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Detection of bifurcations in noisy coupled systems from multiple time series
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We generalize a method of detecting an approaching bifurcation in a time series of a noisy

system from the special case of one dynamical variable to multiple dynamical variables. For a

system described by a stochastic differential equation consisting of an autonomous deterministic

part with one dynamical variable and an additive white noise term, small perturbations away

from the system’s fixed point will decay slower the closer the system is to a bifurcation. This

phenomenon is known as critical slowing down and all such systems exhibit this decay-type

behaviour. However, when the deterministic part has multiple coupled dynamical variables, the

possible dynamics can be much richer, exhibiting oscillatory and chaotic behaviour. In our

generalization to the multi-variable case, we find additional indicators to decay rate, such as

frequency of oscillation. In the case of approaching a homoclinic bifurcation, there is no change

in decay rate but there is a decrease in frequency of oscillations. The expanded method therefore

adds extra tools to help detect and classify approaching bifurcations given multiple time series,

where the underlying dynamics are not fully known. Our generalisation also allows bifurcation

detection to be applied spatially if one treats each spatial location as a new dynamical variable.

One may then determine the unstable spatial mode(s). This is also something that has not been

possible with the single variable method. The method is applicable to any set of time series

regardless of its origin, but may be particularly useful when anticipating abrupt changes in the

multi-dimensional climate system. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4908603]

Abrupt changes in complex systems such as the human

body, ecosystems, or the climate system can have unwel-

come and expensive consequences. Ideally, given one or

more time series of some measurable variables, one

would like an early warning method to indicate whether

an abrupt change is imminent. Abrupt changes can

result from crossing a bifurcation in the underlying dy-

namical system. Recently, there has been a burgeoning

body of work on the detection of approaching bifurca-

tion in noisy systems whose deterministic dynamics are

assumed to be approximated by a first order ordinary

differential equation (ODE) of one dynamical variable.

These methods work by looking for the system’s recov-

ery from noisy perturbations becoming more sluggish, a

phenomenon known as critical slowing down. This is a

generic feature of approaching bifurcations in systems

modelled by autonomous first order differential equa-

tions of one dynamical variable with additive white

noise, where the behaviour is decay toward a fixed point.

However, it is not always possible to approximate parts

of a complex system in such reduced manner. For exam-

ple, the climate system can display coupled, oscillatory,

or chaotic behaviour. Here, we make a direct general-

ization of the one dynamical variable model to many dy-

namical variables. We find in addition to an indicator

related to the critical slowing down, we get an indicator

related to the system’s oscillation frequency. These tech-

niques may allow one not only to detect the approach of

a wider range of bifurcations but also the type of bifur-

cation being approached, and therefore an indication of

what the system may do in the future. The generaliza-

tion also allows bifurcation detection to be applied spa-

tially if one treats each spatial location as a new

dynamical variable (each spatial location generates its

own time series) and identification of the dominant spa-

tial unstable modes of the system.

I. INTRODUCTION

The potential for early warning of an approaching abrupt

change, or “tipping point,” in a complex, dynamical system

has been the focus of much recent research, reviewed else-

where.1–3 Abrupt change in a dynamical system can occur

due to a bifurcation. That is, a small smooth change made in

parameter values can result in a sudden or topological

change in the space of steady state solutions. One method of

detecting an approaching bifurcation is to perform repeatable

experiments on the system itself and study its responses.4–6

This is very hard or impossible to do with large, complex

systems, such as the climate, so one may instead build mod-

els of varying complexity and perform experiments on these

models instead.7,8 A third approach is to look at the statistics

of some measurable variable of the system, usually a time

series of this variable, as these may reveal something about

the future behaviour without the need for a detailed model of

the system.1–3 All three approaches are potentially usefula)Electronic mail: m.s.williamson@exeter.ac.uk
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sources of information, particularly when taken together. It

is the third approach, we develop in this paper.

Much work on the anticipation of bifurcations from a

time series, e.g., in ecosystems1 or the climate system,2,9 has

been based on the following assumptions: (i) the system

being studied is approximately in a steady state (or equilib-

rium). (ii) Changes in the equilibrium state structure are due

to some slowly varying control parameter, a, that can be

treated as a constant compared to the timescale of the sys-

tem’s dynamics, formally s� _a, where s is the e-folding

time of the system (to be defined later in the paper) and

over-dots denote differentiation with respect to time. This

effectively means that the system stays in a steady state as

the underlying steady state structure slowly changes. (iii)

The system’s deterministic dynamics can be described by an

autonomous first order ODE with one dynamical variable to

a good approximation. Other variables can be modelled as

uncorrelated noise with zero mean drawn from a Gaussian

distribution. (iv) The amplitude of this noise is small com-

pared to the separation between steady states such that the

dynamics is described by the evolution of the steady state

manifold rather than noise induced transitions between

steady states. It is also small enough that the dynamics

caused by noisy perturbations away from steady state are

well approximated by the linearized dynamics. (v) The

abrupt change in the system is due to a bifurcation.

Under these assumptions, critical slowing down is

expected prior to a bifurcation. This can be visualised by

thinking of the state of the system as a point on a slowly

varying potential. An example of a possible potential is

shown in Figure 1. Provided the system has a stable fixed

point, one can imagine this potential having a well, with the

stable fixed point located at the lowest point of the well. If

the system is initially located at some point on the slopes of

this well it will try to minimize the value of its potential,

moving from the large values on the slopes to smaller values

closer to the bottom. As the potential is slowly changed by

varying some control parameter a, the location of the fixed

point will slowly change too and provided the system

responds faster than a is varied, it will remain sitting very

close to the changing fixed point. As a is slowly changed

towards a bifurcation the sides of the well get shallower

around the neighborhood of the fixed point and the restoring

force to any perturbation of the system, proportional to the

gradient, will get weaker. The perturbation will not decay to-

ward the fixed point as quickly, until at the point of bifurca-

tion, the potential becomes flat and the fixed point is on the

edge of going from stable to unstable. The approach of the

bifurcation will therefore show up as weakening of the decay

rate until it goes to zero at the bifurcation. It is this generic

feature of a gradient system—noting that all autonomous

first order ODEs of one variable are such systems—that one

tries to detect as an early warning.

Using this framework, Held and Kleinen10 showed that

simulated abrupt changes in the ocean’s thermohaline circu-

lation can be anticipated. The model fitted to the time series

was an iterative map with a white noise term equivalent to a

first order ODE with an added white noise term known as an

autoregressive model of order 1 (often written AR(1) as

shorthand). This approach10 has provided the foundation for

much subsequent work. For example, in the climate field,

early warnings have been found in more complex numerical

models approaching a collapse of the thermohaline circula-

tion.11–13 Applications to paleo-climate data have shown

early warning signals prior to at least some abrupt climate

changes in Earth’s history.9,11,14 An ongoing debate

surrounds whether abrupt climate changes during the last

ice age, known as Daansgard Oeschger events, showed

bifurcation-type early warning signals.15,16 There are also

examples of the method failing, for example, in the case of

simulated Amazon dieback,17 where assumption (ii) is

violated.

In this paper, we relax assumption (iii), that is, we look

at systems whose deterministic behaviour cannot be

FIG. 1. Changing potential caused by

varying a slowly for the system

_x ¼ a� x2. The potential is given by

VðxÞ ¼ � d _x
dx and fixed points are x� ¼

6
ffiffiffi
a
p

for a> 0. The current state of the

system is given by the black dot. In the

upper left hand panel, there is a stable

fixed point (at x� ¼
ffiffiffi
2
p

) located at the

bottom of the potential well and the

system is sitting close to it. In the upper

right hand panel, as a is slowly varied,

the well gets shallower and the walls

less steep causing small perturbations

away from the stable fixed point (at

x� ¼
ffiffiffiffiffiffiffiffi
1=2

p
) to decay more slowly. In

the lower left hand panel, there is a

saddle-node bifurcation where the fixed

point is on the cusp of being unstable.

Even the smallest perturbation away

from the fixed point will not decay. In

the lower right hand panel, a is changed

so there are no longer any fixed points

and the system runs off to infinity.
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described by autonomous first order ODEs of one dynamical

variable effectively. These are systems that can display

much richer dynamics such as oscillatory or chaotic behav-

iour, dynamics that cannot occur in autonomous first order

ODEs of one dynamical variable. We do this by simply

extending the method based in all the previous works men-

tioned to first order ODEs of multiple dynamical variables

with additive white noise. This method is also sufficiently

general to describe the dynamics of second and higher order

ODEs of one dynamical variable, and nonautonomous

systems, by making a simple change of variables.

These techniques are all based on fitting noisy linear

models to a time series so essentially one is reconstructing

the system’s Jacobian (a matrix of linearization constants)

around a point in its phase space. Studying a system’s

Jacobian is the main tool for analysis of the stability of

steady solutions. For systems modelled by one deterministic

dynamical variable, the eigenvalue of the Jacobian goes

from negative real values through zero at the bifurcation as

the system’s fixed point loses stability resulting in the critical

slowing down. When a system consists of two or more

dynamical variables, the Jacobian now has multiple eigen-

values which can be complex, resulting in many more

possible behaviours. The real part of one or more of these

eigenvalues can pass from negative values through zero at a

bifurcation destabilising the fixed point analogously to the

one variable case showing up as critical slowing down.

Bifurcations that feature this critical slow down are classed

as local bifurcations. However, another possibility is that the

real parts of the Jacobian’s eigenvalues remain invariant as it

passes through a bifurcation so that no critical slowing down

is observed. These are classed as global bifurcations. The

imaginary parts of the eigenvalues may however be changing

and this can be used as an additional indicator. We give an

example of such a global bifurcation, the homoclinic bifurca-

tion, in Sec. IV. A lot is known about the behaviour of the

eigenvalues of the Jacobian for many classes of dynamical

systems and bifurcations, and there are many good texts such

as Strogatz18 and Kuznetsov19 one may consult for more

details.

In the real world, there are typically a very large number

of, or infinitely many, coupled dynamical variables influenc-

ing the variable one is interested in (we refer to the dynami-

cal variable of interest as “the system”). But when using

these statistical techniques, one generally wants to fit a mini-

mal model, simplicity being a key factor in the appeal of

these methods. In light of this, ideally one would want to use

a model based on a first order ODE of one dynamical vari-

able to fit to one’s time series and approximate all the other

dynamical variables affecting the system as an additive white

noise term (if the variables are fast relative to the system) or

as a control parameter (if the variables are slow). This is

generally not possible when the dynamics is dominated

by coupled behaviour over the timescale of interest.

Technically, this happens when the dominant eigenmodes of

the linearized system have associated eigenvalues with imag-

inary parts that are of similar size or larger than their real

parts. One would then have to “enlarge” the system to more

than one dynamical variable for the model to reproduce this

coupled behaviour. We will provide examples of such sys-

tems in Sec. IV.

To illustrate this timescale dependence, even though a

system may show oscillatory behaviour, one may still be

able to describe the deterministic part as a first order ODE in

one dynamical variable if the oscillation frequency is small

compared to the decay timescale. An example are the relaxa-

tion oscillations (an oscillatory cycle described by a slow

build up and a fast discharge) often used to model past

climate dynamics.20,21 Rather than being treated as a

coupled, oscillatory phenomena, the slow build up in the

relaxation oscillation is treated as a slowly varying parameter

and the rapid discharge as a bifurcation on this slow

manifold.

One should also note that abrupt changes are not always

due to bifurcations. For example, transitions between multi-

ple steady states may be induced by “large” amplitude noise,

large here meaning that the probability of a perturbation

large enough to push the system into a different state over

the timescale of interest is non-negligible. These noisy

transitions have been studied in the context of Dansgaard

Oeschger events.15

The paper is organised as follows: In Sec. II, we review

the method used to detect bifurcations applicable to systems

whose deterministic dynamics is effectively modelled by au-

tonomous first order ODEs of one dynamical variable. In

Sec. III, we directly generalize this method to systems

described by multiple first order ODEs. We illustrate the

general method in Sec. IV with examples of two particular

bifurcations, before concluding in Sec. V.

II. BIFURCATION DETECTION IN NOISY GRADIENT
SYSTEMS

For a system modelled by

_x ¼ f ðxÞ; (1)

where _x � dx
dt and f(x) is some, in general, nonlinear function

of x one can always write down the potential function, V(x),

by directly integrating f ðxÞ ¼ � @V
@x , i.e., the dynamics is

given by the gradient of some function V. These are known

as gradient systems. However, for multivariable dynamics,

one may not always be able to write the dynamical variables

xi as the gradient of V, dxi

dt ¼ � @V
@xi

. A consequence of being

able to write the dynamics in terms of V is that the Jacobian

is real and symmetric and therefore constrained to have real

eigenvalues. This restricts the dynamics, making oscillating

solutions impossible in such a system. At present, we restrict

to one dynamical variable and therefore can find V.

A. Exponential decay constant as a fitted parameter
of an autoregressive (AR) model

In previous work, it is assumed that the system of inter-

est has one dynamical variable described by a stochastic

differential equation consisting of an autonomous first order

differential equation plus some Gaussian white noise, i.e.,

_x ¼ f ðxÞ þ nðtÞ; (2)
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where nðtÞ is a continuous Gaussian white noise process (an

independent random variable drawn from a normal distribu-

tion with zero mean and variance r2 independent of time,

see Refs. 22 and 23 for formal definitions). It is uncorrelated

with itself at differing times. One also assumes the system is

in or close to a fixed point and the noise amplitude is small

so that a Taylor expansion of f(x) to first order is a good

approximation around the fixed point x� ðf ðx�Þ ¼ 0Þ

_x � @f

@x

����
x¼x�

x� x�ð Þ þ n tð Þ: (3)

Terms of the order ðx� x�Þ2 and greater are neglected, since

they are assumed to be small relative to the first order term

in the expansion. One then discretizes the time to a step of

length Dt, using the Euler-Maruyama method24 and rear-

ranges the equation so that

xmþ1 ¼ axm þ cþ emþ1; (4)

where xm ¼ xðtmÞ; em ¼
ffiffiffiffiffi
Dt
p

nðtmÞ, and tm ¼ t0 þ mDt. c and

a are constants and can be identified as

a ¼ 1þ Jðx�ÞDt � exp½Jðx�ÞDt�; (5)

c ¼ �x�Jðx�ÞDt: (6)

Jðx�Þ � @f
@x jx¼x� is the Jacobian evaluated at x�. The expecta-

tion value of the Gaussian white noise satisfies

EðemenÞ ¼ dmnr2Dt. Equation (4) is known as an autoregres-

sive model of order 1 usually written as AR(1) (see for

example, Ref. 25). We wish to fit this model to a time series

of some variable ðx1; x2; :::; xM�1; xMÞ. We are particularly

interested in determining the value of a, since it is propor-

tional to the exponential decay constant a � expðkDtÞ;
k � Jðx�Þ ¼ � @2V

@x2 is the exponential decay constant (some-

times referred to as decay rate for brevity) and is the negative

inverse of the system’s e-folding time s ¼ � 1
k, the timescale

of the system. One can find a by multiplying both sides of

Eq. (4) by xm and taking expectation values so that

a ¼
E xmþ1xmð Þ � l2

E x2
m

� �
� l2

; (7)

which can be recognised as the lag 1 autocorrelation of the

time series. l ¼ EðxmÞ is the mean of the time series. In

deriving this result, we have assumed the mean is independ-

ent of time, EðxmÞ ¼ Eðxmþ1Þ, i.e., it is a stationary process.

It is worth looking at the solution of Eq. (4) to gain

some intuition for its behaviour. Writing out the solutions for

each time step explicitly, one finds that

xm ¼ amx0 þ
Xm�1

i¼1

aiem�i; (8)

if one assumes l¼ 0 implying c¼ 0 and x� ¼ 0. The solution

has two parts, one deterministic depending on the initial con-

dition, x0 and one stochastic, the sum of the random noise

terms. The constant a, provided it is less than 1, acts to decay

the system from its initial point to zero in the deterministic

part and also acts to decay the noise terms; the farther

back in time they are, the more they are decayed. As a! 1

ðk! 0Þ and we approach a bifurcation, decay is reduced

until at a¼ 1, we have a pure random walk.

To check whether the decay rate in a given a time series

of M points is decreasing, one starts by choosing a window

of m consecutive points x1; x2; :::; xm, where m<M and esti-

mates a for this window which we label a1. One usually uses

a sliding window and calculates a for the set of m points

x2; x3; :::xn; xmþ1 giving a2. This procedure is iterated until

we have the set a1; a2; :::; aM�m from which one can deter-

mine whether the series of estimated {ai} is increasing

(equivalent to decay rate decreasing) indicating the approach

of a bifurcation.

B. Applying the method in practice

How one chooses the window parameters depends on

timescales, uncertainty and from a more practical perspec-

tive, availability and resolution of data. Ideally one would

choose Twindow � s� Dt, where Twindow ¼ mDt. Uncertainty

via the standard error in the estimated parameters scales

approximately as 1=
ffiffiffiffi
m
p

making it desirable to take larger

values of m to give more confidence in the estimation (the

standard error can be calculated using Eq. (23)). However, if

m is too large one may bias the estimated parameters as the

change in the control parameter a over the time window may

be large. Theoretically then higher temporal resolution and

larger numbers of data are desirable. In practice, when analy-

sing something like a historical climate data record Dt and m
are fixed.

Note that Eq. (7) only applies to time series that are

stationary. That is, the estimated mean should be independ-

ent of which part of the window it is calculated for. This

may require removal of any trend within each window to

give an approximately stationary series well modelled by an

AR(1) process.

One may also estimate a using other fitting methods

such as least squares or maximal likelihood estimation. One

can show these two methods are equivalent to Eq. (7) in this

case.26

III. GENERALIZATION TO MULTIPLE VARIABLES

In this section, we generalize the method in Sec. II to

the multivariable case. The method is to reduce a set of N
coupled, nonlinear stochastic equations to a set of N
uncoupled (independent) AR(1) processes each of which can

be treated the same as the single variable case outlined in

Sec. II. The only difference is that the AR(1) model variables

and parameters may be complex rather than purely real. We

will also be more interested in the eigenvalues, ki, of the

Jacobian matrix for the multivariable case as their behaviour

has been well studied in nonlinear dynamics.18,27 These are

related to the eigenvalues of the AR(1) matrix A,

f~a1; ~a2; ::; ~aNg as ~ai � expðkiDtÞ.
We consider a set of N (generally) coupled stochastic

equations of N dynamical variables each labelled by

xðiÞ; i ¼ 1; 2; :::;N � 1;N
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_xðiÞ ¼ f ðiÞðxð1Þ; xð2Þ; :::; xðN�1Þ; xðNÞÞ þ nðiÞðtÞ; (9)

where the f ðiÞ are in general complicated nonlinear functions

of all the dynamical variables and nðiÞðtÞ is a Gaussian white

noise process continuous in time (a random variable drawn

from a Gaussian distribution with standard deviation rðiÞ and

zero mean). The superscript (i) in parentheses indicates a

label and not a power. The white noise terms are independent

of each other and at different times. We note that this set of

equations is sufficiently general to include nonlinear differ-

ential equations of order N by identifying time derivatives as

new variables. For example, the third order differential equa-

tion in time with variable x, &x þ €x þ _x þ x ¼ 0, can be writ-

ten as the set of three first order differential equations

_x ¼ y; _y ¼ z; _z ¼ �ðxþ yþ zÞ. One may also handle non-

autonomous systems, systems where f ðiÞ depends explicitly

on t, by also adding t as a new dynamical variable and an

extra dynamical equation.

Analogously to the single variable case, we perform a

Taylor expansion to first order around the point x� ¼
ðxð1Þ� ; xð2Þ� ; :::; xðNÞ� Þ on all N equations

_x ið Þ � f ið Þ x�ð Þ þ
XN

j¼1

@f ið Þ

@x jð Þ

����
x¼x�

x jð Þ � x jð Þ
�

� �
þ n ið Þ tð Þ; (10)

assuming that the noise amplitude and the first order terms

approximate f ðiÞ well. We define the vector x ¼ ðxð1Þ; xð2Þ;
:::; xðNÞÞ. We then once again discretize the time step and

rearrange to get a set of linear, coupled equations with added

white noise (satisfying EðeðiÞm eðjÞn Þ ¼ dijdmnðrðiÞÞ2Dt, where

eðiÞm ¼
ffiffiffiffiffi
Dt
p

nðiÞðtmÞ)

x
ð1Þ
mþ1 ¼ a11xð1Þm þ a12xð2Þm þ :::a1NxðNÞm þ cð1Þ þ eð1Þmþ1

x
ð2Þ
mþ1 ¼ a21xð1Þm þ a22xð2Þm þ :::a2NxðNÞm þ cð2Þ þ eð2Þmþ1

..

.

x
ðNÞ
mþ1 ¼ aN1xð1Þm þ aN2xð2Þm þ :::aNNxðNÞm þ cðNÞ þ eðNÞmþ1;

which can be written more succinctly as

xmþ1 ¼ Axm þ cþ emþ1; (11)

where A is a matrix of coupling constants, c is a vector of

constants, and em is a vector of independent white noise

terms. Written in terms of the Jacobian, JijðxÞ ¼ @f ðiÞ

@xðjÞ
jx, A and

c are

A ¼ Iþ Jðx�ÞDt � exp½Jðx�ÞDt�; (12)

c ¼ ½fðx�Þ � Jðx�Þx��Dt; (13)

where Iij ¼ dij is the identity matrix and fðxÞ is a vector with

ith component f ðiÞðxÞ. Equation (11) is the multivariable

AR(1) generalization of Eq. (4), and we wish to fit this model

to the time series of N different variables each with M points.

To find an estimator of A from the N different time series,

we multiply both sides of Eq. (11) on the right by x†
m and

take expectation values. The superscript † denotes the opera-

tion transposition. A can be found as

A ¼ BR�1; (14)

where B is analogous to the the lag 1 covariance and R is the

covariance matrix. The superscript �1 denotes matrix inver-

sion. Both matrices are given explicitly by

B ¼ Eðxmþ1x†
mÞ � ll†;

R ¼ Eðxmx†
mÞ � ll†;

l ¼ EðxmÞ:
(15)

Again, in deriving this result, we have assumed the mean is

independent of time.

In the one variable case, A was a single number propor-

tional to the exponential decay constant whereas in the mul-

tivariable case we have a coupling matrix. We want to find

something analogous to the decay constant in the multivari-

able case. One can do this by making a change to some new

basis of dynamical variables x! ~x such that expressed in

this new basis A! ~A is diagonal, and therefore the N
dynamical equations labelled by i are uncoupled (tildes

denote variables in the uncoupled basis), i.e.,

~x
ðiÞ
mþ1 ¼ ~ai~x

ðiÞ
m þ ~cðiÞ þ ~eðiÞmþ1: (16)

Each equation can then be treated exactly as in Sec. II, since

each equation consists of just one dynamical variable and ~ai

is just a number. To determine this change of basis simply

amounts to finding the eigenvalues ð~aiÞ and eigenvectors of

A. In other words, we look to decompose A as

A ¼ U�1 ~AU; (17)

where the rows of U are the eigenvectors of A, and ~A is a di-

agonal matrix whose entries on the diagonal are the eigenval-

ues of A. One can always make this decomposition provided

the determinant of A is non zero and all eigenvalues are dif-

ferent. If the determinant is zero, one may still be able to

make this decomposition over the range of A indicating the

system can be described by rank (A)<N dynamical varia-

bles. If two or more eigenvalues are the same one may or

may not be able to decompose A in this way. In the generic

case, however, this decomposition does exist. The new varia-

bles ~xðiÞ in terms of the old variables are therefore given by

~x ¼ Ux; (18)

and there are analogous transformations to find ~c and ~e.

We are more interested in the eigenvalues of A. A is a

matrix of real numbers however its eigenvalues and eigen-

vectors may be complex when A is not symmetric. When all

eigenvalues are real (and therefore so are the eigenvectors

meaning the new dynamical variables are also real), we have

exactly the same situation as in Sec. II but rather than one,

there are N independent, uncoupled AR(1) processes, each

with it’s own decay constant proportional to ~ai and one can

look for increasing ~ai using a sliding window. In this case,
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the system can only have decay type behaviour since it is

analogous to N independent first order ODEs of one dynami-

cal variable.

When there are complex eigenvalues (and correspond-

ing complex eigenvectors), we again have N independent

AR(1) processes except that each independent AR(1) process

is a function of the real and imaginary parts of the new varia-

bles, i.e., it is essentially two dimensional, moving in the

complex plane, rather than the real line and this gives rise to

oscillations on the real and imaginary lines. Physically, com-

plex eigenvalues are expressing the fact that the system is

coupled. One can make a polar decomposition of each eigen-

value, ~aj, as

~aj ¼ jajjei/j ; (19)

the product of the magnitude of the eigenvalue jajj (a real

number, analogous to a in Sec. II) and a phase factor ei/j

(here i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit). The phase term, /j, is

the new indicator and proportional to oscillation frequency

of this coupled part of the system. This becomes clearer

when one writes out each term explicitly for each time step

as we did in Eq. (8). Dropping the label for each of the N
equations and looking at just one with a corresponding com-

plex eigenvalue and eigenvector, we have

~x1 ¼ jajei/~x0

~x2 ¼ jaj2e2i/~x0

~x3 ¼ jaj3e3i/~x0

..

.

~xm ¼ jajtei/m~x0:

(20)

This sequence is plotted in Figure 2 for particular values. We

have also neglected noise as being small ~e � 0 in this exam-

ple to show the deterministic behaviour of the model and

also set ~c ¼ 0. Adding noise will distort the spiral around the

origin of the complex plane. Note that damped oscillations

correspond to jaj< 1 and as jaj ! 1 we have free undamped

oscillations. If jaj > 1, the oscillations grow in amplitude. /
is proportional to the oscillation frequency, rotating each

successive point by / radians on each time step. The larger

/ is, the higher the oscillation frequency. Plotting the real

and imaginary parts of this sequence (i.e., projecting the

orbits in the complex plane on to the real and imaginary

axes), we see damped, sinusoidal oscillations in Figure 3.

A more familiar picture in which to classify bifurcations

is using the motion of the eigenvalues of the Jacobian on the

complex plane. The Jacobian’s eigenvalues, kj, are related to

the eigenvalues of A simply by ~aj ¼ expðkjDtÞ; therefore the

real part of kj is

R kj

� �
¼ 1

Dt
log jajj; (21)

which is equivalent to the exponential decay constant while

the imaginary part

I kj

� �
¼

/j

Dt
; (22)

is the frequency of oscillation. One can now reconstruct the

system’s Jacobian and look for changes that might suggest

the approach of a bifurcation. We illustrate this method with

examples in Sec. IV.

A. Calculation of standard errors in the entries
of A and the eigenvalues of A

One can calculate the standard errors in each of the fitted

parameters from a time series window of m points. Here, we

give the explicit form for the standard errors, r̂Aij
, in the esti-

mation of the elements of the matrix A without derivation

r̂Aij
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
R�1ð ÞiiXjj

h ir
; (23)

where R is the covariance matrix defined in (15) and X ¼
Eðemem

†Þ is the covariance matrix of the white noise given

explicitly as

X ¼ R� BR�1B†: (24)

A derivation of this result can be found in a more general set-

ting in L€utkepohl.26 One can then propagate the errors

through to the calculation of the eigenvalues. In the general

case of N	 3, there are known algebraic forms for calcula-

tion of the eigenvalues from the elements of A and the propa-

gation of the errors can be done exactly. For N> 3, these

general forms do not exist and usually the best one can do is

provide a worst case bound on the error of the eigenvalues.

More details can be found on these bounds in Wilkinson.28

B. Applying the method in practice

Everything mentioned in Sec. II B also applies for the

multivariable case. We just add one more remark about

choosing sliding window sizes based on timescales:

FIG. 2. The sequence of Eq. (20) plotted on the complex plane with

jaj ¼ 0:9; / ¼ 0:5, m¼ 19, and x0¼ 1. This corresponds to a damped oscil-

lation with decay rate log 0:9 � �0:11 and frequency / ¼ 0:5. This is visi-

ble when this spiral is plotted onto the real and imaginary axes in Figure 3.
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Assuming one has a coupled, oscillating system implies that

the size of the oscillation term, Oðj/jjÞ, is comparable to or

larger than the decay/growth term O 1
Dt log jajjÞ
�

. If the real

part of the Jacobian’s eigenvalue was much greater in magni-

tude, it would swamp the signal from the oscillatory part

and the system would be well approximated by uncoupled

AR(1) processes. One would therefore like to choose

Twindow � Dt
/ � Dt. Note that there could be oscillations of

many different frequencies in an N equation system from

each of the N eigenmodes which may have an impact on

choice, but in practice one would probably perform a sepa-

rate analysis for each timescale assuming the slow variables

are slowly varying constants for the fast timescale analysis,

and the fast variables are noise for the slow variable analysis

providing one can make such a separation.

As N grows, so the number of parameters to fit also

grows. There are N2 matrix elements in A and N numbers in

each of c and rðiÞ giving a total of NðN þ 2Þ parameters to

estimate. If there are m points in each time series window for

each of the N dynamic variables, one may think there may

only be m=ðN þ 2Þ points to estimate each parameter and

this may limit the size of N or m. It is the scaling of number

of parameters in A that is the problem. However, not all of

these N2 parameters are independent, it is only the N eigen-

values that are independent. These may be complex meaning

two parameters describe each eigenvalue giving 4N free pa-

rameters in total, but complex eigenvalues always occur in

conjugate pairs taking the number of parameters back to 3N
and therefore giving m/3 points per parameter which is inde-

pendent of N.

IV. EXAMPLES

In this section, we illustrate the methods described

above by taking two examples of a specific set of dynamical

equations exhibiting a particular type of bifurcation. We first

describe the behaviour of those equations and following this

pretend we do not know the form of these equations, we only

have access to a set of time series, and apply our method in

an attempt to reconstruct the Jacobian of the system. Our

examples are both N¼ 2 but the method is applicable to any

N.

Explicitly, in the following examples we (i) numerically

integrate Eqs. (26) and (29) with respect to time and added

white noise term, i.e., for Eq. (26), _x ¼ y! yþ nðxÞ;
_y ¼ a� x2 ! a� x2 þ nðyÞ, where the standard deviation of

the noise terms is equal and given by r with slowly varying

control parameter a. (ii) Record x(t) and y(t) at time interval

between values of t, Dt to create the time series plotted in

Figures 6 and 8. (iii) Apply Eqs. (14) and (15) to the m con-

secutive data points starting at xi and yi in a window of

length Twindow ¼ mDt to estimate A for that particular win-

dow. We then slide the window by Dt so that the starting

data points in the next window are xiþ1 and yiþ1 and estimate

A for this new window. This is repeated for the length of the

time series. (iv) For each window, we calculate the eigenval-

ues of the corresponding estimated A, and using Eqs. (21)

and (22) we calculate the eigenvalues of the Jacobian and

the associated standard errors. (v) We plot the resulting

estimated eigenvalues of the Jacobian as a function of the

greatest value of t ¼ t0 þ ðiþ mÞDt for each sliding window

in Figures 7 and 9.

A. Homoclinic bifurcation: No critical slow down,
decreasing frequency

Our first example has dynamics described by

€x þ x2 � a ¼ 0; (25)

which is an autonomous second order ODE in one variable, x
with control parameter a. We can rewrite this as two coupled

first order ODEs as

_x ¼ y;

_y ¼ a� x2:
(26)

The steady state solutions ð _x ¼ 0; _y ¼ 0Þ are ðx; yÞ
¼ ð6

ffiffiffi
a
p

; 0Þ, therefore there are only steady state solutions

for a
 0. One can find the stability of these solutions by

FIG. 3. Damped oscillations on the

complex plane from Figure 2 projected

onto the real and imaginary axes.
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looking at the eigenvalues of the Jacobian at these points.

The Jacobian for this system is

Jðx; yÞ ¼ 0 1

�2x 0

� 	
; (27)

with eigenvalues

k ¼ 6
ffiffiffiffiffiffiffiffiffi
�2x
p

: (28)

At ð�
ffiffiffi
a
p

; 0Þ; k ¼ 6ð4aÞ1=4
, so both eigenvalues are real,

one being positive, the other negative so this is a saddle, and

at the other fixed point ð
ffiffiffi
a
p

; 0Þ, both eigenvalues are purely

imaginary, , k ¼ 6ið4aÞ1=4
indicating a center. This is a sta-

ble center since Eq. (25) is time reversal invariant, i.e., under

the transformation t! �t, the equation remains the same.

One sees this must be stable if one considers an orbit starting

from some point and watches the evolution of the point in

two instances, one with time running backwards and one

forwards. After some time, two evolving points must meet

and repeat the same path exactly. One can conclude therefore

that they must be closed, stable orbits and the system is

conservative.

So there are a continuum of stable orbits surrounding

the centre each with a different amplitude and frequency.

These orbits remain stable unless they pass the other side of

the saddle point. The orbit that intersects the saddle is known

as a homoclinic orbit and has an infinitely long period. One

can now draw the phase portrait of the system in Figure 4

and the evolution of the steady solutions with slowly varying

a in Figure 5. By this we mean _a � ð4aÞ1=4
, that is, the pa-

rameter varies much slower than the timescale of the system

so that the system stays approximately in steady state. As a
approaches zero from positive, real values, the continuum of

orbits collides with the saddle point in a homoclinic bifurca-

tion (a.k.a. saddle connection) at a¼ 0.

We next introduce a Gaussian white noise term to each

equation. That is Eq. (26) goes to _x ¼ yþ nðxÞðtÞ and

_y ¼ a� x2 þ nðyÞðtÞ. These noise terms also act as a small

perturbation that helps reveal the system’s Jacobian when

the system is sitting at or near a fixed point. The effect of

adding the noise term is to kick the system into the higher or

lower orbits on each time step. When numerically integrating

these equations in some instances, one finds the noise terms

kick the system out of the stable region enclosed by the

homoclinic orbit. This becomes more likely for larger ampli-

tude noise and the closer one is to the bifurcation (smaller

values of a as the homoclinic orbit shrinks). The particular

integration of Eq. (25) shown in Figure 6 for the values of

the parameters reported appears reasonably typical however.

From analytical analysis of the equations, we expect to

see no critical slowing down as we approach the bifurcation

by varying a, since there is no real part in the Jacobian’s

eigenvalues, however we should see a decrease in frequency

proportional to ð4aÞ1=4
. For this system, this is our bifurca-

tion indicator. We apply our method to the time series gener-

ated by Eq. (26) with slowly varying a ( _a ¼ � 1
500

and a
varies linearly from 1

5
and approaches 0) and noise standard

FIG. 4. Phase portrait for Eq. (26) with a¼ 1. There is a saddle at ðx; yÞ ¼
ð�1; 0Þ and a center at ðx; yÞ ¼ ð1; 0Þ. Surrounding the center is a continuum

of stable orbits up until the outer homoclinic orbit that passes through the

saddle point. Any initial condition lying outside the region enclosed by the

homoclinic orbit is unstable.

FIG. 5. Evolution of steady state solu-

tions with slowly varying a for Eq.

(26) projected onto the x axis (y¼ 0).

The lower branch described by x ¼
�

ffiffiffi
a
p

is a saddle while the upper

branch x ¼
ffiffiffi
a
p

is a stable centre.

These collide at a¼ 0 in a homoclinic

bifurcation (marked by the circle).

There are no steady solutions for a< 0.
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deviation r ¼ 0:01 for both eðxÞ and eðyÞ. Points in the time

series are generated every Dt¼ 0.5. These time series are

shown in Figure 6, and we fit a 2 variable AR(1) model to a

sliding window of length Twindow¼ 50 and compute the

eigenvalues of A and hence determine J for each window.

The real and imaginary parts of the reconstructed Jacobian’s

eigenvalues as a function of a are shown in Figure 7. There

are two eigenvalues, each with real and imaginary parts,

hence there are potentially four numbers that characterise

these eigenvalues. However, they appear as a pair of com-

plex conjugates since A is real and two dimensional so only

two numbers, the real and imaginary parts of a single eigen-

value, describe A and therefore J. We see in this figure that

the linear model we are fitting to this nonlinear time series

reconstructs the Jacobian fairly well, i.e., the real part of the

eigenvalues is approximately zero and the imaginary part

equal to the frequency of oscillations decreases with decreas-

ing a as we approach the homoclinic bifurcation.

The reader may be interested to note the typical physical

systems these equations model. These equations are typical

in mechanical systems and the bifurcation corresponds to

“buckling.”27 That is a buckling system’s dynamics are gov-

erned by €x þ d _x þ x2 � a ¼ 0. Our example is an idealisa-

tion where d _x, the damping term, is small or negligible.

Neglecting the damping term does not significantly change

the results apart from the addition of a small, constant damp-

ing term invariant to the bifurcation (no critical slowing

down), turning the center into a weakly attracting spiral.

B. Hopf bifurcation: Critical slow down, no significant
frequency change

Our second example shows a supercritical Hopf bifurca-

tion at a¼ 0, a transition from a stable spiral to a stable limit

cycle, which is a local bifurcation and therefore shows criti-

cal slowing down. The equations in polar coordinates are

_r ¼ ar � r3;

_h ¼ 1þ r2:
(29)

There is a stable spiral at r¼ 0 when a< 0 which becomes

unstable at a> 0. A stable limit cycle is born when a 
 0 at

FIG. 6. Time series before bifurcation

of variables x and y generated from

Eq. (26) with slowly varying _a ¼ � 1
500

and noise standard deviation r ¼ 0:01.

To obtain the two time series of x and

y, one projects this 3 dimensional plot

on to each axis. In this region of (x, y),

there is a centre surrounded by a con-

tinuum of stable limit cycles whose

area gets smaller and closer to the sad-

dle as time increases until the centre

and the saddle collide in a homoclinic

bifurcation at t¼ 100 (a¼ 0).

FIG. 7. Reconstruction of the real and

imaginary parts of the Jacobian’s

eigenvalues from the time series in

Figure 6 as a function of a. We use a

sliding window of length Twindow¼ 50

so that each window consists of

m¼ 100 points. Dashed lines indicate

upper and lower ranges of the standard

error. There is no critical slowing

down in this system as seen in the top

panel, the decay rate given by the real

part of the Jacobian’s eigenvalues

since this is a global bifurcation.

However, the indicator of the

approaching homoclinic bifurcation

here is the slowing in frequency given

by the imaginary part of the Jacobian’s

eigenvalues.
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r ¼
ffiffiffi
a
p

. Rewriting the equations in cartesian coordinates

using the transformations x ¼ r cos h and y ¼ r sin h, we find

the Jacobian at ðx; yÞ ¼ ð0; 0Þ is

Jð0; 0Þ ¼ a �1

1 a

� 	
; (30)

which has a pair of complex conjugate eigenvalues k ¼ a6i.
Therefore, as we vary a from negative values towards 0 we

expect to see the real part of the Jacobian increasing from

negative values until it reaches zero at a¼ 0. The imaginary

part of the Jacobian’s eigenvalue should be 1. A pair of com-

plex conjugate eigenvalues crossing from negative to the

positive real half of the complex plane is the definition of a

Hopf bifurcation.

Once again, we introduce a Gaussian white noise term

to Eq. (29) as in the last example and compute the time series

while slowly varying a ( _a ¼ 1
20

, a varies linearly from �2.8

to 0.2) and equal noise standard deviation r ¼ 0:01 on both

equations. Points in the time series are generated every

Dt¼ 0.5. These time series are shown in Figure 8 and we fit

a 2 variable AR(1) model to a sliding window of length

Twindow¼ 30 and compute the eigenvalues of A and hence

determine J for each window. The real and imaginary parts

of the reconstructed Jacobian’s eigenvalues as a function of

a are shown in Figure 9. From analytical analysis of the

equations, we expect critical slowing down as we approach

the bifurcation by varying a since the imaginary part in the

Jacobian’s eigenvalues is constant ðIðkÞ � 1Þ while the real

part is proportional to a. For the Hopf bifurcation, the real

part of the Jacobian is our bifurcation indicator.

V. CONCLUSIONS

In this paper, we have generalized a method of detect-

ing bifurcations in a noisy time series where the determinis-

tic part of the fitted model is described by an autonomous

first order ODE with one dynamical variable to models that

are described by N coupled first order ODEs with N dynami-

cal variables. These models are also general enough to

include Nth order ODEs of one variable and nonautonomous

systems by making a simple change of variables (or even

FIG. 9. Reconstruction of the real and

imaginary parts of the Jacobian’s

eigenvalues from the time series in

Figure 8 as a function of a. We use a

sliding window of length Twindow¼ 30

so that each window consists of m¼ 60

points. Dashed lines indicate upper and

lower ranges of the standard error. One

sees critical slowing down as expected

from the increasing real part of the

Jacobian’s eigenvalues. There is no

large frequency change visible here as

we approach the bifurcation.

FIG. 8. Time series of variables x and

y approaching the Hopf bifurcation

generated from Eq. (29) with slowly

varying _a ¼ 1
20

and noise standard

deviation r ¼ 0:01. A stable spiral

becomes unstable resulting in a stable

limit cycle following a Hopf bifurca-

tion at t¼ 58 (a¼ 0).
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mixtures of the two). Our generalisation also allows bifurca-

tion detection to be applied spatially if one treats each spa-

tial location as a new dynamical variable. These techniques

assume (i) the system from which the time series is gener-

ated is approximately in a steady state, (ii) any control pa-

rameter is slowly varying compared to the timescale of the

system, and (iii) noise is white and uncorrelated with itself

at other times and its amplitude is small. The technique fits

a linear model with additive Gaussian white noise (AR(1)

model) to the data. The dynamics are generally described

sufficiently by such a minimal model provided perturbations

from the steady state are small. The technique essentially

reconstructs the eigenvalues of the system’s effective

Jacobian at its present coordinates with minimal knowledge

about the system. Information about the eigenvalues of the

system’s Jacobian is potentially useful as the behaviour of

these eigenvalues around many different bifurcations has

been well studied.

In the N¼ 1 case, one real eigenvalue can move along

the real line corresponding simply to decay/growth type

behaviour in the system (decay corresponds to negative val-

ues, growth to positive values). The movement of this eigen-

value from negative values towards zero indicates critical

slowing down and reducing stability. The system may there-

fore be approaching a bifurcation and hence an abrupt

change in its behaviour. This is the only type of behaviour

modelled by N¼ 1 however real dynamical systems may

have much more complex behaviour. They can show oscilla-

tory and chaotic dynamics as well as fixed point solutions.

There are bifurcations between these three types of behav-

iour and some of them are global rather than local bifurca-

tions and cannot be detected by the movement of the real

part of the eigenvalue as we showed for the homoclinic

bifurcation. Other examples of global bifurcations for N¼ 2

that show no critical slowing down are the infinite period

and saddle node bifurcation of cycles.18,27 In the N
 2 case,

one gets additional indicators from the N eigenvalues and,

provided the system cannot be decoupled, some of these

eigenvalues will be complex. The real and imaginary parts

of these N eigenvalues all provide additional information on

the behaviour of the system, the real parts telling one about

the damping/growth rates along the associated eigenmodes

and the imaginary parts telling one about the frequency of

oscillation of that eigenmode. We showed that even though

the homoclinic bifurcation cannot be detected by critical

slowing down, it can be detected by the changing oscillation

frequency.

Taken together this information about how these eigen-

values are evolving and their values can narrow down the

possible type of approaching bifurcation and therefore some-

thing about the likely behaviour of the system following the

bifurcation. To provide some examples for N¼ 2 systems,

there are some generic scaling laws when one is near the

bifurcation. Some of these are listed in Table 7.4.1 of

Strogatz’s text,18 and this may assist with identification of

the type of bifurcation. Also Thompson and Sieber29 provide

a table of precursors to different types of bifurcation and

classify them as being safe, explosive, or dangerous.

We anticipate that our extended method will prove use-

ful in applications to the climate system, which has high

dimensionality and is known to exhibit deterministic chaos

on short, weather timescales as well as abrupt changes on

longer, climate timescales. As an example of a potential

application, consider the well studied Lorenz model, a sim-

ple model that shows transitions from fixed point to oscilla-

tory to chaotic behaviour originally conceived as a

simplified model of atmospheric convection.30 It is

described by a N¼ 3 model, the dynamical equations

for each given by _x ¼ rðy� xÞ; _y ¼ rx� y� xz and

_z ¼ xy� bz. The parameters r and b are usually fixed to

r¼ 10 and b ¼ 8
3
, and r is the varied control parameter.

Imagine we do not know the underlying dynamical model

and we only have access to the noisy time series generated

by the Lorenz equations. We apply our technique and

reconstruct the Jacobian of this model. What would we be

able to say about the dynamics? We consider the bifurca-

tion from oscillatory to chaotic regimes, a subcritical Hopf

bifurcation occurring at rH � 24:7 around the fixed points

ðx; y; zÞ ¼ ð6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðr � 1Þ

p
;6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðr � 1Þ

p
; r � 1Þ (see Ref. 18

for example, for more information about the Lorenz

model). Around this bifurcation, there are a pair of complex

conjugate eigenvalues located in the negative real half of

the complex plane and a third purely real eigenvalue sitting

on the negative real line much further away from the origin.

We assume we are close to one of the fixed points

ð6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðr � 1Þ

p
; 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðr � 1Þ

p
; r � 1Þ as we vary r> 0 slowly

towards rH. Therefore, from the reconstructed Jacobian, we

expect an attracting spiral on the plane spanned by the two

eigenvectors associated to the complex conjugate pair of

eigenvalues for r< rH. In the third orthogonal direction

given by the third eigenvector, we expect any displacement

in this direction to be damped back towards the attracting

spiral plane as the eigenvalue associated to it is purely real

and much more negative. After the Hopf bifurcation,

r> rH, the two complex eigenvalues cross to the positive

real side of the complex plane resulting in the spiral becom-

ing unstable and the onset of chaos. We could then con-

clude from the reconstructed Jacobian that the spiral would

become unstable but we would not know the dynamics

would become chaotic. We could also conclude the unsta-

ble dynamics is mostly still confined to the same two

dimensional spiral plane since the third eigenvalue remains

real and negative. This illustrates that by looking at the evo-

lution of the eigenvalues one can anticipate something

about future behaviour of the system, although not

everything.

Even though one could use a very large N model, in

practice a small N model will probably capture most of the

important features of the system. In practice if one did fit a

large N model, one would probably find there were a few

large eigenvalues of A. These eigenvalues dominate the dy-

namics, and therefore one could project on to the eigenvec-

tors corresponding to these large eigenvalues and still have a

good representation of the system while reducing the

complexity. Using a large N model also negates most of

the appeal of using these relatively simple statistical

techniques.
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