +15°, as is presented in Fig. 5.7 (b).  

The ground-state magnetic configurations for α = ±15° were calculated in an identical manner 

as for α = 0°, except for the rotation of the bias magnetic field.   

 To incorporate the exchange interaction correctly, it is necessary for the meshing cell-

size to be equal to or less than the exchange length – for Permalloy, this is about 5 nm.  

However, if such a cell-size was adopted, more than one billion cells would have been 

required to model the considered (40 × 40 × 0.1) μm3 system - this is beyond the capability of 

even GPU-enabled micromagnetic packages, such as MuMax3.136  To therefore model such 

gargantuan systems, one is forced to adopt a cell-size greater than the exchange length, which 

invalidates any calculations involving the exchange interaction.  The exchange interaction 

was therefore neglected for these calculations.  On a physical level, this approximation can be 

justified to some extent, as the physical length-scales being studied are far in excess of the 

exchange length.  To ultimately evaluate whether this approximation was reasonable, the 

exchange field was calculated across a simpler (and smaller) magnetic system.  A waveguide 

of size (15 × 5000 × 100) nm3 was modelled, using a mesh cell of size (5 × 5 × 5) nm3 and 

with one-dimensional periodic boundary conditions141 applied along the x-axis.  The ground 

state magnetization of this waveguide, when subjected to a bias magnetic field H
B
 = 500 Oe 

applied at 15° to the waveguide’s short axis, was calculated, with the exchange interaction 

included (the exchange constant Aex of Permalloy was assumed to be 1.3 μerg / cm).   
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Presented in Fig. 5.8 (c) is the absolute value of the calculated exchange field across 

the width of the waveguide.  The exchange field was uniformly below 15 Oe within the 

central 4 μm of the waveguide’s width, but grew substantially to about 50 Oe within a 

distance of 100 nm from the waveguide edges.  This calculation could be (naively) interpreted 

as showing the exchange field is significant.  When projected onto the static magnetization, 

however, the exchange field was only on the order of 1 Oe across almost the entire 

waveguide, as shown in Fig. 5.7 (d).  This indicated that the demagnetizing and Zeeman fields 

completely dominate the magnetic system – close to the edges of the waveguide, the exchange 

field did indeed become stronger, but it was still dwarfed by the demagnetizing and Zeeman 

fields - and so the exchange interaction was judged as having negligible influence within the 

magnetic system.   

 The experimental signals acquired using TRSKM all represent dynamic quantities, 

and so to effectively corroborate the experimental measurements, dynamic simulations were 

performed.  As was done with the experimental measurements, the dynamic micromagnetic 

simulations were classified into two categories, depending on whether the spatially-uniform 

exciting magnetic field had pulsed or harmonic temporal profile.  For the pulsed excitation, 

the temporal profile of the exciting magnetic field was designed to mimic the pulsed field 

used within the TRSKM system.  Specifically, the pulse had the form 
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The amplitude h0, time delay t0, and the full-duration half-maximum (tw) of the pulsed field 

were set to 0.1 Oe, 500 ps, and 25 ps respectively.  This exciting field was applied uniformly 

along the z-axis, the Gilbert damping coefficient of Permalloy was set to 0.008 (as is 

characteristic of Permalloy), and the magnetization state was recorded in time steps of 10 ps, 

for a duration of 10.24 ns.   
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 The spatially-averaged response of the magnetization to the pulsed excitation, and the 

corresponding Fourier transform, is presented in the left and right panels of Fig. 5.9 

respectively.  The signals and spectra in panels (a) - (c) correspond to the systems in which α 

= 0°, α = +15° and α = -15° respectively.  Evident throughout are two maxima, corresponding 

to the dominant modes of resonance within the arm and leg of the T-junction.  Specifically, 

the frequencies of the dominant modes when α = 0° was 5.47 GHz and 7.62 GHz, and when α 

= ±15°, 5.47 GHz and 7.52 GHz.  Experimentally, however, the frequencies of the dominant 

modes were around 7.50 GHz and 8.25 GHz respectively.  This difference was attributed to 

the assumed system parameters used to characterize the Permalloy in the micromagnetic 

calculations.  Permalloy typically has a saturation magnetization quoted in the literature as 

ranging from 700 G to 860 G.196,203  Furthermore, the gyromagnetic ratio of Permalloy is 

known to differ from the gyromagnetic ratio of a free electron by around 5%.203  These 

potential sources of error could reasonably explain the discrepancy between the numerically-

calculated and experimentally-measured frequencies of resonance.   

 In the next set of micromagnetic calculations, the magnetic system was uniformly 

excited using a continuous-wave excitation 

   zh ˆ2sin0 tfhtcw   . (5.4) 

 

 

Fig. 5.9  The spatially-averaged out-of-plane component of magnetization (left panel) 

and the corresponding Fourier transform (right panel), presented from top to 

bottom where α = 0° (red), α = +15° (blue) and α = -15° (orange) 

respectively.   
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The amplitude h0 was 1.75 Oe and the frequency f was set to the frequency of the higher of 

the two dominant modes shown in Fig. 5.8 (f = 7.62 GHz when α = 0°, and f = 7.52 GHz 

when α = ±15°).  The magnetization was then recorded at eight equidistant points across the 

period of the exciting field (so
f

t
8

1
 ), and the static magnetization was subtracted from 

each magnetization state in order to obtain dynamic results.  It was observed that the  

 

Fig. 5.10  (a)-(h)  Snapshots of the raw dynamic out-of-plane component of 

magnetization across the T-junction, which was biased by HB = 500 Oe 

applied at the angle α = -15° (left column), α = 0° (middle column) and α = 

+15° (right column) relative to the leg of the T-junction.  The snapshots in 

the left, middle and right panels are sequentially arranged from top to 

bottom in increasing time steps of 16.6 ps, 16.4 ps and 16.6 ps respectively.  

(i)  The same snapshots as shown in (h), except the raw snapshots have been 

convolved with a Gaussian smoothing kernel.    
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precession of magnetization was wholly periodic after about 2 ns after the exciting field was 

applied.  The images presented in the left, middle and right panels of Fig. 5.9 are the time-

resolved raw snapshots of the dynamic out-of-plane components of magnetization, when the 

microstructure was biased at an angle α = -15°, α = 0° and α = +15° respectively.  Despite the 

mismatch in the frequencies of resonance, there is qualitatively good agreement between the 

images obtained experimentally and numerically.  This agreement is further augmented by 

smoothing the images shown in Fig. 5.10 (a) - (h), as shown in the example presented in Fig. 

5.10 (i).  Here, a Gaussian kernel with one standard deviation of 3 cells has been convolved 

with the raw images, providing a resolution more comparable to that associated with the 

TRSKM images.   

 

 

Fig. 5.11  Snapshots of spin waves propagating in the arms of the Permalloy T-

junction.3  The bias magnetic field HB = 500 Oe is applied (a) and at angles 

of (b) α = −15° and (c) α = +15° relative to the leg of the junction. In each 

case, the top (blue-white-red colour scale) and bottom (black-yellow colour 

scale) panels show results of the TRSKM imaging and micromagnetic 

simulations, respectively.  The frequency of the cw pump was 8.24 GHz for 

experiments, while for simulations it was 7.62 GHz in (a) and 7.52 GHz in 

(b) and (c).   
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Presented in Fig. 5.11 are comparable side-by-side snapshots of the spin-wave 

propagation, acquired experimentally (black-yellow colour scale) and numerically (red-white-

blue colour scale).  Qualitatively, these images show very good agreement.  When the bias 

magnetic field is applied parallel to the T-junction’s leg, spin-wave propagation is observed 

across both arms, with similar canting of the wavefronts.  Similarly, when the bias magnetic 

field is canted in either direction, only one spin-wave beam is observed.  Again, the 

orientation of the spin-wave wavefronts agree remarkably well.  Also apparent is a 

concentration of spin-wave amplitude at the lower-right (lower-left) corner of the T-junction 

when α = -15° (α = +15°).  Beyond these features, there is also a horizontal “stripe” of 

amplitude close to the lower (upper) edge of the horizontal waveguide, when α = -15° (α = 

+15°).  The only disagreement between the snapshots lies in the frequency of excitation 

(corresponding to about 0.75 GHz), as already discussed.   

The strong agreement between the experimentally-acquired images and the 

micromagnetic results indicated that the micromagnetic simulations could be used to 

successfully infer the depth-dependent magnetization dynamics.  Shown in Fig. 5.12 (a) - (b) 

are smoothed snapshots of the dynamic out-of-plane component of magnetization across the 

top and bottom surfaces of the sample respectively, when α = +15°.  The excited spin wave  

 

Fig. 5.12  (a)-(b) The images of the out-of-plane component of the dynamic 

magnetization, convolved with a Gaussian kernel, across the top and bottom 

surfaces of the Permalloy structure respectively, when the microstructure 

was continuously pumped at 7.52 GHz.3   
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propagating along the arm clearly has depth-resolved character, due to the spin-wave 

amplitude being lower (higher) on the top (bottom) surface of the magnetic structure.204  This 

therefore confirmed that magnetostatic surface spin waves were being excited across the 

microstructure, rather than backward-volume magnetostatic spin waves.   

 Another interpretative question that was explored using micromagnetic simulations 

related to the character of the excited spin waves.  The rotated orientation of the wavefronts 

observed in Figs. 5.4 - 5.7 suggested that the excited spin waves were caustic beams.  

However, caustic beams are typically observed97, 169 to be tightly-focused, with a narrow 

angular aperture, which contrasts with the 5 μm wide beam observed in Figs 5.4 – 5.7.  To 

therefore provide ultimate evidence that the spin waves were caustic beams, the 

micromagnetic simulations for the system (in which α = +15°) was repeated, except the width 

of the T-junction’s leg was reduced to 1 μm.  After relaxing the magnetization across 

microstructure, the spatially-averaged response of the out-of-plane component of 

magnetization to a pulsed magnetic field was Fourier transformed to obtain a characteristic 

frequency spectrum, shown respectively in Fig. 5.13 (a) - (b).  The frequency of the dominant 

mode in the arm remained unchanged from before, but the dominant mode in the leg shifted 

significantly to the higher frequency of 10.3 GHz.  Such a change was anticipated, due to the 

transverse wave vector of the dominant confined mode in the leg being significantly 

increased.  Sequential snapshots of the dynamic out-of-plane component of magnetization of 

the microstructure, obtained after globally and harmonically exciting the system at a 

frequency of 10.3 GHz, are presented in Fig. 5.13 from top to bottom (in time steps of 24.3 

ps).  The reduced width of the leg caused the excited spin wave to have a substantially 

reduced angular width, hence confirming that the Schlömann mechanism used here was 

exciting spin-wave caustic beams at the aperture of the T-junction’s leg.  Specifically, due to 

the finite width of the leg, the continuously-excited resonance at the interface of the leg-arm 

junction represented a 5 μm wide source of spin waves.  The finite width of this source leads 

to the excitation of spin waves with a broad range of transverse wave-vector components, 

hence forming the spin-wave caustic beams.   



154 
 

5.4 Hybrid numerical / analytical model of the spin-wave trajectories 

The experimental and numerical results discussed in Sections 5.2 and 5.3 agree 

remarkably well in demonstrating the spin-wave switching functionality of the T-junction 

(where the control mechanism was the rotation of the global bias magnetic field).  

Furthermore, the micromagnetic calculations revealed that spin-wave caustic beams (with 

MSSW dispersive character) were being excited by the continuous pumping of the dominant 

mode within the leg of the T-junction.  When the bias magnetic field was applied parallel to 

the leg of the T-junction (α = 0°), the spin-wave beams can be understood as merely 

undergoing continuous reflection from the edges of the waveguide.‡‡‡‡‡‡‡  There still 

remained, however, a key question involving the behavior of the excited spin waves when α = 

                                                           
‡‡‡‡‡‡‡ More precisely, the spin-wave beams were reflected from the channels of non-uniform field 

close to the geometrical edges of the arms.   

 

Fig. 5.13 (a) The space-averaged temporal response of the Permalloy T-junction to 

excitation by a uniform pulsed magnetic field is shown for a bias magnetic 

field of 500 Oe oriented at 15° to the leg.  (b) The FFT spectrum of the 

signal in (a) is shown.  The peaks at 5.5 GHz and 10.3 GHz correspond to 

the quasi-uniform modes of resonance confined within the arms and the leg 

of the T-junction respectively.  (c) The images of the out-of-plane 

component of the dynamic magnetization within the T-junction, when 

continuously pumped at 10.3 GHz, are shown for four moments in time-

increments of 24.3 ps.3   
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±15°.  The spin-wave excitation was asymmetric, whereby a spin wave propagated along one 

arm of the T-junction, but no propagation was observed along the other.  This was in stark 

contrast to the effect observed in a similarly-patterned YIG structure.150   

Upon exciting the Permalloy microstructure at the frequency of 7.52 GHz, the energy 

of the pumping magnetic field, via the Schlömann mechanism, was most efficiently 

transferred to the magnetization within the leg of the T-junction.  This resonantly-excited 

magnetization then emitted a spin-wave caustic beam from the leg-arm interface, propagating 

to the right when α = +15°.  This beam then traversed the non-uniform internal field / 

magnetization across the arms of the T-junction.  Across each mesh cell, the magnetization 

and effective field was assumed to be uniform - this fact was exploited, in Chapter 4, to 

calculate the spatially-varying frequency of resonance.  This idea can be extended further in 

order to calculate the spin-wave dispersion at each and every mesh cell.  Presented in Fig. 

 

Fig. 5.14 (a)  The projection of the internal field onto the ground state magnetization 

and the local orientation of the magnetization across the T-junction, 

reproduced from Fig. 5.7 (b).  (b)-(f)  The isofrequency curves belonging to 

the points labelled in panel (a).  These were all calculated for magnetostatic 

spin waves of frequency 7.52 GHz propagating in a Permalloy film of 

thickness 100 nm, in which the internal field Hi and orientation of 

magnetization θ was (b) Hi = 441 Oe, θ = 17°, (c) Hi = 386 Oe, θ = 21°, (d) 

Hi = 210 Oe, θ = 39°, (e) Hi = 303 Oe, θ = 39°, and (f) Hi = 180 Oe, θ = 10°.   
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5.14 (b) - (f) are the isofrequency curves characterizing the dispersion of plane spin waves (of 

frequency 7.52 GHz) propagating in a 100 nm-thick continuous film of Permalloy, across 

various mesh cells as indicated in Fig. 5.14 (a).   

 The trajectory of the spin-wave caustic beam can therefore be understood using the 

continuously-varying isofrequency curves across the geometry of the T-junction.  As the spin 

wave propagates from one region of magnetization / internal field to another, the longitudinal 

wave vector component adiabatically adjusts in order to satisfy the local dispersion.  In 

contrast, the wave vector component parallel to the long axis of the arms (across which the 

film was translationally invariant) was assumed to be conserved.  To identify the transverse 

wave vector component, a Fourier transform was applied along two slices across the T-

junction, as shown in the inset of Fig. 5.15.  To acquire such spectra, the spin-wave amplitude 

    xmixmFFTS tztzDA 2,,1,  , (5.5) 

was calculated.  The spin-wave amplitude spectra, across the interface of the arm-leg junction 

and the center of the arm, are presented in Fig. 5.15 (a) - (b) respectively.  Significant 

asymmetry towards positive kx in both power distributions was evident, and notably the 

maximum in the spectrum acquired across the center of the arm was kx = +0.94 radμm-1.   

 

Fig. 5.15  (a)-(b)  The Fourier transform of the dynamic out-of-plane component of 

magnetization, taken across a slice positioned across the opening of the leg 

and 2.5 μm from the upper edge of the arm of the T-junction respectively, as 

indicated in the inset.  The spectrum in (b) has been amplified by a factor of 

5.   
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 In order to map the trajectory of the propagating spin-wave beam, the isofrequency 

curves for each mesh cell within the entire T-junction were numerically constructed.  Then, 

with the transverse wave vector component being fixed at kx = +0.94 radμm-1, both 

longitudinal wave vector components ky were calculated for each and every mesh cell.  The 

gradient of the dispersion at the calculated wave vector points were also numerically 

evaluated.  Conditional tests were then applied to distinguish which wave vector components 

yielded group velocities with positive and negative projections along the y-axis.  The wave 

vector solution with a group velocity component pointing upwards from the leg of the T-

junction was then classified as being “incident”, and the other wave vector solution was 

classified as “reflected.”  In such a fashion, maps of the spin-wave group velocity and wave 

vector (both incident and reflected) were constructed, as presented in the left columns of Fig. 

5.16 (a) - (d).  By overlaying all four maps, the net trajectory of the spin wave, presented in 

Fig. 5.16 (e), was obtained.   

The maps presented in Fig. 5.16 require significant exposition.  Initially, the spin-

wave caustic beam is directed from the leg-arm aperture obliquely towards the upper edge of 

the right arm.  Since the magnetization and internal field are reasonably uniform across this 

region, the spin-wave path consists of a straight line.  Then, as the spin wave approaches the 

upper geometrical edge of the arm, the internal field reduces, and further the magnetization 

significantly rotates.  This leads to a spin-wave mirage effect - the spin wave smoothly curves 

towards the normal of the waveguide’s edge - consistent with that discussed by Gruszecki et 

al.205-206  Across this entire path traced by the spin wave, significant distributed scattering of 

the spin wave from the nonuniformity of the field / magnetization occurs - the strength of this 

scattering depends on the size of the nonuniformity being traversed.   

Across the lower right corner of the T-junction, there are no vectors apparent at all 

(Fig. 5.16 (a) - (d)).  This feature arises due to the internal field being too weak in this region.  

As a result, the isofrequency curves were pushed so far from the origin that there was no 

intersection between the said curves and the line kx = +0.94 radμm-1.  This gives rise to a 

wave-vector-specific region of magnetization, across which the spin wave is (in principle) 

forbidden from traversing.   



158 
 

 

Fig. 5.16  (a)-(b)  Vector maps of the spatial variation of the group velocity across the 

Permalloy T-junction are shown for the incident and scattered spin waves 

respectively.  (c)-(d)  Vector maps of the spatial variation of the wave 

vector across the Permalloy T-junction are shown for the incident and 

scattered spin waves respectively.   The maps presented in the left and right 

panels of (a) - (d) were calculated with the horizontal projection of the wave 

vector kx = +0.94 µm-1 and kx = +1.5 µm-1 respectively, and each unit vector 

in all the maps represents an average over 5 x 5 computational cells.  (e)  

The trajectory of the propagating incident and reflected spin wave (index “i” 

and index “r” respectively).  The blue (green) arrows indicate the direction 

of the incident (reflected) group velocity, and the black (cyan) arrows 

indicate the direction of the incident (reflected) wave vector.  The calculated 

trajectory overlays a smoothed numerically-calculated snapshot of the spin-

wave propagation, as presented earlier in Fig. 5.9.   
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 The linearity of the isofrequency curves, which was responsible for the formation of 

self-focused spin-wave caustic beams, also leads to robust tolerance of the propagation 

trajectory to variation in kx.  Presented in the right column of Fig. 5.16 (a) - (d) are maps of 

the incident and reflected group velocities / wave vectors calculated with kx = +1.50 radμm-1.  

The maps are, in the main, identical to those calculated with kx = +0.94 radμm-1.  The only 

significant difference lies in the spatial extent of the wave vector-specific forbidden region of 

magnetization: since here kx is larger, the “forbidden” region of propagation is smaller.   

Within the central 4 μm across the width of the arm, the orientation of the 

magnetization was reasonably uniform.  Thus, according to the isofrequency curves, the 

reflected group velocity was crudely parallel to the waveguide.  At 1 μm from the upper edge 

of the waveguide, however, the magnetization experienced substantial rotation.  

Consequently, the reflected group velocity actually pointed towards the left waveguide.  To 

understand this behavior, maps of the group velocity for the incident and reflected spin wave 

are presented in Fig. 5.17 (b) - (c) respectively, close to the upper geometrical edge of the T-

junction (as indicated in Fig. 5.17 (a)).  Here, the vectors correspond to each mesh cell.  

Presented in Fig. 5.17 (d) - (h) are constructions of the isofrequency curves belonging to the 

mesh cells indicated in Fig. 5.17 (a) - (b).  As the spin wave traverses the isofrequency curves 

shown in Fig. 5.17 (d) - (h), the smooth rotation of the magnetization / smooth reduction in 

the internal field leads to the smooth bending of the incident spin wave towards the normal of 

the waveguide's edge.  As the spin wave then reflects (so moving from panel (h) to (d)), the 

isofrequency curves have rotated so much that the reflected group velocity emerges from the 

opposite isofrequency curve.  This leads to the phenomenon of “anomalous reflection”, 

whereby the incident and reflected group velocities are pointing up and to the right, and down 

and to the left respectively.  As the spin wave then reflects back towards the center of the 

waveguide, the rotation of isofrequency curve causes the group velocity to become 

increasingly parallel to the waveguide’s edge (note that ky, in this situation, is tending towards 

infinity).  This is, of course, an unstable trajectory, as ky cannot increase indefinitely.  Instead, 

it is therefore supposed that the spin-wave is reflected back upon itself when ky becomes 

intolerably large.  In this fashion therefore, the spin wave is essentially trapped within this 

region of magnetization.   
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Fig. 5.17  (a)  The vector map of the spatial variation of the incident group velocity 

across the Permalloy T-junction, reproduced from Fig. 5.14 (a), where the 

vectors represent the average of 5 × 5 mesh cells.  (b)-(c)  The vector maps 

of the spatial variation of the group velocity across the Permalloy T-junction 

are shown for the incident and scattered spin waves respectively, in the (2 × 

1) μm2 region indicated in (a).  The vectors correspond to each mesh cell.  

The maps presented in (a)-(c) were calculated with the horizontal projection 

of the wave vector kx = +0.94 radµm-1.  (d)-(h) Constructions of the 

isofrequency curves (purple) corresponding to the mesh cells indicated in 

(a)-(b).   The red dashed line corresponds to kx = +0.94 radµm-1, and the 

blue and green unit vectors show the orientation of the incident (subscript 

“i”) and reflected (subscript “r”) spin waves with  kx = +0.94 radµm-1.   
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The maps presented in Fig. 5.16 - 5.17 enable the visualization of the spin-wave 

trajectory, providing a powerful tool for understanding how spin waves propagate across a 

non-uniform magnetic landscape.  To attempt to understand why no spin-wave beam was 

observed propagating across the left arm, the above analysis was repeated, but with kx equal to 

-1.0 radµm-1.  Presented in Fig. 5.18 (a) is a zoomed image of the ground-state magnetization 

across the lower left corner of the T-junction.  The isofrequency curves belonging to the 

pixels indicated in Fig. 5.18 (a) are presented in Fig. 5.18 (b) - (d).  Initially, the spin-wave 

caustic beam propagates toward the left, as shown in Fig. 5.18 (d).  However, the spin wave 

encounters the region of strongly canted magnetization localized at the edge of the 

transversely-magnetized arm, and is smoothly refracted towards the lower edge of the arm, as 

is apparent in Fig. 5.18 (e).  Upon reflection, the spin wave experiences “anomalous 

reflection”, as shown in Fig. 5.18 (b) - (c), and is then directed back towards the right arm.   

The blank pixels immediately next to the lower left corner of the T-junction 

correspond to regions in which the projection of the internal field onto the magnetization is 

significantly high.  A translationally-invariant uniformly-magnetized film of Permalloy, of 

thickness 100 nm, experiences FMR at a frequency of 7.52 GHz when the internal field across 

the Permalloy film is about 672 Oe.  At fields above this, the spin wave is instead of 

backward-volume type.  The internal field in the lower left corner of the T-junction therefore 

represents a barrier for any propagating spin waves, as the isofrequency curves transform to a 

single point (at kx = ky = 0) when Hi = 672 Oe.  When the projected internal field therefore 

equaled or exceeded 672 Oe across the T-junction, no wave vector solutions were permitted in 

the corresponding calculations of the spin-wave trajectory.   
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Fig. 5.18 (a)  The ground-state magnetization across the lower left corner of the T-

junction, reproduced from Fig. 5.7 (b).  The vectors represent the average of 

2 ×2 computational cells.  (b)-(d) Constructions of the isofrequency curves 

(purple) corresponding to the mesh cells indicated in (a).   The red dashed 

line corresponds to kx = -1.0 radµm-1, and the blue and green unit vectors 

show the orientation of the incident (subscript “i”) and reflected (subscript 

“r”) spin waves with  kx = -1.0 radµm-1.  (e) The vector map of the spatial 

variation of the incident group velocity across the lower-left corner of the 

Permalloy T-junction, calculated with kx = -1.0 radµm-1.  The vectors 

represent the average of (2 × 2) computational cells.3   
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5.5  Summary 

In summary, the excitation and propagation of spin waves across a T-junction of 

Permalloy waveguides has been extensively imaged using both TRSKM and OOMMF.  Spin 

waves of finite wave vector were excited at the leg-arm interface of the T-junction via the 

Schlömann mechanism.  When the T-junction was biased symmetrically, the spin waves 

propagated symmetrically across both arms of the T-junction.  Upon rotating the bias 

magnetic field by as little as 15°, however, strongly asymmetrical propagation was observed, 

whereby the spin waves propagated across one arm, but were absent in the other.  To explain 

this behavior, a hybrid analytical-numerical model has been constructed, which takes into 

account the continuous variation of the internal field and magnetization (i.e. the graded 

magnonic index) across a magnetic landscape.  This enables the propagation path – consisting 

of both reflection and refraction - of a spin wave to be traced.  This model explains the 

absence of the spin wave as a result of strongly localized reflection from the channel of non-

uniformity localized at the edge of the transversely-biased arms.  The model developed is 

quite general, and can in principle be used to predict and explain the propagation paths of spin 

waves across any arbitrary (but stable) magnetic configuration.   

In the context of contemporary research devoted to understanding and controlling the 

steering of spin waves, the work discussed in this chapter was the first to show that 

nonuniformities across both the magnetization and effective field distributions could 

continuously steer spin waves.  Substantial research, since the 1990s, has already explored the 

process of spin-wave refraction across a distinct interface.181-186  Going beyond this, the spin-

wave “mirage” effect was numerically demonstrated in 2015 by Gruszecki et al.,205-206 arising 

solely from a nonuniform distribution of the effective field strength.  The results discussed in 

this chapter (in particular, the hybrid analytical/numerical model used to map the spin-wave 

propagation) is, in principle, capable of explaining all the previously-discussed results.  It is 

important to emphasize that the model is general indeed, since any non-uniformity will 

influence the magnetization or effective field (or both), which can therefore be accounted for.  

This work was also the first comprehensive demonstration of how the principles of “graded-

index magnonics” could be used to realize technological applications - in this case, the 

demultiplexing of spin waves.   
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CHAPTER 6 
 

LATERAL CONFINEMENT AND DISPERSIVE CONVERSION 

OF PROPAGATING SPIN WAVES 

 

6.1 Introduction 

In order to advance the development of all-magnonic circuitry, it is necessary for 

researchers to construct both the necessary circuit elements, and the means by which to 

connect them.  Due in part to the current ubiquity of electronics, the design of magnonic 

technology is frequently inspired by their electrical counterparts.  In recent years, for 

example, researchers have proposed how one could realize a wide range of magnonic devices 

including transistors,207 logic gates208 and filters.209  These all suffer, however, either from 

their macroscopic dimension, or because they are still yet to be demonstrated experimentally.  

The main challenge ahead, in the future development of magnonic technology, certainly lies 

in the experimental demonstration of truly miniaturized functional devices.   

Along with the construction of individual circuit elements, it is also imperative to 

consider how these components could be joined to form a circuit.  In electrical circuits, wires 

are used for this purpose.  To steer propagating spin waves around magnonic printed circuit 

boards, it may therefore be desirable to use waveguides in a similar fashion.  Magnonic 

waveguides have the added advantage of being robustly non-volatile (when magnetized along 

their long axis), due to shape anisotropy.  In order to successfully miniaturize magnonic chips 

down towards the nanoscale163 one needs to preserve space, and so it will be essential to steer 

spin waves across twisted magnonic waveguides.  Extensive research has therefore been 

devoted in recent years towards understanding how spin waves propagate across bends and 

skews.  This theme of research comes directly within the remit of graded-index magnonics, 

since the bending of magnonic waveguides directly leads to the curvature of the static 

magnetization and / or the spatial variation of the spin-wave group velocity.  A significant 

step forward in this research direction was made by Dvornik et al.163  In their work, Dvornik 
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et al numerically studied the propagation of dipole-exchange spin waves along longitudinally-

magnetized waveguides, and demonstrated that spin waves (of a certain frequency) retained 

their uniform spatial profile when navigating a U-bend.  The spin waves therefore appeared to 

exhibit a group velocity that adapted with the curvature of the waveguide, and no significant 

losses were evident.210  This research was built upon by Xing et al,211 who revealed that, 

when directing dipole-exchange spin waves with different frequencies across a smooth bend, 

one can actually achieve multimode propagation, whereby the output spin wave is a 

superposition of width-modes with different antinode numbers.   

Width-modes are also capable of propagating along transversely-magnetized 

waveguides, and so some researchers have begun to study how these spin waves are affected 

when the system symmetry is broken.  Clausen et al109 imaged the propagation of 

magnetostatic spin waves across a skewed waveguide.  It was revealed that the broken 

symmetry of the waveguide led to multimode propagation past the skew, where the even and 

odd width-modes interfered to give rise to a “snake-like” propagation path.   

In an unstructured magnetic film, MSSWs and BVMSWs exist in distinct frequency 

regimes, and so there is no possibility in converting spin waves between the two types.  In 

waveguides however, as already discussed in Chapter 2.6.7, the dispersions of laterally-

confined MSSWs and BVMSWs shift towards lower and higher frequencies respectively, 

allowing spin waves to be converted between the two dispersive types.  This overlap was 

exploited by Brächer et al,212 who generated laterally-confined propagating BVMSWs via the 

interference of counter-propagating confined MSSWs across a T-junction of Permalloy 

waveguides.  Depending on the relative phase / frequency of the counter-propagating MSSW 

modes, the mode number of the outputted BVMSW width-mode was controlled.   

 In this chapter, the work reported by Brächer et al212 is extensively discussed and 

generalized for the case of dielectric waveguides, albeit with reversed functionality.  

Specifically, Brächer et al discussed the possibility of combining spin waves, whereas I 

discuss here the splitting of spin waves.  This is perceived as being a first step in the design of 

parallel magnonic circuitry, enabling multiple spin-wave devices to possibly operate in 

tandem.  In the first section of this chapter, waveguides formed of YIG will be experimentally 

and numerically characterized.  Depending on the orientation of the bias field, the spin-wave 

dispersion was observed to be modified, in agreement with the literature already discussed.  In 

the second section, spin-wave propagation across a T-junction of waveguides is imaged.  It is 
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clearly observed that the laterally-confined spin waves reciprocally convert in dispersive type, 

when navigating the structure.   

6.2 Characterization of spin-wave propagation across a waveguide 

 In this section, I will discuss the experimental and numerical characterization of the 

dynamic magnetization within waveguides.  All the experimental measurements presented in 

this chapter were performed by Dr. Alexandr Sadovnikov and Dr. Sergey Grishin, and all the 

numerical results were obtained by myself.   

6.2.1 Experimental measurements 

The sample under investigation is schematically shown in Fig. 6.1 (a).  In the first 

series of investigations, a single waveguide, of thickness s = 7.7 μm and width w = 3 mm or 

0.5 mm, was fabricated by laser scribing a continuous film of YIG, which was itself 

epitaxially grown on a substrate of GGG (using the same procedures as discussed in Section 

4.2).  Two microstrip antennas, of width 30 μm, were positioned on either ends of the 

waveguide: across the input antenna, current pulses were delivered so as to excite spin waves, 

and the efficiency of spin wave propagation was measured across the output antenna using a 

vector-network-analyser.  The bias magnetic field was applied either parallel or orthogonal to 

the long axis of the waveguide, hence leading to a geometry supporting the propagation of 

MSSWs or BVMSWs, as shown in the upper and lower schematics of Fig. 6.1 (a) 

respectively.   

The transmission spectra, characterizing the spin-wave propagation across the 3 mm-

wide and 0.5 mm-wide waveguides, are presented in Fig. 6.1 (b) - (c) respectively.  In the 3 

mm-wide waveguide, there was a common cut-off frequency between the two spectral types, 

coinciding with the frequency of FMR f
FMR

 = 5.345 GHz.  No overlap in the transmission 

spectra was observed, and so the 3 mm-wide waveguide was judged as approximating well a 

continuous film of YIG.  In contrast, the transmission spectra for the 0.5 mm-wide waveguide 

showed an overlap of 114 MHz - the upper cut-off frequency for the BVMSW spectra still 

coincided with f
FMR

, but the MSSW band’s lower cut-off frequency was shifted to 5.231 GHz.   



167 
 

6.2.2 Micromagnetic modelling 

 To explore the origin of the experimentally-observed overlap in frequency of 

transmission, extensive micromagnetic simulations were performed.  The waveguide was 

modelled as a cuboid of size (600 × w × 0.0077) mm3, meshed with cells of size (10 × 0.05 × 

7.7) μm3, and assumed to have the same magnetic parameters as used to model the YIG 

discussed in Section 4.2 (specifically, Ms = 140 G).  One-dimensional periodic boundary 

conditions141 were applied along the long axis of the waveguide (consistently aligned parallel 

to the x-axis), and the exchange interaction was neglected completely, due to the dimensions 

of the sample being so far in excess of the exchange length.  The micromagnetic methodology 

was the same as was used before – to obtain the ground magnetic state, the waveguides were 

saturated along either the long- or short-axis of the waveguide, and the bias magnetic field 

was then reduced so as HB = 1225 Oe.  Presented in Fig. 6.2 (a) are the internal field profiles 

across the width of the waveguide.  In the BVMSW configuration, the static demagnetizing 

field across the waveguide was uniformly zero, as anticipated, and so the static internal field 

was identical to the bias magnetic field applied along the waveguide.  In contrast, the static 

demagnetizing field was significantly non-uniform in the MSSW configuration.  With the 

waveguide having a width of 3 mm, the demagnetizing field was strongly localized to the 

edges of the waveguide,104 and in the center of the waveguide, Hi = 1222 Oe.  Upon reducing 

the width of the waveguide to 0.5 mm, the non-uniformity of the demagnetizing field was less 

localized, and the internal field was Hi = 1208 Oe at the center of the waveguide.  This 

 

Fig. 6.1  (a)  Schematics of the ferromagnetic waveguides studied, in the 

configurations which support the propagation of BVMSWs (top) and 

MSSWs (bottom).  (b)-(c) Transmission characteristics S21 of the 

waveguides, with width w = 3 mm and 0.5 mm respectively, measured in the 

MSSW (blue line) and BVMSW (red line) configurations.5   
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calculated field difference (ΔHi = 17 Oe) corresponds to a difference Δf
FMR

 = 39 MHz, when 

describing the frequency of FMR in a continuous film.   

 The experimentally-measured overlap in frequency between the MSSW and BVMSW 

spectra in the 0.5 mm-wide waveguide was Δf = 114 MHz, but the difference in the internal 

field accounted for only Δf
FMR

 = 39 MHz.  To therefore account for the still significant 

difference, the influence of lateral confinement on the dispersion of the propagating spin 

waves needs to be considered.  In the simplest form, the confinement of the propagating spin 

wave can be expressed via the quantization of the transverse wave vector given by Eq. 2.142.  

If the magnetization at the geometrical edges of the waveguide is completely unpinned, one is 

assuming effw .  For a longitudinally-magnetized waveguide considered in the dipolar 

limit, Guslienko et al calculated the effective width to more precisely have the form107 

  pp
wweff

ln21




 (6.2) 

where 
w

sp   is the waveguide’s aspect ratio.  For the YIG waveguide in the BVMSW 

configuration studied in this section, therefore, weff = 0.525 mm.  By therefore setting ky = 

(5.98n) radmm-1 in Eqs. 2.136 – 2.141, the longitudinal wavevector kz = k|| can be calculated 

to form the red dashed dispersive branches shown in Fig. 6.2 (b).  Upon introducing lateral 

 

Fig. 6.2  (a)  The projection of the internal field onto the magnetization across the 

width of the waveguide, in the MSSW (solid-blue line) and BVMSW 

(dashed-red line) configurations.  (b)  Analytically-calculated dispersion 

curves for the longitudinal wave vector k|| of the spin-wave width modes.  

The curves are in order of increasing integer values of n, ranging between n 

= 1 and n = 5 for both geometries.5   
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confinement, the branches of the backward-volume dispersion shift towards higher 

frequencies as n increases, as anticipated.  In the MSSW configuration, the effective width is 

more difficult to quantify, due to the non-uniformity of the static internal field.  In lieu of any 

analytical description, the effective width for the BVMSW geometry was assumed, and this 

leads (by setting kz = (5.98n) radmm-1 in Eqs. 2.135 – 2.140) to the blue dispersive branches 

shown in Fig. 6.2 (b).  As n increases, the branches shift towards lower frequencies.  By 

therefore taking into account the effects of lateral confinement, in addition to the reduction of 

the internal field in the MSSW configuration, the calculated frequency overlap of the 

fundamental spin-wave modes was Δf = 139 MHz, which is substantially closer to the 

experimentally-measured overlap of Δf = 114 MHz.   

 To identify the source of the remaining difference between the experimentally-

observed and analytically-calculated spectral overlap, dynamic micromagnetic simulations 

were performed with the intention of numerically calculating the spin-wave dispersion.  The 

geometry of the considered waveguide was adapted so as to span a cuboid of size (16.384 × 

0.5 × 0.0077) mm3 with a cell-size of (1 × 20 × 7.7) μm3.§§§§§§§  One-dimensional periodic 

boundary conditions141 were again applied along the length of the waveguide, and the 

exchange interaction was neglected completely.  The ground-state magnetization 

characteristic of the waveguide was calculated using the same approach as discussed earlier, 

and the Gilbert damping coefficient was set to 1×10-4 in the subsequent dynamic 

micromagnetic calculations.   

To excite the dynamics in the experimental system, a current-carrying microstrip was 

employed - in the micromagnetic simulations, therefore, it was necessary to model the spatial 

and temporal distribution of the field generated by the microstrip, tuned so as to locally excite 

broadband spin waves.  In Chapter 5, the pulsed excitation used in the experimental setup had 

Gaussian character in the time-domain, and so the micromagnetic model similarly used a 

Gaussian exciting field.  Here, in contrast, no such imitation was required.  The temporal 

profile of the exciting field was therefore selected to be of cardinal sine (or ‘sinc’) form 

 
  

 0

0
0

sin

tt

tt
hth

c

c
p









 (6.3) 

                                                           
§§§§§§§ The waveguide was deliberately meshed by 214 cells in order to maximise the computational 

efficiency of the applied fast Fourier transform, and the length of the waveguide was selected so as to 

give a wave vector resolution 0.38 radmm-1 in reciprocal space.   
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where the amplitude h0, the time delay t0 of excitation, and the angular cut-off frequency ωc 

(where cc f 2 ) were user-defined.  The typical time-varying profile of this function is shown 

in Fig. 6.3 (a).  The sinc function is unique in that its Fourier transform produces a rectangular 

function in the frequency domain, as shown in Fig. 6.3 (b).  In principle, therefore, an 

excitation with temporal form given by the sinc function is capable of exciting all frequencies 

below fc with equal distribution of power.   

The discretization associated with numerical methods, however, leads to the challenge 

of how to optimize the discretized sinc function in order to achieve fair broadband excitation.  

As the BLS measurements were performed with excitation frequencies of about 5 GHz, the 

cut-off frequency fc was set to 9 GHz.  The amplitude h0 of the excitation was 10 Oe, and the 

magnetization was recorded in time steps Δt = 50 ps, which allowed signals with a frequency 

of up to 10 GHz to be detected.  The total duration of the micromagnetic simulation was 300 

ns, which provided a frequency resolution of 3.33 MHz.  The pulse was offset in time by t0 = 

2 ns.  These parameters gave rise to the time-varying signal and corresponding frequency 

response presented in Fig. 6.4 (a) - (b) respectively, which approximated well the 

characteristics of the ideal sinc function.  The spatial distribution of the exciting field was 

assumed to be given by the Karlqvist equations (Eqs. 4.2 – 4.3), with the spatial profiles 

shown in Fig. 6.4 (c).  Since the microstrip was positioned directly on top of the YIG 

waveguide, the in-plane component of the exciting field approximated well a rectangular 

function, with a width of 30 μm.   

 

Fig. 6.3  (a)  The ideal time-varying profile of the ‘sinc’ function, described by Eq 

6.3.  Note the time-window has been cropped here, but realistically the 

oscillations converge to zero at infinitely positive and negative time. (b)  

The Fourier transform of the function shown in (a).   
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 Upon completion of the dynamic micromagnetic simulation, the data files (saved in 

binary format so as to reduce the size of the files) occupied around 56 GB of memory, which 

proved impossible to load into MatLab collectively and entirely.  To handle the memory 

problems associated with such large data, the out-of-plane component of magnetization across 

the entire waveguide was loaded into MatLab one time-step at a time.  For each time-step, the 

out-of-plane component of static magnetization was subtracted (therefore yielding the 

dynamic out-of-plane component of magnetization), and then a fast-Fourier transform was 

applied immediately across the length of the waveguide.  All the kx bins corresponding to 

negative values and in excess of 500 radmm-1 were then discarded.  After iterating this 

process across all time-steps, the fast-Fourier transform was then applied along the time-

dimension, generating a two-dimensional matrix of data contained within a file of size 1.5 

GB.  The magnitude of the twice Fourier transformed data was then calculated, and the 

calculated dispersion along the center of the waveguide was extracted.  This calculated 

dispersion is presented in Fig. 6.5 (a) - (b) for the geometries in which the bias magnetic field 

was aligned parallel and orthogonal to the waveguide’s long axis respectively.  Note the 

dispersion profiles are shown in a logarithmic scale, in order to improve the visibility of the 

higher-order modes.   

 

Fig. 6.4  (a) The temporal aspect of the excitation described by Eq. 6.3, where h0 = 

10 Oe, fc = 9 GHz, and t0 = 2 ns.  The time is discretized in steps Δt = 50 ps, 

and the total duration of the excitation is 300 ns (note only the first 4 ns of 

the excitation are shown).  (b)  The Fourier transform of the function shown 

in (a).  (c)  The spatial distributions of the in-plane hy (red solid line) and 

out-of-plane hz (blue dashed line) components of the magnetic field, as 

described by Eqs 4.2 – 4.3. 
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 The most intensive branches in Fig. 6.5 (a) - (b) agreed well with the analytically-

calculated branches corresponding to the fundamental modes presented in Fig. 6.2 (b).  The 

higher-order modes, however, did not agree so well with the branches calculated analytically 

 

Fig. 6.5  (a)-(b)  The dispersion curves corresponding to backward-volume 

magnetostatic spin waves and magnetostatic surface spin waves 

respectively, propagating in a 0.5 mm-wide YIG waveguide, calculated 

from the results of micromagnetic simulations.   
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– the discrepancy was attributed to the discretization across the width of the waveguide (the 

discretization of the waveguide-width into 25 cells was anticipated as leading to similar 

discretization, and by extension inaccuracies, in the computation of the transverse profile of 

the spin-wave width-mode).  The frequency overlap between the fundamental width-modes 

calculated numerically was Δf = 133 MHz, which successfully validated the analytically-

calculated overlap of Δf = 139 MHz (the small remaining difference was readily explained by 

inescapable differences between the experiment and micromagnetic model, such as the 

precise value of Ms).   

6.3 Dispersive conversion of laterally-confined spin waves 

The overlap observed in both the transmission spectra and the dispersion profiles 

belonging to the BVMSW and MSSW configurations suggested the possibility of conversion 

between the two spin-wave types.  To investigate this, a T-junction of YIG waveguides was 

therefore constructed, as shown in Fig. 6.6 (a).  The waveguides were nominally identical to 

those discussed in Section 6.2.1.  The microstrip antenna was positioned about 3 mm away 

from the leg-arm junction, and then loaded with current pulses.  Amplitude-resolved BLS 

images were then recorded at the excitation frequencies of 5.16 GHz, 5.32 GHz and 5.48 GHz 

(indicated in Fig. 6.2 (b) by dotted lines), with the bias field HB = 1225 Oe aligned either 

parallel or orthogonal to the leg of the T-junction.  The experimental images obtained are 

presented in Fig. 6.6 (b) – (e), plotted in a logarithmic scale.  At the frequency 5.32 GHz, 

which lies within the dispersion overlap between the fundamental MSSW and BVMSW 

width-modes, spin-wave propagation across the entire network of waveguides was clearly 

observed, whereby the spin wave traced a snake-like propagation path across the arms of the 

T-junction.  At the frequencies outside of the dispersion overlap, however, the propagation 

was only observed across the leg of the T-junction.   
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 To complement the results acquired experimentally, and furthermore to understand the 

observed mode conversion quantitatively, the BLS measurements were modelled using 

micromagnetic simulations.  The beam-splitter was enclosed within a cuboid of size (6.5 × 2.5 

× 0.0077) mm3 with meshing cells of size (10 × 10 × 1.54) μm3.  The beam-splitter had a 

fixed waveguide width of 0.5 mm, and the arms of the beam splitter were capped by a block 

4-cells long, in which the Gilbert damping coefficient – otherwise 1×10-4 (characteristic of 

YIG) - was inflated to 0.5.  This was introduced so as to reduce the strength of reflections.  

The geometry was initially biased by a global uniform bias field of H
B
 = 2000 Oe, and 

reduced to HB = 1225 Oe, to obtain the ground magnetic state.  Spin waves were then excited 

at the base of the leg, by a magnetic field with a spatial profile as described by the Karlqvist 

equations (Eqs. 4.2 – 4.3).  The modelled microstrip was positioned at the base of the leg of 

the T-junction.  The time-varying profile corresponded to the sine cardinal function (Eq. 6.3), 

where t
0
 = 4 ns, fc = 9 GHz and h

0
 = 5 Oe.  The magnetization was then recorded every 50 ps, 

for a total of 1 μs.  This dynamic simulation generated a total micromagnetic data set of size 

36 GB.   

To obtain micromagnetic results directly comparable to those acquired through 

amplitude-resolved BLS microscopy, it was necessary to transform the real-time dynamic 

 

Fig. 6.6 (a)  A schematic of the beam-splitter geometry (b)-(e) Amplitude-resolved 

BLS maps, acquired with the frequency and bias orientation indicated, 

where H
B
 = 1225 Oe throughout.   
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micromagnetic data into the frequency domain. For each time step, therefore, the static 

magnetization was subtracted, yielding the dynamic out-of-plane component of 

magnetization.  A fast Fourier transform was then applied in the time-domain for each and 

every mesh cell, and then the spatially-resolved amplitude was calculated.  This generated 

maps of the spin-wave amplitude, which are presented in Fig. 6.7, at frequencies between 5.16 

GHz and 5.48 GHz.  At all the frequencies of excitation, the spin-wave propagation is 

observed across both the leg and the arms of the T-junction.   

 To reveal the phase information of the propagating spin waves, allowing the mode 

numbers of the confined spin waves to be identified more clearly, the dynamic micromagnetic 

simulations were repeated, but with a continuous-wave temporal profile as given by Eq. 4.4.  

This excitation (of strength h
0
 = 1.75 Oe) was applied continuously for 3000 time steps, 

where each time step was of duration T/8 (T is the period of the exciting field).  Presented in 

Fig. 6.8 are snapshots of the dynamic magnetization, where the frequency of the harmonic 

excitation was 5.16 GHz, 5.32 GHz and 5.16 GHz.  At the frequency 5.32 GHz, the spin wave 

 

Fig. 6.7 (a)-(f) Calculated maps of the spin-wave propagation, with the bias field 

orientation and frequency indicated.  These images were acquired using a 

pulsed exciting field (given by Eq. 6.3) and post-processed so as to be 

comparable with the experimentally-acquired amplitude-resolved BLS 

results shown in Fig. 6.6.   
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propagating along the leg is composed of odd width-modes: in both the MSSW and BVMSW 

configurations (panels (c) and (d) respectively), the spin wave converts to both the n = 1 and n 

= 2 modes, which interfere to generate the snake-like propagation path observed across the 

arms.  At the frequency 5.16 GHz in the BVMSW and MSSW geometries, the width-mode 

within the leg is of the order n = 1 and n = 5 respectively.  This single mode then converts into 

multiple modes, of opposite dispersive type, across the arms of the junction.  At the frequency 

5.48 GHz, similar (but opposite) behavior is observed.   

6.4 Summary 

In summary, the conversion of magnetostatic spin waves from magnetostatic-surface 

to backward-volume dispersion (and vice versa) has been successfully demonstrated.  In 

continuous magnetic media, the magnetostatic spin waves lie in different frequency regimes, 

and share a common cut-off frequency corresponding to the frequency of ferromagnetic 

 

Fig. 6.8 (a)-(f) Simulated snapshots of the dynamic out-of-plane component of 

magnetization, with the frequency of excitation and bias field orientation 

indicated (H
B
 = 1225 Oe throughout).  All the snapshots were acquired at 

the same point across the phase of the continuous-wave excitation, at about 

700 ns after the excitation was applied.   
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resonance.  In waveguides in contrast, due to the inescapable consequences of their lateral 

width, there is dispersive overlap between laterally-confined propagating MSSWs and 

BVMSWs.  By therefore connecting two waveguides to form a T-junction structure, spin-

wave propagation across the network of waveguides was successfully realized, through the 

conversion of the spin-wave dispersive types.  The mode numbers of the excited spin waves 

in the leg of the T-junction were all odd (dictated by the uniformity of the excitation across 

the waveguide’s width), whereas in the arms of the T-junction, a superposition of even and 

odd spin-wave modes were observed.  This behavior can be predicted and explained through 

comparing the frequency of excitation with the appropriate dispersion profiles of the laterally-

confined propagating spin waves.   

The results discussed in this chapter are important for the design of parallel magnonic 

circuitry.  In electronics, the splitting of an electrical current is straightforward (the only 

prerequisite is that the circuit is complete).  In wave-based devices, however, where the waves 

have anisotropic dispersion, the splitting of such waves across a junction is more nuanced.  

With regards to the magnonic beam-splitter discussed in this chapter, the beam-splitting was 

controlled via the spin-wave frequency.  It would therefore be useful to investigate how the 

beam-splitting could be alternatively controlled, perhaps through rotation of the bias magnetic 

field1, or passing an electrical current across either arm of the T-junction.213  It should also be 

noted that the spin waves investigated were wholly dominated by the dipolar interaction.  

Upon downscaling, therefore, the process of beam-splitting may be rendered simpler, since 

the exchange interaction is isotropic.  Micromagnetic investigations therefore need to be 

performed to investigate how the splitting evolves on the nanometer scale.   
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CHAPTER 7 
 

SPATIOTEMPORAL IMAGING OF THE LASER-INDUCED 

DYNAMICS ACROSS MAGNETIC FILMS 

 

7.1 Introduction 

The excitation of magnetization dynamics, within the research field of magnonics, is 

most conventionally achieved through the use of a fast-varying magnetic field delivered by a 

microstrip / coplanar waveguide.  Indeed, this means of stimulation underpinned the 

experimental results presented and discussed in Chapters 4 – 6.  This approach, however, does 

not lend itself well to either miniaturization or high-frequency operation, due to the radiation / 

leakage of energy by the current-carrying element.  The task of down-scaling spin-wave 

sources could possibly be circumvented using the Schlömann mechanism, as extensively 

discussed in Chapter 4.  There is no possible way, however, to overcome the GHz frequency 

barrier while still using electrical currents.   

Instead of therefore using electrical currents to excite magnetization dynamics, 

researchers are now searching for alternative faster means by which to pump magnetic 

systems.  One attractive option involves the use of optical pulses: commercially-available 

laser diodes are able to deliver pulses with duration on the order of tens of femtoseconds.  

Indeed, some research groups have demonstrated that optical pulses with duration 

approaching attoseconds can even be achieved.214-215  Such ultrafast stimuli enable the 

phenomena of demagnetization, spin-reorientation, and even magnetic-restructuring to be 

realizable on sub-picosecond timescales, opening up the possibility of storing, retrieving and 

processing data at incredibly fast speeds.216   

The means through which optical pulses stimulate magnetization dynamics can take 

one of two pathways, depending on whether the excitation is thermal or non-thermal.216  The 

thermal pathway is underpinned by the Bloch equation (Eq. 2.63).  Since the magnetization of 
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a ferromagnetic body is temperature-dependent, the thermal load delivered by an ultrafast 

pulse will reduce the magnetization length - this transient reduction, in turn, generates a 

transient demagnetizing field, which can lead to the excitation of propagating spin 

waves.132,217-220  Since the magnetization is one of the two key ingredients of the magnonic 

index, one could interpret this mechanism as belonging to the field of graded-index 

magnonics.  Indeed, some recent studies have already advanced this idea by using thermally-

defined magnetic landscapes to support confined spin-wave modes221 or to influence the 

character of propagating spin waves.222  It must be emphasized, however, that the results 

discussed in this chapter do not clearly extend this theme of research.   

This thermal pathway, in addition, can also excite propagating magnetoelastic waves 

via the magnetoelastic coupling223-225  between magnons and phonons.  Specifically, the 

optical pulse can deliver a pressure- or shear-induced stress to the lattice, which in turn causes 

the magnetization to precess.  It should be noted that this phenomena can only occur when the 

magnetostriction of the magnetic system is sufficiently high, and the dispersions of the 

supported magnons and phonons are close.  Magnetoelastic waves have already been 

observed226-227 propagating along garnet films, excited by optical pulses.  Intriguingly, the 

pressure strain excited longitudinal magnetoelastic waves with dipolar symmetry, whereas the 

shear strain excited transverse waves with quadrupolar symmetry – this difference enables 

one to identify whether shear- or stress-strains dominate the excitation mechanism.  Such 

knowledge is invaluable for the future design of spin-wave sources involving piezoelectric 

components.   

The non-thermal pathway is even more complex, involving a broad range of 

polarization-dependent effects.  For example, Hansteen et al.228-229 used linearly-polarized 

light to modify the magnetocrystalline anisotropy of garnet films – this transient modification 

led to measurable spin precession.  The inverse Faraday230-231 and inverse Cotton-Mouton232-

233 effects also involve the generation and / or modification of magnetization using circularly-

polarized and linearly-polarized light respectively.  Overall, the non-thermal mechanism 

involves the generation of local magnetic fields – again, this brings the non-thermal optical 

stimulation of magnetization dynamics within the jurisdiction of graded-index magnonics.  

This pathway strongly depends on the polarization of the optical pulse, whereas the thermal 

pathway is entirely independent of this feature (this difference allows one to identify, in a 

practical experiment, which of the two mechanisms is dominating).  It should be noted, 
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however, that it is impossible to completely remove the thermal contribution from any such 

optical pump.   

From the viewpoint of technological application, the optical excitation of 

magnetization dynamics via thermal loading is (at first glance) rather unattractive – the 

reputation frequency of the excitation is hampered by the cooling of the substance, and 

moreover such heating limits the conceivable recording density.  However, since the thermal 

load is impossible to remove from optical excitations, it is important for magnonic engineers 

to understand and anticipate the possible effects generated by thermal effects.  It should also 

be noted that heat-assisted magnetic recording (HAMR)234 exploits the transient 

demagnetization induced by thermal loads in order to reduce the magnetic bias field needed to 

reorient magnetic bits.  It is not inconceivable, therefore, that thermal loads could eventually 

be used to excite and control spin waves.   

In this chapter, I present and discuss the results of TROPSOM measurements 

performed on films of Permalloy, of thickness 20 nm and 50 nm.  Both samples were 

fabricated using magnetron sputtering.  The experimental development of the stroboscopic 

TROPSOM system used at the University of Exeter is still in its infancy, and for the first 

time, measurements were performed with pump and probe beams of wavelength 400 nm and 

800 nm respectively.  Two types of experiments were performed.  The first involved time-

resolved measurements, by which the probe spot was fixed and focused at a certain position.  

The second involved time-resolved spatial imaging, whereby the focused probe was raster-

scanned across the surface of the sample.  As discussed in Chapter 3, both the transient 

reflectivity and magneto-optical Kerr signals were recorded.  In the first and second sections 

of this chapter, the experimental measurements of 20 nm- and 50 nm-thick films of Permalloy 

are respectively presented and discussed.  Since many data sets were acquired using 

TROPSOM, there is a strong need to programmatically apply post-processing and surface 

fitting to the recorded measurements.  The post-processing procedures are therefore discussed 

in depth.  Unfortunately, the measurements presented here are not, at the present time, 

underpinned by self-consistent theoretical understanding – I therefore conclude this chapter 

by briefly discussing the measurements as a whole, and speculating as to how the signals 

arose.   
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7.2 Measurements of a 20 nm-thick film of Permalloy 

The first sample investigated using the TROPSOM system consisted of a continuous 

film of Permalloy, of thickness 20 nm, mounted on a 330 μm-thick substrate of Sapphire (the 

sample spanned an area of 1 cm2).  The Permalloy film was magnetized in-plane throughout 

by an alnico horseshoe magnet, which was measured as delivering a bias magnetic field H
B
 = 

145 Oe across the sample.   

The first point to note is that the Permalloy film appeared to be very sensitive to the 

pump beam.  The pump power needed to be low enough to avoid ablating the film, but high 

enough to induce a measurable signal.  Extensive testing was therefore performed to identify 

an optimum pump power.  It was found that a pump power below 2.00 mW (corresponding to 

a pulse of 25 pJ, and a fluence of 28 mJ / cm2) rendered the reflectivity signal too weak to 

reliably measure above the noise threshold.  The 2.00 mW pump, however, gradually burned 

a hole in the sample, which was visible after 24 hours of exposure to the pump.  This is shown 

in Fig. 7.1.  All the measurements across the 20 nm-thick film of Permalloy were therefore 

performed across the space of about 18 hours, and the sample was then moved laterally by a 

small distance.  Testing revealed that a probe with power as high as 20 mW did not 

 

Fig. 7.1 (a)-(c) dc reflectivity, transient reflectivity and Kerr signals respectively, 

acquired with a pixel acquisition time of 4 s.  These measurements were 

performed about 24 hours after the pump beam, of power 2.00 mW, was 

focused at the same point on the surface of the 20 nm-thick Permalloy film.  

(d)  dc reflectivity signal acquired with a pixel acquisition time of 10 ms, 

recorded immediately after the signals presented in (a) - (c) were recorded.   
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immediately damage the sample.  The probe was therefore fixed as having a power of 2.00 

mW (corresponding to a fluence of 7 mJ / cm2).   

 A second important point relates to the banding observed in the Kerr channel, as was 

discussed in Chapter 3 - these bands were attributed to a steady oscillation of the laser power 

outputted by the laser system.  These bands were often rather significant in amplitude, capable 

of obscuring useful signal.  Some effort was therefore expended in order to find the optimum 

parameters with which images could be acquired.  As already discussed in Section 3.4.3, the 

laser power fluctuation had a characteristic frequency of 0.4 mHz (corresponding to a period 

of ~40 minutes).  All the images needed to span an area of (10 × 10) μm2 – such a viewing 

panel was expected to be sufficient for observing the picosecond dynamics excited by a 

focused pump spot of size ~1 μm.  The lock-in amplifier’s time constant of 0.5 s was adequate 

in achieving reasonable signal-to-noise ratio in the detected signal.  All images were therefor 

recorded with a spatial step of 0.25 μm, and the signal at each pixel was afforded a settling 

time of 1.5 s.  This set of parameters led to the images needing about 40 minutes each to 

record, which allowed the image to be recorded within one period of the laser’s power 

oscillation.   

The first type of signal acquired in this investigation was of time-varying character.  

Specifically, an image was recorded, at a small but positive time delay, to reveal any features 

of interest.  The probe was then fixed at a certain point on the sample surface, and the 

retroreflector was then moved in order to yield a time-resolved trace.  Generally, the 

reflectivity and Kerr signals returned by the two-phase lock-in-amplifiers were complex.  Dr. 

Fedor Mushenok therefore wrote a MatLab program which served to rotate the signal into one 

channel, as outlined in Fig. 7.2.  Presented in Fig. 7.2 (a) is a typical raw Kerr signal, output 

from a lock-in amplifier.  The rise and fall of the signal can be observed in both output 

channels.  This data was then replotted in a phase-plane, as shown in Fig. 7.2 (b).  By then 

rotating all the signal points about the origin, the signal occupied one output channel only, as 

is apparent in Fig. 7.2 (c).  Upon replotting the signal channels as a function of time, 

therefore, the signal has been almost entirely shifted into one channel (Fig. 7.2 (d)).  This 

procedure was used to post-process all time-varying signals presented in this chapter.   

The second type of signal recorded in this investigation consisted of transient 

reflectivity and Kerr images.  Again, the images output from the lock-in amplifiers were 
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complex, and so a procedure very similar to that outlined in Fig. 7.2 was also applied, so that 

the recorded images occupied one output channel only.   

  Initially, a sequence of time-varying signals was recorded in order to identify the 

time-scales of interest.  To identify the location of the probed regions, the images presented in 

Fig. 7.3 (a) were recorded at a positive time delay of 667 fs, where the left and right panels 

correspond to the transient reflectivity and Kerr signals respectively.  The reflectivity signal 

consisted of a single “spot”, generally attributed to the spatial distribution of the transient 

“temperature” increase in the sample.  In contrast, the Kerr signal always had a quadrupolar 

spatial distribution, with the poles having alternating sign.  The probe was therefore fixed 

either at the center of the reflectivity spot, or at the lower left lobe of the quadrupolar Kerr 

pattern.  Time-varying reflectivity (left panel) and Kerr (right panel) signals across different 

time-scales were then acquired, as presented in Fig. 7.3 (b) - (f) and Fig 7.3 (g) - (k) 

respectively.   

 

Fig. 7.2 (a) Typical Kerr signal acquired using lock-in-detection.  (b) The same 

signal as shown in (a), except plotted within a phase-plane.  (c)  The signal 

shown in (b), rotated about the origin so that the signal occupies one 

channel only.  (d) The signal shown in (c) is converted back to being a 

dependence on time.   
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Fig. 7.3 (a)  Typical reflectivity and Kerr images shown in the left and right panels 

respectively, acquired 667 fs after initial excitation of the 20 nm thick 

Permalloy film by the laser pulse.  The film was uniformly biased along the 

z-axis by H
B
 = 145 Oe.  (b)-(k)  Time-resolved reflectivity and Kerr signals 

(presented in the left and right panels respectively)  acquired across time 

scales of 2 ps, 10 ps, 100 ps, 1 ns and 4 ns as indicated.  The signals shown 

in panels (b) - (f) and (g) - (k) were recorded at the positions (5.0 μm, 5.0 

μm) and (4.0 μm, 4.2 μm) respectively, as indicated by the crosshairs in (a).   

All the images / spectra shown are given in arbitrary (but comparable) units.   
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The time-resolved spectra boast several features of interest.  At negative time delay, 

no signal was detected in both the transient reflectivity and Kerr channels.  At zero-time 

delay, the signal in the Kerr channel recorded at the center of the reflectivity spot began to 

rise, and reached its maximum within 650 fs.  The simultaneously-recorded reflectivity signal 

lagged behind the Kerr signal by about 150 fs.  Both the reflectivity and Kerr signals then 

decayed at different rates, reaching zero within about 750 ps and 2 ns respectively.  The signal 

recorded at the lower left lobe of the quadrupolar Kerr image broadly followed the same 

trends.  The reflectivity signal again lagged behind the Kerr signal, and decayed within about 

750 ps.  The Kerr signal, in contrast, appeared to be non-zero 3.8 ns after the arrival of the 

pulse, but had decayed entirely within 12.5 ns (since there is no accumulated signal).  A slight 

oscillation of the Kerr signal was apparent in Fig. 7.3 (i) and (j), but there was no change in 

the sign of the signal.   

Subsequent to the recording of the time-varying signals, transient reflectivity and Kerr 

imaging was performed.  As already noted, the transient reflectivity and Kerr images were 

consistently monopolar and quadrupolar respectively.  Once the raw images were therefore 

recorded, the output was shifted into one signal channel, and then fitted to a distribution as 

described by Eqs. 7.1 – 7.2 
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The first three coefficients (a, b and c) in Eqs. 7.1 – 7.2 represent the equation of a plane.  

This was incorporated in order to represent the possible linear variation in the “background” 

of the recorded image, originating (primarily) from the laser’s systematic fluctuation in 

power.  The second term represents a normalized Gaussian, with an amplitude Amp and 

standard deviation σ, centered at the position (y
0
,z

0
).  The laser beam nominally had a 

Gaussian spatial profile, and so the generally monopolar reflectivity signal was assumed to be 

described by a Gaussian function.  The amplitude and standard deviation of the fitted 

Gaussian surface enabled the strength and spatial extent of the acquired signal to be evaluated.  

The final term in Eq. 7.2 represents a quadrupolar distribution, where the 4 poles of 

alternating sign are rotated by an angle ϕ.   
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 Presented in Fig. 7.4 is an example of the procedure used to apply the fitting across the 

same image as shown in Fig. 7.3 (a), where the upper and lower panels show the reflectivity 

and Kerr signals respectively.  The MatLab program used to undertake this procedure was 

written by myself.  Shown in Fig. 7.4 (a) is the raw reflectivity and Kerr signal.  To use the 

surface-fitting program, the user inputs whether the signal is monopolar or quadrupolar in 

distribution, and then selects a reasonable “guess” of the coefficients z
0
 and y

0
, using the 

interactive crosshairs shown.  The program then fitted the distribution given by either Eq. 7.1 

or Eq. 7.2, using the optimality criterion of least absolute residuals.********  The 95% 

confidence intervals, associated with all eight fitting parameters, were also calculated.  Images 

of the raw data, the fitted monopolar / quadrupolar signal, and the raw data with the plane 

background subtracted (presented in Fig. 7.4 (a) – (c) respectively) were then saved, along 

with the fitted coefficients / confidence intervals.  The signal shown in panel (c) is henceforth 

referred to as “background-corrected”.   

                                                           
******** For historical reasons, the optimality criterion of least squares is more popularly used to fit 

functions to recorded signals.  However, it was found during testing that the above criterion generated 

surfaces that significantly depended on the initial values for z0 and y0.  The optimality criterion of least 

absolute residual, in contrast, proved to be less sensitive to these inputs.   

 

Fig. 7.4 The transient reflectivity and Kerr signals are shown in the top and bottom 

panels respectively.  (a) Typical total raw signal.  Overlaid is a crosshair, 

positioned by the user to “guess” the center of the pattern.  (b)  The fitted 

monopolar / quadrupolar distribution as described by Eq. 7.1 / 7.2, with zero 

background.  (c)   The same transient reflectivity / Kerr signal as shown in 

(a), except the fitted plane background has been subtracted.   
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Fig. 7.5 Transient reflectivity images (left panels) and Kerr images (right panels), 

acquired across a 20 nm-thick Permalloy film, at time delays (a) -1.0 ps, (b) 

+400 fs, (c) +667 fs, (d) +800 fs, (e) +1.00 ps, (f) +1.33 ps, (g) +1.50 ps, (h) 

+3.00 ps, (i) +4.00 ps, (j) +8.0 ps, (k) +40.0 ps, and (l) +150.0 ps relative to 

the arrival of the pump pulse.  All the panels are background-corrected, 

except for the transient reflectivity signal shown in panel (a), and the Kerr 

signals shown in panels (a), (h), (j), (k) and (l).   
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A selection of the acquired images at varying time delays is presented in Fig. 7.5.  All 

the images presented here have undergone the fitting procedure as described in Fig. 7.4 where 

possible.  Note that all the images acquired (raw, fitted-surface, and background-corrected) 

are provided in Appendix 2 for completeness.  Here, the imaging confirmed that there was no 

signal in both the reflectivity and Kerr channels prior to the arrival of the pulse.  Then, 400 fs 

after the nominal arrival of the pulse, a weak monopolar reflectivity / quadrupolar Kerr signal 

was apparent.  Both the reflectivity and Kerr signals, after maximizing in strength, then 

decayed, and are rather faint (but still observable) at a positive time delay of +8 ps.  Both 

signals are still, perhaps, faintly apparent and discernible at time delays of more than +100 ps.   

 The images presented in Fig. 7.5 do not lend themselves well to quantitative analysis, 

due to the prevalence of outliers and noise, and the possibility of subjective interpretation.  

The surface fitting, therefore, enables the monopolar and quadrupolar distributions to be 

studied with more rigor.  Presented in Fig. 7.6 are graphs showing the temporal variation of 

the fitted coefficients.   

 The advantage of the statistics shown in Fig. 7.6 lies in the fact that they describe the 

entire signal, compared to the time-resolved signals presented in Fig. 7.3 (that are local in 

nature).  The statistical results show that the amplitude of both the reflectivity and Kerr 

signals (as a whole) increase in strength by a factor of about 3 within one picosecond.  This is 

consistent with the time-resolved measurements shown in Fig. 7.3.  The spatial extent of the 

monopolar reflectivity signal increases rapidly when the pump pulse arrives, to about 1.5 μm, 

but then decays rapidly to a fairly constant size of 1 μm.  This initial increase and subsequent 

decrease in spatial extent can be understood as arising from the fast delivery and dissipation 

of energy to and from the pumped region.  The Kerr signal, in contrast, appears to only grow 

(while decreasing in amplitude).  The statistics in Fig. 7.6 (c) - (d) show the absolute central 

positions of the monopolar and quadrupolar signals.  While there is some small scattered 

mismatch, the centers do appear to coincide well – this indicates, at the very least, that both 

signals are consistent.  Finally, the angle of the quadrupole’s axis of symmetry is fairly 

constant across the first 1.5 ps, aligned at about -28° relative to the y-axis.  The angle appears 

to then decrease by 10° in the subsequent measurements.   
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The results acquired using TROPSOM should, in principle, be independent of the 

intensity of the probe beam.  The fluctuation of the laser power, however, led to the 

possibility that both the pump and probe beams could vary in power across the (rather 

substantial) time required to acquire the images.  While the pump and probe powers were 

checked at regular intervals (at least once a day, when the sample was moved to compensate 

for the effect of ablation), the signal monitor output from the reflectivity detector provided the 

 

Fig. 7.6 The black and red plots show the results corresponding to the transient 

reflectivity and Kerr signals respectively. (a)-(e) The results of fitting the 

signals acquired across the 20 nm-thick film, showing the temporal variation 

of Amp, σ, y0, z0 and ϕ respectively.  The error bars shown in all panels 

correspond to the 95% confidence limits.   



190 
 

detected signal, but importantly with no phase-sensitive multiplication applied.  This signal, 

therefore, was crudely used to monitor the laser power.  Presented in Fig. 7.7 (a) is a typical 

image of the output signal monitor, acquired simultaneously with the signal shown in Fig. 7.5 

(d).  As can be seen, pump-induced signal is also detected in this channel, due to the strength 

of the 800 Hz signal.  In order to therefore remove this pump-induced signal from 

consideration, I wrote a MatLab program which allows the user to draw a freehand line 

isolating the pump-induced signal (shown in Fig. 7.7 (a)).  All data enclosed within this 

closed loop is then removed, leaving only probe-induced signal (Fig. 7.7 (b)).  The mean and 

standard deviation of the probe-induced signal is then calculated.  At first glance, the time-

resolved average signal monitor (presented in Fig. 7.7 (c)) reflected the statistically-described 

behavior of the transient reflectivity signal.  However, the typical standard deviation of the 

average signal was around 2 V, dwarfing the average signal monitor by a factor of 10, and so 

it was judged inconclusive as to whether the pump / probe varied significantly in power.   

 

Fig. 7.7 (a) Typical signal monitor output acquired from the transient reflectivity 

detector.  Overlaid is a freehand line, isolating the pump-induced signal.  (b)  

Same as in (a), except the pump-induced signal has been removed.  (c)   The 

mean probe-induced signal monitor, as calculated from all the signal 

monitor images acquired.  (d)  Same as in (c), but error bars are included 

corresponding to the standard deviation of the average calculated probe-

induced signal monitor output.   
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7.3 Measurements of a 50 nm thick film of Permalloy 

 The second film measured as part of the TROPSOM investigation was a 50 nm thick 

film of Permalloy, again mounted on a Sapphire substrate of thickness 330 μm.  The 

methodology of the measurements followed the same procedures as described in Section 7.2, 

and all the time-varying spectra and spatially-resolved images presented here have been 

rotated into one output channel.  In contrast with the 20 nm thick Permalloy film, the 50 nm 

thick Permalloy film proved to be more resistant to ablation by the pump beam - this was 

attributed to the larger volume over which the pump-delivered energy could dissipate into.  

The pump and probe powers were therefore fixed at 4.12 mW and 1.15 mW respectively (the 

pump pulse therefore had energy 52 pJ, and a fluence of 57 mJ / cm2, and the probe’s fluence 

was 4.5 mJ / cm2).   

Preliminary imaging of the transient reflectivity and Kerr signals across the 50 nm 

thick film was first performed, at a positive time-delay of +100 ps.  These results are 

presented in Fig. 7.8 (a).  The transient reflectivity signal was observed to be generally 

dipolar, where the poles had opposite sign, and the same quadrupolar Kerr signal as was 

observed for the 20 nm thick film was observed here too.   

The time-resolved signals presented in Fig. 7.8 should be compared to the spectra 

corresponding to the 20 nm thick film, presented in Fig. 7.3.  The rise time of the transient 

reflectivity / Kerr signal across the 50 nm thick film was much slower, taking about 6 ps to 

maximize.  The reflectivity signal, again, lagged behind the Kerr signal, by about 250 fs.  

There was also non-zero Kerr signal at negative time delay, indicating the accumulation of 

heat in the vicinity of the pumped region.221  There was also some signal in the reflectivity 

channel at negative time delay, but it was weak.  Several oscillations in the Kerr signal could 

be discerned, but notably there was no change in sign.   
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Fig. 7.8  (a)  The characteristic reflectivity and Kerr image is shown in the left and 

right panel respectively, obtained about 6.67 ps after initial excitation of the 

50 nm-thick Permalloy film by the laser pulse.  The film was uniformly 

biased along the y-axis by HB = 145 Oe.  (b)-(i)  Time-resolved reflectivity 

and Kerr signals (presented in the left and right panels respectively)  

acquired across time scales of 10 ps, 100 ps, 1 ns and 2 ns as indicated.  The 

signals shown in panels (b) - (e) and (f) - (i) were obtained with the probe at 

the position (4.5 μm, 3.5 μm) and (5.5 μm, 4.5 μm) respectively, as 

indicated by the crosshairs shown in (a).  All the images / spectra shown are 

given in arbitrary (but comparable) units.   
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 After recording the presented time-varying signals, transient reflectivity and Kerr 

imaging was performed.  A selection of background-corrected images is presented in Fig. 7.9, 

for varying time delays, and all images acquired are provided for completeness in Appendix 

2.  At negative time delay (-40.0 ps), it is debatable whether a faint positive reflectivity spot 

can be observed, but a faint quadrupolar Kerr signal is definitely present.  At zero time-delay, 

the negative spot in the reflectivity channel appears, and both the positive and negative spots 

in the reflectivity signal increase in strength.  The reflectivity spot of negative sign is 

consistently below and to the right of the spot with positive sign.  The quadrupolar Kerr signal 

also grows in strength.  After +18.0 ps, the negative spot in the reflectivity channel decays, 

and intermittently appears faintly from then on.  At a positive time delay of +244.0 ps (Fig. 

7.9 (d)), ripples can be observed close to the quadrupolar signal in the Kerr channel, 

propagating predominantly up and to the left, and down and to the right.  These ripples 

propagate outwards and away from the irradiated region, beyond the field of view.   

 In order to quantify the analysis of the images, statistical fitting was again 

performed.  The quadrupolar Kerr pattern was fitted using the same distribution as given in 

Eq. 7.2, but the transient reflectivity signal was instead fitted using a dipolar function 
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The terms used in Eq. 7.3 are identical to those associated with Eq. 7.2, except ϕ is the angle 

of the axis of symmetry associated with the dipole.  Presented in Fig. 7.10 (a) - (e) are the 

temporal variations of the amplitude, spatial extent, central positions and the angle of the axis 

of symmetry.  Also shown in Fig. 7.10 (f) is the temporal variation of the signal monitor 

output from the reflectivity detector, where the pump-induced signal has been removed 

according to the procedure outlined in Fig. 7.7.   
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Fig. 7.9  Transient reflectivity images (left panels) and Kerr images (right panels) 

acquired  across a 50 nm-thick Permalloy film, at time delays (a) -40.0 ps 

(b) 0.0 ps (c) +5.0 ps (d) +9.0 ps (e) +18.0 ps (f) +132.0 ps (g) +244.0 ps 

(h) +300.0 ps (i) +468.0 ps,  (j) +580.0 ps, (k) +692.0 ps, and (l) +860.0 ps, 

relative to the arrival of the pump pulse.  All the panels have had a fitted 

plane background subtracted, except for the transient reflectivity signals 

shown in panels (a), (i) and (j).   
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 The amplitude of the detected Kerr signal across the 50 nm film is initially very weak, 

but non-zero.  Once the pulse arrives, the Kerr signal increases rapidly in strength, and then 

decays (it is possible that the amplitude oscillates, but this is unclear).  Spatially, the Kerr 

signal decreases substantially in the first 10 ps, and then appears to extend slowly outwards.  

The reflectivity signal, in constant, grows slightly in amplitude across the first 10 ps, but 

remains relatively fixed thereafter.  The spatial extent of the reflectivity signal also appears to 

be fairly stable.  Strong emphasis should be put onto the observation that the co-ordinates of 

the centers of the dipolar and quadrupolar patterns do not coincide.  The origin of the 

quadrupolar Kerr pattern is consistently 0.75 μm to the right of / 0.25 μm above the origin of 

the dipolar reflectivity signal.  This feature suggests, at least partly, that either the reflectivity 

or Kerr signal is artefactual in nature.   

 This interpretation is further supported by the statistical results shown in Fig. 7.10 (e).  

The orientation of the quadrupolar Kerr pattern is rather consistent (ranging within 10°), 

compared to the dipolar reflectivity signal.  Since no system parameters were deliberately 

changed between the recording of the images, such variation of the dipolar reflectivity signal 

is difficult to explain.  The signal monitor appears to show two “steps” in signal strength, but 

this does not appear to correlate with any of the results shown in the other panels.   

 At a positive time delay of about +200 ps, quasi-circular ripples were observed 

propagating away from the pumped region of the film.  To investigate this propagation more 

quantitatively, a series of time-resolved signals were recorded at different positions across the 

film.  Presented in Fig. 7.11 (a) are the reflectivity and Kerr images recorded at a positive 

time delay of +580 ps.  Immediately after recording these snapshots, the probe beam was 

moved to point A (indicated in the right panel of Fig 7.11 (a)), and a time-resolved signal was 

recorded.  The time-resolved reflectivity signal away from the pump spot was uniformly zero, 

and so is not shown here.  The Kerr signal recorded at point A is shown on the left at the top 

of Fig. 7.11 (b), and a clear oscillatory packet is present.   
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Fig. 7.10 (a)-(e) The results of fitting the signals acquired across the 50 nm-thick 

film, showing Amp, σ, x0, y0 and ϕ respectively.  The black and red points 

show the results corresponding to the transient reflectivity and Kerr signals 

respectively, and the error bars correspond to the 95% confidence limits..  

(f)  The average “background” signal obtained from the signal monitor, 

extracted using the procedure as outlined in Fig. 7.7, but for the 50 nm-thick 

film.  The error bars correspond to the standard deviation of the said 

“background” signal.   
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Fig. 7.11  (a)  Transient reflectivity (left panel) and the Kerr (right panel) signals 

acquired at a positive time delay of +580 ps, across a 50 nm-thick Permalloy 

film.  (b)  Time-resolved Kerr signals acquired with the probe fixed at 

points A-E as indicated in the Kerr image shown in (a).  The region shaded 

red indicates signal corresponding to negative time delay.  (c)  Kerr signal 

reproduced from Fig. 7.10 (a), but adjusted in color map / scale.  (d)  

Transient reflectivity (left panel) and the Kerr (right panel) signals acquired 

at a positive time delay of +580 ps, obtained about 4 hours after the images 

shown in (a) were recorded, but with the sensitivity of the reflectivity and 

Kerr detectors reduced by a factor of 2.5 and 10 respectively.   
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The motion of the packet of oscillations was then recorded at points B to E, spatially 

separated by steps of 1.4 μm.  The Kerr signals recorded at these points are given on the left 

side of Fig. 7.11 (b) as indicated, and the packet is clearly observed at positions B and C.  By 

comparing the times at which the peak of the packet was recorded, the ripple was calculated 

as having a speed of 3.8 km / s.  This is on the same order of the velocities of surface acoustic 

waves which propagate across Nickel films,235 and so one could reasonably infer that the 

ripple is of (at least partially) surface acoustic character.   

The frequency spectra of the oscillatory Kerr signals are provided on the right-hand 

side of Fig. 7.11 (b).††††††††  Since no clear oscillations are present in the Kerr signals recorded 

at points D and E, these frequency spectra are not considered further.  In the frequency spectra 

calculated at points A – C, the dominant frequencies lie between 1 GHz and 6 GHz.  At these 

frequencies, in the considered Permalloy system, the magnetostatic interaction still dominates 

(giving rise to spin-wave caustic beams), and so the quasi-circular ripples cannot correspond 

to spin waves.   

Throughout the images shown in Fig. 7.9, the ripples do not appear to be perfectly 

circular: instead, the ripples have strongest amplitude in the upper-left and lower-right 

sections of the images.  All the images were inspected by increasing the color contrast, to 

identify whether any ripples could be identified in the lower-left and upper-right sections of 

the images.  The only images which showed any such signal with improved axial symmetry 

were those contained in Fig. 7.9 (i) - (j) and Fig. 7.11 (a).  Presented in Fig. 7.11 (c) - (d) are 

reproductions of the images presented in Fig. 7.9 (j) and Fig. 7.11 (a), with altered color 

contrast, showing the ripples are indeed present in the upper-right and lower-left sections of 

the images respectively.  However, these certainly are weak, and the difficulty with 

reproducibility (in contrast to the reproducibility of the ripples in the upper-left and lower-

right sections) indicates that the ripples are not wholly isotropic.   

 The stationary dipolar transient reflectivity and quadrupolar Kerr signals clearly 

possess spatial symmetry.  Across Figs. 7.8 – 7.9, the dipolar reflectivity and quadrupolar 

Kerr signals are both canted at about 20° to the y-axis.  To attempt to identify the origin of 

this axis of symmetry, a series of system parameters were adjusted, and the results are 

                                                           
†††††††† Note the Kerr signals all had linearly-varying background, which led to a strong dc response in 

the calculated frequency spectra.  To therefore remove this artefactual contribution, a linear 

relationship was fitted to (and then subtracted from) the Kerr signal.  The Fourier transform was then 

applied to this modified Kerr signal.   
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Fig. 7.12  A flowchart showing the results of measurements where system parameters 

were strategically adjusted.  All the transient reflectivity (left panels) and 

Kerr (right panels) images presented were acquired at a positive time delay 

of 10 ps.  (a)  The signals acquired when the Permalloy film was biased by 

H
B
 = 140 Oe (applied parallel to the y-axis), pumped by s-polarised light, 

and mounted as shown in Fig. 3.4.2 (b).  (b)-(e)  Signals acquired upon 

modifying the experimental setup from that described in (a), as indicated.   
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presented in Fig. 7.12, where all the images were acquired at a positive time delay +10 ps.  

Firstly, the signals acquired and presented so far were all obtained with the bias magnetic 

field H
B
 applied along the y-axis.  Immediately after recording the image shown in Fig. 7.12 

(a), the horseshoe magnet was rotated / moved such that H
B
 was parallel to the z-axis, and the 

image presented in Fig. 7.12 (b) was recorded.  As can be seen, the signal showed no change 

in its symmetry.  Another possible source of symmetry laid in the properties of the pump 

beam.  The bias magnetic field was therefore rotated back to the z-axis, and the pump’s 

polarizer was rotated from the vertical by 45°, serving to rotate the pump’s linear polarization.  

The power of the incident pump was consequently halved, so the neutral density filter was 

adjusted to compensate for this.  The signal presented in Fig. 7.12 (c) appears to, again, show 

no change.  The pump’s polarizer was therefore rotated back to the vertical, and instead the 

quarter wave-plate in the path of the pump beam was rotated by 90°, causing the pump to 

become circularly-polarized.  Again, no change was observed in the signals acquired (shown 

in Fig. 7.12 (d)).  The final test performed concerned the sample orientation.  It was 

hypothesized that the Permalloy / Sapphire perhaps possessed some crystallographic structure 

that induced significant crystalline magnetic anisotropy, or that the bias magnetic field was 

insufficient to magnetize the Permalloy (as H
B
 is admittedly not strong).  The entire sample 

was therefore removed from the TROPSOM system, and the glass cover slips were rotated by 

45°.  Subsequent measurements, with linearly-polarized pump beam, revealed however that 

the signals (presented in Fig. 7.12 (e)) were unaffected.  It should be noted also that this also 

revealed that the position / alignment of the pump and probe beams did not affect the signal 

symmetry.   

7.4 Discussion 

At the time of writing, only some of the results discussed in this chapter are 

understood.  Here, therefore, I will discuss the results, and speculate about the mechanisms 

that could underpin the observed features.   

When the TROPSOM signals were recorded, many millions of optical pulses were 

striking the Permalloy films (the laser’s repetition frequency of 80 MHz corresponds to the 

arrival of 80 million pulses on the film’s surface per second).  Such rapid bombardment can 

lead to the accumulation of heat, due to the heat within the pumped spot not having enough 

time to dissipate away.  Across the 20 nm thick film, no signal was observed prior to the 
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arrival of the optical pumping pulse, indicating that the pump-delivered energy had entirely 

dissipated away from the irradiated region within 12.5 ns.  Within 650 fs and 800 fs after the 

arrival of the pulse, the Kerr and reflectivity signal maximized in strength.   

The reflectivity signal observed across the 20 nm thick film was consistently 

monopolar and fairly Gaussian in distribution.  This can be understood as roughly 

corresponding to the spatial profile of the pump spot.  The stationary Kerr pattern, in contrast, 

was consistently quadrupolar, canted at an angle of about 28° relative to the magnetic field.  

The centers of the reflectivity and Kerr signals coincided consistently, suggesting that both 

signals were real.  The Kerr signal was, however, engulfed by noise at delay times of more 

than 2 ps.   

Across the 50 nm thick film, non-zero signal was consistently observed in both the 

reflectivity and Kerr channels at negative time delay.  This indicated that, in the 50 nm thick 

film, the optically-delivered heat did not have enough time to dissipate away from the 

irradiated region.  Again, the reflectivity signal lagged behind the Kerr signal.  In the 

reflectivity channel, the signal observed had either monopolar or dipolar spatial character (the 

latter was oriented at about 22° to the bias magnetic field).  This monopolar / dipolar signal 

did not appear to switch for any particular reason.  The quadrupolar Kerr signal retained its 

non-stationary behavior, again canted at about 25° to the bias field.  The orientation of this 

quadrupolar pattern neither depended on the bias magnetic field orientation, the polarization 

of the pump, nor the orientation of the Permalloy sample, indicating that the observed Kerr 

pattern was not of magnetic or photo-magnetic origin.   

A highly-intriguing possibility, which could account for the observed quadrupolar 

features in the Kerr channel, involves the probe’s polarization - throughout all the 

measurements discussed in this chapter, the probe was nominally s-polarized (aligned parallel 

to the y-axis), and no such influence of the probe on the spatiotemporal magnetization 

dynamics has not been reported before.  The probe polarization has, however, been identified 

in the past as generating artefacts in magneto-optical measurements of the Kerr effect.236-237  

In 2004, Bert Koopmans et al. found238 that the Kerr rotation and Kerr ellipticity did not 

correlate during the first 1.5 picoseconds of optical excitation, suggesting that the magneto-

optical measurements did not necessarily scale with the dynamic magnetization.  This was 

further studied by Tobias Kampfrath et al,239 who argued that parasitic non-magnetic signals 

arising from the probe beam limit the usefulness of TRMOKE techniques when measuring 
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magnetization dynamics across timescales spanning the first 100 ps after optical excitation.  

These reports, also supported by theoretical calculations presented by Oppeneer et al,240 

certainly lend credence to the possibility that the quadrupolar contrast in the Kerr channel is 

an artefact.  To investigate this possibility, one could either rotate the linear polarization of the 

probe, or more usefully, measure the ellipticity induced by the Kerr effect along with the 

transient reflectivity and Kerr rotation.241  The integration of a vector bridge detector242 within 

the TROPSOM system, allowing all three components of magnetization to be imaged, would 

also provide further information about the magnetization dynamics and / or optical artefacts 

imaged by the setup.   

Beyond the field of magneto-optical microscopy, a rather novel technique of 

microscopy has been recently used in biological experiments.  This technique – 

interferometric cross-polarization microscopy243 – exploits the rotation of polarization of 

linearly-polarized light to image objects below the diffraction limit.  The rotation of 

polarization arises not from magneto-optical effects, but rather from the scattering of tightly-

focused light from nanometric spherical objects.244  A signature of such scattering is a 

quadrupolar pattern in the measured polarization response.  By rotating the polarization of the 

probe by 90°, the quadrupolar pattern becomes a monopolar spot.  To investigate whether this 

is responsible for our observations, it is therefore imperative that the experiment be repeated, 

but the polarization of the probe be rotated, using a half-wave plate for example.‡‡‡‡‡‡‡‡  It 

would also be useful to calculate the complex point spread function245 (the signal detected 

when imaging an idealized point-like object) relevant to the TROPSOM system, and compare 

the amplitude and phase of the point spread function to the experimentally-observed 

quadrupolar pattern.   

In addition to the stationary quadrupolar pattern, quasi-circular propagating ripples 

were observed propagating in the Kerr channel.  These were also observed by Au et al,132 but 

in that article, the ripples (travelling with a speed of 5 km / s) were interpreted as surface-

acoustic waves.  It was argued, in that article, that these non-magnetic waves entered the Kerr 

channel due to misalignment of the optical equipment.  In all the results presented in this 

chapter, the quasi-circular ripples were also observed wholly in the Kerr channel (with a 

speed of about 4 km / s).  This, perhaps, suggests that the ripples are rather of magneto-elastic 

                                                           
‡‡‡‡‡‡‡‡ Rotating the polarizer usually leads to significant deflection of the laser beam, incurring 

realignment.  In contrast, a laser beam is deflected much less by the rotation of a half-wave plate.   
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origin, as predicted by Shen et al.227  However, Permalloy usually has small 

magnetostriction,246-247 rendering this possibility unlikely – it is therefore essential that the 

magnetostriction of the studied Permalloy films be measured248 to confirm or disprove this 

hypothesis.  It is difficult to conclusively infer, from the experimental results presented here, 

whether the ripples have dipolar or quadrupolar character, and so no further conclusions can 

be drawn.   

The results presented in this chapter should be compared to those presented by Au et 

al.132  In that article, the bias magnetic field was applied almost normal to the Permalloy film, 

causing the magnetization to tip by several degrees out of the plane of the film.  The optical 

pulse therefore served to immediately demagnetize the pumped region, causing the 

magnetization to tip further out-of-plane, and then precess.  It should also be noted that Au et 

al observed a non-propagating transient dipolar pattern in the Kerr channel – the origin of this 

feature is still (at the time of writing) unknown.  Possible candidates include the generation of 

a vortex-antivortex pair,249 or some optically-induced artefact.244  In contrast, the 

magnetization across all the results presented in this chapter was aligned in the plane of the 

film.  The rapid demagnetization of the pumped region would therefore not necessarily induce 

much precession out of the plane of the film.   

It should also be noted that propagating spin-wave caustics were not observed when 

the static magnetization was aligned in the plane of the film (in contrast to the observations of 

Au et al.132  Three reasons could account for this.  Firstly, the dynamic out-of-plane 

component of magnetization was strongly suppressed due to the in-plane anisotropy of the 

film (which aligned with the bias magnetic field): this could render the detected magnetic 

signal very weak.  Secondly, in contrast to the system used by Au et al, the probing spot was 

almost doubled in diameter - consequently, the spatial resolution of the imaging was almost 

halved.  Thirdly, the tightly-focused pump spot here was almost halved in diameter, compared 

to that used by Au et al.  As a result, the angular width of the spin-wave caustic beams would 

halve as well.   
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7.6 Summary 

In summary, the laser-induced spatio-temporal dynamics of two films of Permalloy, of 

thickness 20 nm and 50 nm (magnetized in-plane), have been studied using time-resolved 

optically-pumped scanning optical microscopy.  Both the 400 nm pump and 800 nm probe 

beams were tightly focused, and both the transient reflectivity and dynamic magneto-optical 

polar Kerr signals were recorded.  For the 20 nm thick Permalloy, subsequent to the arrival of 

the pump pulse, a single stationary spot was recorded in the transient reflectivity channel, and 

a characteristic stationary quadrupolar signal was observed in the Kerr channel.  Across the 50 

nm thick Permalloy film, a single stationary spot was observed in the transient reflectivity 

channel prior to the arrival of the pump pulse, and subsequently, a second spot (of opposite 

polarity) was intermittently observed, giving rise to a characteristic stationary dipolar / 

monopolar signal.  In the Kerr channel, again a characteristic stationary quadrupolar signal, 

with the same symmetry as was seen across the 20 nm thick film, was observed throughout, 

persisting as much as 12.5 ns after the arrival of the pump pulse.  About 244 ps after the 

pumping pulse arrived, quasi-circular wavefronts were observed emanating away from the 

pumped region, with a typical speed on the order of 4 km / s.  The physical mechanisms 

underpinning the observed spatiotemporal dynamics are currently unknown.  The stationary 

dipolar and quadrupolar signals observed in the transient reflectivity and Kerr channels 

respectively did not depend on the orientation of the bias magnetic field, the pump’s 

polarization, or the sample orientation.  Further TROPSOM measurements are required in 

order to identify whether the signal depends on the probe polarization, and extensive 

computational models (including magnetoelastic and polarization-dependent effects) must be 

developed in order to accompany and compliment the results acquired using the TROPSOM 

system.   
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CHAPTER 8 
 

SUMMARY AND OUTLOOK 

In this thesis, the results of time-resolved magneto-optical imaging experiments, 

micromagnetic simulations and analytical calculations have been presented.  These were all 

performed in order to understand how spin waves can be excited or steered using the non-

uniformities associated with magnetic configurations.  The non-uniformity in effective field 

and / or magnetization has been interpreted as giving rise to a magnonic index,4 similar in 

concept to the refractive index for light, or potential for a quantum-mechanical electron.   

 In Chapter 4, the possibility of exciting spin waves using the graded magnonic index 

was investigated using Brillouin light scattering microscopy,82 micromagnetic simulations,135 

and analytical calculations.  The principle of excitation relies on the Schlömann mechanism,24 

which exploits the fact that the frequency of resonance will spatially vary across a non-

uniform magnetic configuration.  By therefore driving the entire system at a particular 

frequency, the majority of magnetization vectors will not be excited efficiently, but some will 

be excited at resonance.  This local resonance therefore acts as a spin-wave source, launching 

spin waves of finite wave vector into the neighboring regions of magnetization.  In the first 

part of this chapter,1 this mechanism of excitation was studied using a combination of 

Brillouin light scattering microscopy and micromagnetic simulations.  The investigated 

magnetic system consisted of an isolated antidot embedded within an otherwise-continuous 

film of YIG.  Upon subjecting the film to a spatially-uniform bias magnetic field, the static 

demagnetizing field associated with the antidot served to increase the frequency of resonance 

in the regions immediately adjacent to the antidot.  By then driving the entire sample at a 

microwave frequency tuned to only resonantly excite these particular regions of the 

magnetization, spin-wave caustic beams150 were observed propagating away from the antidot.  

These caustic beams owed their tightly-focused spatial profile to the anisotropy of the 

magnetostatic spin-wave dispersion.92  In the second part of this chapter,2 the Schlömann 

mechanism of spin-wave excitation was studied further using micromagnetic simulations to 

model spin-wave dynamics across Permalloy films of nanometer thickness.  Due to the 
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substantially reduced thickness of the system, the spin waves excited instead had spatial 

character better described by the dipole-exchange dispersion formulation.99  It was also 

demonstrated that the dynamic demagnetizing field on its own, substantially raised in strength 

close to the edge of a semi-infinite film, could also serve as a spin-wave source – this was 

capable of exciting plane spin waves with a tunable wavelength / frequency.  In the third and 

final part of this chapter, a hybrid analytical / numerical model was constructed in order to 

map more quantitatively the spatially-varying frequency of resonance and magnetic 

susceptibility.  These quantities enable the positions of resonance - and, by extension, the 

magnonic index - to be more accurately determined, and the model constructed is general 

enough to map the distribution of resonances across any arbitrary (but stable) magnetic 

configuration.   

 In Chapter 5, the graded magnonic index was shown to be effective in deliberately 

steering propagating spin waves in particular directions.3  To demonstrate this, a T-junction of 

Permalloy waveguides was studied using both time-resolved scanning Kerr microscopy147 and 

micromagnetic simulations.  When a spatially-uniform bias magnetic field was applied 

parallel to the leg of the T-junction, the internal field across the leg was raised, compared to 

the internal field across the arms.  Then, upon exciting the entire sample with a harmonic 

magnetic field, deliberately tuned so as to excite resonance in the leg of the T-junction, spin 

waves were symmetrically launched into the arms via the Schlömann mechanism.  Due to the 

finite width of the spin-wave source (the leg-arm interface), and the anisotropy of the 

magnetostatic spin-wave dispersion, the excited spin waves formed spin-wave caustic beams.  

When the bias magnetic field was rotated by 15°, the symmetry of the spin-wave propagation 

was broken, in that spin waves were only observed propagating only along one arm of the T-

junction.  This was observed using both time-resolved scanning Kerr microscopy and 

micromagnetic simulations.  In order to explain this feature, extensive analysis of the 

micromagnetic calculations was performed.  The spin-wave dispersion was calculated in each 

and every mesh cell, and maps of the spatially-varying group and phase velocities were 

constructed.  Using these maps, it was shown that the canting of the magnetization close to 

the edge of the transversely-biased waveguide was responsible for the absence of a spin-wave 

beam – the strong canting caused the spin-wave beam to undergo “anomalous reflection”, 

such that it was either refracted closer to the edge of the waveguide, or reflected wholly back 

upon itself.66  The method of mapping the spatially-varying group velocity of propagating 

spin-wave beams, outlined in this chapter, was general indeed, and could in principle be 
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applied to understand and predict the propagation path of spin waves across any non-uniform 

magnetic landscape.   

 In Chapter 6, the propagation of spin-wave width modes across a T-junction of YIG 

waveguides was studied using Brillouin light scattering microscopy and micromagnetic 

simulations.5  The graded magnonic index, in this case, arose from the spatially-varying angle 

between the magnetization and the spin-wave group velocity.  Across an unstructured thin 

film, the dispersion of magnetostatic surface spin waves and backward-volume magnetostatic 

spin waves do not overlap at all.  When spin waves are laterally confined across a waveguide, 

in contrast, the two dispersive bands overlap, suggesting the possibility of converting the two 

spin-wave types.212  In the first section of this chapter, the propagation of spin waves across 

YIG waveguides was studied, and it was demonstrated that the dispersive bands did indeed 

overlap.  Ultimate evidence of this behavior was presented via the calculation of the spin-

wave dispersion using dynamic micromagnetic simulations.  Due to the uniformity of the 

exciting field across the width of the waveguide, the spin waves that were excited had 

sinusoidal lateral profile, with an odd number of antinodes.   In the second part of this chapter, 

a T-junction of YIG waveguides was studied, again using Brillouin light scattering 

microscopy and micromagnetic simulations, and it was demonstrated that spin waves did 

indeed propagate across the entire network of waveguides.  Across the arms of the T-junction, 

the spin-wave propagation path was identified as snake-like - this pattern emerged because a 

mixture of even and odd width-modes was propagating.109   

 In Chapter 7, the ultrafast magnetization dynamics across Permalloy films, biased in-

plane, was studied using time-resolved optically-pumped scanning optical microscopy.132  

While the graded magnonic index can, in principle, arise from both the transient length of the 

magnetization vector (induced by the optical pump’s thermal load) and the local magnetic 

fields associated with the pump, no graded-index effects were definitively observed in this 

chapter.  In this system, the pump consisted of a linearly-polarized optical pulse (of 

wavelength 400 nm and duration 100 fs), and the probe consisted of a similar pulse of 

wavelength 800 nm.  Both beams were tightly focused on the surface of the sample, and both 

the polarization rotation and transient intensity of the probe was recorded.  Two Permalloy 

films were studied, with a thickness of either 20 nm or 50 nm.  Across the 20 nm thick film, a 

single spot was observed in the reflectivity channel (corresponding to the spatial distribution 

of the thermalized electrons / lattice), and a non-propagating quadrupolar pattern was 
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identified in the Kerr channel.  The quadrupolar pattern in the Kerr channel was only 

observable for the first few picoseconds after the pumping pulse arrived.  Across the 50 nm 

thick film, the reflectivity channel instead intermittently displayed a dipolar pattern - the 

origin of this feature is unknown at the time of writing.  In the Kerr channel, a non-

propagating four-lobed signal was again observed.  In addition to these stationary patterns, 

quasi-circular ripples were observed propagating outwards (with a speed of about 3.8 km / s).  

It is unknown whether these ripples are of magneto-elastic origin.226  The quadrupolar pattern 

had two characteristic axes of symmetry, which did not depend on the bias field orientation, 

the polarization of the pump, or the orientation of the sample.  It is suspected that the probe 

polarization may be the origin of this pattern.239  Substantial research is still needed in this 

area, in order to understand the measured results.   

 As a whole, the work discussed in this thesis demonstrates that non-uniformities in a 

magnetic configuration (i.e. a graded magnonic index) can be used to excite and steer spin 

waves.  The experimental, numerical and analytical results discussed in Chapter 4 collectively 

reveal that non-uniformities in either the magnetization and / or effective field give rise to a 

corresponding spatially-varying frequency of resonance.  By therefore subjecting the entire 

magnetic system to a spatially-uniform microwave field, tuned so as to excite only specific 

regions of magnetization at resonance, one can launch spin waves of finite wave vector into 

the adjacent regions of the sample.  Importantly, this scheme of excitation is devoid of any 

limitations involving the spin-wave wavelength, allowing spin waves of any wave vector (as 

permitted by the magnetic film) to be generated.  In Chapter 4, the non-uniformity of 

magnetization / effective field was delivered through patterning of the magnetic film.  In 

Chapter 7, in contrast, spin waves (or more correctly, magnon-phonons) were excited through 

transient thermal modification of the magnetization, as delivered by an optical pulse.  As well 

as demonstrating that the graded magnonic index can be used to excite spin waves, the results 

in Chapters 5 and 6 revealed that the said index can be used to steer spin waves, in an 

approach analgous to the research theme of graded-index optics.  Upon encountering a region 

of magnetization with dissimilar magnetic parameters, a spin wave will adiabatically adjust its 

wave vector in order to satisfy the local dispersion.  In Chapter 5, this effect was exploited to 

understand a variety of effects, including the spin-wave “mirage” and the “anomalous” 

reflection of spin waves.  In particular, the latter effect was exploited to give rise to a spin-

wave demultiplexer.  In Chapter 6, in contrast, the graded magnonic index was exploited to 

realize a magnonic beam splitter – the basic building block of parallel magnonic circuitry.   
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For magnonics to truly complement, and perhaps rival, semiconductor technology in 

the field of data communication and processing, there are three significant challenges that 

need to be addressed.  First, the damping of spin waves in metallic ferromagnetic materials 

needs to be reduced, in order to increase the propagation distance of spin waves, and also 

reduce the linewidth of spin-wave modes.  The work discussed in this thesis has not addressed 

this challenge at all, but promising results have already been reported by some groups.60-61  It 

is therefore reasonable to project that researchers in magnonics will move towards using Co-

Fe alloys as a material of choice, rather than Permalloy.  Second, the spin-wave wavelength 

needs to be reduced towards the nanometric scale.  Third, an efficient and effective means by 

which to steer spin waves must be developed.  The work discussed in this thesis goes some 

way towards addressing the latter two challenges.  However, of course, more work needs to 

be done in order to truly address these obstacles.   

There is a wide variety of magnetic interactions, beyond the Zeeman and 

demagnetizing interactions that have been predominantly studied in this thesis, that influence 

the spin-wave dispersion.  These interactions include, but are not limited to, 

magnetocrystalline anisotropy, magnetostriction, exchange, DMI, magneto-elastic coupling, 

and superexchange.  Initially, therefore, to further explore the effects of “graded-index 

magnonics”, effort must be devoted to fully understanding how these interactions influence 

free and driven magnetization oscillations (giving rise to the frequency of ferromagnetic 

resonance and the spin-wave dispersion respectively).  With this background in place, one can 

then design suitable magnetic configurations in order to excite spin waves using a global 

microwave magnetic field.  In the work presented in this thesis, I have only demonstrated that 

the magnetic non-uniformity associated with an antidot and edge of a stripe can be used to 

generate spin-wave caustic beams and plane spin waves respectively.  It is reasonable to 

project that alternative magnetic configurations, hosting (for example) vortex-antivortex pairs, 

domain walls and skyrmions, could be used to generate different types of spin waves.  In 

terms of using the Schlömann mechanism to excite spin waves, the only design requirement 

relates to the need for a non-uniform magnetic configuration.  It must be emphasized that such 

non-uniformity is inevitably present in micro- and nano-magnetic structures, and so the 

scheme of excitation will surely benefit from miniturization.   

In this thesis, the spin-wave steering arising from the graded magnonic index was 

explained solely in terms of the demagnetizing and Zeeman fields.  Upon miniaturization of 
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the spin-wave wavelength, however, the influence of other interactions - including exchange 

and DMI for example - must be also taken into account.  An obvious next step would 

therefore be to work towards comprehensively understanding and verifying how these 

interactions influence the isofrequency curves (and therefore the path) of propagating spin 

waves.  Once this understanding is gained, one can then aim to comprehensively exploit spin-

wave steering for technological devices.   

The spin-wave splitter discussed in this thesis was of macroscopic dimension, and 

composed of the dielectric YIG.  To further this area of research, therefore, it is imperative 

that the device be miniaturized further.  A similar device, composed of Permalloy on the 

micrometric scale, was studied by Brächer et al,212 and so it is reasonable to assume that the 

magnonic beam-splitter will successfully operate on a similar length-scale.  Moving towards 

nanometric dimensions, however, the isotropic exchange interaction will become more 

significant, and so micromagnetic simulations should be performed to identify whether the 

process of splitting changes substantially.  In more general terms, many magnonic devices 

have already been demonstrated (including, for example, transistors,207 filters,209 and 

multiplexers196) but all these still need to be miniaturized further.  In addition, these building 

blocks need to be joined in unison, therefore allowing the principles of “graded-index 

magnonics” to be utilized fully.   

In the work discussed in Chapter 7, the dynamics excited by an optical pulse was not 

fully understood, and so it is essential that the experiment be repeated, but with varying 

polarization of the probe.  Going beyond this, the integration of optical pulses with systems 

supporting spin waves provides a remarkable degree of reconfigurability.  By shaping the 

spatial distribution of the optical pulse, it is well-known that one can generate spin waves with 

specific spatial profile.220  The optical excitation of spin waves in continuous ferromagnetic / 

ferrimagnetic media is reasonably understood, but less attention has been paid towards the 

possibility of exciting propagating spin waves in (for example) more complex rare-earth 

orthoferrites, or using optical pulses to steer spin waves.  Optical pulses could, for example, 

be used to excite the spin waves that are steered across magnonic devices (such as a beam-

splitter).  Alternatively, an optical pulse, via its thermal influence on the magnetization of a 

material, could instead be used to directly modify the path of propagating spin waves.250  

Such investigations necessitate a deep understanding of how the magnetoelastic interactions 

and transient modification of the magnetization influence the spin-wave dispersion.   
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APPENDIX 1 
 

Derivation of the local frequency of resonance / effective susceptibility tensor  

 The derivation presented in this appendix shows, in more detail, how Eqs. 4.16 – 4.17 

(discussed in Chapter 4.3) were obtained.   

 The linearized Landau-Lifshitz-Gilbert equation, in the presence of both damping and a 

driving field, is of the form 
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This corresponds to an inhomogeneous system of equations, which can be rearranged to obtain 
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The determinant of the rank 2 tensor, on the left-hand side of Eq. A1.2, is given by 
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which reduces (to first order) to the form 
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In the case of resonant excitation, the determinant in Eq. A1.4 is equal to zero, giving rise to the local 

frequency of resonance 
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10  iFMR  . (A1.9) 

If instead the magnetization oscillations are driven (hB ≠ 0), Eq. A1.2 can be rearranged into the form 
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which simplifies to give the elements of the modified Polder susceptibility tensor shown in Eqs. 4.16 – 

4.17.   

APPENDIX 2 
 

Fitting the frequency spectra characterising the biased Permalloy T-junction structure 

 In Chapter 5.2, magnetization dynamics across the T-junction structure was excited using a 

broadboand stimulus, allowing the corresponding frequency spectra to be recorded in the arm and leg 

of the T-junction.  Here, the procedure by which the frequency spectra were fitted is outlined in detail.   

To estimate the local frequency of resonance fFMR and the full-width half-maximum σ, each 

frequency spectra S(f) recorded from the leg and arm of the T-junction was fitted to a normalized 

Lorentzian distribution, as given by 
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shere S0 is the amplitude of the frequency spectrum.  This fitting procedure was implemented for all 

spectra presented in Fig. 5.3, and the results are shown in Fig. A2.1 (the black circles correspond to 

the data points S(f), and the line corresponds to the fitted Lorentzian distribution).   
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Fig. A2.1 The frequency spectra (black circles) recorded when the probing spot was 

positioned above the leg (left column) and arm (right column) of the T-junction.  

The line shown in all panels corresponds to the fitted Lorentzian function, 

described by Eq. A2.1.  (a)-(k) The frequency spectra acquired with different 

orientation α of the bias magnetic field HB = 500 Oe as indicated, relative to the leg 

of the T-junction.  Note all signals and their fits have been normalized.   
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APPENDIX 3 
 

Data acquired from TROPSOM measurements of a 20 nm thick Permalloy film 

 The figures presented in this appendix show the entire signals discussed in Chapter 7.1.    

 

Fig. A3.1 Images acquired using the TROPSOM system for a 20 nm-thick Permalloy film, 

along with the corresponding surface fits, at time delays (a) -1.0 ps, (b) 0.0 ps, (c) 

400 fs, (d) 667 fs, (e) 767 fs and (f) 800 fs.  The reflectivity / Kerr signals were 

fitted using a monopolar / quadrupolar surface as defined by Eq. 7.1 / Eq. 7.2, and 

the “corrected” signal shows the raw signal but with a fitted plane subtracted.   
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Fig. A3.2 Images acquired using the TROPSOM system for a 20 nm-thick Permalloy film, 

along with the corresponding surface fits, at time delays (a) 1.0 ps, (b) 1.33 ps, (c) 

1.5 ps, (d) 1.75 ps, (e) 2.0 ps and (f) 2.5 ps.  The reflectivity / Kerr signals were 

fitted using a monopolar / quadrupolar surface as defined by Eq. 7.1 / Eq. 7.2, and 

the “corrected” signal shows the raw signal but with a fitted plane subtracted.   
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Fig. A3.3 Images acquired using the TROPSOM system for a 20 nm-thick Permalloy film, 

along with the corresponding surface fits, at time delays (a) 3.0 ps, (b) 4.0 ps, (c) 

6.0 ps, (d) 8.0 ps, (e) 10.0 ps and (f) 40.0 ps.  The reflectivity / Kerr signals were 

fitted using a monopolar / quadrupolar surface as defined by Eq. 7.1 / Eq. 7.2, and 

the “corrected” signal shows the raw signal but with a fitted plane subtracted.   
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Fig. A3.4 Images acquired using the TROPSOM system for a 20 nm-thick Permalloy film, 

along with the corresponding surface fits, at time delays (a) 75.0 ps, (b) 100.0 ps, 

(c) 150.0 ps and (d) 200.0 ps.  The reflectivity / Kerr signals were fitted using a 

monopolar / quadrupolar surface as defined by Eq. 7.1 / Eq. 7.2, and the 

“corrected” signal shows the raw signal but with a fitted plane subtracted.   
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APPENDIX 4 
 

Data acquired from TROPSOM measurements of a 50 nm-thick Permalloy film 

 The figures presented in this appendix show the entire signals discussed in chapter 7.2.    

 

Fig. A4.1 Images acquired using the TROPSOM system for a 50 nm-thick Permalloy film, 

along with the corresponding surface fits, at time delays (a) -40.0 ps, (b) 0.0 ps, (c) 

1.0 ps, (d) 2.0 ps, (e) 3.0 ps and (f) 4.0 ps.  The reflectivity / Kerr signals were 

fitted using a dipolar / quadrupolar surface as defined by Eq. 7.3 / Eq. 7.2, and the 

“corrected” signal shows the raw signal but with a fitted plane subtracted.   
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Fig. A4.2 Images acquired using the TROPSOM system for a 50 nm-thick Permalloy film, 

along with the corresponding surface fits, at time delays (a) 5.0 ps, (b) 6.0 ps, (c) 

7.0 ps, (d) 8.0 ps, (e) 9.0 ps and (f) 10.0 ps.  The reflectivity / Kerr signals were 

fitted using a dipolar / quadrupolar surface as defined by Eq. 7.3 / Eq. 7.2, and the 

“corrected” signal shows the raw signal but with a fitted plane subtracted.   
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Fig. A4.3 Images acquired using the TROPSOM system for a 50 nm-thick Permalloy film, 

along with the corresponding surface fits, at time delays (a) 18.0 ps, (b) 76.0 ps, (c) 

132.0 ps, (d) 188.0 ps, (e) 244.0 ps and (f) 300.0 ps.  The reflectivity / Kerr signals 

were fitted using a dipolar / quadrupolar surface as defined by Eq. 7.3 / Eq. 7.2, 

and the “corrected” signal shows the raw signal but with a fitted plane subtracted.   
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Fig. A4.4 Images acquired using the TROPSOM system for a 50 nm-thick Permalloy film, 

along with the corresponding surface fits, at time delays (a) 356.0 ps, (b) 412.0 ps, 

(c) 468.0 ps, (d) 524.0 ps, (e) 580.0 ps and (f) 636.0 ps.  The reflectivity / Kerr 

signals were fitted using a dipolar / quadrupolar surface as defined by Eq. 7.3 / Eq. 

7.2, and the “corrected” signal shows the raw signal but with a fitted plane 

subtracted.   
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Fig. A4.5 Images acquired using the TROPSOM system for a 50 nm-thick Permalloy film, 

along with the corresponding surface fits, at time delays (a) 692.0 ps, (b) 748.0 ps, 

(c) 804.0 ps and (d) 860.0 ps.  The reflectivity / Kerr signals were fitted using a 

dipolar / quadrupolar surface as defined by Eq. 7.3 / Eq. 7.2, and the “corrected” 

signal shows the raw signal but with a fitted plane subtracted.   
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