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Abstract 

Over the last decades the crustacean aquaculture sector has been steadily growing, in order 

to meet global demands for its products. A major hurdle for further growth of the industry is 

the prevalence of viral disease epidemics that are facilitated by the intense culture 

conditions. A devastating virus impacting on the sector is the White Spot Syndrome Virus 

(WSSV), responsible for over US $ 10 billion in losses in shrimp production and trade. The 

Pathogenicity of WSSV is high, reaching 100 % mortality within 3-10 days in penaeid 

shrimps. In contrast, the European shore crab Carcinus maenas has been shown to be 

relatively resistant to WSSV. Uncovering the basis of this resistance could help inform on the 

development of strategies to mitigate the WSSV threat. C. maenas has been used widely in 

studies on ecotoxicology and host-pathogen interactions. However, like most aquatic 

crustaceans, the genomic resources available for this species are limited, impairing 

experimentation. Therefore, to facilitate interpretations of the exposure studies, we first 

produced a C. maenas transcriptome and genome scaffold assembly. We also produced a 

transcriptome for the European lobster (Homarus gammarus), an ecologically and 

commercially important crustacean species in United Kingdom waters, for use in comparing 

WSSV responses in this, a susceptible species, and C. maenas.  

For the C. maenas transcriptome assembly we isolated and pooled RNA from twelve 

different tissues and sequenced RNA on an Illumina HiSeq 2500 platform. After de novo 

assembly a transcriptome encompassing 212,427 transcripts was produced. Similar, the H. 

gammarus transcriptome was based on RNA from nine tissues and contained 106,498 

transcripts. The transcripts were filtered and annotated using a variety of tools (including 

BLAST, MEGAN and RSEM) and databases (including GenBank, Gene Ontology and 

KEGG). The annotation rate for transcripts in both transcriptomes was around 20-25 % 

which appears to be common for aquatic crustacean species, as a result of the lack of well 

annotated gene sequences for this clade. Since it is likely that the host immune system 

would play an important role in WSSV infection we characterized the IMD, JAK/STAT, Toll-

like receptor and other innate immune system pathways. We found a strong overlap 

between the immune system pathways in C. maenas and H. gammarus. In addition we 

investigated the sequence diversity of known WSSV interacting proteins amongst 

susceptible penaeid shrimp/lobster and the more resistant C. maenas. There were 

differences in viral receptor sequences, like Rab7, that correlate with a less efficient infection 

by WSSV. 
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To produce the genome scaffold assembly for C. maenas we isolated DNA from muscle 

tissue and produced both paired-end and mate pair libraries for processing on the Illumina 

HiSeq 2500 platform. A de novo draft genome assembly consisting of 338,980 scaffolds and 

covering 362 Mb (36 % of estimated genome size) was produced, using SOAP-denovo2 

coupled with the BESST scaffolding system. The generated assembly was highly 

fragmented due to the presence of repetitive areas in the C. maenas genome. Using a 

combination of ab initio predictors, RNA-sequencing data from the transcriptome datasets 

and curated C. maenas sequences we produced a model encompassing 10,355 genes. The 

gene model for C. maenas Dscam, a gene potentially involved in (pan)crustacean immune 

memory, was investigated in greater detail as manual curation can improve on the results of 

ab initio predictors. The scaffold containing C. maenas Dscam was fragmented, thus only 

contained the latter exons of the gene. The assembled draft genome and transcriptomes for 

C. maenas and H. gammarus are valuable molecular resources for studies involving these 

and other aquatic crustacean species.  

To uncover the basis of their resistance to WSSV, we infected C. maenas with WSSV and 

measured mRNA and miRNA expression for 7 time points spread over a period of 28 days, 

using RNA-Seq and miRNA-Seq. The resistance of C. maenas to WSSV infection was 

confirmed by the fact that no mortalities occurred. In these animals replicating WSSV was 

latent and detected only after 7 days, and this occurred in five of out 28 infected crabs only. 

Differential expression of transcripts and miRNAs were identified for each time point. In the 

first 12 hours post exposure we observed decreased expression of important regulators in 

endocytosis. Since it is established that WSSV enters the host cells through endocytosis and 

that interactions between the viral protein VP28 and Rab7 are important in successful 

infection, it is likely that changes in this process could impact WSSV infection success. 

Additionally we observed an increased expression of transcripts involved in RNA 

interference pathways across many time points, indicating a longer term response to initial 

viral exposure. miRNA sequencing showed several miRNAs that were differentially 

expressed. The most striking finding was a novel C. maenas miRNA that we found to be 

significantly downregulated in every WSSV infected individual, suggesting that it may play an 

important role in mediating the response of the host to the virus. In silico target prediction 

pointed to the involvement of this miRNA in endocytosis regulation. Taken together we 

hypothesize that C. maenas resistance to WSSV involves obstruction of viral entry by 

endocytosis, a process probably regulated through miRNAs, resulting in inefficient uptake of 

virions. 
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Chapter 1: General introduction 

1.1 Crustacean Aquaculture 

Crustacean aquaculture is a significant part of global food production. Through commercial 

farming the sector helps satisfy the requirements of the human population for large 

quantities of shrimp, lobsters and other crustaceans. According to data from the Food and 

Agriculture Organization of the United Nations (FAO) the aquaculture industry has been 

growing steadily over the past three decades (Figure 1). The crustacean sector currently 

produces nearly 7 million metric tonnes of product, accounting for about 10 % of global 

aquaculture production. The market value for crustacea is considerable larger at nearly 24 % 

of total (Figure 2).  

Within crustacean aquaculture shrimp are the most important species farmed. The 

production of shrimp accounts for more than half of total crustacean aquaculture production 

(~ 66 % of total production in 2013) [1]. Since 2006 between 3.0 and 4.0 Million metric 

tonnes of shrimp have been farmed by the global aquaculture industry [2]. Since 2011 

production of shrimp in aquaculture has surpassed the yield from wild capture fisheries [2]. 

While many countries across the globe have an active crustacean aquaculture industry, the 

sector is mainly centred in (Southeast) Asia and India. The latter doubling its total production 

over the last five years [1]. While there are occasional drops in production, it can be 

expected that during the coming decades this multi-billion dollar market will continue to grow 

[2]. 

 

Figure 1 Growth of the crustacean aquaculture industry over time. Data from FAO Fishery Statistics 

Collections Database [1] 
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Figure 2 Global aquaculture statistics. Overview of global aquaculture by species type. Inner pie chart: Total 
production in percentages. Outer circle: Market value in USD 000. While crustaceans account for 10 % total 
production the market value is higher at nearly 25 %. Data from FAO aquaculture statistics 2013 [1]. 

 

Figure 3 Shrimp aquaculture by major producing regions 2008-2015. Data from FAO (2013) and GOAL 

(2013), compiled by Anderson, J.L. [2].  

 



Page | 15  
 

However, while there is substantial growth in shrimp aquaculture, it is hampered by the 

emergence and spread of diseases. Due to the intense farming practices and the movement 

of live shrimp (broodstock) between farms, diseases spread quickly and thus can cause 

considerable damage. Over the past years surveys amongst the members of the shrimp 

aquaculture sector have listed diseases as the number one challenge the industry faces [2]. 

An example of a major disease affecting the industry is Early Mortality Syndrome (EMS) or 

Acute Hepatopancreatic Necrosis Disease (AHPND). In the Asian shrimp culture sector this 

disease has caused over USD 1 billion in annual losses since 2010 [3]. In countries that are 

struck by diseases (like EMS) the production can drop by 25 – 50 % [2]. For example, an 

assessment of the impacts of diseases on the Indian shrimp farming sector by Kalaimani et 

al. 2013 estimated the total losses due to disease was around 30 % of total production. 

These losses were mainly attributed to White Spot Disease (WSD) and Loose Shell 

Syndrome (LSS). While the shrimp aquaculture sectors continue to be hit by various 

pathogens, the viruses pose the greatest threat [4]. The most significant viral epidemics are: 

infectious hypodermal and hematopoietic necrosis virus (IHHNV), Yellow Head Virus (YHV), 

Taura Syndrome Virus (TSV), and White Spot Syndrome Virus (WSSV) [5].  

The most devastating amongst these viruses is WSSV, the causative agent of WSD and 

which has spread across the full extent of the globe since its emergence in Asia during the 

1990s. The global economic damage caused by WSSV to the shrimp aquaculture industry 

has been estimated at between 8-15 billion USD since its emergence [6], increasing by over 

1 billion USD annually [4, 7]. The effect of a WSSV epidemic on individual countries can be 

very considerable. For example, in 1999-2000 the export of shrimp from Ecuador decreased 

by nearly 70 % due to WSSV, resulting in the loss of 500,000 jobs [8]. Globally losses are 

around 10 % of total annual production. Because of its large impact the FAO lists the 

research into WSSV and development of therapy and/or viral resistant shrimp lines as a top 

priority [7, 9]. Scientific effort has resulted in increased knowledge on how WSSV operates, 

but an effective treatment for the disease remains elusive.  

Because of economic drivers, research into WSSV is strongly focused on important shrimp 

species including Litopenaeus vannamei and Penaeus monodon. However the host range of 

WSSV is large, and includes all aquatic decapod crustaceans (e.g. shrimps, lobsters and 

crabs) [10]. To date, ninety eight potential host species for WSD have been identified [10]. 

Although WSSV causes high levels of mortality in all cultured shrimps, it is not necessarily 

fatal to other hosts [11]. Variation exists in disease susceptibility across the Crustacea [12]. 

Bateman et al. 2012 classified several European crustacean species according to their 

response to WSSV exposure, see Table 1.  
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Table 1 White Spot Disease susceptibility categories and classification of European crustaceans [12]. 

Susceptibility type Mortality Pathology Species 

Type 1 – high High mortality in both 

injected and fed 

exposures 

Classic white spot 

pathology obvious in 

tissues from both fed and 

injected exposures 

Penaeid shrimp, 

Austropotamobius 

pallipes, 

Pacifastacus leniusculus, 

Eriocheir 

sinensis 

Type 2 – medium High mortality in injected 

exposure, little or no 

mortality in fed exposure 

Classic white spot 

pathology obvious in 

tissues from injected 

exposure. Little or no 

pathology evident in fed 

exposure 

Homarus gammarus, 

Nephrops 

norvegicus, Cancer 

pagurus 

Type 3 – low Low level mortality in both 

injected and fed 

exposures 

Little or no pathology 

evident in either injected 

or fed exposures 

Carcinus maenas 

 

The variation in WSSV susceptibly is most aptly demonstrated in the shore crab Carcinus 

maenas. Studies show that this particular crustacean, while confirmed as susceptible to 

infection, appears to be especially recalcitrant to development of disease, showing little 

pathology and low mortality rates [12]. Several hypotheses may explain why C. maenas 

appears to be relatively resistant to the virus, for example variation in the molecular 

receptors for the virus may make it harder to generate successful infections or C. maenas 

might have an immune system that can cope better with this particular virus (e.g. by 

expressing unique anti-viral proteins). Given the economic and environmental impact of 

WSSV understanding the molecular mechanisms underlying the observed resistance in C. 

maenas could be highly informative for understanding the disease process. Should a 

mechanism of resistance be identified in C .maenas there might be potential for translation 

of this mechanism to understanding the disease process in the more susceptible species. 

For example: if a miRNA was found to play a key role for resistance in C. maenas, then 

introducing this miRNA to penaeid shrimp species – through feed or genetically modified 

organisms – could result in similar resistance in those economically important species. The 

scenario of looking at disease resistance in C. maenas represents a novel angle from which 

to address the WSSV issue as opposed to the more conventional approach of tracking of 

WSSV infection in susceptible species and identifying molecular targets for potential 

therapeutics. 
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As stated above, there has been considerable effort in studying the infection mechanisms 

and pathogenesis of WSSV. Increasingly, most studies are aimed at clarifying the disease 

processes at a molecular level. Thus attempting to answer questions like: What are the 

interactions between host and viral proteins? Are immune system reactions like melanization 

activated in presence of the virus? Is there increased production of antiviral proteins? Are 

host transcription factors capable of expressing viral genes and vice versa? How are virions 

assembled and spread throughout the host organism?  

Knowledge of the molecular basis of a disease is often a prerequisite for the design of 

potential treatments. When important gene or protein players in the disease process are 

identified a route is opened for experimentation to influence their action, e.g. through small 

molecular drugs, miRNA or antibodies. Elucidating the molecular basis of diseases require 

molecular techniques like polymerase chain reaction (PCR) and yeast two-Hybrid (Y2H). In 

addition, there has been an increase in the application of next generation sequencing to the 

study of host-pathogen interactions. Next generation sequencing forms a major part of this 

thesis and thus here the technology and analysis methods are described in detail. 
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1.2 Next generation sequencing technology and applications 

 

The limited genomic resources for non-model species like L.vannamei, P.monodon and C. 

maenas can hinder scientific study on such species. Firstly, the availability of sequence 

information facilitates the design of new experiments that study the involvement of 

genes/proteins in an infection process. Popular techniques for gene expression 

measurements like PCR require sequences on which to base primer design and many 

molecular biology techniques also involve the action of enzymes that are sequence 

dependent, e.g. restriction enzymes. And secondly, sequence information can improve 

interpretation of results since genomic variations can have large impacts on the organism 

[13]. For instance, single nucleotide polymorphisms can change the amino acid sequence of 

a genes protein product, change expression patterns through altering promoter activity or 

change mRNA stability and localization [13]. In short, sequence information is valuable to 

biosciences and technologies like next generation sequencing that allow generation of 

sequence data have become of increasing importance in research and the understanding of 

biological processes.  

Next generation sequencing is a technology that can quickly and relatively cheaply unravel 

genomic or transcriptomic sequences and has become increasingly popular in life sciences. 

Sequencing technology started with Sanger-sequencing in the 1970s [14]. This technique 

employed a DNA polymerase reaction combined with dNTPs and fluorescently labelled 

dideoxynucleotides (ddNTP), the latter terminating the polymerase reaction. From a single 

strand DNA template products of different lengths are generated, determined by when a 

ddNTP is incorporated. After size sorting the resulting fragments by gel electrophoresis, the 

fluorescence can be measured and the original sequence derived. Despite its low throughput 

and high costs Sanger-sequencing remained the main sequencing technology for many 

years.  

With the advent of next generation sequencing (NGS) technologies the costs of sequencing 

dropped dramatically (Figure 4). There are currently various NGS technology platforms 

available e.g. Roche 454, Illumina, SOLiD and Ion Torrent [16-19]. These technologies have 

similarities in their sample preparation steps, but differ in the chemistry and sequence 

detection methods. 
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Figure 4 Declining cost of sequencing. The costs of DNA sequencing have fallen over the last decade 

according to NIH data [15]. 

 

Figure 5 Illumina Next-Generation Sequencing chemistry overview. Overview of the steps involved in next 

generation sequencing with Illumina technology [20]. 
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Taking genomic DNA sequencing as an example, generally the first step in NGS is to shear 

the DNA into smaller fragments. After shearing, adapters are added to both ends of the 

fragments and through the adapters the DNA fragments are attached to a surface (beads in 

454 and SOLiD, a surface in Illumina). Next, each fragment is multiplied by PCR reaction 

based on the adapters. The final stage is to read the sequences through the aid of various 

methods (See Figure 5). 

Most of these platforms employ DNA polymerase to incorporate new nucleotides to the PCR 

fragments and using various methods to detect this incorporation. In Roche 454 sequencing 

after a nucleotide is added pyrophosphate is released, converted to ATP and subsequently 

used by a Luciferase enzyme to emit light. Detection of this light signals when a nucleotide is 

incorporated and allows reading of the sequence. Illumina sequencing technology differs 

from Roche 454 in that it employs fluorescently labelled nucleotides, each with a distinct 

colour. By taking pictures of the surface and tracking the colour sequence the original 

nucleotide sequence can be derived. Finally Ion Torrent uses a semiconductor measuring H+ 

that is released in each DNA polymerase reaction. The SOLiD technology stands apart since 

it uses DNA ligase instead of DNA polymerase. The substrates for DNA ligase are short 

fragments of random DNA sequence with a determined central nucleotide, which is labelled 

with a specific fluorescent dye for every nucleotide type. Again after every ligation reaction 

the colours are measured which is indicative of the original DNA sequence. One of the 

drawbacks on the methods described is that they depend partially on PCR. It is inherent that 

this step will develop biases in the data, in particular when AT/GC rich genomes are 

concerned. Furthermore the sequences that are obtained are often short in length, 

encumbering downstream analysis. While the emergence of the NGS technologies has 

already revolutionized the life sciences, innovation in this field is far from over. 
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Figure 6 Developments in high throughput sequencing. Lines represent the development of different 

sequencing over the years, for most systems both length and quantity have increased.  

The graph in Figure 6 shows that there now technologies available that exceed even the old 

Sanger sequencing technologies as far as read lengths are concerned. Compared with the 

technologies described earlier, sequencing by PacBio has notable differences [21]. PacBio 

sequencing is based on single molecule read-time (SMRT) technology. A SMRT chip is 

covered with very small wells that each contains a single DNA polymerase molecule. The 

DNA sample is loaded onto the chip such that each well contains a single DNA molecule. 

Then the DNA polymerase incorporates fluorescently labelled nucleotides, enabling the 

machine to read the sequence. Thus PacBio sequencing does not require a PCR step and 

theoretically large DNA molecules can be sequenced in a single run, resulting in very long 

sequencing reads. While these are strong advantages, particularly when considering 

genome sequencing, they do come at increased cost and reduced sequence yield. Thus 

currently there is not one technology that clearly excels over all the others and a choice has 

to be made taken specific project parameters in mind (number of samples, quantity and 

quality of DNA, monetary resources etc.) 

To this point genome sequencing has been the focus, but this is by no means the only 

application of NGS technology. Several variations exist, each catered to answer a different 
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research question. Table 2 provides an overview of some of the applications of NGS 

technology in life sciences. Some of these sequences require prior knowledge, e.g. exome 

sequencing requires an annotated genome and ChIP-seq requires antibodies targeting a 

protein of interest. But the beauty of NGS that many of the techniques described in Table 2 

work without any prior knowledge. This makes NGS the technology of choice for 

experiments involving non-model species. Through genome/transcriptome sequencing and 

subsequent de novo assembly, a large amount of information can be gathered about said 

species in exchange for relatively little time and money.  

Table 2 Several applications of NGS technology. 

NGS technique  Description Possible applications 

Genome sequencing DNA Genomic DNA is isolated from the sample, 

fragmented and sequenced. 

Variant detection, de novo 

genome assembly 

Exome sequencing DNA Similar to genome sequencing. However 

fragmented DNA is enriched for exomes prior 

to sequencing. Enrichment can be achieved 

via various techniques, e.g. microarray 

hybridization.  

Variant detection – 

enrichment of exomes 

accomplishes easy 

detection of impactful 

sequence variations. 

Restriction site 

Associated DNA 

(RAD) sequencing 

DNA Prior to fragmentation the DNA is subjected to 

a restriction enzyme. After restriction 

fragments adapters are ligated and used to 

select only DNA fragments associated with 

the restriction sites. 

Variant detection in 

populations (genotyping) 

Metagenomics DNA DNA is not isolated from an individual but 

rather directly from the environment. The 

resulting DNA thus represents a snapshot of 

all the organisms in the sample.  

 

 

 

Microbiological diversity 

analysis  

ChIP sequencing DNA Proteins and DNA are crosslinked (e.g. by 

formaldehyde treatment) and sheared. 

Antibodies targeting proteins of interest are 

used to enrich the sample. The resulting DNA 

is sequenced. 

Detect protein-DNA 

interactions 

Methyl sequencing DNA DNA is pretreated with a bisulfite which 

converts cytosine to uracil, unless the 

cytosine is methylated. Subsequent 

sequencing thus results in information on 

methylation status of individual cytosines. 

 

 

Epigenetics 
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Transcriptome 

sequencing 

RNA RNA is isolated from a sample. After isolation 

mRNA is enriched, e.g. by polyT-magnetic 

beads. A reverse transcriptase reaction 

generates cDNA from the mRNA which is 

subsequently sequenced. 

Variant detection, gene 

expression analysis, de 

novo transcriptome 

assembly 

miRNA sequencing miRNA RNA is isolated from a sample. After isolation 

RNA is size selected by running a 

polyacrylamide gel. 

Novel miRNA detection, 

miRNA expression 

analysis 

 

Sample preparation and sequencing are the primary stages of a next generation sequencing 

study. The sequencing run often results in the generation of enormous amounts of data in 

the form of millions of short sequencing reads. These have to be meticulously put together in 

order to make interpretation feasible. Because of its size and complexity the analysis of NGS 

datasets require bioinformatics approaches. In the following section an overview will be 

provided on the bioinformatics involved with analysis of NGS data, with focus on RNA 

sequencing analysis and its relevance to this thesis.  

1.3 Bio-informatics of de novo transcriptome assembly 

Broadly speaking there are two strategies for obtaining a transcriptome from RNA 

sequencing data, the choice depending on the availability of a reference genome. The 

reference based approach provides power to bioinformatic analysis of the data and improves 

the reliability because there is a framework in place onto which the reads can be assembled. 

Transcriptome assembly without a reference genome, de novo assembly, is more difficult 

but advances in bioinformatics algorithms make it possible. Whether the transcriptome 

assembly is reference based or de novo, the basic layout of the bioinformatic pipeline is 

similar in both situations. Differences mainly involve the choice of software at certain stages 

of the pipeline.  

A general target of gene expression studies is the identification of differentially expressed 

genes between two sample groups. There is a plethora of possible next generation 

sequencing pipelines that are able to answer this question and the majority of steps within 

these can be placed in a small set of categories [22]. The initial step encompasses pre-

processing of raw sequencing reads, removing low quality bases and remaining adapter 

sequences.  After pre-processing the reads can either be mapped to a reference genome, or 

used as input for a do novo assembler to produce a transcriptome. With reads mapped 

against a transcriptome, expression levels for transcripts can be estimated from transcript 

coverage after normalization has been applied. The final step is to find the differentially 
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expressed genes between the sample groups [22]. In this section an overview of the 

possibilities within each pipeline stage will be given.  

1.3.1 Preprocessing of RNA-seq data 

Before a start can be made on transcriptome assembly and/or mapping, reads have to be 

pre-processed. The main goal of this phase is to remove any low quality information 

contained in the reads to prevent it from introducing errors in contaminating the rest of the 

analysis. Most of the RNA-seq analysis pipelines contain similar features in the 

preprocessing stage. The initial step in most pipelines is the removal of adapter sequences 

from the reads [23, 24]. This artifact is caused by the chemistry involved in the sequencing 

process. The UniVec database at NCBI [25] contains sequences that may be of vector origin 

and can thus be used to identify adapter contamination, but usually the adapter sequences 

are known through the sample preparation steps. There are many software packages 

available with the capabilities to remove adapter sequences from the reads, including fastX 

[26], Trimmomatic [27] and cutadapt [28]. 

Sequencing machines assign a quality score for every base that is sequenced, usually given 

by a Phred score (Quality = -10 log10 P, where P corresponds to the probability that the base 

is called incorrectly) [29]. Lower quality scores are always found at the 3’ end of the reads as 

illustrated by Figure 7, a typical report of base quality scores according to read position.  
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Figure 7 Quality scores across bases. Phred quality scores across all reads in a RNA-sequencing dataset, 
Illumina HiSeq 2500 sequencing of Carcinus maenas hepatopancreas cDNA. Graph generated by fastqc [30] and 
data from Verbruggen et al. 2015 [31].  

Filtering of low quality bases reduces the chances of incorporating sequencing errors in the 

subsequent transcriptome assembly and analysis. In nearly all RNA-seq pipelines 

qualityscore directed trimming of reads is done, exceptions to this are sometimes made and 

explained by decisions at later stages in the pipeline [32]. There are multiple ways that 

quality trimming can be performed. The simplest method is to remove bases once the quality 

drops below a certain threshold (e.g. below 20 Phred Quality Score). There are more 

complicated methods available for quality e.g. trimming of bases with the aid of a sliding 

window; this has the advantage of retaining good quality sequence after a single base drop 

in quality. The quality score of reads can also be employed to determine whether or not 

entire reads should be removed from the RNA-seq dataset. Filters like these are easy to 

apply and can be found in the fastX toolkit [26] and Trimmomatic [27].  

Besides the quality scores, certain reads can also be filtered out on the basis of the 

sequence itself. A large fraction of the RNA isolated from a sample will consist of ribosomal 

RNA (rRNA). Because RNA-seq experiments are often designed to answer questions 

regarding gene expression, some researchers decide to remove rRNA reads from the 
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dataset at this stage to reduce data quantity [33]. However, most library construction kits 

contain a step that isolates only RNA molecules with a polyA-tail from the sample prior to 

sequencing. Thus the quantities of rRNA, tRNA, miRNA, ncRNA and others in the sample 

are reduced. Another sequence filter consideration might be to remove reads containing Ns. 

The reason to do this is that some software in the de novo assembly portion of the pipeline 

will replace N bases with another base in order to conserve memory space; Velvet is an 

example of this [34].  

In short, the objective of the pre-processing stage is to remove read information that can 

have a negative impact on the rest of the analysis pipeline. Helpful software or scripts 

performing most of the pre-processing steps can be found in existing software packages like 

fastqc [30], fastx [26], RobiNA [35] and Trimmomatic [27]. If RNA-seq is being done on the 

Roche 454 platform, the Newbler [16] or LUCY [36] software packages also have quality 

control capabilities. Most of these tools can also be found on the Galaxy platform [37-39]. 

1.3.2 Transcriptome assembly and/or read mapping 

After the preprocessing stage the information contained in the individual reads has to be 

combined and assembled into a valid transcriptome. Where the preprocessing stage is fairly 

similar in most transcriptomics research, the assembly and mapping stage is where many 

analysis pipelines diverge. The software selection for this stage in the pipeline depends on 

the sequencing platform and availability of a reference genome/transcriptome. When a 

genome sequence is available, reference based assembly is nearly always preferred.  

1.3.2.1  de novo assembly 

De novo assembly of a transcriptome from single or paired end reads is a computational 

problem that has been tackled by a large variety of assemblers. Assemblers can be split into 

two types: overlap-layout-consensus assemblers and de Bruijn graph based assemblers. 

Overlap-layout-consensus assemblers operate with a basic strategy: the assembly process 

starts off with a read and searches the remaining reads in the dataset for similarity. Similar 

read sequence will be added to the contig and so on until all the possible contigs are 

constructed. De Bruijn graph based assemblers first split up reads in to fragments of a 

predefined length, called k-mers, and constructs a graph from these k-mers. A node in this 

graph thus represents a sequence of k length and a vertex between two nodes represents a 

significant overlap (k-1) between the sequences of two nodes. After the graph has been 

constructed the assembly algorithms will search the graph for an Eulerian path that traverses 

it. Ideally the graph will be a series of straight lines however sequencing errors, insertions, 

deletions, alternative splicing events etc. will form bubbles and forks in the graph (Figure 8) 
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[24]. The assemblers’ algorithms determine which of these bubbles and forks are formed by 

either genuine sequence variation or sequencing errors.  

 

Figure 8 De Bruijn Graph with sequence variations. A De Bruijn Graph is seldom a set of linear lines. 

Sequence variations and sequencing errors cause bubbles to form which have to be resolved by the assemblers. 
Figure from Schliesky et al. 2012 [24]. 

Choosing between overlap-layout-consensus and de Bruijn graph based assemblers largely 

depends on the sequencing platform that can be used. The crux of the choice lies within the 

number and length of reads produced by the platform. Overlap-layout-consensus algorithms 

won’t work well with large datasets due to computational demands. Therefore, it is more 

suited for sequencing platforms like 454 that produce a lower quantity of reads but of longer 

length (however the size of current 454 datasets still makes them unworkable). Due to the 

volume of data created by short read sequencers like Illumina technology, overlap-layout-

consensus is not used because they are impractical and a De Bruijn graph approach is 

preferred.  

 

There are numerous assemblers available for both de novo assembly protocols. Examples 

of overlap-layout-consensus assemblers are Newbler [16], Edena [40] and CAP3 [41]. 

Newbler is a very popular choice for long read RNA-seq datasets (Roche 454) that require 

de novo assembly [42-46] .CAP3 is sometimes employed to merge assemblies that have 

1. Alternative transcription start site or hybrid 

joining or DNA contamination 

2. SND caused by a sequencing error or a SNP 

or mutation after gene duplication 

3. Alternative transcription start site or DNA 

contamination 

4. Alternative exon use 

5. Alternative exon use or mutations after 

recent gene duplication 
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been created with other algorithms (e.g. [47]), a process that will be discussed later. Edena, 

although an overlap-layout-consensus assembler, was used to produce a transcriptome with 

short read Illumina data [47].  

De Bruijn Graph Assemblers directed towards Illumina sequencing data have also been 

used in a wide selection of RNA-seq experiments. Examples of De Bruijn Graph genome 

assemblers are include Velvet, ABySS and SOAPdenovo. Because of an important 

difference between genomic sequencing and RNA-seq, adaptations to these genomics 

assemblers were made to enable transcriptome assembly. Genomics assemblers generally 

assume similar coverage of the entire genome, whereas in the transcriptome the coverage 

of a transcript depends on its expression level in the cellular system. Because of the large 

range in expression dynamics, the assembler cannot compare coverage between different 

transcripts. The read coverage of forks and bubbles in the De Bruijn Graph (Figure 8) is 

important to distinguish read sequence variations from sequencing errors. The adapted 

genomic assemblers, now de novo transcriptome assemblers are: Velvet/Oases, Trans-

ABySS and SOAPdenovo-Trans [24]. Trinity is an assembler that has been developed with 

RNA-seq in mind and has grown to be the most popular de novo assembler. Table 3 list 

popular assemblers and the number of times they have been cited (data from January 

2016).  

Table 3 De Bruijn graph based assemblers 

Genome 

assembler 

Reference Web of Science 

citations 

Transcriptome 

assembler 

Reference Web of 

Science 

citiations 

Velvet [34] 2,701 Velvet / Oases [48] 380 

AbySS [49] 867 Trans-ABySS [50] 236 

SOAP-denovo2 [51] 323 SOAP-denovo-

trans 

[52] 51 

   Trinity [53] 1,809 

 

A study was done by Zhao et al 2011 [32] comparing the performance of a series of De 

Bruijn Graph assemblers on multiple Illumina RNA-seq datasets and provides some pointers 

on how to choose an assembler that fits the trade-off between computational demands and 

characteristics of the generated transcriptome. De Bruijn Graph based assemblers have also 

been tested on Roche/454 sequencing data [54]. The result suggests that Trinity has the 

best performance of the De Bruijn assemblers and is comparable to Newbler. 

There have been explorations of using assemblers in successive rounds of assembly. The 

output generated by one assembler, a series of contigs and singletons, is used as input for 
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another round of assembly. Coppe et al. 2012 [55] used a two stage assembly to produce a 

transcriptome for the striped venus clam (Chamelea gallina) from 454 sequencing data. At 

both stages MIRA [56] was the chosen assembler, and the second assembly run had more 

stringent criteria. The authors supported that by using two subsequent assemblies the 

redundancy in contig sequences can be reduced. Tao et al 2012 [47] used several 

assemblers, the output of three of these assemblers (Edena, SOAPdenovo and Velvet all at 

various settings) had been used as input for a secondary assembly run using the overlap-

layout-consensus assembler CAP3, the final assembly outperforming Trinity on their data. 

Generally de novo studies are performed using a single assembler to put the data together.  

The assemblers in Table 3 are/have been the most popular assemblers to date. Some of the 

publications the table are several years old, but innovation has not stopped in the de novo 

assembler field. Most existing assemblers receive updates and new assemblers are still 

being created. Some of the latter are generated for specific purposes, e.g. the EPGA2 

assembler is memory efficient [57] and the IVA focuses on RNA virus genome assembly 

[58]. For transcriptomes the Bridger assembler combines algorithms from Trinity with those 

of reference based assembly algorithms [59].  

 

1.3.2.2 Reference based assembly 

For some species a genome sequence is available, a valuable source of information that can 

improve the quality of a transcriptome assembly. To use the framework of a fully sequenced 

genome in transcriptome assembly requires a different set of algorithms than the ones that 

have been discussed so far. The strategy of reference base transcriptome assemblers can 

be summarized as follows: first the individual reads are mapped to the reference genome 

and after that mapped reads are combined into transcripts. Mapping of reads to a reference 

genome can be done by several programs, including bowtie2 [60] and BWA [61], both able 

to work with short reads. TopHat [62] is an extension of bowtie that is able to map reads 

across splice junctions. After processing of raw reads by a BWA, bowtie or TopHat, the 

mapping information has to be interpreted to find out from which transcripts the reads 

originated. This task would be straightforward were it not for alternative splicing events, 

which makes it possible for reads mapping close to each other on the genome to have 

originated from different transcripts.  

Cufflinks [63] is a popular software package that is able to deduce a minimal set of 

transcripts that is able to explain the read alignment produced by the read mapper. It does 

this by creating an overlap graph for each bundle of aligned reads. In the overlap graph 

nodes represent a sequenced fragment (Single or Paired end, although Cufflinks is designed 
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with paired end data in mind) and a vertex represents compatibility between the two 

fragments. Compatibility means that it is possible for the two fragments to have originated 

from the same transcript. From the overlap graph the isoforms can be identified. Cufflinks 

achieves this by finding the largest group of mutual exclusive fragments and extends this 

information to find the minimal set of transcript isoforms able to explain the alignment (an 

implementation of a proof of Dilworth’s Theorem). Cufflinks is also able to deduce the 

expression levels of transcripts; this will be discussed in a later section.  

TopHat and Cufflinks, together part of the Tuxedo suite, is a very popular combination of 

tools and has been used excessively in reference-based RNA-sequencing experiments. The 

protocol paper by Trapnell et al. 2012 [64] has over 1000 citations on web of science. The 

suite has been extended further by incorporating cummRbund which can automatically draw 

publication style graphics for the data. The effectiveness of this suite was demonstrated by 

Ghosh et al. 2016 [65].  

 

1.3.3 Clustering and filtering of transcriptomes 

After assembly, de novo in particular, it is likely that not all the produced transcripts are 

useful for further analysis. Often redundant transcripts, small transcripts or even derived 

transcripts from contaminating species can be found in transcriptomes. In order to tackle 

these issues, many analysis pipelines apply clustering and filtering steps. Redundancy in 

transcripts can be reduced by grouping transcripts together when they fulfil certain similarity 

criteria and having a single representative for each group, CD-HIT-EST can do this 

procedure fast and efficiently for large datasets [66]. Transcript filtering can be done to 

varying degree of complexity. The most straightforward filter is to remove all contigs smaller 

than a certain threshold from the transcriptome. The size threshold can be set in multiple 

ways. Some groups decide on a hard threshold, e.g. 100 bp [67] or 200 bp [55]. It is also 

possible to let the threshold depend on the settings used in the assembly. In de Bruijn Graph 

assemblers the k-mer size is an input parameter that regulates how large the sequence 

pieces are that will eventually generate a contig. To filter contigs it can be a choice to let the 

size threshold depend on the k-mer size. For example: the length of a contig must at least be 

twice the k-mer size [23]. Removal of contaminating species can only be done after 

annotation because one requires an indication of the species of origin. Annotating transcripts 

through BLAST against databases like NCBI nt/nr provides information on the species of 

origin. Tools like MEGAN [68] provide an overview of transcriptome taxonomy and can be 

used to remove undesired transcripts. In case a mammalian transcriptome is assembled, a 
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choice can be made to remove all transcripts that show a high degree of similarity to 

bacterial or viral sequences which can be considered contaminations [31].  

 

1.3.4 Normalization and expression 

While a produced transcriptome for a species can be a satisfactory result by itself, it is often 

part of a study investigating differentially expressed genes between two or more 

experimental groups. Because abundant transcripts produce more sequencing reads than 

rare transcripts, RNA-seq can be used to derive gene expression levels for each transcript in 

the transcriptome. This principle sounds intuitive, but there are subtleties that require 

attention. For example, every sequencing lane can differ in the total number of sequencing 

reads produced, therefore a comparison between samples cannot be done simply by 

mapping and counting reads, and normalization steps are required. Many types of 

normalization have been used and some have been analysed in comparative studies. The 

start of all the normalization methods is to map reads to the transcriptome. This can be done 

with any aligner such as bowtie [60], BWA [61] or SSAHA2 [69].  The read alignment 

produced by the mapping algorithm can be processed by several normalization methods. A 

short description on a diverse selection of normalization methods is provided in Table 4.  
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Table 4 RNA-seq normalization methods 

Normalization method Explanation 

Transcripts: i in 1 ... I 

Lanes/samples: s in 1 ... S 

Read Count: RC (RC’ is normalized read count) 

Library Size: LS 

Median/upper Quartile:     MQ     UQ 

         1 max (RC) 

 

Fold change: Mi = log2  ( RCi,s LSs / RCi,s’ LSs’ )  

 

Intensity: 𝐴𝑖 =  
1

2
 𝑙𝑜𝑔2  ( 

𝑅𝐶𝑖,𝑠

𝐿𝑆𝑠
 ⦁ 

𝑅𝐶𝑖,𝑠′

𝐿𝑆𝑠′
 ) 

Probability distribution for distances (PE): P(d) 

Total Count [22]  

𝑅𝐶′𝑖,𝑠 =  
𝑅𝐶𝑖,𝑠

𝐿𝑆𝑠
 𝑚𝑒𝑎𝑛(𝐿𝑆)   

 

The gene read count in each sample is divided by the library size 

from which the sample originated and multiplied with the average 

library size across all lanes. 

Upper Quartile [22]  

𝑅𝐶′
𝑖,𝑠 =

𝑅𝐶𝑖,𝑠

𝑈𝑄𝑠
 𝑚𝑒𝑎𝑛(𝑈𝑄) 

 

The gene read count in each sample is divided by the Upper 

Quartile for that sample and multiplied with the average Upper 

Quartile across the samples. The upper quartile is the count that 

separates the top 25% counts and bottom 75% counts in the count 

distribution. Genes with a read count of 0 are neglected.  

 

 

 

Median [22]  

 

𝑅𝐶′
𝑖,𝑠 =

𝑅𝐶𝑖,𝑠

𝑀𝑄𝑠
 𝑚𝑒𝑎𝑛(𝑀𝑄) 

 

Similar to upper quartile normalization. The upper quartile is 

replaced by the median of the gene counts. Read counts of 0 are 

neglected. 
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DESeq [22, 70]   

𝑅𝐶′𝑖,𝑠 =  
𝑅𝐶𝑖,𝑠

𝑠𝑠
 

 

𝑠𝑠 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑖  
𝑅𝐶𝑖,𝑠

(∏ 𝑅𝐶𝑖,𝑠
𝑠=𝐽
𝑠=1 )

1/𝐽
 

 

A scaling factor for a lane is computed as the median of the ratio for 

each gene of its count over a pseudo-reference lane. The pseudo-

reference lane is computed by the geometric mean across all the 

samples. All read counts for genes in a lane are divided by the 

scaling factor calculated for that lane to obtain the normalized gene 

count. Assumption: most genes are not differentially expressed 

 

 

 

 

 

 

 

 

 

 

Trimmed mean of M values [22, 71, 72]   

𝑙𝑜𝑔2 (𝑇𝑀𝑀𝑠
(𝑟)

) =  
∑ 𝑤𝑖,𝑠

𝑟 𝑀𝑖,𝑠
𝑟

𝑖∈𝐼

∑ 𝑤𝑖,𝑠
𝑟

𝑖∈𝐼
 

 

𝑀𝑖,𝑠
𝑟 =  

𝑙𝑜𝑔2 (
𝑅𝐶𝑖,𝑠

𝐿𝑆𝑠 
)

𝑙𝑜𝑔2 (
𝑅𝐶𝑖,𝑠

𝐿𝑆𝑠
)
 

 

𝑤𝑖,𝑠
𝑟 =  

𝐿𝑆𝑠 −  𝑅𝐶𝑖,𝑠

𝐿𝑆𝑠 𝑅𝐶𝑖,𝑠
+ 

𝐿𝑆𝑟 −  𝑅𝐶𝑖,𝑟

𝐿𝑆𝑟 𝑅𝐶𝑖,𝑟
 

 

One lane is chosen as a reference and the others are test lanes. 

Before calculating a scaling factor, several genes are omitted from 

the calculation. The genes with the largest fold change between 

reference and test lane (M, default is top 30%), genes with intensity 

(A, default is top 5%) and genes with a count of 0 are trimmed.  

The TMM scaling factor is calculated as shown in the formula above 

as a weighted mean of log ratios between this test and the 

reference. The weights are the inverse of the approximate 

asymptotic variances, see [72] for details. 

Normalized read counts are calculated by dividing the counts by the 

scaling factor, as was done in the DESeq method. 
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RPKM (FPKM)    

𝑅𝐶′𝑖,𝑠 = 𝑅𝑃𝐾𝑀𝑖,𝑠 =  
𝑅𝐶𝑖,𝑠

𝐿𝑖𝐿𝑆𝑠
 

 

 

Reads per kilobase per million mapped reads (RPKM) or Fragments 

per kilobase per million mapped reads (FPKM) for paired data uses 

gene length and library size normalization. The normalized gene 

count equals the gene count divided by the length of the gene Li in 

kb and the library size in millions. 

NEUMA [73]  

FPKM is replaced by FVKM (number of fragments per virtual 

kilobase per million fragments) in Normalization by expected 

uniquely mappable area (NEUMA). Below is the explanation for 

Paired End reads only because the single-end situation is more 

basic.  

 

The first step in NEUMA is to derive how many reads can be 

mapped uniquely to a gene. The information is found by collecting 

all the possible reads from a transcriptome of a certain size and 

distance and designating them as either uniquely mapping or not 

uniquely mapping. For every gene the number of uniquely mapping 

reads is counted and stored in a dxI matrix U.  

Next EUMAi is calculated by multiplying the probability of a certain 

distance d in a paired end read to the number of uniquely mapping 

reads for that distance for gene i.   

 

𝐸𝑈𝑀𝐴𝑖 =  ∑ 𝑃𝑠(𝑑) 𝑈𝑑,𝑖
𝑑

 

 

With EUMAi known, FVKMi,s can be calculated like RPKM with GCi,s 

replaced by NIRi,s (the number of uniquely mapping reads for gene i 

in the experimental data) 

 

𝑅𝐶′𝑖,𝑠 = 𝐹𝑉𝐾𝑀𝑖,𝑠 =  
𝑁𝐼𝑅𝑖,𝑠

𝐸𝑈𝑀𝐴𝑖  𝐿𝑆𝑠
 

 

Note: NEUMA can also be calculated at transcript level instead of 

gene level. 
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RSEM [74]  RNA-Seq by Expectation Maximization (RSEM) uses a maximum 

likelihood estimation to derive transcript expression levels in RNA-

seq data.  

 

The statistical model can be applied to both single end and paired 

en reads and is described in Li et al. [74], an elaborated version of 

the model proposed in Li et al. [75]. This model encompasses read 

sequence (R), orientation (O), starting position (S) and isoform (G). 

The extended model also includes quality, paired end information 

and allows for variable read length.  

 

Given a dataset r with N reads and a transcriptome with M isoforms 

this results in the following data likelihood function: 

𝑃(𝑟|𝜃) =  ∏ ∑ 𝜃𝑖𝑃(𝑟𝑛|𝐺𝑛 = 𝑖)

𝑀

𝑖=0

𝑁

𝑛=1

 

 

Derivation of P(rn|Gn = i) is provided in Li and Bewey 2011 [74] and 

is too elaborate for this section. 

 

The parameters to be estimated describe the expression levels of 

the M isoforms in the transcriptome. 

 

𝜃 = [𝜃0, 𝜃1 … , 𝜃𝑀] 

 

Where θi represents the expression level of isoform i, and θ0 the 

isoform used for unmappable reads. The final result is to convert the 

estimated expression levels (θ) to a fraction of transcripts (τi)/ 

nucleotides(νi): 

𝜈𝑖 =  
𝜃𝑖

1 − 𝜃0
 

 

𝜏𝑖 =  
𝜈𝑖

𝑙𝑖
 (∑

𝜈𝑗

𝑙𝑗
𝑗

)

−1

 

 

Estimation of θ with maximum likelihood is done with an EM 

algorithm. 
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Quantile [22, 76] Data is arranged in an IxS matrix D, the columns representing lanes. 

From D a ranked matrix is made Dsort, sorting each column 

according to counts. The means of the rows in Dsort are calculated 

and assigned to D*sort.  Finally, the normalized data is formed in D’ 

by rearranging the columns in D*sort by the ranking in Dsort.  

Housekeeping genes Certain genes are assumed to have a constant expression over 

different samples and can therefore be used to adjust for library size 

effects. 

 

The selection of normalization methods described in Table 4 can be placed in groups 

according to their characteristics [22]. These groups provide an easier overview of the 

available methods and can facilitate the decision making process for researchers. The first 

group are the ‘distribution concept’ methods that assume a similar read count distribution as 

principle and include: Total Count, Upper Quantile, Median, Quantile and RPKM-like 

methods [22]. The read distributions between lanes can be normalized by a single quantile 

(total count, upper quantile or median) or multiple quantiles (Quantiles). The RPKM-like 

methods on the other hand apply both a total count and length normalization. The RPKM-like 

methods are RPKM, RSEM and NEUMA. NEUMA differs from the others by the definition of 

the length of a gene since only unique mappable areas are considered. Normalizing read 

count for a gene or transcript by its length enables a better comparison between the 

expression levels of different genes, even in the same sample. However when only pairwise 

comparisons are made, e.g. in differential expression studies, it is not necessary to perform 

length normalization. There are indications that normalization of read counts by transcript 

length can introduce biases affecting low abundance transcripts [22, 77]. The second group 

includes TMM and DESeq normalization. In these two methods the assumption that most 

genes are not differentially expressed leads to an estimation of the library size.   

Dillies et al. 2012 [22] presents a comparison study of seven normalization methods, testing 

both on real and simulated data. The tested normalization methods included Total Count, 

Upper Quartile, Median, DESeq, Trimmed mean of M values, Quantile and RPKM. 

Performance was tested based on qualitative characteristics of the raw and normalized 

datasets and a differential expression analysis. Comparing the read count distributions 

before and after normalization showed that high-count genes and the number of 0 counts 

can affect the calculation of the scaling factors. Total Count and RPKM did not stabilise the 

read count distributions, probably due to the influence of the high-count genes. Calculating 

the coefficient of variation of normalized read counts for a set of housekeeping genes 

showed that DESeq and TMM methods had the lowest coefficients. Analysis on simulated 

data, with varying library size difference and presence of high count genes, showed that high 
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count genes have a strong influence of the false positive rate for Total Count, Upper 

Quantile, Median, Quantile and RPKM methods. Only DESeq and TMM were able to control 

the false positive rate while retaining the power to detect differentially expressed genes. 

These two normalization methods are recommended by Dillies et al. over the popular RPKM 

and Total Count methods [22]. Methods like DESeq and TMM are included in software 

packages and can be implemented with only a few commands and have therefore become 

popular choices. 

 

1.3.5 Differentially expressed genes 

After properly normalized gene counts have been derived for every sample comparisons can 

be made between gene expressions in different conditions present in an experiment. Genes 

that are differentially expressed (DE) can provide insight on how an organism or cell line 

responds to environmental stimuli. Deriving the list of DE genes involves calculation of the 

statistical significance of the dissimilarity in gene expression amongst the conditions.  

Methods to perform these types of calculations have already been developed for microarray 

data. However, these are not directly translatable to RNA-sequencing data because of 

inherent differences in the datatype. Microarray data is continuous whereas the gene counts 

derived from RNA-sequencing are discrete. This means that the distributions underlying 

significance calculations also have to be discrete. Examples of discrete probability 

distributions are: the Poisson distribution, the geometric distribution, the binomial distribution 

and the negative binomial distribution. Several DE analysis methods are based on these 

distributions. The fundamental statistics underlying the described methods will not be 

elaborated; rather a brief description on the basic principles is given. 

Fang et al. 2012 [78] discusses several methods for the calculation of DE genes in RNA-seq 

data. All of the methods are parametric, meaning that assumptions are made on the 

underlying data distributions. The Poisson distribution can be used to represent the 

probability distribution for read counts. Using the Poisson distribution as a basis, DE 

assessment can be done in several ways: Fisher’s exact test [79] and through a likelihood 

ratio test [80]. Fisher’s exact test requires the construction of a 2x2 contingency table and 

can therefore only be used in experiments with two conditions. The contingency table for a 

gene contains the read counts for that gene and the remaining number of reads. Fisher’s 

exact test can derive a p-value for the association between the gene and the condition, 

based on the odds ratios found in the contingency table. Asides from Fisher’s exact test, a 

likelihood test is also a possible choice for the Poisson model. In a likelihood test the 

likelihood of the data given different models is used to derive DE transcripts.  
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The Poisson distribution implies that the variance is equal to the mean. However in RNA-seq 

experiments it has been shown that the observed variance is often larger than the variance 

as predicted by the model, this is called overdispersion. In such cases the merits of the 

Poisson distribution in DE analysis decrease and different models have to be applied in its 

stead. A possible method to deal with increased variance is to use a two-stage Poisson 

model, as described by Auer et al. 2011 [81]. In such a process, genes are split into two 

groups: genes likely to have an increased variance and those without overdispersion. Then 

genes without overdispersion are tested for differential expression with a standard likelihood 

test as described above. For genes with over-dispersion an estimate is made on the over-

dispersion and used to calculate a quasi-likelihood statistic. In situation with likely over-

dispersion it is also a possibility to resort to methods that are based on other distributions; 

several have been suggested and developed into R packages.   

edgeR is a popular R-package that can be used for the detection of differentially expressed 

genes [71]. It is based on the negative binomial (NB) distribution. Because the NB 

distribution allows the variance and mean to differ, it can deal with over-dispersion in the 

dataset. In edgeR dispersion for a gene is estimated by a conditional maximum likelihood 

dependent on the total count for that gene [71]. If the dispersion approaches 0, the negative 

binomial distribution reduces to a Poisson distribution. Like the Poisson distribution based 

methods described above, the DE genes for a pairwise comparison are gathered from the 

data by using an exact test. edgeR employs a likelihood ratio test to derive the DE gene list 

when multiple comparisons are considered. There are other R-packages available that offer 

extended methods to the NB edgeR methods. DESeq is another well-used package and 

treats the relationship between mean and variance differently [70]. Instead of a conditional 

maximum likelihood estimation of the NB dispersion parameter, this estimation is performed 

in a hierarchical manner.  Cufflinks, discussed above, is also able to generate a list of DE 

genes from a dataset and uses the same method to deal with overdispersion as DESeq [82]. 

Cuffdiff is the part of Cufflinks responsible for the calculations. Differential expression is 

determined through a Student’s T test, with overdispersion in the variance modelled by a 

beta negative binomial distribution. Cuffdiff is also able to provide changes in relative 

transcription between splice variants of the same gene.The baySeq R-package is another 

modification of edgeR that allows for multiple comparisons [83]. For every comparison a 

posterior probability for DE of a gene is calculated based on a Bayesian approach. The 

overall chance of DE of a gene will be the sum of all calculated posterior probabilities. 

EBSeq is also a Bayesian package that has improved power and performance to identify DE 

isoforms in particular, it is often coupled with RSEM in analysis pipelines [84].  
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A beta-binomial distribution has been used by Zhou et al. 2011 [85] to model overdispersion 

gene counts in the BBSeq R- package. Specifically, the probability that a read in a sample 

will map to a gene is modelled by a parameter that follows a beta-binomial distribution. The 

model for over dispersion can either be a free model, meaning that the dispersion can be 

calculated for every gene separately, or a constrained model wherein the mean-

overdispersion relationship is assumed. BBSeq uses a design matrix, with phenotype 

indicators, and a logistic model to derive a Wald statistic for every gene, indicating whether 

or not it is differentially expressed [78]. 

Overall the edgeR, DEseq and EBSeq appear to be the most popular in de novo RNA-seq 

studies and Cuffdiff for reference based RNA sequencing.  

 

1.3.6 Annotation and pathway analysis 

Annotation and pathway analysis are methods by which context can be added to a 

transcriptome and/or list of DE transcripts. By adding context, the biological interpretability of 

the RNA-seq data can be increased. Annotation of the transcriptome itself could be 

considered as a quality statistic, increasing numbers of annotated transcripts can provide 

confidence in the chosen parameters of the transcriptome assembly. The presence of highly 

conserved genes/proteins in a transcriptome is a good indicator of assembly quality. Indeed, 

tools like cegma [86] have been developed that interrogate transcriptomes for the presence 

of a selection of such highly conserved sequences.  

BLAST can be used in annotation by similarity of transcripts in a transcriptome to reference 

databases. When no species specific reference database is available, it can be considered 

to use a related species. For example, Wolf et al. 2010 [42] compared crow transcriptomes 

to zebra finch and chickens. Most pipelines, of data coming from a wide variety of species, 

include a BLAST search against the NCBI non-redundant database to annotate 

transcriptomes from a large variety of species. After identification of a significant sequence 

similarity, the annotation of the subject can be transferred to the query transcript. After a 

transcript has been linked to a gene, various online databases can be used to provide further 

annotations, e.g. function annotations. Gene Ontology (GO) is a functional annotation 

database with a hierarchical structure and a standardized vocabulary [87]. GO annotations 

are linked to proteins, and are available for multiple species. If the subject species is not 

available in the GO database, homology can be used to link annotations to transcripts. The 

tool of choice for this procedure is BLAST2GO which uses BLAST to search for significant 

sequence identity and subsequently links GO terms to the queries. Aside GO, another 

popular functional annotation is through KEGG [88]. KEGG is a database containing various 
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pathways and can be queried to identify pathway components in a transcriptome, as in the 

example provided in Figure 9. 

 

Figure 9 KEGG endocytosis pathway. Components of the KEGG pathway that have been identified in a shore 

crab transcriptome [31] (Chapter 3). 

Lists of DE genes obtained from global expression studies can remain difficult to interpret. In 

such a situation functional enrichment analysis is frequently used to highlight certain 

pathways and processes. A standard technique for discovering the overrepresented 

annotations within a list of DE genes is to perform an enrichment calculation based on a 

hypergeometric distribution, which will return a p-value for every annotation. Such analyses 

have been widely applied on microarray studies coupled with GO annotations and can be 

transferred to RNA-seq data. GOseq and BLAST2GO are applications that have been 

developed to calculate GO enrichment specifically for RNA-seq data, compensating for 

possible biases [89, 90]. Enrichment calculations can be done for the annotation of choice, 

like KEGG pathway membership. Enrichment calculations on a custom selection of genes 

can be done with Gene Set Enrichment Analysis (GSEA), given that the gene set has been 

defined a priori [91]. Commercial software like IPA [92] and Pathway Studio[93] can perform 

similar analyses on their databases and couple the results with powerful visualizations. 
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1.4 Research undertaken in this thesis  

 

The work described in this thesis is aimed at the study of WSSV infection in aquatic 

crustaceans. As mentioned above, most of the research into WSSV has been performed in 

shrimp species like L. vannamei and P. monodon and thus far this has not led to 

development of a successful treatment. The observation that C. maenas is relatively 

resistant to the virus opens up a new angle of study. Gathering information on this host 

organism and tracking its response to viral exposure opens the opportunity to identify the 

molecular basis for the apparent resistance of C. maenas to WSSV. Once the molecular 

basis is identified, a novel treatment against WSSV could be designed on this basis. For 

example: if C. maenas produced a miRNA with significant impact on WSSV infection then 

this miRNA may do the same for economically important species like L. vannamei and P. 

monodon. 

Shrimp species are very important in respect to the global aquaculture market, but they are 

not as relevant from a European perspective since the European aquaculture sector is small. 

However Bateman et al. 2012 showed that WSSV can infect crustaceans in temperate 

regions, such as European waters, and thus there is potential for the virus to impact aquatic 

crustaceans in European waters [12]. Molecular knowledge of commercial European aquatic 

crustaceans will be useful for comparative studies and other future applications. The 

European lobster Homarus gammarus was selected for study in this thesis work in addition 

to the shore crab because it is a commercially fished species, particularly in the United 

Kingdom. It is furthermore, more susceptible to WSSV compared to the shore crab, 

providing a contrasting model for study of WSD. 

C. maenas and H. gammarus do not have a large amount of available molecular information. 

Therefore next generation sequencing is particularly suited for viral exposure studies in 

these species. Through DNA and (small)RNA sequencing experiments a large amount of 

information can be gathered for these species and used to form draft genomes, 

transcriptomes and analyses on expressed miRNAs. This basic information then provides a 

background against which   changes through exposure to WSSV can be tracked and 

potentially important targets in the disease infection/resistance processes identified.  
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1.4.1 Experimental species 

Two aquatic crustacean species were used in the experiments described in this thesis, the 

shore crab C. maenas and the European lobster H. gammarus. The shore crab was selected 

primarily because of its unique resistance to WSSV exposure, and the lobster both because 

of its important to UK fisheries and the fact that it is more susceptible to WSD compared with 

the shore crab. 

Carcinus maenas 

The European shore crab (or green crab), C. maenas, is a keystone species in the European 

marine environment. It has a carapace length of up to 60 mm with a width of up to 90 mm. It 

is an invasive species which has spread from its native waters in Europe into Australia, 

South Africa and the United States. C. maenas is a molluscan predator [94] and thus it can 

threaten local fishing industries in areas it invades. For example: in New England the shoft-

shell clam (Mya arenaria) fisheries were destroyed by C. maenas [95]. C. maenas is also an 

important study species for biomonitoring and ecotoxicology [96, 97]. The species has been 

used in monitoring for heavy metal contamination [98], metal toxicity studies [99], and more 

recently in exposures studies with nanomaterials [100] and microplastics [101]. Despite 

small exceptions, C. maenas is not commercially fished or cultured.  

Homarus gammarus 

The European Lobster, Homarus gammarus, is a highly valued seafood commodity. It has a 

maximum total body length of about 60 cm, with large specimens usually 23 to 50 cm long, 

and a weight of 5 or 6 kg. The flavour of its meat is held in high regard by consumers, 

enabling this species to yield high prices on the market [102]. It is commercially fished 

across Europe, yielding an average of 4972.5 tonnes between 2010 and 2013 [103]. Lobster 

fisheries are concentrated around the United Kingdom, which accounted for 65 % of total 

capture (2013) [103]. H. gammarus is grown in aquaculture, but not widespread due to 

issues regarding cannibalistic behaviour, operating costs and density [104].  
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1.4.2 Thesis roadmap 

As stated the overall aim of the project is to identify the molecular mechanism of C. maenas 

apparent resistance to WSSV infection. The work is centred on using bioinformatic analyses 

to produce a transcriptome and draft genome for C. maenas. Additionally a transcriptome for 

H. gammarus is generated. Lastly, an experimental infection study with WSSV in C. maenas 

was undertaken and the molecular responses, both mRNA and smallRNA, were analysed.  

The thesis contains 6 further chapters with the following remit and content: 

 

Chapter 2 –Research paper 1 (Published) 

Molecular Mechanisms of White Spot Syndrome Virus Infection and Perspectives on 

Treatments 

Bas Verbruggen , Lisa K. Bickley, Ronny van Aerle,  Kelly S. Bateman, Grant D. Stentiford, Eduarda M. Santos 

and Charles R. Tyler. Viruses 2016, 8, 23 

This review paper provides a critical analysis of WSSV. The review analyses the available 

knowledge on the WSSV infection process and includes information on the WSSV genome, 

current known molecular interactions between WSSV and host, and host signalling pathways 

important to successful infection. The review concludes with an overview on current 

treatment development avenues.  

Chapter 3 –Research paper 2 (Published) 

De novo assembly of the Carcinus maenas transcriptome and characterization of 

innate immune system pathways 

Bas Verbruggen, Lisa K. Bickley, Eduarda M. Santos, Charles R. Tyler, Grant D. Stentiford, Kelly S. Bateman 

and Ronny van Aerle. BMC Genomics (2015) 16:458 

This chapter describes sequencing of RNA from several C. maenas tissues and creating a 

transcriptome based on de novo assembly of the data. Transcripts are annotated based on 

sequence similarities. Functional annotation and taxonomic overviews based on significant 

similarities are provided. In relation to WSSV infection it was deemed important to have an 

initial overview of the immune system of C. maenas and therefore pathways that are likely 

relevant in relation to viral infection are investigated in detail.  
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Chapter 4  

In this chapter a draft genome is assembled for C. maenas. Within the genome the location 

of genes and their introns/exons can be identified and in combination with the transcriptome 

the draft genome provides an excellent basis for studying WSSV in C. maenas. It also 

provides a significant resource for other scientists working with this species. Within the 

genome there are elements other than host genes that may be discovered that can have an 

impact on WSSV infection. For example fossilized remnants the WSSV genome could 

convey resistance. A genome sequence is furthermore vital for being able to identify miRNA 

precursors. The latter are an important class of regulatory molecules in viral infection.  

Chapter 5 

As for C. maenas, the genomic resources for H. gammarus are sparse. In this chapter RNA 

from specific tissues was isolated and sequenced for this species. The transcriptome was 

assembled and annotated in similar fashion as that for C. maenas.  Differences in the virus 

relevant infection pathways were identified between H. gammarus and C maenas. In 

addition sequences of known WSSV receptors were compared across aquatic crustaceans.  

Chapter 6 

In this chapter the response of C. maenas to WSSV exposure was investigated. Individuals 

were injected with virus innoculum or saline solution. Over a series of timepoints, ranging 

from 6 hours to 28 days post injections, gill from the individuals were sampled. Isolated gill 

RNA was subjected to both RNA and miRNA sequencing. This sequencing data enabled 

identification of replicating WSSV in the samples for monitoring progression of WSSV 

infection. Through differential expression analysis of host transcripts and miRNAs, important 

elements in the infection process were identified. Pathway analysis provided additional 

biological context.  

Chapter 7 - Discussion  

The final discussion provides a critical appraisal on the key findings in this thesis and 

identifies both strengths and weakness in the work conducted.  The findings are put into 

context with contemporary research into WSSV and it also provides some final conclusions 

on the work and suggestions for future research directions.  
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Abstract: Since its emergence in the 1990s, White Spot Disease (WSD) has had major economic
and societal impact in the crustacean aquaculture sector. Over the years shrimp farming alone has
experienced billion dollar losses through WSD. The disease is caused by the White Spot Syndrome
Virus (WSSV), a large dsDNA virus and the only member of the Nimaviridae family. Susceptibility
to WSSV in a wide range of crustacean hosts makes it a major risk factor in the translocation of live
animals and in commodity products. Currently there are no effective treatments for this disease.
Understanding the molecular basis of disease processes has contributed significantly to the treatment
of many human and animal pathogens, and with a similar aim considerable efforts have been directed
towards understanding host–pathogen molecular interactions for WSD. Work on the molecular
mechanisms of pathogenesis in aquatic crustaceans has been restricted by a lack of sequenced and
annotated genomes for host species. Nevertheless, some of the key host–pathogen interactions have
been established: between viral envelope proteins and host cell receptors at initiation of infection,
involvement of various immune system pathways in response to WSSV, and the roles of various
host and virus miRNAs in mitigation or progression of disease. Despite these advances, many
fundamental knowledge gaps remain; for example, the roles of the majority of WSSV proteins are
still unknown. In this review we assess current knowledge of how WSSV infects and replicates in its
host, and critique strategies for WSD treatment.

Keywords: White Spot Syndrome Virus; host–pathogen interactions; viral infection pathway;
endocytosis; stress responses; apoptosis; treatments; miRNA

1. Introduction

Since its emergence in the early 1990s, White Spot Disease (WSD) has become the greatest threat
to global crustacean aquaculture industries [1]. The first case of WSD was reported in China in 1991 [2]
and this was followed by spread to other major aquaculture regions of the world including East and
Southeast Asia, the Americas, India, the Middle East [2–7], and even Europe [8]. The total economic
damage caused by WSD to the shrimp aquaculture industry has been estimated at $8–$15 billion since
its emergence [9], increasing by $1 billion annually [10,11]. Annual losses have traditionally equated
to approximately one tenth of global shrimp production [11]. A wide range of other crustacean hosts
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are susceptible to WSSV infection and disease. Natural populations of these hosts can also act as
reservoirs for this pathogen [11,12]. Given the scale of WSD in captive crustaceans, it is not surprising
that considerable scientific effort has been directed towards establishing the underlying mechanisms
of the disease and identifying potential treatments for disease prevention or alleviation. However,
despite a growing knowledge base and research interest, to date cost-effective vaccinations and/or
treatments remain elusive.

WSD is caused by White spot syndrome virus (WSSV) [13], a double-stranded DNA virus and the
only member of the genus Whispovirus and family Nimaviridae [14,15]. WSSV was originally classified
as member of the Baculoviridae family, but it was later reclassified and named White Spot Syndrome
Virus 1 by the International Committee on Taxonomy of Viruses ICTV [14–17]. The Whispovirus is
a newly recognized family and its membership is likely to increase in the future as new taxa are
discovered [17]. Vlak et al. [17] tentatively list B virus, B2 virus, τ (tau) virus, and Baculo-A and
Baculo-B viruses as putative members of the Whispovirus genus and Nimaviridae family.

Animals suffering from WSD display various clinical signs including lethargy, reduced food
consumption, reduced preening activities, a loosening of the cuticle, and a discoloration of the
hepatopancreas [18,19]. White calcified spots appearing on the exoskeleton are diagnostic of WSD
in some [19] but not all host species (e.g., the Indian prawn (Penaeus indicus) [20]). In farmed shrimp
mortality is rapid and 3–10 days after infection cumulative mortality is generally between 90% and
100% [6,21].

WSSV infection occurs in all tissues of mesodermal and ectodermal origin (e.g., gills, lymphoid
organ, cuticular epithelium, sub-cuticular connective tissues). Infected nuclei become hypertrophied
with marginalized chromatin, and contain inclusion bodies that stain intensely eosinophillic in
early-stage infection and basophilic in more advanced infection (Figure 1) [22]. Morphologically, WSSV
virions are large and rod-shaped with dimensions in the range of 80–120 ˆ 250–380 nm [13,23,24].
Structurally, they have a nucleocapsid surrounded by a trilaminar envelope [23] with a tail-like
appendage, the function of which is unknown [13,23].

Economic drivers have focused research on WSD in farmed shrimp; however, the host range
of WSSV includes many other decapod and non-decapod species including crabs, lobsters, prawns,
crayfishes, and copepods [18,25]. To date 98 potential host species for WSD have been identified [2].
It is also the case that many organisms living in a WSSV-infected pond can function as a vector for
WSSV [2]. Although WSD causes high levels of mortality in all cultured shrimps, it is not necessarily
fatal to other hosts [26]. Variation in disease susceptibility occurs across the Crustacea and this is
of particular interest as it may provide insights into disease resistance [3,27–36]. The shore crab
(Carcinus maenas), for instance, while confirmed as susceptible to infection, appears to be especially
recalcitrant to development of disease, showing little pathology and low mortality rates [36].

WSSV can be transmitted through the consumption of infected tissue, by cannibalism/predation,
and via exposure to water containing WSSV virions [37,38]. Transmission through ingestion
of contaminated prey tends to be the most effective path for infection of these two exposure
routes [18,39]. A comparison between Asian tiger shrimp (Penaeus monodon) and Whiteleg shrimp
(Litopenaeus vannamei) has shown that overall transmission rates are similar in these species but the
relative contributions of direct and indirect transmission rates differ [40]. Transmission through
physical contact with an infected animal is sufficient to initiate and progress WSD epidemics in
ponds [40]. Vertical transmission (parents to progeny) of WSSV has been suggested and WSSV
particles have been identified in oocytes. However, WSSV particles appear to be absent in mature
eggs, suggesting that oocytes that contain the virus do not develop to mature eggs [18]. Vertical
transmission might therefore occur through ingestion of viral particles that have been shed by adults
during spawning into larval stages [18,37,41]. Virus pathogenicity can also be affected as it passes
between species. As an example, WSSV, when passed through Macrobrachium rosenbergii, had a reduced
pathogenicity (reduced mortality rates) in P. monodon when compared to non-transmitted virus. How
this change in pathogenicity is mediated has not been established but was shown to be accompanied
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by variations in tandem repeat regions in the WSSV genome [42]. When considering transmission of
WSSV between different geographical locations there is good evidence that this is facilitated by the
transport of live and frozen uncooked shrimp [43,44] and the import of brood stock [11].
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nucleocapsid material within the nucleus prior to envelopment. This material is cross-hatched or 
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Figure 1. White Spot Syndrome Virus (WSSV) infection of Litopenaeus vannamei. The infection
progresses through different stages that can be seen in the nucleus via histology. (A) Early-stage
infected cells display enlarged nuclei with marginalized chromatin and a homogenous eosinophilic
central region. These then develop an intranuclear eosinophilic Cowdry A-type inclusion (*); this
can be surrounded by a clear halo beneath the nuclear membrane (white arrow). Scale bar = 25 µm;
(B) The eosinophilic inclusion usually expands to fill the nucleus (*). This inclusion becomes basophilic
in staining and denser in color as the infection progresses (white arrow). Nuclei then disintegrate so that
the content fuses with the cytoplasm (black arrow). Scale bar = 10 µm. H & E stain; (C) WSSV virions
appear ovoid in shape and contain an electron-dense nucleocapsid (white arrow) within a trilaminar
envelope (black arrow). Scale bar = 0.2 µm. Inset. Negatively stained WSSV nucleocapsid, showing the
presence of cross-hatched or striated material that is structured as a series of stacked rings of subunits
and is a key diagnostic feature of WSSV. Scale bar = 20 nm; (D) Presumptive nucleocapsid material
within the nucleus prior to envelopment. This material is cross-hatched or striated in appearance and
linear prior to its incorporation in the formation of mature WSSV particles. This linear nucleocapsid
material is observed sporadically in the manufacture of the WSSV particles. Scale bar = 100 nm.
Transmission electron microscopy images.

Prevention or treatment strategies for WSD disease could be advanced through an understanding
of how this virus infects organisms and/or how relatively resistant animals process WSSV during
the infection process. This requires understanding of the (molecular) interactions between WSSV and
its potential hosts. In the infection process, WSSV invades host cells and initiates replication of its
components. This is followed by assembly and release of new virions, resulting in host cell death
and disease. To prevent disease, hosts must recognize the invading pathogen and elicit appropriate
defense strategies or create a cellular environment that is not appropriate for production of new
virions. A number of review articles have been published detailing the interactions between viruses
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and the host innate immune system (Li et al. [45], Shekhar and Ponniah [46], Sanchez-Paz [47], and
Sritunyalucksana et al. [48]) but the interactions between WSSV and the host intracellular environment
have received less attention. This is fundamental for advancing our understanding of the WSD
infection process and exploring potential opportunities for disease treatment and prevention. In this
review, we analyze the current knowledge on the WSSV genome, with a focus on the molecular
mechanisms that enable WSSV to interact with host machinery and maintain a cellular environment
favorable for the production of new virions. We then investigate the current treatment options that have
been explored and consider possible future directions for advancing disease treatment and mitigation.

2. The WSSV Genome and miRNAS

2.1. WSSV Genome

WSSV contains a circular dsDNA genome of approximately 300 kb in size. Genome sequences for
four WSSV isolates are available (a Chinese isolate (WSSV-CN; GenBank Accession AF332093) [49],
an isolate from Thailand (WSSV-TH; GenBank Accession AF369029) [16], a Taiwanese isolate
(WSSV-TW; GenBank Accession AF440570), and a Korean isolate (WSSV-KR; GenBank Accession
JX515788) [50]). They differ in size, indicating some degree of genomic instability: (293 kb (Thailand),
296 kb (Korea), 305 kb (China), and 307 kb (Taiwan)). Overall, the sequence identity between isolates
ranges between 97% and 99%, and the GC content in all isolates is 41% [50]. The WSSV genome contains
nine homologous regions (hr 1–9) consisting of several repeats of 250–300 bp fragments, encompassing
direct repeats, atypical inverted repeat sequences, and imperfect palindromic sequences [16]. Such hr
regions in the genomes of baculoviruses have been hypothesized to play a part in DNA replication [51].

Several important genetic variations have been identified between the genomes of the Thai,
Taiwanese, and Chinese isolates [51]. The largest involves a deletion of approximately 13 kb (WSSV-TH)
and 1 kb (WSSV-CN), in the same genomic region, relative to WSSV-TW [51]. A region of approximately
750 bp shows variation between WSSV-TH and WSSV-TW, but the sequence of this region has no
homology to sequences in publically available databases. Another variation includes a 1337 bp insert
in WSSV-TH that shows 100% homology with a known transposable element [51]. Variable number
tandem repeats (VNTR) are present amongst four hrs: hr1, hr8, hr3 and hr9. VNTRs occur in open
reading frames (ORF), e.g., ORF75, ORF94 and ORF125 in WSSV-TH, and have been suggested for
use in genotyping WSSV [51,52]. Sequence variations have been shown to be stable over at least
six passages through three different penaeid shrimp species [52]. Smaller variations like single
nucleotide polymorphisms and short insertions/deletions are found throughout the WSSV genome [47].
The effects of genetic variation on WSSV virulence and fitness have been investigated in a number of
studies, which have demonstrated higher virulence and competitive fitness in isolates with smaller
genomes [53].

Putative ORFs in the WSSV genome have been determined for every isolate. These ORFs are
present on both strands (~54% forward and ~46% reverse [16,50]), and the total number of estimated
ORFs in the different isolates are 532 for WSSV-TW, 515 for WSSV-KR, 531 for WSSV-CN, and 684 for
WSSV-TH. The nomenclature of ORFs differs in GenBank; for reference the conventions are as follows:
WSSV-TW = WSSVxxx, WSSV-KR = wssv_xxxxx, WSSV-CN = wsvxxx and WSSV-TH = ORFxxx. The
number of expressed ORFs is difficult to determine since many do not show homology with known
protein sequences. Estimates are based on the potential to code for proteins of at least 50–60 amino
acids. Functional predictions based on sequence similarity and protein motifs indicate that around
180 ORFs are likely to be expressed [16,49]. Microarrays constructed based on 184 putative ORFs
of WSSV-TH confirmed expression of 79% of these ORFs in the gills of P. monodon infected with
WSSV [54]. An analysis of the codons of ORFs (>100 codons) in WSSV-TW, WSSV-CN, and WSSV-TH
indicated that codon usage bias and base composition are determined by compositional limitations
and mutational pressure [55]. Interesting features of WSSV ORFs include one exceptionally long
ORF—the longest among all viruses, specifically wssv_03600—which is 18,221 bp in the Korean isolate.
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Its protein product, VP664, is a major structural protein that forms the stacked rings of the WSSV
nucleocapsid [16,50,56–58]. Furthermore, only around 30% of the ORFs in the WSSV genome contain a
polyadenylation signal. ORFs without polyadenylation signals are usually part of a cluster of ORFs
with small intergenic regions and identical transcriptional orientation that can produce polycistronic
mRNAs (e.g., the vp60b/wssv478/wssv479/vp28 cluster) [59–62]. Translation from these polycistronic
mRNAs is likely to be facilitated by internal ribosome entry sites (IRES) [62,63]. Several IRES have
been identified thus far including in the 51 UTR of wssv480 (vp28) [64], in the coding regions of wssv396
(vp31) and wssv395 (vp39b) [63], and in the 51 UTR of icp35 [62]. Translation initiation through IRES
enables viral protein production even under unfavorable conditions such as during host response to
viral infection, therefore making the virus more robust to host interference [63,65].

2.2. miRNAs, WSSV Infection, and Pathogenesis

MiRNAs (small non-coding RNA molecules) have been documented to be widely expressed
in both animal and plant species, and have key regulatory roles in a number of cellular pathways,
including early development, cell differentiation and proliferation, apoptosis, signal transduction, and
immunity [66].

It is now well established that miRNAs are involved in many host–pathogen interactions,
as reviewed in Asgari 2011 and Skalsky et al. 2010 [67,68]. The primary function of miRNAs
involves regulation of gene expression at the post-transcriptional level. Typically, miRNAs bind
to complementary sequences (either partial or complete) in the mRNA of target genes, regulating
gene expression by repressing translation or directing sequence-specific degradation of the mRNA.
However, evidence has also emerged that interaction of miRNAs with target genes may also function
to induce gene expression [69–71]. MiRNAs encoded in a virus genome may function to regulate
either viral or host genes to manipulate immune responses and cellular functions for the benefit of the
virus. Additionally, viruses may regulate and use host miRNAs to facilitate their own replication or to
regulate the virus life cycle [72,73]. Alternatively, host miRNAs can act to limit viral replication or alter
cellular processes to the disadvantage of the virus [68,74].

In WSSV-challenged shrimp (M. japonicus) 63 host miRNAs have been identified through small
RNA sequencing, of which 48 could be mapped to other known arthropod miRNAs in the miRBase
database [75]. Thirty-one of the miRNAs show differential expression in response to WSSV infection.
Using target gene prediction algorithms, many of the miRNAs were predicted to target genes involved
in host immunity, including the small GTPase-mediated signaling transduction pathway, autophagy,
phagocytosis, apoptosis, the Toll-like receptor signal pathway, antimicrobial humoral response,
endocytosis, RNAi, and regulation of the innate immune response. Huang and Zhang [76] showed
a more direct interaction between host miRNA and WSSV: a miRNA found to be upregulated in
WSSV-infected M. japonicus, miR-7, was predicted to target the 31-untranslated region of wsv477.
In insect High Five cells, the expression of enhanced green fluorescent protein (EGFP) was dramatically
reduced when coupled to the wsv477 31UTR compared to controls [76]. Wsv477 is an early gene that is
involved in viral gene replication. Its inhibition would thus have negative effects on WSSV replication.
Indeed, injection of miR-7 was shown to reduce WSSV copies 1000-fold compared with WSSV only at
72 and 96 h post-infection [76].

The specific viral miRNAs encoded by WSSV have been investigated in M. japonicus [77,78].
In the first study on these miRNAs in M. japonicus, WSSV was shown to have the capacity to encode
40 distinct miRNAs, which is a miRNA density 360 times greater than in humans [77]. The authors
of that work suggested that this high miRNA content may contribute to the ability of viruses to
respond rapidly to selective pressures placed on them from the host organism. In this study miRNAs
were first predicted through bioinformatic analyses and subsequently their presence was confirmed
through expression (microarray) studies and Northern blots. Subsequent work applying small RNA
sequencing identified additional WSSV miRNAs [78], bringing the total number of WSSV miRNAs
collectively to 89 [78]. It was observed that the majority of the miRNAs were expressed during the
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early stages of infection and that host genes like Drosha, Dicer1, and Ago1 are necessary for successful
miRNA biogenesis [77,78]. Interestingly, several miRNAs showed differential expression across tissue
types, indicating that viral regulatory strategies could be regulated to fit the infected tissue type [78].
One example of this regulatory effect was the potential of WSSV-miR-N24 to inhibit apoptosis through
downregulation of caspase 8 expression [78]. WSSV miRNAs can also regulate the balance between
promotion of viral infection and latency. He et al. [79] identified two WSSV miRNAs, WSSV-miR-66
and WSSV-miR-68, that promote WSSV infection through regulating expression of WSSV genes. It is
hypothesized that the targets of these miRNAs, wsv094 and wsv177 (WSSV-miR-66), and wsv248 and
wsv309 (WSSV-miR-68), are related to latency. These studies provide key evidence that WSSV miRNAs
function as regulatory factors involved in the virus life cycle as well as the host immune response.

3. WSSV Infection

The life cycle of viruses is well studied, and can be broadly divided into three phases: entry
into the host cell (either directly or through host mechanisms such as endocytosis), uncoating of the
genome followed by replication, and, finally, particle assembly and release. A model for the WSSV life
cycle and morphogenesis was suggested by Escobedo-Bonilla and colleagues [80]. Throughout these
phases a wide range of molecular interactions occur between the WSSV and its host (see Figure 2).
These molecular interactions can be key factors in determining host susceptibility and pathogenicity,
and also provide opportunities for treatment interventions.
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Figure 2. Overview of WSSV entry and environment interactions. Top panel: Viral entry into the
host cell. WSSV proteins interact with host receptors, which leads to induction of Clathrin-mediated
endocytosis. WSSV then travels through endosomes. During maturation the pH decreases, a cue
for viruses to exit the endosomes. This stage probably involves an interaction between VP28 and
Rab7. How WSSV passes through the nuclear envelope is unknown. Once in the nucleus, host
transcription factors bind the WSSV genome (e.g., ie1) and initiate expression of viral genes. Bottom
panel: Intracellular interactions between WSSV and the host cell. WSSV DNA replication requires host
machinery (e.g., processivity factors) and to make these available WSSV can act to halt the cell cycle in
the S-phase through E2F1. A high level of viral protein production can lead to ER stress, e.g., activation
of unfolded protein response (UPR) pathways. Transcription factors of the UPR can activate expression
of viral genes, which in turn may inhibit translation through eIF2. WSSV replication requires essential
nutrients including iron. To prevent the host from withholding iron, WSSV can inhibit the binding of
iron to Ferritin. WSSV can influence apoptosis signaling either through miRNA-mediated inhibition of
initiator caspases or through viral proteins that inhibit effector caspase activity.
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3.1. Viral Receptors, Interactions, and Entry

The primary obstacle for entry into host cells is the host’s cell membrane. Viruses have evolved
several methods to overcome this barrier including via lipid fusion and membrane perforation,
but they enter the host cell predominantly by endocytosis [81]. In the latter case viruses bind
with host cell surface proteins, carbohydrates, and lipids [81], which then trigger one of the
various endocytic pathways including Clathrin-mediated endocytosis, caveolar endocytosis, and
macropinocytosis [81–84]. WSSV enters the host cell through activating the endocytotic process
with protein interactions. Known interacting elements for WSSV and its hosts are presented in
Table 1. It can be seen that VP28, the major envelope protein, is a major player in host–virus protein
interactions [85–88]. Some interactions are beneficial for the virus; others have negative impacts. There
is also a series of interacting proteins for which the functions are not well established.

Table 1. Established WSSV–host protein interactions.

Viral Protein Host Protein Species Reference

VP24, VP32, VP39B,
VP41A, VP51B, VP53A,
VP53B, VP60A, VP110,

VP124, VP337

Chitin-binding protein
(PmCBP) Penaeus monodon [89,90]

VP53A Glut1 P. monodon [91]

VP15, VP26, VP28 gC1qR (PlgC1qR) Pacifastacus leniusculus [92]

VP95, VP28, VP26, VP24,
VP19, VP14 C-type lectin (LvCTL1) Litopenaeus vannamei [93]

VP28 C-type lectin (FcLec3) Fenneropenaeus chinensis [94]

VP26, VP28 C-type lectins (MjLecA,
MjLecB, MjLecC) Marsupenaeus japonicus [95]

VP28 C-type lectins (MjsvCL) M. japonicus [96]

VP28 C-type lectins (LdlrLec1,
LdlrLec2) M. japonicus [97]

VP187 β-Integrin P. japonicus
[98]

P. clarkii

VP26, VP31, VP37, VP90,
VP136 β-Integrin L. vannamei [99]

WSSV-CLP α-integrin, β-integrin,
Syndecan F. chinensis [100] (Bioinformatic

prediction)

VP15, VP28 Calreticulin (PlCRT) P. leniusculus [101]

VP466 Rab (PjRab) P. japonicus [102]

VP28 Rab7 (PmRab7) P. monodon [103]

ORF514 PCNA (lvPCNA) L. vannamei [104] (Bioinformatic
prediction)

WSSV PK1 Ferritin (lvFerritin) L. vannamei [105]

Wsv083 FAK (MjFAK) M. japonicus [106]

AAP1 (WSSV449) Caspase (PmCaspase) P. monodon [107]

WSSV134, WSSV332 Caspase (PmCasp) P. monodon [108]

WSSV249 Ubc (PvUbc) L. vannamei [109]

ICP11 Histones P. monodon [110]
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Table 1. Cont.

Viral Protein Host Protein Species Reference

VP9 RACK1 (PmRACK1) P. monodon [111]

VP15 FKBP46 (PmFKBP46) P. monodon [112]

VP15 CRT (PlgCRT) P. leniusculus [101]

WSSV-miRNA Dorsha, Dicer, Ago1 – [77]

VP14 Arginine kinase (LvAK) L. vannamei [113]

VP26 Actin Procambarus clarkii [114]

ORF427 PPs L. vannamei [115]

WSSV IE1 TATA box-binding
protein (PmTBP) P. monodon [116]

WSSV IE1, WSV056 Retinoblastoma protein
(Lv-RBL) L. vannamei [117]

Integrin receptors on host cell surfaces have been shown to be important targets for WSSV.
Principally involved in the binding of cells to the extracellular matrix (or cell–cell adhesion), integrins
are heterodimeric surface receptors that recognize Arg-Gly-Asp (RGD) motifs in target proteins [118].
Several WSSV proteins can bind to α- or β-integrin homologues. Immunoprecipitation experiments
have shown binding of β-integrin by VP187 (wsv209), a viral protein that contains an RGD motif [98].
This body of work also found that WSSV infection could be blocked by soluble integrin, integrin-specific
antibody, an RGD-containing peptide, and silencing of β-integrin, indicating an important role for
integrins as WSSV receptors [98]. The viral proteins VP26, VP31, VP37, VP90 and VP136 also interact
with the integrin receptors of L. vannamei, mainly through interactions with RGD-, YGL-, and LDV
peptide motifs present in these viral proteins [99]. VP26 is a tegument protein that associates with a
protein complex involving VP24, VP28, VP38A, VP51A, and WSV010 in the viral envelope [57,119].
Since VP26 is not present on the cell exterior it is unlikely to play a role in binding host cells. Finally,
bioinformatics analyses have predicted that WSSV collagen-like protein (WSSV-CLP) interacts with
integrins on the basis of sequence similarity to known interacting protein pairs [100]. Together, these
studies show that multiple proteins are involved in the recognition and binding of host integrins [99].
In P. monodon, the cell surface Chitin-binding protein (PmCBP) has been shown to bind to 11 WSSV
proteins that likely form a complex on the surface of WSSV (VP24, VP110, VP53A, VP53B, VP337, VP32,
VP124, VP41A, VP51B, VP60A, and VP39B) [90]. Facilitating viral entry through protein complex
interactions also occurs for other enveloped DNA viruses (e.g., Herpesviridae [120]). Interactions of
the viral protein complex with PmCBP and with VP53A appear to be facilitated by glucose transporter1
(Glut1) [91].

The innate immune system of the host employs groups of proteins that are able to recognize
and bind pathogen-associated molecular patterns (PAMP) molecules. One family of proteins that
recognizes non-self molecules are the lectins. Calcium-dependent lectins (C-type lectins) have been
demonstrated to interact with WSSV proteins. Several interactions between host C-type lectins and
WSSV proteins have been identified (see Table 1), including a C-type lectin in L. vannamei (LvCTL1)
that can interact with VP95, VP28, VP26, VP24, VP19, and VP14 [93]. Treating WSSV with recombinant
LvCTL1 prior to a shrimp WSSV exposure was shown to result in higher survival rates, indicating a
protective effect [93]. Lectins from other shrimp species have shown interactions with VP26 and VP28.
For example, in the Chinese white shrimp (F. chinensis) a lectin (FcLec3) has been identified that can
interact with VP28 [94]. Using VP26, VP28, and VP281 to screen a phage display library of M. japonicus,
three lectins (MjLecA, MjLecB, and MjLecC) were identified to interact with the viral proteins [95].
Of these, MjLecA and MjLecB were shown to reduce viral infection rate in vitro [95]. Interactions with
other lectins found in M. japonicus indicate a contradictory relationship between WSSV and lectins.
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For example, a C-type lectin isolated from the stomach of M. japonicus (MjsvCL) has been shown to
interact with VP28 [96] but, in contrast to other lectins, MjsvCL appears to facilitate WSSV infection.
MjsvCL expression is induced by viral infection, and inhibition of its expression by RNAi results in
lower virus replication, whereas exogenous MjsvCL enhances replication [96]. MjsvCL contributes to
viral entry by binding of VP28 and the calreticulin receptor on the cell surface. MjsvCL thus works as
a bridge between the virus and the calreticulin receptor [96]. The dual roles of lectins are indicative
of the arms race between the virus and the host immune system, as is also observed for various viral
pathogens in humans [121]. Members of the complement system have also been shown to interact with
WSSV proteins. In the signal crayfish Pacifastacus leniusculus the surface receptor for C1q (a component
of the complement system) can interact with WSSV proteins VP15, VP26, and VP28 [92] and this is
upregulated upon WSSV infection, producing a protective effect.

After binding to receptors on the cell surface, the enveloped virus can either penetrate the
membrane directly or undergo uptake through endocytosis. Since there are several routes of
endocytosis it is useful to identify which of these may be adopted by WSSV, if any. Several
experiments have investigated WSSV endocytosis and the results depend, at least in part, on cell type.
Huang et al. [101] showed that WSSV can enter hemocytes of L. vannamei in primary culture
through caveolar endocytosis. The evidence for this included inhibition of WSSV uptake under
methyl-β-cyclodextrin (MβCD, an inhibitor of caveolar endocytosis) treatment and a lack of effect
of chlorpromazine (CPZ, an inhibitor of Clathrin-mediated endocytosis) [122]. There were similar
findings in the crayfish, Cherax quadricarinatus [123]. However, in crayfish hematopoietic tissue (HPT)
it appears to be the Clathrin-mediated endocytosis pathway that is responsible for viral uptake [124].
For this tissue, CPZ significantly inhibited WSSV internalization. Furthermore, WSSV particles
co-localized with Clathrin and there was a dependence on membrane cholesterol and dynamin
supported uptake, indicating Clathrin-mediated endocytosis. It is difficult to reconcile this apparent
contradiction in uptake pathways; however, Huang et al. [124] point to data suggesting that MβCD
also affects Clathrin-mediated endocytosis and further suggesting that WSSV could employ more than
one endocytosis pathway for host entry.

3.2. Escaping from Endosomes

After penetrating the cellular membrane, WSSV particles become localized within early
endosomes. Cellular cargo carried by endocytic vesicles can have a variety of different destinations in
the cell depending on the sorting that occurs in the early endosome [125]. Some proteins or lipids are
recycled to the plasma membranes, while others are degraded in lysosomes. Viruses need to avoid
this fate. The sorting process occurs within minutes of vesicular entry into the cell. Due to their size,
viruses are sorted by the host to the degradation pathway [126]. In completing their primary roles in
sorting the endocytotic cargo, early endosomes “mature” in a process that includes several changes
to the organelles including lumen acidification, their movement toward the perinuclear region, and
changes in membrane lipid/protein composition. It is this maturation process that provides the cue for
viruses to initiate their escape from the endosomes, which involves conformational changes of viral
proteins in response to a lower pH. Escape from the endosomes can occur either through membrane
fusion or lysis/leakage of the endosomal compartments [127]. After release from the endosomes the
virus directs itself to the nucleus and penetrates the nuclear envelope. The pathways adopted to
accomplish this by various virus families are reviewed by Kobiler et al. [128], the main difference being
whether the nuclear pore complex (NPC) is involved or not.

An important class of regulatory proteins in endocytosis are the small Rab GTPases. Rab GTPases
are key regulators of endosome maturation. Early endosomes are characterized by the presence of
Rab5 on their membranes [129]. During the endosome maturation process Rab5 is exchanged for
Rab7, the Rab GTPase associated with late endosomes, and this operates in a positive feedback loop
mechanism [130]. Rab7 can subsequently associate with RAB effector proteins like RILP that bind
Dynein, ensuring movement of the vesicle to the perinuclear area [129].
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The Rab GTPases have been implicated in the WSSV infection process. In P. monodon Rab7
(PmRab7) has been shown to interact with WSSV protein VP28 [103]. Moreover it has been shown
that in shrimp injected with WSSV and PmRab7, or PmRab7 antibody, there is a decreased rate in
mortality to 15% and 5%, respectively, compared with a mortality rate of 95% in animals injected with
WSSV alone [103]. In L. vannamei brood stock, dsRNA-mediated silencing of lvRab7 has also been
shown to reduce mortality rates, albeit a mild reduction [131]. Similarly, in P. monodon silencing of
both viral ribonucleotide reductase small subunit (rr2) and host Rab7 resulted in a 95% survival of
infected animals compared with 100% mortality in animals treated with WSSV only [132,133]. It is
unclear how the interaction between VP28 and Rab7 is mediated as the proteins are separated by
the endosomal membrane. It is possible that this interaction occurs after WSSV has been released
from the endosomes, but this can occur only if its envelope containing VP28 remains attached to the
nucleocapsid. Alternatively, the Rab proteins could be present on the cell surface [103]. Applying
subtractive hybridization, the amplification of only differentially expressed genes has shown that a
Rab GTPase gene was upregulated in the hepatopancreas of WSSV-resistant P. japonicus [134]. This Rab
GTPase gene showed homology with Rab6A, a protein involved in transport between the endosomes,
Golgi, and endoplasmic reticulum [135]. It is possible that a higher expression of Rab6A leads to an
increase in recycling of endosomes, removing the potential for WSSV to interact with Rab7, which in
turn inhibits infection and thereby leads to resistance.

Overall, the mechanisms through which WSSV reaches the nucleus after its initial uptake by
caveolar-mediated endocytosis remain poorly understood. Since the journey from the endosomes
to nucleus is a limiting step in the infection process for many viruses, a greater knowledge of this
pathway for WSSV is likely to help identify targets for drug development for disease prevention [128].

3.3. Viral Replication—The Molecular Processes

Once inside the host nucleus the virus has to express its own genes to allow for its own replication.
Since WSSV does not carry its own transcriptional machinery, it relies initially on the host to supply
these. Host transcription factors can bind to viral promoters and activate transcription. Genes
expressed this way are typically named immediate early genes. These genes encode transcription
factors and other regulators that enable transcription of viral genes. Genes dependent on the expression
of the immediate early genes are classified as “early genes”. So-called “late genes” are expressed
after initiation of viral DNA synthesis and typically include structural proteins [47]. A list of known
interactions between host proteins and viral genes is provided in Table 2.

Table 2. Established WSSV–host gene expression interactions.

Transcription Factor
(Host, Virus) Target (Host, Virus) Species Reference

STAT (PmSTAT) ie1 Penaeus monodon [136]

PHB2 (Sf-PHB2) ie1 Spodoptera frugiperda [137]

Nf-κB (LvRelish, LvDorsal) ie1, WSSV303, WSSV371 Litopenaeus Vannamei [138–140]

c-JUN ie1 L. vannamei [141] (Bioinformatic
prediction)

XBP1 (LvXBP1) wsv083 L. vannamei [142]

ATF4 (LvATF4) wsv023 L. vannamei [142]

KLF (PmKLF) WSSV108 P. monodon [143]

ATFβ (LvATFβ) wsv059, wsv166 L. vannamei [144]

VP38, VP41B Caspase (PjCaspase) M. japonicus [145]

WSSV-miR-N24 Caspase 8 M. japonicus [78]

Viral protein/gene/miRNA is underlined.
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Immediate early genes expressed upon WSSV infection have been identified in infected crayfish
hemocytes via the use of a protein synthesis inhibitor, cycloheximide (CHX) [146]. Inhibiting protein
synthesis disables the ability of WSSV to create its own transcription factors and thus relies solely
on host factors. Using this approach a total of 16 ORFs have been identified including WSV069
(IE1), WSV051, WSV100, WSV079 with transactivation activity, WSV083 with Ser/Thr kinase domain,
and WSV249, believed to function as an ubiquitin E3 ligase [146]. In the Taiwan isolate of WSSV
three WSSV ORFs (WSSV126, WSSV242, and WSSV418) have been identified that were insensitive to
CHX treatment and were subsequently named immediate early 1 (ie1), ie2, and ie3, respectively [147].
Further experiments established that the promoter of ie1 could express EGFP in the fall army
worm, Spodoptera frugiperda, Sf9 cells indicating that ie1 can be activated even by non-decapod host
transcription factors. Other work has shown that the ie1 promoter of WSSV is one of the most inducible
promoters in insect cells [148] and can regulate the expression of genes in mammalian cells also [149].
It has been suggested that the broad expression capabilities of ie1 are a reason for the wide host
range of WSSV [147]. Characterization of this promoter has revealed that ie1 contains an initiator
element, TATA-box, and a binding site for the transcription factor Sp1 [137]. Activation studies of the
ie1 promoter in natural hosts of WSSV have shown that it can be activated by various host factors.

In P. monodon, STAT (PmSTAT) can increase the activity of the ie1 promoter through a STAT-binding
motif [136]. Interestingly, STAT is part of the JAK-STAT anti-viral signaling pathway, indicating
that WSSV can hijack the host immune response in order to promote expression of its own genes.
Knockdown experiments of a cytokine receptor that activates the JAK-STAT pathway in L. vannamei
(LvDOME) resulted in lower cumulative mortality and fewer WSSV copies, providing further evidence
for the interaction between JAK-STAT and WSSV [150].

In addition to STAT, WSSV can hijack other immune-related pathways, notably Nuclear Factor-κ-B
(NF-κB) signaling and MAP kinase signaling. NF-κB is a key regulator of the immune response and
important for cell survival [151]. The ie1 promoter contains a binding site for the NF-κB family
of proteins [139]. In L. vannamei a homologue of NF-κB, LvRelish, can bind to the putative NF-κB
binding site in the ie1 promoter [139]. Other in vivo experiments confirm that NF-κB homologues
lvDorsal and LvRelish can stimulate the expression of WSSV genes (e.g., WSSV069, WSSV303, and
WSSV371) through interaction with ie1 [140]. Furthermore, the expression of these transcription factors
is upregulated upon WSSV infection [138,140]. The WSSV genome also encodes a protein (WSSV449)
that shows similar functionality to Tube, a component of the NF-κB pathway. WSSV449 activates the
host NF-κB pathway and through that system promotes expression of viral genes. WSSV, as for many
other viruses (e.g., HIV-1 and hepatitis B), thus employs the NF-κB pathway for its own benefit [138].
The MAP kinase c-Jun N-terminal kinase (JNK) also has an ability to bind the ie1 promoter, implicating
involvement of MAP kinase signaling in WSSV gene expression. In L. vannamei, silencing of LvJNK with
dsRNA resulted in decreased viral proliferation, and specific MAP kinase inhibitors delay viral gene
expression [141]. A potential binding site for c-JUN has been identified in the ie1 promoter via sequence
similarity to c-JUN binding sites in TRANSFAC, a database of eukaryotic transcription factors and their
binding sites. However, transcription factor binding has yet to be validated experimentally [141,152].
After expression of ie1, WSSV IE1 protein (a viral transcription factor) is then able to facilitate expression
of the viral early genes. WSSV IE1 has been shown to accomplish this through cooperation with
P. monodon TATA box-binding proteins (PmTBP) in transcription initiation [116].

WSSV108 (a probable transcription factor/activator and/or regulator through SUMOylation)
is another WSSV immediate early gene [153]. Liu et al. [143] used the transcription factor binding
site databases TRANSFAC and JASPAR to identify regulatory elements upstream of WSSV108, and
found elements for Sp1/KLF, GATA-1, C/EBP, c-Myc, and AP-1. Furthermore, it was confirmed that
recombinant Krüppel-like factor from P. monodon (rPmKLF) could bind to the KLF element and that a
deletion in this element had the largest impact on expression through the WSSV108 promoter [143].
The action of these transcription factors result in a higher expression level of the WSSV108 promoter
than ie1 [143,146,153].
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Expression of genes in the different phases of the infection process for WSSV has been reviewed
previously by Sánchez-Paz [47]. Briefly, the genes can be grouped according to their function and they
comprise of at least three classes: transcription factors, kinases, and ubiquitin E3 ligases [47]. Early
phase genes target replication of the viral genome and include DNA polymerases, DNA helicases, and
genes involved in nucleic acid metabolism [47]. After genome replication the functional characteristics
of expressed genes shifts to structural proteins and to particle assembly during the late phase [47].

Different viruses exploit different phases of the host cell cycle for viral genome replication. Some
arrest cells in G0, G1, or at the G1/S boundary so host DNA replication is prevented, whereas others
tend to favor the S-phase where host DNA replication machinery is widely available [117]. Those that
arrest host cells in G0/G1/G1/S, which include the herpes simplex virus and Epstein–Barr virus, often
carry DNA replication machinery in their genomes instead of relying on the host [117,154,155]. WSSV
appears to operate in the S-phase and depend on host factors for replication. Viruses often control the
host cell cycle through interactions with proteins of the retinoblastoma (Rb) family, which are central
regulators of the cell cycle, operating through interaction with E2F transcription factors [117]. WSSV
IE1 and WSV056 (two paralogue genes) have been shown to be able to bind to an Rb-homologue
in L. vannamei (lv-RBL), thereby possibly activating E2F1 and leading to S-phase entry. Indeed,
overexpression of these two viral proteins in Drosophila S2 cells resulted in an increased portion of
S-phase cells and a correlated decrease in G0/G1-phase cells [117]. The authors deduced that although
WSSV carries some DNA replication machinery, it still relies on host factors; they therefore propose
that WSSV utilizes the DNA replication machinery present in host cells during S-phase and promotes
S-phase arrest to support successful replication of the viral genome.

Examples of host factors required for efficient replication are processivity factors. Processivity is
the ability to catalyze consecutive reactions without releasing the substrate. While the DNA polymerase
encoded in the WSSV genome (WSV514, [156]) shows polymerase activity [157], the average number
of nucleotides added per DNA association event has been shown to be low [157]. Usually, processivity
of DNA polymerases is improved by association with processivity factors, e.g., DNA clamps. WSSV
does not encode its own processivity factors, which indicates that WSSV DNA polymerase might
employ host processivity factors. Interaction of DNA polymerases with processivity factors occurs
through a PIP-box motif. This motif is present on WSSV DNA polymerase [157]. To investigate the
possibility of interaction with a host processivity factor in L. vannamei, the 3D structure of Proliferating
Cell Nuclear Antigen (LvPCNA) was elucidated [104,158]. Likely PIP-box interaction models between
LvPCNA and WSSV DNA polymerase were established but have yet to be confirmed experimentally.

3.4. Maintaining the Host Cell Environment

The presence of a virus within a host cell places demands on that cell, e.g., through draws on
energy for anabolic reactions, demand for essential nutrients, and accumulation of non-host proteins.
Such impacts on the cell lead to a deterioration of the cellular environment, making it less conducive for
viral replication. Host cells also have evolved mechanisms to reduce the ability of viruses to replicate,
for example through withholding nutrients in cases of infection or inhibiting translation. The cell might
enter apoptosis, preventing further viral replication by undergoing self-destruction. To counteract
these adverse cellular responses, viruses have evolved ways to interact with host metabolism, stress
response systems, and apoptosis signaling for the purpose of retaining an appropriate environment
for replication. Some of these interactions have been investigated for WSSV infections, but the limited
understanding of the function of many WSSV proteins limits interpretation for some of the effects
identified (Figure 2).

3.4.1. Metabolism

The replication of the viral genome and synthesis of its structural components require a large
amount of energy. To supply the cell with such large quantities of energy, host metabolism can be
directed to induce aerobic glycolysis [159]. Often observed in cells during rapid proliferation, a high
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rate of glycolysis provides both energy and glycolytic intermediates that can be used in a variety of
anabolic reactions [159]. This metabolic shift was originally described in cancer cells and is known as
the Warburg effect [160]. The Warburg effect also encompasses enhancement of the pentose phosphate
pathway, amino acid metabolism, and lipid homeostasis [161]. Induction of a Warburg-like effect by
WSSV infection has been observed in L. vannamei hemocytes [162]. In a study by Su et al. [139], it was
established that the PI3K-Akt-mTOR pathway was the mechanism through which metabolic changes
where induced by WSSV. PI3K-Akt-mTOR is also employed by cancer cells and human papillomavirus
to induce the Warburg effect [161,163,164]. However, the viral factors that interact with the host
PI3K-Akt-mTOR pathway have yet to be identified.

3.4.2. Iron

In addition to energy, WSSV and other invading pathogens also require essential nutrients
including iron. In response to this, hosts have evolved mechanisms through which they can withhold
iron from pathogens, thereby inhibiting their proliferation. The protein responsible for this mechanism
is ferritin [105]. The ferritin defense mechanism has been demonstrated in L. vannamei, where its
injection reduced susceptibility to WSSV infection. Higher amounts of ferritin resulted in a greater
binding of iron and thus less iron available for WSSV proliferation. Conversely, dsRNA-mediated
knockdown of ferritin resulted in a three-fold increase in viral copy number [165]. Through the use of
a yeast two-hybrid experiment, it has been shown that WSSV protein kinase 1 (WSSV PK1) can interact
with host ferritin and influence the availability of iron [105]. Binding of WSSV PK1 does not release
iron from ferritin but rather prevents iron from binding to apoferritin (ferritin without bound iron).
Injection of dsRNA specific to WSSV PK1 decreases cumulative mortality, showing that disrupting
host iron withholding mechanisms is important to successful WSSV infection [166].

3.4.3. Endoplasmic Reticulum Stress Responses

The presence of a virus within the cell can induce the unfolded protein response (UPR), a cellular
stress response activated because of accumulation of misfolded protein at the ER. This leads to
phosphorylation of transmembrane kinases and activation of transcription factors. Outputs of the
UPR include global translation shutdown, arrest of cell cycle, increase in expression of chaperone
genes to aid in protein folding, and potentially apoptosis [167]. While increased folding capabilities
can aid the virus, translation attenuation and apoptosis have adverse effects on viral replication [168].
Therefore many viruses have evolved mechanisms through which the host UPR response can be
manipulated [169].

There are three pathways that can initiate the UPR response, namely via Inositol-requiring
enzyme-1 to X-box binding protein 1 (IRE1-XBP1), via double-stranded RNA-activated Protein
kinase-like ER kinase and Activating Transcription Factor 4 (PERK-ATF4), and via Activating
Transcription Factor 6 (ATF6). Interactions between viruses and these UPR pathways are complex,
as some viruses inhibit responses whereas others induce them. For example, the Epstein–Barr virus
(EBV) induces UPR to aid in lytic replication [170], Rotavirus induces and controls UPR to prevent ER
stress-related cell death [171], and Herpes simplex virus-1 inhibits UPR to maintain an environment
that permits expression of viral genes [172,173].

Interactions between WSSV and UPR in shrimp have been demonstrated through studies
on the expression of chaperone proteins [174–178]. Induction of the IRE1-XBP1 UPR pathway
upon WSSV infection in L. vannamei has been shown through enhanced expression of LvXBP1.
Furthermore, WSSV appears to benefit from its induction, as demonstrated by lower cumulative
mortality following dsRNA-mediated knockdown of LvXBP1 [173]. A potential mechanism for this
effect is LvXBP1-mediated upregulation of expression of the viral gene wsv083, a predicted protein
kinase 2, and wsv023, of unknown function [49,142]. Wsv083 has been shown to inhibit focal adhesion
kinase, a regulator of innate immune system signaling [106,142]. The transcription factors of the
PREK-ATF4 pathway can also induce expression of WSSV genes, depending on the presence of an
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ATF/CRE in the promoter (15 in total: wsv023, wsv049, wsv064, wsv069, wsv138, wsv242, wsv256, wsv282,
wsv303, wsv306, wsv313, wsv321, wsv343, wsv406, and wsv453). In L. vannamei the UPR transcription
factor LvATF4 (as for LvXBP1) also upregulates expression of wsv023 [142].

The shutdown of translation following UPR activation is achieved through phosphorylation
of the translation initiation factor subunit eIF2α [179]. Phosphorylated eIF2α inhibits activation of
eIF2 by preventing the exchange of GDP for GTP by its eIF2β subunit. During WSSV infection in
L. vannamei the level of LveIF2α decreases and the phosphorylation ratio increases, suggesting that the
virus indeed initiates eIF2α-mediated translation inhibition [180]. Furthermore, adding an inhibitor
of eIF2α phosphatases decreases viral loads, indicating that WSSV requires active eIF2 for successful
replication. Xu et al. [180] suggest that WSSV could code for proteins able to prevent phosphorylation
of eIF2α, thereby halting UPR initiated translation inhibition, a strategy that is also observed in the
Chikungunya virus. In summary, data to date suggest that the presence of WSSV induces the UPR
and is capable of interacting with downstream effectors and transcription factors activated through
the UPR. These processes aid in the transcription of viral genes. However, limited knowledge of viral
protein function limits our current understanding on the roles of these viral genes.

3.4.4. Apoptosis

Cellular responses to stress can result in the induction of apoptosis of the host cell. Through
apoptosis organisms can remove cells that are potentially harmful to their own health. Apoptosis is
an important defense mechanism against abnormalities in cell programming and disease infection,
including viruses. The relationship between virus and apoptosis is complex and viruses can influence
the host apoptosis system by either inhibiting or inducing it. Inhibition is necessary to keep a cellular
environment conducive to the production of new virions [181]. In later stages of viral infection,
however, some viruses might induce apoptosis as a means of leaving cells and spreading further
throughout the host [182]. Apoptosis has been documented to occur in L. vannamei, P. monodon,
and M. japonicus cells infected with WSSV [183–186]. Leu et al. [187] proposed a detailed model
for the apoptotic interaction between WSSV and shrimp, in which invasion of WSSV leads to
activation of signaling pathways that increase expression of pro-apoptosis proteins (e.g., Caspases
and voltage-dependent anion channels), membrane permeabilization of mitochondria, and increased
oxidative stress. These molecular pathways lead to the initiation of the apoptosis program. In parallel,
WSSV anti-apoptotic proteins attempt to block apoptosis and thereby keep the cell viable for replication.
The balance between the pro- and anti-apoptosis activation processes will determine the fate of the
WSSV-infected cell [187].

Caspases are key regulators of apoptosis and therefore important targets for viruses. The family
can be generally grouped into initiator caspases and effector caspases. The first are activated through
autocatalytic processes, whereas the latter are present as zymogens activated through cleavage by the
initiator caspases [188]. Activation of effector caspases leads to an accelerated feedback loop of effector
caspase activation and eventually permits the controlled destruction of cellular components [189].
WSSV proteins show interactions with shrimp caspases. Direct inhibition of the activity of a P. monodon
effector caspase (PmCaspase) by the WSSV protein anti-apoptosis protein 1 (AAP1 or WSSV449) has
been shown in Sf9 cells [107]. AAP1 binds to, and is cleaved by, PmCaspase at two possible sites,
with only one resulting in PmCaspase inhibition [107]. In a similar cellular system another effector
caspase in P. monodon, PmCasp, can be bound by viral proteins WSSV134 and WSSV322, resulting
in anti-apoptotic activity [108]. However, inhibition of PmCasp by AAP1 and WSSV449 does not
occur, illustrating the diversity of effector caspases and their activity [108]. A different method of host
caspase regulation has been revealed in M. japonicus. Here, the caspase gene PjCaspase was identified
and shown to be upregulated in survivors of WSD [190]. Silencing of this gene resulted in inhibition
of apoptosis, and the subsequent increase in viral copy number showed that induction of apoptosis
in infected cells is beneficial to the host. Zuo et al. [145] have also shown that WSSV can regulate the
expression of caspase. Viral proteins VP38 (WSV259) and VP41B (WSV242) were capable of binding
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the PjCaspase promoter, the first acting as a repressor and the latter acting as an activator. Interestingly,
both of these WSSV proteins are envelope proteins: VP41B having a potential transmembrane domain
and VP38 through association with envelope protein VP24 [191,192]. The capability of WSSV to both
repress and promote caspase genes follows the observation that some viruses induce apoptosis to
facilitate departure from the host cell.

Yet another route through which WSSV can induce apoptosis is through ubiquitination, a process
by which attachment of ubiquitin to a protein can flag it for degradation in proteasomes. This
mechanism plays an important role in regulation of apoptosis as many substrates of ubiquitination
are regulatory proteins for apoptosis [193]. Ubiquitin is activated by an ubiquitin-activating enzyme
(E1), subsequently transferred to a ubiquitin-conjugating enzyme (E2) and, through interaction with
an E3-ligase, transferred to the target protein [194]. WSSV249 has been shown to be involved in
ubiquitination by acting as an E3-ligase in cooperation with the conjugating enzyme PvUbc in
L. vannamei [109]. This WSSV249 interaction is accomplished through its RING-H2 domain, a domain
associated with E3-ligases [46,195]. RING domains are present in four WSSV proteins, namely
WSSV199, WSSV222, WSSV249, and WSSV403 [109,196]. The RING-H2 domain of WSSV222 enables it
to perform as an E3-ligase in the ubiquitination of tumor suppressor-like protein, thereby inhibiting
apoptosis [197]. Whether any of the other RING domain containing proteins have apoptosis inhibiting
function remains to be determined. Together with caspase inhibition, the success of ubiquitination of
pro-apoptotic proteins will determine the fate of the host cell [187].

Wang et al. [110,198] have suggested a third virus–host interaction that could influence the
apoptotic state of the host cell, involving the highly expressed WSSV protein ICP11. The crystal
structure of dimers of ICP11 indicates that it could act as a DNA mimic [110]. The electrostatic surface
of ICP11 shows patches of negatively charged amino acids that are arranged in two rows and at similar
distances as dsDNA phosphate groups [110]. Furthermore, it was shown that ICP11 could interfere
with the binding of host DNA to histones (H3) in HeLa cells [110]. This binding can lead to disruption
of the host nucleosome assembly and even apoptosis [110]. An alternative crystal structure of the
dimer of VP9 (ICP11) has been proposed that does not show such rows of negative charges [199].
Instead, VP9 shows structural folds that bear resemblance to E2, a transcription/replication factor of
the human papillomavirus [111,200]. In P. monodon it has been shown that VP9 can interact with a
receptor for activated protein kinase C1 (PmRACK1), using the yeast two-hybrid and GST pulldown
assay, [111]. Mammalian RACK1 receptors are involved in a large variety of functions including cell
signaling pathways, cell development, and the immune response, and can interact with a large number
of viral proteins [111]. The interaction between these two proteins may be involved in intracellular
VP9 functions, for example by transporting VP9 to the nucleus [111].

3.4.5. Particle Assembly and Release

After replication of the viral genome and production of structural proteins, these components
come together to be assembled into new virions. One of the most challenging aspects of viral particle
assembly is packaging the WSSV 300 kb genome into the nucleocapsid. In eukaryotes, DNA is
compacted in nucleosomes but this does not occur in viruses. In dsDNA viruses, DNA packaging
is often accomplished through interactions between DNA and nucleocapsid proteins [201]. A small
(6.7 kDa) viral protein, VP15, has been associated with WSSV DNA packaging. VP15 is a basic
protein that shows homology to putative baculovirus DNA-binding proteins [202]. Studies have
shown that VP15 can form homomultimers and is able to bind to (preferably supercoiled) DNA [202].
Application of Atomic Force Microscopy has shown that VP15 is able to condense DNA and that
VP15-induced DNA condensates resemble packaged viral DNA [201]. In the packaging process
VP15 can interact with host proteins. In P. monodon binding has been shown between VP15 and
PmFKBP46, an immunophilins-like protein [112]. The role of PmFKBP46 in P. monodon is not known
but human and yeast homologues are involved in histone deacetylation and act as a histone chaperone,
respectively [112,203,204]. A more recent study uncovered an interaction between VP15 and calreticulin
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(CRT), which could also act as a histone chaperone [101,205]. DsRNA-mediated knockdown of CRT
resulted in a significant decrease in viral DNA duplication and viral gene transcription, indicating that
the interaction between CRT and VP15 is necessary for viral replication. It has also been suggested that
the interaction between VP15 and CRT can play a role in the export of viral RNA from the nucleus, a
role that CRT has been shown to fulfill for glucocorticoid receptors [101,206].

Morphogenesis of the WSSV envelope requires long chain fatty acids (LCFA). During the early
stages of infection fatty acids in the host cell are depleted in order to generate the energy required
for viral replication, but during the late stage of infection LCFAs are upregulated, thus replenishing
the LCFA that have been used [207]. Applying an inhibitor of fatty acid synthase (FAS) that blocked
the replenishment of LCFA was shown to result in impaired virion formation [207]. There is little
information available on how assembled WSSV virions are subsequently released from the host cell.

4. Current Treatment Options for WSD

Despite the large body of work, our understanding of WSSV infection and pathogenesis are far
from complete. Unresolved questions include those focused on mechanisms of endosomal escape,
virion assembly, exit from the host cell, and the role of miRNA regulation. Nevertheless, because of the
urgent need for disease mitigation (and prevention) avenues have been explored for potential therapy.
Here we discuss some of the more promising results that include strategies spanning immune system
activation, vaccinations, RNAi, and the application of herbal extracts.

Early studies investigated whether WSD could be prevented by enhancing immune competence
of the host. This can be achieved by feeding with agents containing pathogen-associated molecular
patterns (PAMP) that are known to activate the host innate immune system. It was found that
feeding P. japonicus with peptidoglycans over a period of time increased the phagocytic activity
of host granulocytes, resulting in a significant decrease in mortality upon WSSV exposure [208].
Similarly, injection of β-glucan prior to WSSV infection has been shown to result in activation of the
prophenoloxidase system and subsequently a reduction of mortality (25%–50% as compared to 100%
in controls). However, repeated dosages of β-glucan cause high mortality rates in the host, which is
probably due to excess generation of reactive oxygen species [209].

Invertebrates do not possess an adaptive immune system and they thus rely on innate immune
defenses. As a consequence, it is not possible to develop vaccines in the traditional way as is done in
mammals and other vertebrates. However, recent developments have provided evidence that certain
forms of pathogen-specific “immune priming” are possible in some invertebrates [210]. For example,
short-term protection against WSSV can be achieved through exposing shrimp to inactivated viral
particles [211]. Musthaq and Kwang reviewed the possibilities of such vaccinations for WSD and the
types of treatments (vaccines) that can provide temporal protection against WSD [210]. These include
inactivated virus, recombinant viral proteins, viral DNA, and double-stranded RNA, and often involve
WSSV envelope proteins like VP28 because of their importance to the infection process. However,
all of these treatments provide temporal protection that does not usually last beyond 14 days. New
generation technologies are attempting to provide more efficient delivery systems for these treatments.
For example, baculovirus and Bacillus subtilis spores, both modified to express VP28, could convey
protection via oral vaccination [212,213]. Elucidation of the mechanisms underlying invertebrate
immune priming could lead to further gains in vaccine efficacy and provide an optimized solution.

RNAi can potentially play a significant part in host–pathogen interactions. Hosts can express
small RNA molecules that target and inhibit the expression of viral proteins. It has been shown that
M. japonicus can generate small interfering RNA (siRNA) that targets vp28 (vp28-siRNA) in response to
infection by WSSV. Blocking siRNA synthesis resulted in increased viral copy numbers, indicating
that RNAi had a protective effect for the host [214]. In other work vp28-siRNAs encapsulated with
β-1,3-D-glucan and injected along with WSSV in M. japonicus [215] was shown to inhibit WSSV
replication, illustrating a potential avenue for treatment development.
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Another direction of research focused on combating WSD has been the utilization of plant extracts
with potential pharmaceutical activity. Large screens with extracts from plants have been carried
out in an attempt to identify chemicals with anti-WSSV properties and there have been a number
of successes. Examples include extracts of Cynodon dactylon and Ceriops tagal [216,217] that have
shown protective effects against WSSV in P. monodon. Extracts from the seaweed Sagrassum weighti
have been shown to have a significant effect in reducing WSSV infection in both the Indian prawn
(P. indicus) and freshwater crab (Paratelphusa hydrodomous) [218,219]. Oral administration of a plant
extract from Momordica charantia has been shown to result in an 86% survivorship in L. vannamei
infected with WSSV [219]. Furthermore, several diets based on extracts from Agathi grandiflora have
also been shown to decrease mortality rates substantially in WSSV-infected Fenneropenaeus indicus [220].
The nature of the pharmaceutically active components of these extracts, and how they interact with
host and virus, is unknown for the treatments described. Filling these knowledge gaps could result in
a better understanding of WSSV infection and aid in optimizing efficacy in the use of these materials
in preventing WSD.

5. Future Perspectives

In recent years WSD has received significant scientific attention, driven by the commercial impacts
of this disease on shrimp. Global research efforts into understanding the biology of WSSV and infection
process for WSD have contributed to the formulation of strategies for disease treatment and prevention.
Molecular studies have identified a substantial number of WSSV envelope and cell surface proteins
involved in the first stage of virus infection, established a large number of host transcription factors
replication of WSSV, and established some of the mechanisms by which the virus maintains a favorable
host cell environment including through arresting the cell cycle, changing metabolism, and preventing
apoptosis. Major gaps, however, remain in our understanding of how the virus, upon entering the
host cell via endosomes, subsequently delivers its genome to the host nucleus, the virion assembly
process, and in fact the function of the majority of WSSV proteins.

Research on WSD infection has been complicated by the lack of well-annotated genomic resources
for host species. There has been a reliance placed on sequence similarities with other (sequenced)
species to provide required annotation. Sequence information for aquatic crustaceans, however, is
extremely limited. Application of modern sequencing technologies now allows for relatively rapid
generation of the required sequence information to support both de novo genome assemblies and for
transcriptome analyses, and this work needs to be encouraged to provide the required molecular
resources for commercially important species as a minimum. Current research on WSSV infection has
focused overwhelmingly on susceptible shrimp species, which is not surprising given their economic
importance, but opportunities could lie in studies on more resistant (and perhaps less popular) host
organisms. Understanding how those organisms resist WSD could equally lead to effective disease
treatments for shrimp.

Understanding the WSSV infection process completely may not be necessary in order to produce
effective therapeutics. Current knowledge provides a plethora of potential pathways/genes/miRNAs
that could serve as potential treatment targets and indeed there has been some success in applying
targeted molecular approaches in the treatment of WSD. To date, however, these treatments applied in
a laboratory context have not been successfully applied in the field. As an example, RNAi has shown
great potential as therapeutic technology and indeed VP28-siRNA has been shown to be effective
against WSSV. However, it requires delivery through injections, which is not viable for commercial
application. The development of an effective delivery method for siRNA that can be used in shrimp
farms would be a significant step forward in the prevention of WSD and would also have great
potential for use in the treatment of other viruses that impact aquatic Crustacea. Other prospects
include production of genetically modified shrimp for resistance to WSD, for example by enhancing
anti-WSSV RNAi.
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Another potential avenue for exploration in combating WSD relates to resistance that has
developed in certain hosts through integration of viral DNA into the host genome, conveying resistance
to the inserted virus (and sometimes also closely related pathogens). If such a mechanism of resistance
could be transferred from resistant to susceptible shrimp species, this could result in the production of
shrimp lines that are resistant to WSSV.

Bringing this review to a close, we would emphasize that while understanding the molecular
basis of WSD is likely to lead to possible intervention strategies for combating WSD, the practical
implementation of this knowledge, given the nature of the shrimp farming industry, will require the
resulting treatments to be cheap, easy to use, and easily distributed. It should also be recognized
that there are many other factors that need due consideration in our attempts to develop improved
treatments for, and to combat, WSD. For example, it is the case that outbreaks of WSD in farming will
inevitably depend on the health status of host organisms and the environments in which they live
and this is not necessarily determined by individual pathogens alone but by a combination of local
abiotic and biotic factors, pathogen assemblages, and pathogen loads in host tissues. Almost nothing
is yet known in this regard for WSD. Indeed, WSSV may be endemic in aquaculture and may only
occur under certain conditions. Identifying those conditions and the biological indicators associated
with health status and disease outbreaks in shrimp aquaculture ponds could help in predicting and
pre-empting WSD outbreaks, allowing for intervention strategies, and uncoupling the ability of WSSV
to interact with its host. More effective and intelligent surveillance systems for preventing the spread
of WSD outbreaks are also a major research need.
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Abstract

Background: The European shore crab, Carcinus maenas, is used widely in biomonitoring, ecotoxicology and for
studies into host-pathogen interactions. It is also an important invasive species in numerous global locations. However,
the genomic resources for this organism are still sparse, limiting research progress in these fields. To address this
resource shortfall we produced a C. maenas transcriptome, enabled by the progress in next-generation sequencing
technologies, and applied this to assemble information on the innate immune system in this species.

Results: We isolated and pooled RNA for twelve different tissues and organs from C. maenas individuals and
sequenced the RNA using next generation sequencing on an Illumina HiSeq 2500 platform. After de novo assembly a
transcriptome was generated encompassing 212,427 transcripts (153,699 loci). The transcripts were filtered, annotated
and characterised using a variety of tools (including BLAST, MEGAN and RSEM) and databases (including NCBI, Gene
Ontology and KEGG). There were differential patterns of expression for between 1,223 and 2,741 transcripts across
tissues and organs with over-represented Gene Ontology terms relating to their specific function. Based on sequence
homology to immune system components in other organisms, we show both the presence of transcripts for a series of
known pathogen recognition receptors and response proteins that form part of the innate immune system, and
transcripts representing the RNAi, Toll-like receptor signalling, IMD and JAK/STAT pathways.

Conclusions: We have produced an assembled transcriptome for C. maenas that provides a significant molecular
resource for wide ranging studies in this species. Analysis of the transcriptome has revealed the presence of a series of
known targets and functional pathways that form part of their innate immune system and illustrate tissue specific
differences in their expression patterns.

Background
In recent years, large scale sequencing studies have bene-
fitted from the advance of high-throughput sequencing
technologies that have resulted in substantial improve-
ment in sequencing efficiency. Additionally, increases in
the length and quality of sequencing reads have improved
assemblies of sequenced genomes and transcriptomes. Se-
quencing is a powerful technique allowing for the rapid

generation of transcriptome assemblies for any species of
interest. Transcriptome sequencing measures expressed
sequences only, thus does not have some of the challenges
in DNA sequencing (e.g. long repeating sequences) [1]. De
novo transcriptome assembly removes the need for a refer-
ence genome in quantitative RNA-Seq experiments, allow-
ing for the rapid and accurate quantification of transcript
abundance in a given biological sample. These aspects are
especially useful in studies for organisms with limited gen-
omic resources. Exemplary is the application of de novo
transcriptome sequencing to a large range of organisms:
vertebrates, e.g. brown trout (Salmo trutta) [2], inverte-
brates e.g. sea louse (Caligus rogercresseyi) [3], oriental
fruit flies (Bactrocera dorsalis) [4] and the pollen beetles
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(Meligethes aeneus) [5], fungi (Trichoderma brevicom-
pactum) [6] and other microorganisms.
Despite the rapid advances in sequence capabilities

and in bioinformatics resources for generating high qual-
ity assemblies [7–9], de novo transcriptome studies in
poorly characterized taxonomic groups continue to be
challenging because of difficulties with annotation. This
is due to the lack of information available on the genes
of interest in closely related organisms. The subphylum
Crustacea represents one such taxonomic group for
which limited information exists. The Ensembl genome
database for metazoan species contains mainly Diptera
(flies), Nematoda (worms) and Hymenoptera (ants), but
information on only a single crustacean: the common
water flea, Daphnia Pulex [10]. Furthermore, the num-
ber of NCBI Entrez records in the invertebrate taxo-
nomic branch shows huge under-representation of
crustaceans. In total, there are approximately 2,300,000
nucleotide sequences in the subphylum Crustacea; in
comparison the order Hymenoptera which alone con-
tains almost 2,600,000 nucleotide sequences (numbers
dated to April 2014). Consequently, subtaxa within the
subphylum Crustacea contain less information: Deca-
poda (shrimps, crabs, lobsters and crayfish) have a total
of 478,358 nucleotide and 44,210 protein sequences
available.
The European shore crab (or green crab), C. maenas, is

a keystone species in the European marine environment
and is the only crustacean on the Global Invasive Species
Database [11], with invasions into Australia, South Africa
and the United States [12]. In such locations, C. maenas
threatens local fishing industries, for example the destruc-
tion of the soft-shell clam (Mya arenaria) fishery in New
England [13]. C. maenas is also an important study species
for biomonitoring and ecotoxicology [14, 15]. The species
has been used in monitoring for heavy metal contamin-
ation [16], metal toxicity studies [17–22], and more re-
cently in exposures studies with nanomaterials [23] and
microplastics [24]. Pathological studies are a new area
wherein C. maenas could play a role. A study investigating
infection of crustaceans with White Spot Syndrome Virus
(WSSV), recognized as the most significant pathogen af-
fecting global shrimp aquaculture, showed that C. maenas
are relatively resistant to the virus [25–27]. Despite its im-
portance in these research areas, and its biological signifi-
cance in the environment, the available molecular resources
for C. maenas are extremely limited. To date, sequence data
for this species comprises approximately 15,000 EST se-
quences and several hundred nucleotide and protein se-
quences [28].
Given the ecological importance of C. maenas, to-

gether with its wider general utility for research pur-
poses, we aimed to sequence, assemble and annotate a
shore crab transcriptome. We further set out to establish

the relative expression profiles of all sequenced tran-
scripts in different body tissues and organs, and to
characterize immune pathways against those known for
other invertebrates as a resource for future investigations
on the response of this host to pathogens.

Results and discussion
RNA sequencing and assembly
Twelve sequence libraries corresponding to 12 pooled
tissue samples from adult male and female C. maenas
were sequenced on an Illumina HiSeq 2500 platform
and yielded a total of 138,863,679 paired reads across all
tissues. After removal of low quality reads through qual-
ity filtering, there were 96,247,762 remaining paired
reads. On average 8.0 ± 1.7 million read pairs were ob-
tained for each tissue and the distribution of the reads
per pooled transcript sample is presented in Table 1.
The filtered RNA-Seq data were used for de novo
transcriptome assembly using the Trinity pipeline with
default parameters. The assembled transcriptome encom-
passed 196,966,469 bp distributed over 153,669 loci, repre-
sented by 212,427 transcripts (Table 2). The transcript
lengths had a median of 380 bp and a mean of 992 bp
(standard deviation = 1363 bp), and ranged between
201 bp and 24,848 bp (Additional file 1 shows the length
distribution of assembled transcripts). The transcriptome
N50 was calculated to be 2,102 bp. 75.2 % of the read pairs
could be mapped back to the de novo assembled transcrip-
tome using the bowtie2 aligner.
A total of 231 out of the 248 highly conserved eukaryotic

“core” genes were identified completely (93.15 %) and 245
genes (98.79 %) partially in the transcriptome by the
CEGMA pipeline [29], indicating that the transcriptome
contains a near complete set of core eukaryotic genes.

Table 1 Number of read pairs obtained for each crab tissue
before and after removal of adapter sequences and quality
filtering

Tissue sample Number of read pairs Number of clean read pairs

Eggs 9,337,648 6,614,044

Epidermis 11,929,821 8,302,718

Eye 13,463,765 9,430,381

Gill 10,110,102 7,234,304

Haemolymph 10,611,241 7,233,253

Heart 9,657,081 6,717,788

Hepatopancreas 9,216,408 6,471,110

Intestine 8,685,232 5,765,077

Muscle 17,251,355 11,749,555

Nerve 14,278,257 9,670,912

Ovary 11,125,170 7,869,190

Testis 13,197,599 9,189,430

Total 138,863,679 96,247,762
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Transcriptome characterization
Several approaches were taken to annotate the assem-
bled transcripts. Firstly, the transcript sequences were
compared to existing C. maenas EST sequences in the
NCBI database using BLASTn. In total, 19,981 se-
quences (9.4 % of the total number of transcripts)
showed high similarity to 4,759 EST sequences (30.6 %
of total C. maenas ESTs in NCBI; Table 3). This indi-
cates that the majority of transcripts in the assembly were
previously un-reported for C. maenas. A broader sequence
homology search was performed using BLASTx against
the NCBI non-redundant nr protein database and hits
were found for 62,804 (29.6 %) of the transcripts using an
e-value threshold of 1e-3. Open reading frames were iden-
tified in 58,383 (27.5 %) of transcripts and the majority of
the predicted peptides (41,108), corresponding to 70.4 %
of all predicted peptides were annotated using the Uni-
Prot/Swissprot database (with an e-value cut-off of 1e-5).
Furthermore, conserved Pfam domains were assigned to
37,776 (67.4 %) of the peptides and 4,132 (1.9 %) of these

peptides appeared to contain signal peptides (Table 3) as
determined by SignalP. Transcriptome annotation details
can be found in Additional files 2 and 3.

Transcriptome functional annotation
Gene Ontology (GO) terms were assigned to 53,766
(25.3 %) of the annotated transcripts and 47.23 % of the
annotated predicted peptides (UniProt/Swissprot; Table 3)
by BLAST2GO [30]. The most common GO terms were
protein binding (10.93 %), cytoplasm (10.93 %), nucleus
(10.07 %), plasma membrane (6.55 %) and membrane
(6.25 %). The most common annotations for the three
gene ontology trees are presented in Table 4, and a full list
of transcript annotations is available in Additional file 4.

Taxonomy
The BLASTx output was used as input for MEGAN4 to
illustrate the taxonomic origin of BLAST hits for the
transcriptome in a phylogenetic tree. A partially col-
lapsed phylogenetic tree is presented in Fig. 1. The taxon
with the largest number of sequence homologies was the
pancrustacean taxon wherein 21,642 C. maenas tran-
scripts showed similarity. Within this taxon, transcripts
were split between the crustacean and hexapoda taxa.
Since C. maenas is a crustacean species it is expected
that a large proportion of transcripts show similarity to
sequences derived from this taxon. However, due to the
limitations in crustacean genomic resources a significant
proportion of transcripts mapped to related sequences in
the hexapoda taxon instead (containing e.g. Drosophila
melanogaster). Furthermore, it can be seen that a variety
of sequences were derived from micro-organisms (e.g.
bacteria, fungi and viruses), which may correspond to
transcripts originating from micro-organisms living within
the C. maenas hosts, and/or may reflect contamination of
kits and samples with environmental micro-organisms
[31]. To remove these potential contaminating transcripts
from the transcriptome we filtered the transcriptome for
sequences that mapped to the metazoan taxon. Following
the application of this filtering step, a transcriptome
encompassing 59,392 transcripts was retained and used in
subsequent analysis.

Differential gene expression
Transcript expression in the twelve tissue types was esti-
mated by the RSEM program [32]. Next, differentially
expressed transcripts were identified through comparing
gene expression profiles of each sampled tissue to the
others. The number of differentially expressed (meta-
zoan) transcripts for the various tissues ranged between
1,223 in gill and 2,741 in hepatopancreas (FDR < 0.01;
Table 5). All tissues showed enrichment for Gene Ontol-
ogy (GO) terms; the top five for every tissue are listed in
Table 6 (a complete list is presented in Additional file 5).

Table 2 Transcriptome statistics

Description Value

Number of loci 153,669

Number of transcripts 212,427

Maximum transcript length (bp) 24,848

Minimal transcript length (bp) 201

Mean transcript length (bp) 992

Standard deviation (bp) 1363

Median transcript length (bp) 380

Total length (bp) 196,966,469

N50 (bp) 2,102

Table 3 Number of annotated transcripts and open reading
frames (identified by TransDecoder) using different annotation
methods and sequence databases

Input Annotation method Number of annotated
transcripts

All transcripts BLASTx – NCBI nr protein 62,804 (29.6 %)

All transcripts BLASTn – C.maenas EST 19,891 (9.4 %)

All transcripts BLAST2GO 8,091 (3.8 %)

All transcripts TransDecoder ORF finder 58,383 (27.5 %)

All transcripts KEGG 30,352 (14.3 %)

Open reading
frames

BLASTp – UniProt/
SwissProt

41,108 (70.4 %)

Open reading
frames

Pfam 37,776 (67.4 %)

Open reading
frames

SignalP 4,132 (1.9 %)

Open reading
frames

TmHMM 0 (0.0 %)
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The enriched GO terms often reflected the function of
the tissue e.g. structural constituent of cuticle in eggs,
angiogenesis in haemolymph and sarcolemma in muscle.
In several tissues the link to function is not very clear in
the top five, but becomes apparent in other enriched
terms. For example, in the eye, phototransduction (FDR =
9.42e−4) and detection of light stimulus (FDR = 1.01e−3)
were over-represented; contractile fibre (FDR = 6.72e−3)
and sarcomere (FDR = 7.15e−3) were enriched in the heart
tissue and finally, the epidermis and ovary tissues yielded
only three enriched annotations (Table 6).

Immune pathway characterization in C. maenas
Application of C. maenas as a model organism to study
crustacean infectious diseases requires insight in the
organism's immune system. Since crustaceans do not have
adaptive immune systems, innate immune strategies will
predominate in this organism when responding to patho-
genic insults. We investigated the presence of several
innate immune system pathways in the C. maenas
transcriptome and mapping the transcripts to pathways in
the KEGG database. In total 30,352 (14.3 %) of transcripts
were annotated to a KEGG orthology group (Table 3). The
KEGG server [33] allows mapping of the present orthol-
ogy groups to pathways in the KEGG database and

visualization of presence/absence of their components. Li
et al. 2013 characterized a selection of innate immune
pathways in the hepatopancreas transcriptome of the mit-
ten crab Eriocheir sinensis, including the RNAi pathway,
Toll-like receptor pathway, immune deficiency (IMD)
pathway, the JAK-STAT and mitogen activated protein
kinase (MAPK) signalling pathways [34]. We characterized
the same pathways in the C. maenas transcriptome with
additions including the endocytosis pathway. The latter is
not directly related to the immune response but many vi-
ruses utilize its machinery to gain entry to host cells [35].
Its characterization can thus be important for investiga-
tions of viral infections.

Pathogen associated molecular pattern recognition
The first stage in immune defence is the identification
of invading pathogens by an organism. In this process a
distinction between cells from the organism itself and
those of the invading pathogens needs to occur. To
achieve this, the innate immune system employs a
group of pattern recognition receptors (PRRs) that are
able to recognize pathogen associated molecular pat-
terns (PAMPs). Examples of PAMPs include lipopoly-
saccharides, peptidoglycans and β-1,3-glucans [36] and
groups of PRRs include gram-negative binding proteins

Table 4 Identification, sequence similarity and Gene Ontology annotation statistics of peptide sequences in the transcriptome

Description Number of sequences Percentage of sequences (%)

Transcripts 212,427

TransDecoder peptides 58,383

Peptides with Swissprot
/Uniprot annotation

41,108 70.41

GO annotated transcripts 53,766 25.31

GO annotated peptides 19,423 47.23

GO tree GO Count %

Cellular Component cytoplasm 2,122 10.9

nucleus 1,955 10.1

plasma membrane 1,272 6.6

membrane 1,213 6.3

cytosol 1,195 6.2

Molecular Function protein binding 2,577 13.3

binding 1,071 5.5

ATP binding 755 3.9

metal ion binding 569 2.9

protein homodimerization
activity

485 2.5

Biological Process cellular process 597 3.1

regulation of cellular process 539 2.8

primary metabolic process 446 2.3

response to stimulus 419 2.2

transport 416 2.1
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(GNBPs), peptidoglycan recognition proteins (PGRP),
thioester containing proteins and lectins [36]. Upon
successful pathogen recognition, PRRs initiate immune
responses.
C. maenas transcripts that show sequence similarity to

known PRR groups are shown in Table 7. Representa-
tives of most groups of PRR have counterparts in the C.
maenas transcriptome as identified through sequence
similarity, often to sequences derived from organisms
that are closely related to C. maenas. One group that is
not represented are the PGRPs, this has also been
reported in other crustacean species [37, 38]. Down syn-
drome cell adhesion molecule (Dscam) is a PAMP rec-
ognition protein that has been hypothesized to be
involved in immune memory (reviewed in Armitage
et al. 2014 [39]). This gene can produce many isoforms,
and initial findings suggested that it played an important
role in the development of the nervous system in inver-
tebrates where Dscam isoforms aid in the discrimination

Fig. 1 Taxonomic classifications of Carcinus maenas transcripts. Partially collapsed phylogenetic tree produced by MEGAN4. Numbers illustrate the
number of transcripts representing each taxa. Within the metazoan taxon, the pancrustacea represented the largest taxonomic group

Table 5 Differentially expressed transcripts in specific tissues

Tissue Differentially expressed transcripts

eggs 1,605

epidermis 1,339

eye 1,312

gill 1,223

Haemolymph 2,008

heart 1,226

hepatopancreas 2,741

intestine 1,519

muscle 2,200

nerve 1,989

ovary 1,751

testis 1,391

Verbruggen et al. BMC Genomics  (2015) 16:458 Page 5 of 17



Table 6 Top 5 most enriched Gene Ontology terms in specific tissues

Tissue GO-ID Term P - value FDR

Eggs GO:0042302 structural constituent of cuticle 9.86e-11 1.07e-6

Eggs GO:0003677 DNA binding 5.25e-7 2.86e-3

Eggs GO:0006260 DNA replication 2.78e-6 1.01e-2

Eggs GO:0006261 DNA-dependent DNA replication 5.76e-6 1.57e-2

Eggs GO:0001708 cell fate specification 1.06e-5 2.30e-2

Epidermis GO:0018298 protein-chromophore linkage 3.85e-7 2.56e-3

Epidermis GO:0015772 oligosaccharide transport 7.05e-7 2.56e-3

Epidermis GO:0015766 disaccharide transport 7.05e-7 2.56e-3

Eye GO:0003008 system process 7.00e-12 7.61e-8

Eye GO:0050877 neurological system process 2.36e-11 1.28e-7

Eye GO:0022834 ligand-gated channel activity 9.64e-9 2.62e-5

Eye GO:0015276 ligand-gated ion channel activity 9.64e-9 2.62e-5

Eye GO:0070011 peptidase activity, acting on L-amino
acid peptides

1.57e-8 3.42e-5

Gill GO:0070160 occluding junction 1.71e-6 4.20e-3

Gill GO:0005344 oxygen transporter activity 1.84e-6 4.20e-3

Gill GO:0015671 oxygen transport 1.84e-6 4.20e-3

Gill GO:0015669 gas transport 1.84e-6 4.20e-3

Gill GO:0005923 tight junction 2.65e-6 4.20e-3

Haemolymph GO:0001525 angiogenesis 5.76e-11 6.27e-7

Haemolymph GO:0048514 blood vessel morphogenesis 1.80e-9 9.79e-6

Haemolymph GO:0001568 blood vessel development 1.25e-8 4.54e-5

Haemolymph GO:0001944 vasculature development 3.97e-8 1.08e-4

Haemolymph GO:0009653 anatomical structure morphogenesis 1.46e-7 1.65e-4

Heart GO:0016328 lateral plasma membrane 1.78e-7 1.94e-3

Heart GO:0006768 biotin metabolic process 1.28e-6 3.04e-3

Heart GO:0004736 pyruvate carboxylase activity 1.28e-6 3.04e-3

Heart GO:0005344 oxygen transporter activity 1.67e-6 3.04e-3

Heart GO:0015671 oxygen transport 1.67e-6 3.04e-3

Hepatopancreas GO:0016491 oxidoreductase activity 6.35e-16 6.91e-12

Hepatopancreas GO:0003824 catalytic activity 2.87e-11 1.56e-7

Hepatopancreas GO:0044710 single-organism metabolic process 2.06e-10 7.47e-7

Hepatopancreas GO:0005576 extracellular region 5.68e-10 1.20e-6

Hepatopancreas GO:0005764 lysosome 6.61e-10 1.20e-6

Intestine GO:0016337 cell-cell adhesion 5.72e-9 6.22e-5

Intestine GO:0005548 phospholipid transporter activity 7.29e-8 3.97e-4

Intestine GO:0006022 aminoglycan metabolic process 1.56e-7 4.06e-4

Intestine GO:0015917 aminophospholipid transport 2.09e-7 4.06e-4

Intestine GO:0004012 phospholipid-translocating ATPase
activity

2.09e-7 4.06e-4

Muscle GO:0042383 sarcolemma 1.93e-11 2.10e-7

Muscle GO:0031674 I band 7.82e-11 4.25e-7

Muscle GO:0006811 ion transport 2.87e-10 1.04e-6

Muscle GO:0030018 Z disc 1.94e-9 5.29e-6

Muscle GO:0044449 contractile fiber part 2.54e-9 5.52e-6
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Table 6 Top 5 most enriched Gene Ontology terms in specific tissues (Continued)

Nerve GO:0015277 kainate selective glutamate receptor
activity

1.39e-14 1.51e-10

Nerve GO:0004872 receptor activity 2.54e-12 1.38e-8

Nerve GO:0048172 regulation of short-term neuronal synaptic
plasticity

5.16e-12 1.87e-8

Nerve GO:0004970 ionotropic glutamate receptor activity 1.02e-11 2.77e-8

Nerve GO:0048168 regulation of neuronal synaptic plasticity 4.92e-11 1.07e-7

Ovary GO:0016459 myosin complex 1.43e-7 1.56e-3

Ovary GO:0018298 protein-chromophore linkage 1.67e-6 9.10e-3

Ovary GO:0036002 pre-mRNA binding 1.37e-5 4.96e-2

Testis GO:0008499 UDP-galactose:beta-N-acetylglucosamine
beta-1,3-galactosyltransferase activity

5.07e-17 5.52e-13

Testis GO:0035250 UDP-galactosyltransferase activity 1.45e-16 7.86e-13

Testis GO:0005797 Golgi medial cisterna 1.38e-15 5.00e-12

Testis GO:0048531 beta-1,3-galactosyltransferase activity 6.12e-15 1.66e-11

Testis GO:0008378 galactosyltransferase activity 1.26e-14 2.75e-11

Table 7 Carcinus maenas pathogen associated molecular pattern recognition genes

PRP group Transcript Identity (%) Length E-value Query Ancestor

GNBP comp44152_c0_seq1 42.06 340 1.00e-65 gi|300507044 : gram-negative binding
protein [Artemia sinica]

Crustacea

comp44453_c0_seq (1–2) 58.06 341 3.00e-123 gi|62122584 : GNBP [Oryzias latipes] Bilateria

comp74133_c0_seq1 44.8 346 8.00e-88 gi|62122584 : GNBP [Oryzias latipes] Bilateria

comp83740_c0_seq (1–5) 46.02 339 5.00e-87 gi|62122584 : GNBP [Oryzias latipes] Bilateria

comp19734_c0_seq1 41.55 142 8.00e-32 gi|62122584 : GNBP [Oryzias latipes] Bilateria

comp136078_c0_seq1 62.96 81 3.00e-26 gi|62122584 : GNBP [Oryzias latipes] Bilateria

comp75261_c0_seq1 27.57 243 6.00e-22 gi|62122584 : GNBP [Oryzias latipes] Bilateria

TECP comp85313_c2_seq1 39.94 318 6.00e-63 gi|385049105 : thioester containing
protein 3, partial [Daphnia parvula]

Crustacea

comp65627_c0_seq1 46.34 246 3.00e-58 gi|54644242 : Thioester-containing
protein 6 [Drosophila pseudoobscura pseudoobscura]

Pancrustacea

comp87629_c0_seq4 74.36 234 6.00e-101 gi|331031264 : TEP isoform 2 [Pacifastacus leniusculus] Pleocyemata

comp74624_c1_seq1 40.65 310 8.00e-56 gi|385049099 : thioester containing
protein 3, partial [Daphnia pulex]

Crustacea

comp65627_c1_seq1 36.78 590 6.00e-118 gi|54644242 : Thioester-containing
protein 6 [Drosophila pseudoobscura pseudoobscura]

Pancrustacea

comp74624_c2_seq1 37.83 534 1.00e-105 gi|54644242 : Thioester-containing protein
6 [Drosophila pseudoobscura pseudoobscura]

Pancrustacea

comp85313_c0_seq1 38.14 430 1.00e-80 gi|568250870 : thioester-containing
protein [Anopheles darlingi]

Pancrustacea

comp103781_c0_seq1 43.36 113 4.00e-22 gi|54644242 : Thioester-containing
protein 6 [Drosophila pseudoobscura pseudoobscura]

Pancrustacea

C-Type Lectin comp69837_c0_seq1 43.15 146 1.00e-25 gi|558633447 : C-type lectin [Marsupenaeus japonicus] Decapoda

comp86095_c0_seq (1–2) 43.92 148 2.00e-25 gi|558633447 : C-type lectin [Marsupenaeus japonicus] Decapoda

comp68699_c0_seq1 38.89 144 1.00e-24 gi|558633447 : C-type lectin [Marsupenaeus japonicus] Decapoda

comp87731_c3_seq (2–3) 33.78 225 8.00e-25 gi|657397985 : C-type lectin receptor-like
tyrosine-kinase plant [Medicago truncatula]

Eukaryota

comp88573_c0_seq (1–2) 57.5 80 4.00e-22 gi|676264911 : C-type lectin domain family
3 member A [Fukomys damarensis]

Bilateria

comp90611_c0_seq1 64.56 158 5.00e-60 gi|575878533 : C-type lectin [Scylla paramamosain] Portunoidea
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of neuritis [39]. Dscam isoforms were later found to be
able to recognise pathogens, aiding in phagocytosis [40].
In concordance with this hypothesis, the C. maenas
Dscam gene appears to encode many isoforms, and in
total 242 transcripts with significant similarity to Dscam
sequences in NCBI were found in the transcriptome.
The immune responses initiated by these PRRs can

occur at a transcriptional level, e.g. activation of Toll
and IMD can aid in phagocytosis e.g. Dscam binding,
or can initiate proteolytic cascades leading to melanization.

Toll-like receptor pathway
The Toll receptor pathway is a signalling route that re-
sponds to the presence of PAMPs by ultimately activating
Nf-κB [41]. In mammals, Toll-like receptors (TLR) bind to
PAMPs resulting in dimerization. Upon forming dimers,
the TLRs recruit MyD88 and subsequently IRAK kinases.
After IRAK kinases activate TRAF6, its binding to TAK1
and IKKβ ultimately frees Nf-κB to diffuse into the nucleus
[42]. In invertebrates, such as D. melanogaster, the mechan-
ism is slightly different, and instead of directly binding
PAMPs, TLRs respond to the Toll ligand Spätzle [41].
The KEGG database contains a version of the Toll-like

receptor pathway which was used to visualize the cover-
age of this pathway in the C. maenas transcriptome (see
Fig. 2). Homologues were found for most of the compo-
nents in the paths from TLR to NF-κB and activator

protein-1 (AP-1). Since KEGG is targeted towards verte-
brate genes and pathways, a characterization of an inver-
tebrate Toll signalling pathway was also performed (see
Methods for pathway analysis strategy). Components of
the D. melanogaster Toll signalling pathway were taken
from Li et al. [34] and Kingsolver et al. [41] and investi-
gated for presence and expression in the assembled tran-
scriptome. Transcripts with significant sequence similarity
to most of the Toll pathway components were found in
the transcriptome (Additional file 6). Tube, an IRAK
homolog, was not identified in the C. maenas transcrip-
tome. Successfully identified transcripts were found to be
expressed across all tissues (Additional file 7), and the me-
dian expression values varied from 82.4 FPKM for myD88
to 5576.7 FPKM for Toll.

IMD pathway
The IMD pathway is also activated upon pathogen
recognition, in particular by Gram-negative bacteria.
Similar to Toll-like receptors, the binding of peptidogly-
can by PGRPs leads to dimerization [41]. After the
dimerization, the signal is transmitted through IMD, as
well as FADD and DREDD. Activation of DREDD leads
to poly-ubiquitination of IMD [41], binding of TAK1
and assembly of the IKK complex. Relish phosphoryl-
ation is promoted by IKK, and an event followed by
cleavage of Relish by DREDD cause translocation of the

Fig. 2 Toll-like receptor signalling pathway coverage. The Toll-like receptor signalling pathway in the KEGG database. Proteins in the pathway are
depicted by boxes while arrows depict signalling routes. Pathway components with homologues in the Carcinus maenas transcriptome are
highlighted in pink
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N-terminal end to the nucleus where it regulates the ex-
pression of effector molecules [41]. Since the KEGG
database does not contain the IMD pathway, the KEGG
TNF-signalling pathway was used instead. As for the
Toll-like receptor pathway, homologues also were found
for most constituents of the TNF-signalling pathway (see
Fig. 3). Manual identification of IMD pathway compo-
nents derived from Kingsolver et al. [41] showed that
FADD was the only absent component in the C. maenas
transcriptome (Additional file 6). IMD itself was only
expressed in three out of twelve tissues (eye, ovary and
haemolymph) whereas the rest of the IMD pathway was
expressed across all tissue types (Additional file 8).

JAK-STAT signalling pathway
The JAK-STAT signalling pathway mediates the response
to chemical messenger molecules like cytokines. It has
been shown that STAT signalling is activated upon
WSSV infection in shrimp [43]. JAK tyrosine kinases
bind to cytokine receptors and upon ligand binding they
phosphorylate tyrosine residues on those receptors [44].
STAT is able to bind and subsequently be phosphory-
lated by JAK [44]. Following phosphorylation, STAT
forms dimers, translocates to the nucleus and organizes

the response to the signalling molecule by altering gene
expression [44]. Inhibitors of JAK-STAT signalling are
present at several stages and include dominant negative
co-receptors, prevention of STAT recruitment by SOCS
(suppressor of cytokine signalling) and protein inhibitors
of activated STAT (PIAS) [44]. The KEGG reference path-
way and coverage in the transcriptome are presented in
Fig. 4. Most of the components of the JAK-STAT pathway
have a homologue in the C. maenas transcriptome. The
pathway in Fig. 4 shows that only the cytokine receptor was
not identified by the KEGG annotation. However one tran-
script (comp79993_c0_seq2) showed highly significant se-
quence homology to the cytokine receptor of Harpegnathos
saltator (e = 3.00e−74) and the domeless receptor of Tribo-
lium castaneum (e = 2.00e−51).

Response proteins
The signalling cascade through the IMD, Toll and JAK-
STAT pathways results in a transcriptional immune re-
sponse mediated by transcription factors like STAT and
NF-kB. One part of this immune response includes anti-
microbial peptides (e.g. anti-lipopolysaccharide factor
(ALF) and lysozyme), which have evolved to attack path-
ogens [45, 36]. In addition to antimicrobial peptides, the

Fig. 3 TNF signalling pathway. Overview of the KEGG TNF signalling pathway, components depicted as in Fig. 2. Components with homologues
in the Carcinus maenas transcriptome are highlighted in pink
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innate immune system also employs nitric oxide as a
defensive molecule. Nitric oxide is an important redox
activated signalling molecule and can be produced in
large concentrations by nitric oxide synthase 2 (NOS-2),
an enzyme synthesized as a response to PRR activation
[46]. Response proteins identified in the C. maenas tran-
scriptome are listed in Table 8 along with their target
pathogen type, as described in Tassanakajon et al. [45].
Neither penaeidins [47] nor stylicins [48] were identified
for C. maenas and we hypothesise that both are probably
limited to penaeid shrimp species. The antimicrobial

arsenal of C. maenas includes ALF, lysozyme, crustins,
carcinin and inducible nitric oxide synthase. It is pos-
sible that the C. maenas transcriptome also contains
novel anti-microbial peptides but to identify them will
require exposure studies to trigger their activation.

Melanization pathway
The C. maenas innate immune system also contains a
more direct response to pathogen infection in the form of
the melanization pathway. Activated within minutes after
infection, melanization damages and encapsulates invading

Fig. 4 JAK-STAT signalling pathway. Overview of the KEGG JAK-STAT signalling pathway. Components with homologues in the Carcinus maenas
transcriptome are highlighted in pink

Table 8 Carcinus maenas Immune system response proteins

Response protein Transcript Identity (%) Length E-value Query Ancestor

ALF comp79835_c0_seq2 65.98 97 2.00e-34 gi|302138013 : anti-lipopolysacharide factor
[Fenneropenaeus indicus]

Decapoda

Crustin comp88229_c1_seq1 56.36 110 8.00e-31 gi|162945361 : crustin antimicrobial peptide [Scylla
paramamosain]

Portunoidea

comp91133_c0_seq1 65.38 78 7.00e-24 gi|255653868 : crustin 1 [Panulirus japonicus] Pleocyemata

Carcinin comp88229_c1_seq1 86.36 110 1.00e-49 gi|18157188 : carcinin [Carcinus maenas] Carcinus
maenas

Lysozyme comp83352_c1_seq4 41.13 124 4.00e-23 gi|675374133 : Lysozyme 1, partial [Stegodyphus
mimosarum]

Arthropoda

comp83352_c1_seq2 41.13 124 4.00e-23 gi|675374133 : Lysozyme 1, partial [Stegodyphus
mimosarum]

Arthropoda

comp83352_c1_seq1 41.13 124 4.00e-23 gi|675374133 : Lysozyme 1, partial [Stegodyphus
mimosarum]

Arthropoda

iNOS comp89503_c2_seq
(1–26)

52.6 308 1.00e-96 gi|13359094 : nitric oxide synthase 2 [Meriones unguiculatus] Pancrustacea
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pathogens with melanin [49]. The production of melanin
from phenols and quinones generates reactive oxygen spe-
cies that are damaging to the pathogen. Synthesis of qui-
nones is catalyzed by the phenol oxidase (PO) enzyme. PO
is readily available as a precursor (proPO) that is activated
through proteolysis, ensuring a fast response time. Recogni-
tion of PAMPs by PRRs leads to activation of a serine prote-
ase cascade that ends with the activation of PO [45, 49, 50].
The proteolytic cascade is regulated by serpins that act as
serine protease inhibitors [49]. Members of the melanization
pathway as described in Tang 2009 [49] and transcripts with
significant sequence similarity are listed in Additional file 6.
The upstream proteases of proPO: MP1, Sp7 and the
activating enzyme PPAE and prophenoloxidase itself are
identified. Transcripts coding for the transcription factors
serpent and lozenge, controlling the expression of proPO
[49], and Peroxinectin, a protein that is associated with
the proPO pathway and aids in cellular adhesion of
haemocytes to pathogens [51] were also found. The ex-
pression of proPO varied across tissues (see Fig. 5), and was
particularly high in the hepatopancreas and ovary.

RNAi pathway
RNA interference (RNAi) is one of the major antiviral
pathways within the invertebrate innate immune system

[52]. The pathway produces small interfering RNA mole-
cules (siRNAs) from virus derived dsRNA [41]. In short,
dsRNA is recognized by Dicer proteins that subse-
quently cleave it to 21 nucleotide (nt) siRNAs. siRNAs
are loaded into the RISC complex, which utilizes argo-
naute (Ago) protein to cleave viral RNAs targeted by the
siRNA, and thus silencing expression [41]. The RNAi
pathway can also be employed to silence specific genes
in cells and forms the basis of antiviral immunity strat-
egies, a topic explored in La Fauce et al. 2012 [53]. Iden-
tification of components of the RNAi pathway was based
on those listed in Wang et al. 2014 [52], results are
shown in Table 9. D. melanogaster has distinct functions
for dicer-1 and dicer-2, the first being involved in the
miRNA pathway and the latter in siRNA [54, 41, 55].
Both dicer-1 and dicer-2 were identified in C. maenas
suggesting that a similar division of tasks could exist in
this organism.

Endocytosis pathway
The endocytosis pathway plays a crucial role in viral chal-
lenges. Whereas some viruses are able to enter the cytosol
directly, the majority require uptake via endocytosis [35].
Viral particles can enter endosomes via various endo-
cytotic mechanisms (e.g. clathrin-mediated endocytosis,
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caveolar-mediated endocytosis, or micropinocytosis).
Decreasing pH in the endosome environment is a cue
to the viral particles, which then penetrate into the
cytosol [35]. This indicates that there are important
interactions between components of the endocytosis
pathway and viral proteins, e.g. cellular Rab7 can inter-
act with the VP28 protein of the White Spot Syndrome
Virus [56]. Therefore, information on the sequences
and expression of the C. maenas endocytic system may
aid in the study of viral infection. The mechanisms of
endocytosis, maturation of endosomes and related sig-
nalling molecules are depicted in the KEGG pathway
shown in Fig. 6. The number of identified components
demonstrates that C. maenas contains an endocytic
system that closely resembles this canonical KEGG
pathway. The KEGG annotation did not yield transcripts
similar to caveolin, an important constituent of caveolar-
mediated endocytosis. However a tBLASTn search of
NCBI caveolin protein sequences in the transcriptome
identified similarity between ‘comp141181_c0_seq1’ and
caveolin-3-like isoform X2 (XP_006615923.1, Apis dor-
sata, e = 1e−15). Expression of components of the endo-
cytosis pathway is visualized in Fig. 7, and most of these
components were expressed across all tissues. The muscle
tissue showed an endocytosis expression profile that dif-
fers from the other tissues.

Conclusions
We produced an assembled transcriptome for C. maenas
that consists of 153,699 loci and 212,427 transcripts and
provides a significant molecular resource for wide stud-
ies into both basic and applied biology for this species.
Comparisons run in the NCBI-nr database showed 30 %
of C. maenas transcripts had significant homology against
known sequences, but a large number were novel tran-
scripts that have yet to be characterized. Expression ana-
lysis revealed tissues and organ transcript specificity that
mapped with gene ontology annotations relating to spe-
cific tissue/organ-related functions. Of particular relevance
for studies into pathogenesis and disease, we identified the
presence of a series of known targets and functional path-
ways including the RNAi pathway, Toll-like receptor sig-
nalling, IMD and JAK-STAT pathways that form part of
their innate immune system.

Methods
mRNA preparation
Four individual Carcinus maenas were collected from
Newton’s Cove, Weymouth, UK and placed on ice prior
to dissecting tissues and organs of interest (including
gill, hepatopancreas, epidermis, eyes, intestine, haemo-
lymph, muscle, heart, nerve, ovary, testis and eggs). All
tissues and organs were immediately snap-frozen in

Table 9 Carcinus maenas RNAi pathway components

RNAi Transcript Identity (%) Length E-value Query Ancestor

TRBP comp79785_c0_seq (1–2) 83.97 343 2.00e-167 gi|332271591 : TAR RNA-binding protein isoform 1
[Marsupenaeus japonicus]

Decapoda

comp79200_c0_seq (1–2) 36.74 460 4.00e-77 gi|110825988 : probable methyltransferase TARBP1
[Homo sapiens]

Bilateria

comp49673_c0_seq1 46.34 205 2.00e-41 gi|444174849 : TAR RNA-binding protein 1
[Penaeus monodon]

Decapoda

R2D2 comp79785_c0_seq (1–2) 48.86 350 8.00e-81 gi|619831236 : R2D2 [Bemisia tabaci] Pancrustacea

comp49673_c0_seq1 38.32 167 6.00e-24 gi|619831236 : R2D2 [Bemisia tabaci] Pancrustacea

drosha comp87202_c0_seq1 93.37 829 0 gi|396941645 : drosha [Marsupenaeus japonicus] Decapoda

Dicer2 comp90354_c0_seq (1–11) 47.73 1253 0 gi|402534262 : Dicer-2 [Marsupenaeus japonicus] Decapoda

Dicer1 comp85246_c1_seq1 77.95 1578 0 gi|195424855 : dicer-1 [Litopenaeus vannamei] Decapoda

comp90354_c0_seq (5–6) 31 658 1.00e-83 gi|195424855 : dicer-1 [Litopenaeus vannamei] Decapoda

comp55144_c0_seq1 61.06 113 3.00e-37 gi|283827860 : dicer-1 [Marsupenaeus japonicus] Decapoda

comp77864_c(1–2)_seq (1–2) 83.67 98 2.00e-40 gi|195424855 : dicer-1 [Litopenaeus vannamei] Decapoda

ago2 comp81967_c(1–2)_seq1 37.16 802 5.00e-139 gi|563729913 : argonaute2 [Penaeus monodon] Decapoda

comp41784_c0_seq1 52.74 876 0 gi|563729913 : argonaute2 [Penaeus monodon] Decapoda

comp76466_c0_seq1 42.51 821 0 gi|563729913 : argonaute2 [Penaeus monodon] Decapoda

ago1 comp81967_c1_seq1 89.45 758 0 gi|321468117 : putative Argonaute protein
[Daphnia pulex]

Crustacea

comp41784_c0_seq1 43.65 811 0 gi|321468117 : putative Argonaute protein
[Daphnia pulex]

Crustacea

comp76466_c0_seq1 41.58 671 4.00e-148 gi|321468117 : putative Argonaute protein
[Daphnia pulex]

Crustacea
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liquid nitrogen and transported to the University of Exe-
ter for sample preparation and analysis.
RNA was extracted using Qiagen’s miRNeasy mini kit,

with on column DNase digestion, according to the manu-
facturer’s instructions. RNA quality was measured using
an Agilent 2100 Bioanalyzer with RNA 6000 nano kit
(Agilent Technologies, CA, USA). cDNA libraries for each
tissue were constructed using 2.5 μg of RNA pooled from
the four sampled individuals. ERCC Spike-In control
mixes (Ambion via Life Technologies, Paisley, UK) were
added to control for technical variation during sample
preparation and sequencing, and analysed using manufac-
turer’s guidelines. mRNA purification was performed via
poly (A) enrichment using Tru-Seq Low Throughput
protocol and reagents (Illumina, CA, USA). Finally, cDNA
libraries were constructed using Epicentre’s ScriptSeq v2
RNA-seq library preparation kit (Illumina). Each tissue
was labelled with a unique barcode sequence to enable

multiplexing of all samples across one lane whilst ensuring
sequencing data from each tissue could be separated for
analysis. Sequencing was performed on an Illumina HiSeq
2500 with the 2 × 100 bp paired-end read module.

Transcriptome assembly
Prior to transcriptome assembly, the sequence reads
were processed to remove those with low confidence (as
assigned by the sequencer). The first 12 bp were trimmed
from the reads to remove bias caused by random hexamer
priming [57] and Illumina adapters were removed using
Trimmomatic [58]. Trimmomatic was also used for qual-
ity trimming of the 3' end of the reads using a sliding win-
dow (4 bp with a minimal Phred quality of 30). Reads
shorter that 70 bp were discarded. Only read pairs where
both reads passed the desired quality threshold were
retained. Read pairs of all tissue libraries were pooled and
used for de novo transcriptome assembly using the Trinity

Fig. 6 Endocytosis pathway. Overview of the KEGG endocytosis pathway. Components with homologues in the Carcinus maenas transcriptome
are highlighted in pink
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(2013-02-25 release) software package [9]. Transcripts
with a length of 200 nucleotides or less were removed
from the assembly. General transcriptome statistics, in-
cluding maximal transcript length, mean transcript
length and N50, of the resulting transcriptome were
calculated with a custom R script. This Transcriptome
Shotgun Assembly project has been deposited at DDBJ/
EMBL/GenBank under the accession GBXE00000000.

The version described in this paper is the first version,
GBXE01000000.

Transcriptome characterization
The Trinotate suite (2013-08-26 release) [59] was used
to annotate transcripts. Peptide coding regions were
found through transdecoder and BLASTp v 2.2.28
(release 2013-07, e-value cutoff of 1e-5) was used to find
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Fig. 7 Endocytosis pathway expression. Expression of endocytosis pathway components in twelve Carcinus maenas tissues. The expression values
are in FPKM, values of 0 are coloured white and values over 1000 FPKM are binned together
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sequence homology to UniProt/SwissProt. HMMR 3.1.b1
[60] and the Pfam database (version 27.0) were used to
identify conserved protein domains. Additionally trans-
membrane regions were predicted with TMHMM-2.0c
[61] and potential signal peptides identified with SignalP
4.1 [62]. Furthermore, homology searches were performed
using BLASTx v 2.2.28 against the NCBI non-redundant
(nr) protein database with an e-value cutoff of 1e-3 and
BLASTn against all available C. maenas ESTs in the NCBI
database (2013-05-10; 15,558 ESTs in total), with an e-
value cutoff of 1e-3 and retaining the best 20 hits. The
presence of highly conserved core eukaryotic genes was
assessed using CEGMA 2.5 [29, 63]. Functional annota-
tion analysis was conducted by assigning Molecular Func-
tion, Biological Process and Cellular Component Gene
Ontology annotations to transcripts with BLAST2GO
(v2.7.0) [30]. Finally, taxonomic classifications of the tran-
scripts were determined and visualized using MEGAN 4
[64], and transcripts that did not map to the metazoan
taxon were removed from the transcriptome assembly.

Differential gene expression analysis
For each tissue, reads were mapped to the Carcinus tran-
scriptome (including non-metazoan transcripts) using
bowtie2 [65] and RSEM [32] to obtain overall transcript
expression values. Differential transcript expression was
performed by comparing each tissue to the other eleven
tissues, treating the latter as biological replicates. The cal-
culations were performed with RSEM based on the edgeR
package [66] with a dispersion parameter of 0.4 which is
recommended for analysis without replicates. Transcripts
with an FDR < 0.01 were treated as differentially expressed.
The lists of differentially expressed genes for each tissue
were analysed for enrichment of Gene Ontology categories
using BLAST2GO, and terms were deemed significant
when FDR < 0.05.

Pathway analysis
KEGG ontology groups were assigned to assembled
transcripts through the KEGG Automatic Annotation
Server (KAAS) web service [33]. Next, the presence of
components of reference pathways related to immune
responses, including the toll-like receptor signalling path-
way (map04620), TNF signalling pathway (map04668),
JAK-STAT signalling pathway (map04630) and the endo-
cytosis pathway (map04144) were visualized through the
KAAS web service [33].
Since KEGG is focused on vertebrate pathways an add-

itional, more flexible, pathway annotation strategy was
required. For identification of a pathway component
(e.g. Spätzle in the invertebrate Toll signalling pathway)
the following steps were followed: 1. Protein sequences
for the component were downloaded from the NCBI pro-
tein database based on a search query. 2. These sequences

were used as input in a tBLASTn search against the as-
sembled transcriptome (cut-off 1e-20). 3. For every tran-
script with BLAST hits, a filter was applied to select the
best three query sequences based on first taxonomic dis-
tance to a reference taxon (tax_id = 6759, Carcinus mae-
nas) and secondly the e-value. 4. When necessary, manual
filtering to remove irrelevant sequences that were returned
from NCBI. An R-script that performs this analysis is sup-
plied in Additional file 9.
Expression of pathway components was derived by

adding the RSEM-derived FPKM values for transcripts
that were annotated to the component (either through
KEGG annotation or the annotation stratagem explained
above).

Availability of supporting data
The data set supporting the results of this article is avail-
able in the genbank Transcriptome Shotgun Assembly
Sequence Database repository (http://www.ncbi.nlm.nih.
gov/genbank/tsa) under the accession GBXE00000000.
The version described in this paper is the first version,
GBXE01000000.

Additional files

Additional file 1: Cmaenas_transcript_lengths.pdf. This file contains a
histogram of transcript lengths to illustrate the presence of fragments
and full length transcripts in the transcriptome.

Additional file 2: Cmaenas_trinotate_annotation_report.txt. Output
of the Trinotate annotation pipeline, tabular format. This file contains
annotation information derived from the Trinotate annotation pipeline as
decribed in the Methods section.

Additional file 3: Cmaenas_NCBIblastx.txt. Blastx results of transcripts
to NCBI nr database, tabular format. This file contains information on
sequence similarity between transcripts in the transcriptome and sequences
in the NCBI non-redundant database.

Additional file 4: Cmaenas_transcriptome_GO_annot.txt. Transcript
Gene Ontology annotation, tabular format. This file contains Gene Ontology
annotations for transcripts.

Additional file 5: Tissue_GO_Enrichment.xlsx. Enriched Gene Ontology
terms for analyzed tissues. This file shows which Gene Ontology terms are
enriched for tissue specific differentially expressed genes.

Additional file 6: Pathway_components.xlsx. This file contains sequence
similarities between components of immune pathways and the transcriptome.

Additional file 7: toll_pathway_heatmap.pdf. Heatmap of expression
values for components of the Toll-like signalling pathway.

Additional file 8: imd_pathway_heatmap.pdf. Heatmap of expression
values for components of the IMD signalling pathway.

Additional file 9: Pathway_annotation.R. R script used to identify
transcripts with significant sequence similarity to genes/proteins of interest.
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Chapter 4: De novo Assembly of the European shore crab 

(Carcinus maenas) genome 

 

4.1 Abstract 

 

The European shore crab (Carcinus maenas) is an invasive species that has impacted on 

ecosystems across the many regions of the globe. C. maenas has caused millions of dollars 

of damage to some wild fisheries through predation and extirpation of other crustacean 

populations. Its success as an invasive species is, in part, due to its resilience and ability to 

adapt to different environmental conditions. These characteristics, together with the 

ubiquitous range of this species in temperate costal habitats, have played a key part in C. 

maenas being adopted widely in scientific experiments including in biomonitoring, 

ecotoxicology and host-pathogen interactions. We aimed to generate a genomics resource 

to facilitate future studies using C. maenas as a model organism. We sequenced and 

annotated a de novo draft genome assembly for this species using an Illumina HighSeq 

2500 platform. We isolated DNA from one individual C. maenas and constructed paired-end 

and mate-pair libraries for sequencing. Approximately 470 million pairs of 150 bp sequencing 

reads were generated, corresponding to 70x estimated coverage of the crab genome. A de 

novo draft genome assembly consisting of 338,980 scaffolds and covering 362 Mb (36 % of 

estimated genome size) was produced, using SOAP-denovo2 coupled with the BESST 

scaffolding system. The assemblies generated were highly fragmented due to the presence 

of repetitive areas in the C. maenas genome. Using a combination of ab initio predictors, 

previous RNA-sequencing data and curated C. maenas sequences we produced a model 

encompassing 10,355 genes. Furthermore, we identified 185 miRNA precursors of which 31 

showed sequence similarity to known miRNAs, and 154 were potentially novel miRNAs. We 

investigated whether the C. maenas genome contained endogenous viral elements but 

found no evidence supporting such integration events. Within the C. maenas genome we 

showed the presence and subsequently identified the introns/exons of Dscam, a gene that 

has recently been shown to play an important role in the invertebrate immune system. The 

assembled draft genome and accompanying gene model generated in this project are a 

valuable molecular resource for studies involving C. maenas. 
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4.2 Introduction  

 

The European green crab or shore crab, Carcinus maenas, is a marine invertebrate that 

commonly lives in marine or estuarine habitats. It is an important invasive species that has 

spread from its native range in Europe and northern Africa to Australia, South Africa and the 

Americas. Furthermore, it is the only crustacean listed on the global index of invasive 

species [1]. At invasion sites it can cause significant damage through predation, targeting 

bivalves in particular, and extirpation of local populations of crustaceans. Economic losses 

due to C. maenas invasions can be very significant [2]. Lafferty and Kuris estimated potential 

losses to green crab predation in the USA to be around $44 million per year and the Oregon 

Dungeness Crab Commission defined the potential impact of C. maenas on Dungeness crab 

population in 2005 at $50 million [2-4]. The success of C. maenas as an invasive species 

can be attributed to its resilience, both to changes in the environment and to pathogens. 

These characteristics enable this species to become widespread in coastal areas across the 

globe and make it an interesting model species to address a wide range of research 

questions including adaptation, ecotoxicology and disease resistance.  

C. maenas has become a popular experimental test organism, particularly in the field of 

aquatic ecotoxicology [5]. The species has a high tolerance to environmental conditions (air 

exposure, temperature, salinity, starvation) [2] and has reasonable tolerance to 

environmental contaminants. The crab lives in estuarine and coastal habitats that are often 

polluted by a wide variety of chemicals derived from different sources (urban, industrial, 

agricultural and maritime) [5, 6]. The species has been used in a large number of studies 

investigating the effects of metals, endocrine disruptors, pesticides and other pollutants [5]. 

These studies aid in understanding such effects in invertebrates, other than the popular 

Daphnia species. In addition the shore crab is easy to maintain in the lab because of its 

robustness and size.  

A major reason for the success of C. maenas as an invasive species is its resilience to 

infections by viruses, bacteria and parasites. In its natural habitat, the shore crab carries a 

large pathogen load but when moved into novel habitats the load reduces, thus facilitating 

settlement in these new environments. In addition pathogens in the new environment are 

more specialized towards species native to that environment. This process, the Enemy 

Release Hypothesis, has been described for many invasive species [7].  When comparing 

infections within aquatic Crustacea the shore crab appears to be amongst the most resilient 

[2] to for example Hematodinium [8] and to White Spot Syndrome Virus (WSSV) [2, 9]. Of 

particular interest to this thesis, WSSV is one of the most devastating viruses to the global 
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aquaculture industry [10], and has caused enormous damage to global crustacean 

aquaculture, most notably to shrimp farming where it has resulted in a loss of 10 % of global 

production [11]. Despite intensive research, the successful development of an effective 

treatment for WSSV still remains elusive. The mechanisms of resistance to WSSV in C. 

maenas may offer the opportunity to identify disease treatments opportunities in the more 

susceptible and economically important crustacean species.  

Rodrigues and Pardal (2014) have suggested that a genome sequencing program is 

essential for the development of C. maenas as a model species in cutting edge 

ecotoxicology research [5]. Through knowledge of its genome sequence, the interpretation of 

current results and the design of future research studies will be greatly facilitated. Until 

recently the genomic resources for C. maenas were limited to a few hundred protein 

sequences and around 15,000 expressed sequence tag sequences. In a previous study, we 

expanded these resources by generating a de novo transcriptome wherein we show the 

presence of many of the genes that form part of pathways connected to the innate immune 

system [12]. However an assembled genome is still lacking. Such a genome will open further 

avenues for research into pathogen resistance, including the role of miRNAs and viral inserts 

in a host genome that convey resistance.  

Here, we employed next generation genome sequencing technology to produce a draft 

genome assembly for C. maenas. Within the assembly we identify likely locations of genes 

and their exons and summarize them in a gene model. Other structures like repeat regions 

and potential viral inserts were also investigated. In order to facilitate the use of this genome 

assembly as a resource to study host-pathogen interactions we focused on mechanisms of 

response to disease. It is well documented that within invertebrates the RNA interference 

(RNAi) is an important component of the immune response, especially against viruses [13]. 

RNAi can be used to regulate host responses to pathogens or directly inhibit expression of 

viral transcripts [11]. In order to facilitate studies focused on miRNAs in the context of 

responses to pathogen infection, we identified miRNA precursors present in the C. maenas 

genome. In addition, given the recent discoveries associated with Down syndrome cell 

adhesion molecule (Dscam) which is hypothesized to play an important role in invertebrate 

“immune memory,[14], we made a gene model for Dscam in order to investigate its potential 

for hyper-variability which is instrumental to its role in immune memory.   
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4.3 Materials and Methods 

 

4.3.1 DNA isolation and sequencing 

Crabs were placed on ice prior to dissecting muscle tissue, which was immediately snap-

frozen in liquid nitrogen until DNA extraction and sequencing analysis. Foozen muscle tissue 

fragments were grounded with a mortar and pestle in liquid nitrogen. DNA was extracted 

using the Qiagen’s Blood and Tissue kit, with on column RNase A digestion, according to the 

manufacturer’s instructions with the following modifications: after incubation with proteinase 

K, the lysate was transferred to a new microcentrifuge tube to perform RNase digestion, and 

following 15 minutes incubation at room temperature, DNA was eluted with 100µL Tris-HCl 

(pH 9) at 37°C. DNA quality was assessed by gel electrophoresis (on a 1.5% agarose gel) 

and its quantity assessed using the Qubit dsDNA BR Assay kit (ThermoFisher Scientific, 

UK). Paired-end DNA libraries were constructed using the NEBNext® library preparation kits 

(Illumina) according to the manufacturers’ protocol. The insert sizes for the paired-end 

libraries were: 300-500 bp and 500-700 bp. Mate pair libraries were constructed with the gel-

free Nextera Mate Pair library preparation kit (Illumina) according to the protocol. Mate pair 

libraries size selected for insertsizes of 3500-5624 bp and 7361-11741 bp as measured on a 

Bioanalyzer. The paired-end and mate pair libraries were quantified and multiplexed in two 

lanes on an Illumina HiSeq 2500 (Exeter sequencing service). 

 

4.3.2 Data pre-processing 

The quality of the sequencing data was assessed with FastQC v 0.10.1 [15]. After this 

assessment, the reads were pre-processed in order to remove any remaining adapter 

sequences and reduce low confidence information. The paired-end library sequences were 

trimmed using Trimmomatic v 0.32 [16]  to remove Illumina TruSeq adapters, repeat reads, 

the first 12 bases and the last 3 bases of each sequence, the low confidence bases using a 

sliding window of 4 and minimal Phred quality of 20 and the reads with a length below 25. 

The adapters in the mate-pair library sequences were removed by NextClip v 1.3 [17] (to 

obtain a minimal read length of 25, remove PCR duplicates and retain only read pairs where 

the adapter was identified in at least one of the reads). After this initial filtering the mate pairs 

were quality-trimmed by Trimmomatic v 0.32 [16] using the same settings as described 

above for the paired-end libraries. Finally, the quality of the data was re-assessed with 

FastQC v 0.10.1.  
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4.3.3 De novo genome scaffold assembly and quality assessment 

The assembly of the reads from paired-end and mate-pair libraries into genome scaffolds 

was optimized for contig quantity and length distribution by using various combinations of de 

novo genome assemblers, scaffolders and parameter settings. The following assemblers 

were used: ALLPATHS v 51875 [18, 19], Platanus v 1.2.1 [20], SPAdes v 3.6.1 [21] and 

SOAP-denovo2 v 2.04-r240 [22], the latter being combined with BESST v 1.3.7 scaffolder 

[23]). Assembly statistics were calculated in QUAST v 2.3 [24]. Based on these statistics the 

SOAP-BESST and ALLPATHS assemblies produced the highest quality/largest scaffolds 

and were selected for further analysis.  These assemblies were subsequently assessed for 

their coverage of Carcinus maenas transcriptome reads. C. maenas RNA-sequencing reads 

from Verbruggen et al. 2015 [12](SRA accession: SRX691208, SRX698361, SRX710630, 

SRX713887, SRX732924, SRX744550, SRX744554, SRX744557, SRX744558, 

SRX744559, SRX744561, SRX744562) were aligned to the genome scaffolds using bowtie2 

v 2.2.6 (default settings) [25]. The presence of highly conserved genes in the de novo 

genome scaffolds were assessed by CEGMA v. 2.5 [26]. In addition, BUSCO v 1.1b [27] was 

used to test assembly quality by investigating the presence or absence of a set of single 

copy orthologues.  

 

4.4.4 Genome scaffold annotation 

Following analysis of quality criteria, the SOAP-denovo2 + BESST scaffolder assembly (> 

500 bp) was chosen as the highest quality assembly and selected for further downstream 

analyses. Simple repeats were identified using RepeatMasker version 4.0.5 [28]. Arthropod 

repeats were downloaded from RepBase (Oct 2015) and BLASTN 2.2.28+ (e-value < 1e-10, 

minimal 75 % sequence identity) was used to locate retro-elements in the de novo genome 

scaffold. Protein sequences from the Malacostraca class were downloaded from GenBank 

and used as guide for gene model prediction. These sequences were aligned to the de novo 

genome scaffold with TBLASTN 2.2.28+ (e-value < 1e-10). Significant combinations of protein 

and scaffold sequences were used as input for GeneWise 2-4-1 to derive introns and exons 

[29].  Ab initio gene prediction was performed with GeneMark-ES 3.4.8 [30]. Assembled 

transcripts from Verbruggen et al. 2015 [12] were aligned to the genome scaffold in PASA 

2.0.2 [31] and used to model gene structures. Further gene structures were derived by 

AUGUSTUS 2.7 [32], the prediction process was informed by Illumina RNA-sequencing 

reads from Verbruggen et al. 2015 [12] according to the protocol described in [33]. The 

predictions from GeneWise, GeneMark-ES, PASA and AUGUSTUS were combined by 

EVidenceModeler v 1.1.1 [34].  
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The presence of miRNA precursors was investigated using the miRCandRef [35] pipeline 

using the paired-end DNA sequencing reads with an insert size of 300-500 bp and small 

RNA sequencing data from a pilot experiment conducted at Exeter/Cefas. The pilot 

experiment included data from C. maenas individuals injected with either saline solution or 

White Spot Syndrome Virus (unpublished). The pipeline was executed on the Genomic 

HyperBrowser server [36]. Identified miRNAs were annotated through a BLAST search 

optimized for small sequences, as suggested by the miRCandRef pipeline [35]. The potential 

mRNA targets of miRNAs were predicted in silico through miRanda v 3.3a [37] and MicroTar 

v 0.9.6 [38], based on the C. maenas transcriptome sequences identified in Verbruggen et 

al. 2015 [12]. Predictions were filtered based on a free energy threshold of -10 kcal/mol. 

 

4.4.5 Analysis of viral inserts 

Integration viral sequences were assessed both at the nucleotide and protein level. Viral 

genomic sequences were downloaded from RefSeq (release 72) [39] and the pre-processed 

paired-end reads were aligned to these sequences using bowtie2 [25], not allowing for 

discordant mapping. From the resulting SAM/BAM-files the coverage of the viral genomes 

were computed in BEDTools genomeCoverageBed v 2.17.0 [40]. The sequencing reads 

mapping with a high mapping quality (MAPQ > 40) to the viral genomes were manually 

investigated for likelihood of a genuine insertion in contradiction to artefacts such as repeat 

regions. Furthermore, all viral protein sequences were downloaded from RefSeq (release 

72) [39]. Sequence similarity between pre-processed DNA sequencing reads and viral 

proteins was computed with DIAMOND [41] (BLASTx, e-value < 1e-10, percent identity >= 90 

%) and successful alignments were again quality assessed to avoid false positives. To 

investigate the C. maenas genome scaffolds for the presence of potential WSSV sequences 

specifically, the pre-processed paired-end sequencing reads were aligned to the genome of 

the Chinese WSSV isolate (AF332093) using bowtie2 2.1.0 [25] (default and local alignment) 

and bwa 0.7.12 [42]. Successful alignments were investigated in the genome browser IGV 

[43].  

 

 

4.4.6 Gene model for Dscam 

Identification of scaffolds that might contain a Dscam gene was performed using BLASTN 

2.2.28+ and using C. maenas Dscam (GenBank: HG964670.1) as query and an e-value 

threshold of 1e-10. Once potential scaffolds were identified, Dscam protein sequences were 
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aligned using GeneWise 2-4-1 [29]. Dscam sequences included: C. maenas Dscam 

(GenBank: CDO91660.1), E. sinensis Dscam (GenBank: AGL39311.1) and D. melanogaster 

Dscam (GenBank: AAF71926.1). Alignments between scaffolds and Dscam sequences were 

produced using BLAT v 36 [44] and visualised using IGV 2.3 [43]. GeneMark-HMM v 3.4.8 

predictions for scaffolds were obtained from the scaffold annotations step. Pfam domain 

analysis [45] was performed on both protein sequences obtained from GeneWise alignments 

and nucleotide sequence derived from GeneMark-HMM predictions.  

 

4.5 Results and Discussion 

 

4.5.1 Draft Genome Assembly - Quality Control 

Two paired-end libraries with insert sizes 300-500 and 500-700 bp and two mate pair 

libraries with insert sizes 3500-5624 bp and 7361-11741 bp were created from C. maenas 

DNA, and a total of 682 million paired-end and 258 million mate-pair reads were generated 

(Table 1). Assuming an average  read-length of 150bp and considering that the genome size 

of C. maenas is estimated to be around 1-1.2 Gb  [46, 47], the estimated coverage was 

approximately 60x for paired-end and 19x for mate-pair libraries. The quality of the 

sequencing data for the 300-500 bp paired-end and 3500-5624 bp mate-pair libraries (Run 

1) are shown in Figure 1 and Figure 2 respectively. There was a significant drop in Phred1 

quality around 80 bp into the sequencing reads. The same trend was present in the 500-

700bp paired-end and 7361-11741 bp mate-pair libraries. While drops in quality over the 

sequencing reads are to be expected in sequencing datasets obtained from Illumina 

sequencing, the observed drops in sequencing quality were greater than expected, 

indicating issues with the sequencing process (possibly to do with loss of quality of 

sequencing reagents during storage). Since working with data from a poor quality 

sequencing run can have severe impacts in later stages of the analysis, another separate 

sequencing run (Run 2) using the same libraries was performed (except the 7361-11741 bp 

mate-pair libraries due to insufficient quantity).   

 

 

                                                
1
 Phred quality scores Q are defined as a property which is logarithmically related to the base-calling error probabilities P. Q= -10 log10 P 
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Table 1 Number of paired-end and mate-pair reads obtained before (raw reads) and after quality-trimming 
(processed reads) 

Library Number of reads 
Number of reads after quality 

trimming (% of original reads) 

Paired-end 300-500 (Run 1) 89,022,217 79,938,270 (90 %) 

Paired-end 300-500 (Run 2) 95,325,569 88,033,605 (90 %) 

Paired-end 500-700 (Run 1) 75,202,448 66,821,819 (89 %) 

Paired-end 500-700 (Run 2) 81,640,231 73,673,023 (90 %) 

Mate-pair 3500-5624 (Run 1) 63,224,417 40,162,634 (64 %) 

Mate-pair 3500-5624 (Run 2) 42,848,052 27,198,748 (63 %) 

Mate-pair 7361-11741 (Run 1) 23,701,171 10,761,155 (45 %) 

 

 

 

 

 

 

 

Figure 1 FastQC per base sequence quality for 300-500bp Paired-end sequencing data Run 1). Left: first 

read in pair. Right: second read in pair. Quality scores are in Phred (Quality = -10 log10 Probability for incorrect 
basecall) and shown on the y-axis. The x-axis denotes the position in the sequencing reads. Quality drops 
progressively along the length of the sequencing reads.  

Figure 2 FastQC per base sequence quality for 3500-5624bp Mate-pair sequencing data (Run 1). Left: first 

read in pair. Right: second read in pair. Quality scores are in Phred (Quality = -10 log10 Probability for incorrect 
basecall) and shown on the y-axis. The x-axis denotes the position in the sequencing reads. Quality drops 
progressively along the length of the sequencing reads. 
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The quality of re-sequenced samples (Run 2) is shown in Figure 3. Comparison of the 

quality scores for the paired-end libraries indicated that the second sequencing run 

significantly improved the quality of the data. The quality of the sequences of the repeated 

mate-pair library also improved, but significant drops in quality were still present. This could 

be indicative of an issue with the mate-pair libraries themselves, which are often considered 

difficult to produce. Because of limited amount of libraries available and insufficient high 

quality DNA from the same individual crab, no more additional sequencing runs were 

performed and further quality control was performed bioinformatically (e.g. by removing 

bases with low confidence scores from the reads).  

 

Figure 3 FastQC per base sequence quality for re-sequenced samples (Run 2). Left: first read in 300-500bp 

paired-end library. Right: first read in 3500-5624bp mate-pair library. Quality scores are in Phred (Quality = -10 
log10 Probability for incorrect basecall). 

Sequencing adapters and low quality sequences were removed from both datasets (Run 1 

and Run 2). This cleaning step resulted in a significant loss of sequencing reads, particularly 

for the mate-pair libraries. Table 1 shows that overall 90 % reads were retained for the 

paired-end libraries while in the mate-pair libraries around 37-55 % of pairs did not pass the 

quality thresholds. While nearly equal amounts of read-pairs were retained in both 

sequencing runs, after quality-trimming, the remaining reads from Run 1 were significantly 

shorter. For example: the reduction in the total number of bases for the first reads in the 

paired-end library with insert size 300-500bp was 53 % in Run 1 compared to 74.3 % in Run 

2 (see Table S 1). The genome size of C. maenas is estimated to be around 1-1.2 Gb [46, 

47]. Taking 1 Gb as reference, the coverage of the DNA sequencing libraries of the C. 

maenas genome was 69.6 x, 64.6 x for paired-end and 5x for matepair libraries (Table 2). 

During the pre-processing step another issue was identified. It appears that the C. maenas 

DNA sequencing reads from both runs were enriched for AG/AC/TG/TC repeat reads as is 

illustrated by the GC content graphs in Figure 4. A further peak was present around 66% GC 

content, also indicative of repeats such as CAG. Additional quality filtering was performed to 
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deal with this over-representation of repeat reads. Overall, the genome of C. maenas 

appears to be AT rich, with an average GC content around 44 %. Genome assemblies of 

other aquatic invertebrates e.g. like the Chinese mitten crab (Eriocheir sinensis) [48], draft 

genome assembly GC content of ~43 %, and Daphnia pulex with a GC content of 42 % [49]. 

Within the group of arthropods there is more variation, e.g. the red flour beetle (Tribolium 

castaneaum) with 34 % and Drosophila species approaching 41 % [50]. Coding regions 

within the genome often have a higher GC content; therefore an overall GC content of 44 % 

is another hint at the repetitive nature of the C. maenas genome [51].  

Table 2 Genome coverage after quality-trimming 

Library 
Length Read 1 

(bp) 

Length Read2 

(bp) 
Total length (bp) 

Coverage 

(x) 

PE 300-500 7,075,894,970 8,610,319,484 15,686,214,454 15.7 

PE 300-500_re 10,622,989,288 10,622,989,317 21,245,978,605 21.2 

PE 500-700 5,652,491,870 6,840,897,257 12,493,389,127 12.5 

PE 500-700_re 7,781,512,294 7,531,279,299 15,312,791,593 15.3 

MP 3500-5624 1,168,869,646 1,304,617,677 2,473,487,323 2.5 

MP 3500-5624_re 942,637,509 912,979,760 1,855,617,269 1.9 

MP_7361-11741 265,830,974 294,561,463 560,392,437 0.6 

Total 33,510,226,551 36,117,644,257 69,627,870,808 69.6 
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Figure 4 GC content of raw and processed sequencing reads. GC content distributions for raw and 

preprocessed sequence data. A) raw data for 300-500 bp paired-end library Run1. B) raw data for 300-500 bp 
paired-end library Run2. C) preprocessed data for 300-500 bp paired-end library Run1. D) preprocessed data for 
300-500 bp paired-end library Run2. 

 

4.5.2 De novo genome scaffold assembly 

The filtered DNA-sequencing reads were used as input for a de novo genome assembly. 

When using Illumina sequence reads, the quality/reliability/completeness of de novo genome 

assembly is heavily dependent on the chosen assembler. Therefore, several assemblers, 

including ALLPATHS, platanus, SPAdes and SOAP-denovo2 and SOAP-denovo2+BESST 

scaffolder, were applied to the data and results compared. Although there is no universal 

consensus on how de novo assemblies can be compared, there are some statistics that are 

indicators of quality, including the number of contiguous sequences and/or scaffolds, the 

N502 and the total length of the generated genome scaffolds. The graphs in Figure 5 show 

the statistics for all the generated assemblies.  

                                                
2
 The N50 length is defined as the length N for which 50% of all bases in the sequences are in a sequence of length L < N 
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GC distribution over all sequences GC distribution over all sequences 
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Figure 5 C. maenas de novo genome assembly statistics. A) Number of scaffolds in the de novo genome 

assemblies. The kmer parameter is shown on the x-axis and millions of contigs on the y-axis. B) N50 statistic for 
de novo assemblies. Kmer parameter on the x-axis and N50 (bp) on the y-axis. C) The total length of the 

assembly. Kmer parameter on the x-axis and total length in billion bp on the y-axis. Red lines indicate the 
estimated size of the C. maenas genome (1 – 1.2 Gb).  

 

The total lengths of the de novo assemblies varied significantly. The majority of assemblies 

showed lengths over 1 Gb whereas others fell significantly short of that. The main reason 

behind this is that the assemblers put a threshold on contig/scaffold length in the final output. 

The total length of the C. maenas genome is estimated at 1-1.2 Gb and most assemblies 

had a total length within this range. However, there was a significant degree of fragmentation 

A B 

C 
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with most assemblies sporting over 3 million scaffolds. Comparing the results of C. maenas 

assemblies to the recently published draft genome of the Chinese mitten crab (Eriocheir 

sinensis), which encompasses 17,553 scaffolds covering a total of 1.66 Gb [48]  illustrates 

this [48].  Another published aquatic crustacean genome, the cherry shrimp Neocaridina 

denticulate, showed similar results to that of C. maenas [52], with a highly fragmented 

assembly consisting of over 3,3 million contigs with an N50 of 400 that cover a total of 1.2 

Gb of an estimated genome size of 3 Gb.  

The N50 statistics demonstrate the fragmentation of the C. maenas genome assemblies was 

similar to that obtained for E. sinensis: between 500-3000 bp in the first against 224kb in the 

latter [48]. The ALLPATHS and SOAP-BESST assemblies for C. maenas resulted in the 

lowest degree of fragmentation, illustrated by the N50 and scaffold count in Figure 5. This 

lower degree of fragmentation, which is still large when compared to the E. sinensis draft 

genome, comes at the cost of reduced coverage of the estimated genome size for C. 

maenas. Since very small (< 500 bp ) scaffolds are unlikely to contain full genes as they are 

shorter than the vast majority of genes [53]  they are uninformative in relation to generating 

gene models for C. maenas. Thus further analyses only focussed on the ALLPATHS and 

SOAP-BESST assemblies since they encompassed the larger scaffolds and thus the most 

meaningful information.  

The significant fragmentation in the de novo assemblies can have multiple causes. Firstly, 

biased GC content can have detrimental effects on assembly. In addition, during the 

sequencing process itself strong GC bias can yield lower coverage [54]. GC % biased areas 

lead to fragmented assembled scaffolds as was shown by Chen et al. 2013 for seven de 

novo genome assemblers (including ALLPATHS and SOAP-denovo) [54]. Indeed, the C. 

maenas raw- and preprocessed sequencing reads show a GC% distribution around 40 % 

(Figure 4) thus there are reads with difficult GC % content. A second cause for fragmentation 

in assemblies is the presence of repeated regions in the genome. The challenges that 

repeats pose to genome assembly have been reviewed by Treangen and Salzberg 2012 

[55]. In brief, repeats that are longer than the read length create gaps in the assembly since 

assemblers cannot distinguish these based on their sequence [55].  The repeats cause the 

formation of branches in the De Bruijn graphs used by the de novo assemblers which can 

lead to false joins, erroneous copy numbers or fragmented assemblies with small contigs 

[55]. Tandem repeat regions can often be collapsed into fewer copies which can have impact 

on studies involving copy number variation in these regions [55]. Some of these issues can 

be overcome through the use of paired-end and mate-pair reads which are able to produce 

“scaffolds” that connect distant regions in the genome to each other. In the present study, 

mate-pair reads with insert sizes ranging between 3509-5624 bp and 7361-11741 bp were 
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included for this reason. However, as is illustrated in Figure 4, there are large peaks at 50 % 

GC and again at 66 % GC indicating that many reads were derived from simple repeats, an 

indication that the C. maenas genome is rich in such structures. The assembly results 

indicate that the available mate-pair libraries were not sufficient to overcome all of these 

problems, thus resulting in a fragmented assembly. Sequencing of C. maenas DNA on 

platforms that can offer longer read lengths would improve the quality of the de novo draft 

assembly. Single molecule sequencing platforms, such as the PacBio sequencer can offer 

reads ranging from 10kb to 15kb and can thus traverse more read regions. However, at the 

time of performing this study PacBio sequencing was prohibitively expensive and generation 

of a dataset with 20x coverage of the C. maenas genome or higher would cost over £ 

50,000. However it has been shown that hybrid sequencing and assembly strategies, using 

both high coverage Illumina sequencing and long reads from the PacBio system at a lower 

depth, can be successful [56], and this in the future may lead to the opportunity to 

incorporate this data with longer reads and reduce the fragmentation of the current 

assembly.  

Based on the quality of the assemblies obtained, the ALLPATHS and SOAP-BESST 

assemblies were assessed further. In a previous experiment RNA sequencing of C. maenas 

was performed and the reads from that study were aligned to the assembled scaffolds [12] 

(note that the current DNA-sequencing data originated from a different crab than the crabs 

used in Verbruggen et al. 2015). The alignment rate of these mRNA reads is a good 

indicator of the coverage of the transcriptome across the genome. Furthermore, these 

alignments can provide indications about the locations of introns and exons in the genome 

assemblies. Alignment rates of the RNA-Seq reads (derived from a variety of tissues 

including muscle, intestine, heart, hepatopancreas, gill, eye, nerve, haemolymph, ovary, 

testis, eggs and epidermis) varied along the different assemblies and was generally lower as 

the size of the assembly decreased (Table 3). Around 85 % of all RNA-sequencing reads 

mapped to the SOAP-BESST assembly which shows that both datasets agreed to a large 

extend, despite originating from different individuals. It is encouraging that filtering out the 

smaller scaffolds does not dramatically reduce the alignment rate. For example, removal of 

all scaffolds under 500 bp in length (~90 % of scaffolds) only resulted in a 17 % reduction of 

aligning RNA sequencing reads. This indicates that a large portion of C. maenas genes are 

present within the larger scaffolds. 
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Table 3 Bowtie2 Alignment of RNA sequencing reads from Verbruggen et al. 2015 to assembled genome 
scaffolds 

Assembly Number of Contigs Total length (bp) Aligned RNAseq reads (%) 

SOAP k95 – BESST 3,020,931 937,113,974 85.6 

SOAP k95 – BESST 

 (> 500bp) 
338,980 362,671,342 68.6 

SOAP k95 – BESST 

 (> 1000bp) 
82,100 194,190,891 52.8 

ALLPATHS 52,355 108,312,348 32.9 

 

The good agreement with the RNA-sequencing data shows that the de novo assemblies, 

despite being fragmented, contain relevant biological information. Based on this observation 

a further judgement of the quality of assembly could be made through observing the 

presence of highly conserved genes (Table 4). Parra et al. 2007 created a list of core 

eukaryotic genes and a tool (CEGMA) that can be used for identifying these genes within 

sequences[26]. Running CEGMA on the draft assemblies showed presence of ~80 % of 

core eukaryotic genes, the full sequence could be retrieved for 30 % of core eukaryotic 

genes while ~50 % were partially retrieved. Like the RNA-sequencing alignment, these 

percentages were largely retained when the threshold for scaffold lengths increased. A 

different assessment of assembly completeness, the presence of universal single copy 

orthologs for metazoans and arthropods (BUSCO, as selected by Simao et al. 2015 [27]; 

Table 5), showed similar results. Overall half of the orthologue groups were identified, but a 

large portion was fragmented (Table 5). Combined, these results show that while the 

genome scaffolds comprise large portions of RNA-sequencing reads, the identification of 

whole genes was still problematic due to fragmentation. For comparison, the percentage of 

aligned core eukaryotic genes to the E. sinensis draft genome was 66.9 % [48]. This puts the 

percentages for C. maenas in a better perspective since despite being significantly less 

fragmented; the E. sinensis genome contains 12 % less core eukaryotic genes. The N. 

denticulate draft genome recovered 99 .3 % of core genes, but this number cannot be 

compared directly since the parameters for CEGMA were changed to be less stringent in 

that assessment (tBLASTn e-value threshold to 1e-3) [52]. Based on the transcriptome 

mapping and gene conservation results we chose the SOAP-BESST (> 500 bp) genome 

assembly for further annotation since it offered the best compromise between genome size, 

number of contigs and mapping RNA-sequencing transcripts.  
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Table 4 Presence of core eukaryotic genes in the genome scaffolds as determined by CEGMA. 

Assembly Full CEGMA genes (%) Partial CEGMA genes (%) 

SOAP k95 – BESST 29 52 

SOAP k95 – BESST 

(> 500 bp) 
28 51 

SOAP k95 – BESST 

(> 1000 bp) 
28 47 

 

Table 5 Presence of single copy orthology groups in genome scaffolds as determined by BUSCO.  

Assembly Busco group  

(# groups) 

Complete Duplicated  Fragmented  Missing  

SOAP k95 – BESST metazoan  

(843) 

193  

(23 %) 

10 

 (1 %) 

203  

(24 %) 

447  

(53 %) 

SOAP k95 – BESST  

(> 500 bp) 

Metazoan 

(843) 

189  

(22 %) 

10  

(1 %) 

211  

(25 %) 

443  

(53 %) 

SOAP k95 – BESST  

(> 1000 bp) 

metazoan  

(843) 

192 

(23 %) 

11  

(1 %) 

189  

(22 %) 

462  

(55 %) 

SOAP k95 – BESST arthropods  

(2675) 

538  

(20 %) 

25  

(1 %) 

482 

(18 %) 

1,655  

(62 %) 

SOAP k95 – BESST  

(> 500 bp) 

arthropods  

(2675) 

570  

(21 %) 

25  

(1 %) 

471  

(18 %) 

1,634  

(61 %) 

SOAP k95 – BESST  

(> 1000 bp) 

arthropods  

(2675) 

570  

(21 %) 

25  

(1 %) 

453 

 (17 %) 

1,652  

(62 %) 

 

 

4.5.3 De novo genome scaffold annotation 

An extensive analysis pipeline was developed to annotate the scaffolds (Figure 6),  which 

included a series of bioinformatics tools and several external datasets, including RNA and 

small RNA sequencing reads and an assembled C. maenas transcriptome (from Verbruggen 

et al. 2015) and curated gene and protein sequences from public databases (Figure 6). The 

pipeline analysed the presence of repeat regions, retrotransposons, miRNAs and gene 

models. The assembly chosen for annotation was the SOAP-denovo2 assembly (k = 95) 

combined with the BESST scaffolder, filtered for scaffolds larger than 500 bp (supplementary 

file 1: CMaenas-SOAP95-BESST_500bp.fa). 
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Figure 6 Genome annotation pipeline used in this study. The genome assembly was annotated using several 

software packages, combined with external data sources when appropriate. Transcriptome data included both 
sequencing reads and assembled transcripts from Verbruggen et al. 2015. Small RNA sequencing data derived 
from a pilot experiment (van Aerle et al., unpublished). UniProt data consists of Malacostrata protein sequences. 
Color indicator: black = input/output, green = sequencing data, red = external database and blue = bioinformatics 
software. 

 

4.5.4 Repeats and Transposable Elements 

Repeat structures and transposable elements in the genome were identified with 

RepeatMasker 4.0.5 [28]. The total percentage of tandem repeat regions in the C. maenas 

genome could not be assessed via RepeatMasker because the repeats were not 

represented by their true length in the assembly. Nonetheless, an indication could be given 

of the repeat content of available scaffold sequences and a summary is given in Table 6. It 

appears that even though most repeats should not be present in their full length, around 7.5 

% of the scaffold consisted of simple repeat sequences, mainly representing low complexity 

regions and simple repeats (e.g. microsatellites). Table 6 also lists the transposable 

elements discovered by RepeatMasker. The most abundant class of transposable elements 

were the long interspersed elements (LINEs). Indeed, LINEs are the most reported 

retrotransposons amongst all crustacean species [57]. The same study illustrated that Copia 

retrotransposon elements are scarce compared to Gypsy retrotransposon elements [57]. 

Through PCR the presence of 35 Copia and 45 Gypsy elements in 15-18 crustacean 

species was shown [57]. Repeat structures in C. maenas showed a similar trend. The total 

number of Copia elements (911) was low as compared to Gypsy (13840). Furthermore the 

diversity of Gypsy elements was larger: 269 Gypsy elements to 60 Copia elements. These 
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numbers are large compared to the elements identified by Piednoël et al 2013 [57]. A 

possible explanation is that, compared to PCR detection, the results are inflated through the 

identification method employed by RepeatMasker – resulting in false positives. Most of the 

classified elements had between 25 % and 50 % substitution compared to the consensus 

sequence. A conservative BLAST search identified only two Gypsy elements and no Copia 

elements (Table 7).  

Table 6 Repeat elements present in the C. maenas scaffolds as identified and classified by RepeatMasker 

RepeatMasker Number of elements Length 

occupied 

Percentage of sequence 

SINEs 79 7,142 0 

 ALUs 1 145 0 

 MIRs 35 9,091 0 

LINEs 6,646 2,760,013 0.76 

 LINE1 386 62,765 0.02 

 LINE2 213 36,402 0.01 

 L3/CR1 6,012 2,650,712 0.73 

LTR 3,905 851,054 0.23 

 ERVL 316 45,089 0.01 

 ERVL-

MaLRs 

654 118,836 0.03 

 ERV_classI 2,380 528,118 0.15 

 ERV_classII 34 5,978 0 

DNA elements 3,606 1,047,817 0.29 

 hAT-Charlie 1,265 371,738 0.1 

 TcMar-

Tigger 

1,611 450,832 0.12 

 

Unclassified 124,397 13,800,909 3.81 

Simple repeats 410,556 27,227,176 7.51 

Total 549,189 45,694,111 12.6 
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Table 7 Repeat elements present in the C. maenas scaffolds identified by BLASTn 

Repeat element Length 

(bp) 

 > 75 % identity (count) > 90 % identity (count) 

Art1_Cis 3223 3   

Chapaev3-1_HR 2434 5   

Chapaev3-1_SM 2407 4   

EnSpm-1_LSal 1417 5 2 

EnSpm-2_LMi 2299 107 56 

EnSpm-N1_LMi 1559 1   

Gypsy-10_LVa-I 3580 3   

Gypsy-14_DAn-I 6105 4 4 

hAT-17_LSal 2233 34 21 

hAT-17A_LSal 2445 43 26 

hAT-26_SM 3040 1   

hAT-N45_LSal 208 8 8 

hAT-N6_LSal 1302 143 121 

Helitron-like-11_Hmel 1284 1 1 

Helitron-like-13_Hmel 3491 14 13 

Helitron-like-6b_Hmel 1343 14 13 

LIN9_SM 5304 2   

Mariner-N31_LSal 634 10 7 

piggyBac-4_BF 9533 1   

R1-2_PBa 5457 8 8 

R2-1_SM 5417 4   

REP-6_LMi 16159 2   

RTE-3_LVa 3654 4   

Sat-1_LVa 6803 63 63 

SAT-1_SK 1015 4   

tRNA-1_LSal 83 3   

VENSMAR1 1293 3   

 

 

 

4.5.5 miRNA detection  

Micro-RNAs (miRNAs) are short (20-25 bp) non-coding RNA molecules that can regulate the 

translation of mRNA, either through blocking translation or facilitating degradation [58]. 

miRNAs play important roles in the regulation of many biological processes, including  

developmental timing, cell death, cell proliferation, haematopoiesis and patterning of the 

nervous system [58]. Additionally, it has been shown that during virus-host interactions both 
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host and viral miRNAs play an important part that determines the fate of the host cell [11]. All 

animals have the ability to produce miRNAs which are produced from precursor molecules 

that are characterized by specific hairpin structures. Detection of sequences with the 

potential to form these secondary structures enables in silico prediction of miRNAs in de 

novo assembled genomes. Small RNA sequencing data for C. maenas derived from a pilot 

experiment (van Aerle et al., unpublished) was used in the miRCandRef pipeline, resulting in 

identification of 185 miRNA precursor structures in the C. maenas genome scaffolds. 

Comparing these miRNA sequences to known miRNAs in miRbase and Genbank showed 

that 31 out of 185 miRNAs had significant sequence homology (Table S2). This indicated 

that potentially many novel putative miRNAs have been identified based on the evidence of 

genome and miRNA sequencing. Table S2 shows the miRNAs that were identified and in 

some cases their annotation.  

Prediction of the targets of miRNAs in silico was based on free energy calculations between 

miRNA and known C. maenas transcripts. Two target predictors were used and results 

compared (Table 8), hits for both predictors can be found in supplementary file 2: 

Cmaenas_miRNA_targetprediction.rar. Both predictors yielded potential targets for all 

miRNAs, but analysis showed that agreement between predictors was low. This is because 

predictor algorithms tend to produce many false positive results [59]. The total number of 

potential miRNA-mRNA combinations predicted by miRanda was significantly higher than 

predictions derived by MicroTar (1,953,229 for miRanda compared to 7,691 for MicroTar). 

Comparing predictions from both methods resulted in 2,746 shared miRNA-mRNA 

combinations. The general level of disagreement indicates the issues with in silico 

prediction, especially when seeking targets in a whole transcriptome rather than in a list of 

selected genes. The capricious nature of these in silico predictions indicate that miRNA-

mRNA combinations should be verified through additional studies and drawing conclusions 

based on these results would not be fruitful.  

Table 8 miRNA Target prediction with miRanda and MicroTar 

Predictor  Total miRNA-transcript 

predictions (< -10 kcal/mol) 

Number of miRNAs 

for which potential 

targets were found  

Hits in common with the 

other predictor 

miRanda 1,953,229 185 (100 %) 2746 (0.0014 %) 

MicroTar 7,691 185 (100 %) 2746 (35.7 %) 

 

4.5.6 Gene model generation and analysis 

A gene model contains the locations of genes, including their exons and introns, on the 

scaffold. Prediction of genes in the C. maenas genome assembly was based on ab initio 
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algorithms, i.e. predictions of the presence of genes based purely on the sequence 

information. Other indications of gene locations could be derived through the inclusion of 

existing information on C. maenas gene sequences. Combining the genome scaffold 

sequences with known transcript sequences should result in more reliable predictions. The 

annotation workflow of Figure 6 shows inclusion of known C. maenas protein sequences and 

transcriptome data. The transcriptome data is derived from Verbruggen et al. 2015 [12] and 

used in two ways: firstly, the raw sequence data is used in combination with the Augustus ab 

initio gene predictor to inform on the location of exon boundaries [32, 33]; secondly, the 

assembled transcripts were aligned to the genome scaffold using PASA [34]. The final gene 

model was created by combining the results of each individual prediction method through 

Evidence Modeller [34]. Some statistics on the generated predictions are summarized in 

Table 9. The ab initio gene predictors found an almost identical number of genes in the 

scaffolds: 71,394 for Augustus and 71,802 for GeneMark. The number of predicted exons on 

these genes was found to diverge, with GeneMark identifying more exons than Augustus. It 

is possible that the exon boundary information derived from the RNA-sequencing data 

prevented unnecessary splitting of exons in Augustus, resulting in reduced exon numbers. 

Through BLASTx and GeneWise 95 % of Malacostraca proteins could be aligned to genome 

scaffolds. There was a degree of redundancy due to orthologues. Alignment of assembled 

transcripts to the genome scaffold proved difficult since validated matches were only 

identified for around 5,500 transcripts. PASA utilizes only near perfect alignments. These 

alignments are required to align with a specified percent identity (typically 95%) along a 

specified percent of the transcript length (typically 90%). Each alignment is required to have 

consensus splice sites at all inferred intron boundaries, including (GT/GC donor with an AG 

acceptor, or the AT-AC U12-type dinucleotide pairs) [34]. The fragmentation of the genome 

scaffold could cause such PASA alignments to fail since transcripts might span multiple 

scaffolds.  

Table 9 Gene model evidence statistics 

Prediction Type Prediction Tool Gene  Exons 

Gene Prediction GeneMark.hmm 71,802 193,476 

Gene Prediction Augustus 71,394 125,561 

  Aligned malacostraca proteins 

Protein Alignment GeneWise 72,711 

  Aligned transcripts Scaffolds 

Transcript Alignment blat 5,263 19,218 

 gmap 5,766 21,974 
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The evidence presented in Table 9 was combined in Evidence Modeller, resulting in a single 

gene model for the C. maenas genome assembly. The produced gene model (Suppl. File 

S3) indicated presence of genes on 8,624 scaffolds out of 338,980 scaffolds with a total of 

10,355 genes predicted. This number is lower compared to the E. sinensis draft genome 

wherein 14,436 genes were identified with AUGUSTUS [48]. Observing the length of the 

scaffolds with successful annotations showed that typically only the larger scaffolds contain 

predicted genes (Figure 7). This is in agreement with the evidence files provided to Evidence 

Modeller. Larger scaffolds have a better chance of successful protein and transcript 

alignments, which are the most reliable form of evidence for annotation. The 10,355 genes 

sequences were compared to the NCBI non-redundant database, using BLASTx resulting in 

5,615 predicted gene sequences having significant sequence similarity (e-value below 1e-10). 

Thus, 54 % of predicted genes could be annotated through BLASTx which is higher than a 

similar search of assembled transcriptome sequences performed in Verbruggen et al. 2015 

(~ 30 %; all of the BLASTx results can be found in Suppl. File S4). Lastly a total of 6,470 (62 

%) of predicted genes were found to encode for proteins containing conserved Pfam protein 

domains (Suppl. File S5).  

In summary, the C. maenas genome scaffold produced a gene model that reflects issues 

with the assembly. The degree of fragmentation hampered the prediction abilities of both ab 

initio and guided algorithms. This is particularly shown by the fact that only 2.5 % of scaffolds 

contained predicted genes. Significant enhancement of the C. maenas gene model would 

require improvement of the assembly, either through additional (long read) sequencing or 

novel assembly methods.  
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Figure 7 Gene model scaffold size. Scaffold length distributions for the whole assembly and the scaffolds that 

contain a predicted gene according to the gene model.  

 

4.5.7 Detection of viral inserts 

It has been observed that over time it is possible for fragments of viral genomes to become 

integrated into the host genome [60-62]. Retroviruses are obliged to integrate their genomes 

into the host genomes and therefore carry machinery capable of achieving this. However on 

rare occasions it is possible for other types of viruses to integrate into the host genome and 

even the germ line, these are labelled as endogenous viral elements (EVEs) or viral ‘fossils’ 

[61]. For dsDNA viruses like WSSV a possible scenario for EVE formation would include 

double strand breaks in both the viral and host genomes within a germ line cell. 

Subsequently, the sequence derived from the viral genome would have to be ligated into the 

host genome, resulting in integration. Finally, this genotype has to survive and persist in 

following host generations. 

It is possible for some EVEs to produce RNA products. For example, integrated viral ORFs 

with viable promoters could yield mRNA [61]. Furthermore it could be possible for EVEs to 

yield small RNA molecules and it has been hypothesized that such small RNAs could 

convey host resistance through RNAi mechanisms. A viral integration event of WSSV into 

the C. maenas genome could thus be the basis of the resistance of C. maenas to WSSV 

infection [9]. Viral integration events have been reported for a WSSV-like virus in the 

Jamaican bromeliad crab Metopaulias depressus [63]. In their work Rozenberg et al. 2015 
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showed the presence of WSSV-like ORFs in 454 sequencing data of the Jamaican crab and 

through de novo assembly showed a viral and host elements on the same contig [63].  

Identification of WSSV EVEs in the C. maenas genome was investigated through aligning 

pre-processed paired-end DNA sequencing reads to the Chinese WSSV isolate genome. 

The alignment of reads was investigated in the IGV browser. Visual inspection indicated that 

no WSSV-related sequences were present in the C. maenas DNA sequencing data. Reads 

that did successfully align were limited to repeat regions. Even when the bowtie2 aligner was 

used in local mode, which allows for partial alignment of reads, no regions of the WSSV 

genome were found sufficiently covered. This leads to the conclusion that an integration 

event as observed in M. depressus has not occurred in C. maenas, based on the sequence 

of the individual analysed. Through a similar method the presence of EVEs of viruses other 

than WSSV was investigated. All viruses with a known genome sequence in RefSeq were 

used as reference for read alignment, and coverage calculations were used to identify 

viruses with significant numbers of mapping reads. Table 10 shows the viral genomes with 

the highest count of mapping sequencing reads. Enterobacteria phage PhiX, used as spike-

in during the DNA-sequencing, was successfully identified, as expected. Its successful 

identification shows that viral sequences can be identified through this analysis pipeline. 

Reads mapping to other viruses in Table 10 were investigated to see whether these were 

legitimate indications of EVE. It appeared that reads mapping to these genomes are all 

repeating reads, for example (TAC)n. Thus reads with GC content ranging between 31-35, 

48-52 and 64-68 were removed (Table 11) and the remaining reads mapped again to the 

viral genomes. Besides Enterobacteria phage PhiX the number of mapped reads to viruses 

significantly reduced. Additionally, sequences that mapped to viruses other than PhiX still 

represented repeats that were marginally outside the set GC content ranges. 

Table 10 Number of DNA-sequencing reads mapping to viral genomes 

NCBI Identifier Name Number of 

reads 

gi|9626372|ref|NC_001422.1| Enterobacteria phage phiX174 sensu lato, complete 

genome 

965 560 

gi|725948879|ref|NC_025417.1| Staphylococcus phage Team1, complete genome 431 010 

gi|564292828|ref|NC_023009.1| Staphylococcus phage Sb-1, complete genome 50 222 

gi|448824857|ref|NC_020231.1| Caviid herpesvirus 2 strain 21222, complete genome 40 850 

gi|20198505|ref|NC_002512.2| Murid herpesvirus 2, complete genome 26 013 
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Table 11 Number of DNA-sequencing reads mapping to viral genomes after removal of low-complexity 
reads filtered 

NCBI Identifier Virus species Number of 

reads 

gi|9626372|ref|NC_001422.1| Enterobacteria phage phiX174 sensu lato, complete 

genome 

562 255 

gi|508181800|ref|NC_021312.1|     Phaeocystis globosa virus strain 16T, complete genome 669 

gi|664651935|ref|NC_024474.1| Pigeon adenovirus 1 complete genome, strain IDA4 327 

gi|213159268|ref|NC_011588.1| Oryctes rhinoceros virus, complete genome 224 

gi|131840030|ref|NC_009127.1| Cyprinid herpesvirus 3, complete genome 223 

 

The search for EVEs was widened by including protein level searches. To this end a search 

was conducted between paired DNA sequencing reads and RefSeq protein sequences. The 

results were aggregated based on the virus species of the best DIAMOND BLASTx hit 

(given certain thresholds, see Methods). Results confirmed the presence of the 

Enterobacteria phage PhiX (Table 12). The only other listed virus was the Cotesia 

congregate bracovirus which had over 2 500 DNA sequencing reads mapping to its histone 

(YP_184795.1). Given that all reads map to a single protein of this virus and that histone 

sequences are prevalent amongst viruses and hosts, the data obtained did not provide 

sufficient evidence to suggest the presence of an EVE for this virus in the Carcinus genome.  

Table 12 Number of reads of the C. maenas DNA sequencing dataset with similarity to viral protein 
sequences.  

Virus species Number of reads 

Enterobacteria phage phiX174 sensu lato 330 878 

Enterobacteria phage ID2 Moscow/ID/2001 33 888 

Enterobacteria phage G4 sensu lato   33 850 

Enterobacteria phage ID18 sensu lato   25 570 

Enterobacteria phage WA13 sensu lato   17 507 

Enterobacteria phage St-1   11 292 

Enterobacteria phage alpha3   10 951 

Cotesia congregata bracovirus    2 738 

Enterobacteria phage lambda     147 

Enterobacteria phage HK630     136 

 

In conclusion, the identification of Entereobacteria phage PhiX in C. maenas DNA 

sequencing data indicated that the pipelines were successful in picking up viral sequences. 

However, besides PhiX there were no significant indications of viral sequences and thus no 

evidence for the presence of potential EVEs in the crab genome. 
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4.5.8 Carcinus maenas Down syndrome cell adhesion molecule (Dscam) 

Traditionally, it was thought that acquired resistance to pathogens did not occur in organisms 

limited to an innate immune system, mainly due to the lack of the ability to produce 

antibodies. It has been shown, however, that arthropods like crabs, lobsters and shrimps  

display a form of immune specificity and immune memory [64]. When shrimp are exposed to 

antigens or pathogens they exhibit a highly-specific immune response on subsequent 

challenges with the same pathogens [64-67]. The biology behind this observation has not 

been elucidated completely, but there is some evidence for the involvement of Down 

syndrome cell adhesion molecules (Dscam) in this process [14]. A specific immune response 

requires receptors with a high degree of variability, capable of adjusting to specific pathogen 

challenges. Indeed, Dscam is a receptor that boasts an extremely high degree of diversity, 

possibly due to alternative splicing [68].  

The Dscam receptor conforms to the following pattern: 9 immunoglobulin (Ig) domains - 4 

fibronectin type (FN) domains - 1 Ig domain - 2 fibronectin domains – transmembrane (TM) 

domain – cytoplasmic tail [64]. While the structure of the Dscam gene is similar across both 

vertebrates and invertebrates, a notable difference is that only the arthropod Dscam displays 

hyper-variability [64]. The reasons for variation are tandem arrays for three Dscam Ig exons 

and one transmembrane domain. Due to alternative splicing of these exons a large number 

of Dscam variants can be produced. Since Dscam might be playing an important role in the 

C. maenas immune system and thus in WSSV infection/resistance it was of interest to 

identify whether a gene model for Dscam was identifiable in the C. maenas genome scaffold.  

The sequence of C. maenas Dscam (GenBank: HG964670.1) was aligned to the C. maenas 

genome to identify scaffolds with significant sequence similarity. From this search 

scaffold_192 was identified to contain a C. maenas Dscam gene. To identify the location of 

exons alignments with GeneWise and BLAT alignments of several invertebrate Dscam 

protein sequences were visualized in IGV (Figure 8).  
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Figure 8 Alignment of invertebrate Dscam to C. maenas scaffold_192. The sequence of C.maenas scaffold 

192 is visualized as a line with length indicators. Annotation is provided in the five lines below (A-E). A) location 
of ‘N’ nucleotides, i.e. gaps in the scaffold B) Genes predicted by GeneMark HMM, exons indicated by blocks and 
introns by lines. C) BLAT alignment of C. maenas Dscam (GenBank: HG964670.1), blocks indicate sequence 
similarity. D) BLAT alignment of E. sinensis Dscam (GenBank: AGL39311.1), blocks indicate similarity. D) BLAT 
alignment of D. melanogaster Dscam (GenBank: AAF71926.1), blocks indicate similarity. F) Pfam-A domains 
identified in the Dscam exons covered by regions within C. maenas scaffold 192. The Immunoglobulin domains 
are indicated by Ig and Fibronectin domains by ‘Fn’. The scaffold does not cover the complete Dscam gene but 
ends near the likely Ig7 tandem array.  

The GeneMark track in Figure 8 shows a discrepancy compared to the BLAT alignments. 

Whereas the BLAT results are spread across the whole scaffold, the GeneMark track is split 

into three separate genes. The gene model produced by EVidence Modeller aligns with the 

depicted GeneMark prediction. Given that the three known Dscam sequence all stem from 

the same gene it can be inferred that the split into three separate genes is erroneous. It was 

to be expected that the ab initio gene predictions are imperfect even after integration of other 

forms of evidence and therefore would benefit from manual curation. The sequences of C. 

maenas, E.sinensis and D. melanogaster Dscam align to similar regions across 

scaffold_192, indicating that the blocks in Figure 8 C-E are likely to be genuine exons. The 

sequences of these exons were extracted and used as input for a Pfam-A domain search, 

the result of which is shown in Figure 8 F. The sequence of identified Pfam-A domains 

follows the tail end of the Dscam blueprint: 9 Immunoglobulin domains – 4 Fibronectin 

domains – 1 Immunoglobulin domain – 2 Fibronectin domains. The Pfam-A domains show 

that not all Immunoglobulin domains are represented on scaffold 192. The scaffold thus is 

unlikely to contain the full C. maenas Dscam gene, which should extend in 5’ direction on the 

genome. The hypervariable exon tandem arrays of invertebrate Dscam are located in the 

2nd, 3rd and 7th Ig domains [69]. Unfortunately these are not incorporated on C. maenas 

scaffold 192. However the sequence that has been identified can be used in PCR or gene 

walking experiments to fill in the gaps of the C. maenas Dscam gene. Once that sequence 

information is available the changes in Dscam splicing during pathogen exposures can be 

assessed, for example with RNA sequencing data.  

C. maenas scaffold 192 

A 

B 
C 
D 
E 

Fn6 Fn5 Ig10 Fn2 Fn1 Ig9 Fn3 Fn4 Ig8 Ig7 Ig7 Ig7 …  

F 
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In the case of WSSV infection this has not been shown thus far. For example, work by 

Watthanasurorot et al. 2011 showed that injection of the signal crayfish Pacifastacus 

leniusculus with WSSV did not change PlDscam expression, furthermore the silencing of 

PlDscam did not have an effect on WSSV infection progression. Positive examples are 

available though, including the alteration of Anopheles gambiae Dscam (AgDscam) splicing 

upon exposure to Plasmodium parasites resulting in expression of AgDscam isoforms with 

higher affinity to the pathogen [70]. With the Dscam sequence available, studies for 

alternative splicing of C. maenas Dscam in response to pathogens, WSSV or other, can be 

monitored and outcome related to pathogenicity.  

 

4.6 Summary 

 

DNA was isolated from the muscle tissue of a shore crab (C. maenas) and subjected to next-

generation sequencing, designed to yield a 50 x paired-end and 19x mate pair coverage of 

its 1 Gb genome. Assembly of the data into a draft genome showed that it was highly 

fragmented. The high degree of fragmentation appeared to be independent of the assembly 

method. Comparing this assembly to draft assemblies of other aquatic crustaceans showed 

a similar degree of fragmentation for N. denticulate but not in E. sinensis. Evidence in GC % 

of the sequencing data points toward a repeat-rich genome, which are notoriously difficult to 

assemble from short read NGS data. The generated draft genome assembly could be 

improved through additional sequencing coverage to resolve repeated regions. Such 

sequencing should preferably be performed on platforms that offer longer sequencing reads 

which are more capable of traversing the repeating regions. Alternatively, should new 

assemblers become available they can applied to the current dataset which could result in 

an improved draft genome.  Shorter genomic features, such as miRNAs and their precursors 

could be identified and many novel putative miRNAs were found in C. maenas. The 

prediction of targets for miRNAs in silico proved challenging. However with reliable 

annotation of the UTRs of the genes, which are the locations where miRNAs tend to bind, 

improvement in in silico predictions might be possible. Nevertheless, it is likely that targets 

will have to be confirmed through laboratory experiments rather than via computational 

prediction. This genome sequencing project was performed in order to aid the study of viral 

infection and immunity and therefore we characterized the gene model for C. maenas 

Dscam. Analysis of the domains showed that only a partial segment of Dscam was present 

on scaffold 192, but this information can be used as a basis to inform on further experiments 

to sequence the full length of this gene. With the Dscam sequence available, studies for 
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alternative splicing of C. maenas Dscam in response to pathogens, WSSV or other, can be 

monitored and outcome related to pathogenicity and invertebrate immune memory. The 

ability to instill a specific immune response to WSSV through manipulation of Dscam could 

be very valuable to crustacean aquaculture.The draft genome produced and described in 

this chapter is the first one produced for C. maenas and one of the few available for aquatic 

invertebrates. In the short term toxicology, evolutionary and pathogenic studies in this 

important invasive species can be supported by the availability of this genomic resource. On 

the longer term continued refinement of the genome build and generation of additional 

aquatic invertebrate genomes can accelerate the understanding of this group of species.  

 

4.7 Supplementary Files 

 

S1. CMaenas-SOAP95-BESST_500bp.fa: C. maenas genome scaffold as produced by 

SOAP-denovo2 (k=95) and BESST scaffolder. 

S2. Cmaenas_miRNA_targetprediction.rar: miRNA target prediction with target annotation. 

S3. Cmaenas_evm.gff3: gene model generated by EVidence Modeler for C. maenas 

assembly 

S4. Cmaenas_evm_CDS_BLASTx.txt:  Annotation of C. maenas evm CDS using BLASTx to 

NCBI nr database 

S5. Cmaenas_evm_CDS_peptide.hmmtable: Pfam domains in C. maenas evm CDS 

 

4.8 Supplementary Data 

Table S 1 Total library lengths (in bp) before and after quality trimming 

Library length (bp) using  

raw reads 

length (bp) using 

 trimmed reads 

Percentage remaining 

after quality trimming 

PE_300-500_R1 13,353,332,550 7,075,894,970 53 

PE_300-500_R2 13,353,332,550 8,610,319,484 64.5 

PE_300-500_re_R1 14,298,835,350 10,622,989,288 74.3 

PE_300-500_re_R2 14,298,835,350 10,622,989,317 74.3 

PE_500-700_R1 11,280,367,200 5,652,491,870 50.1 

PE_500-700_R2 11,280,367,200 6,840,897,275 60.6 

PE_500-700_re_R1 12,246,034,650 7,781,512,294 63.5 

PE_500-700_re_R2 12,246,034,650 7,531,279,299 61.5 
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MP_3500-5624_R1 9,483,662,550 1,168,869,646 12.3 

MP_3500-5624_R2 9,483,662,550 1,304,617,677 13.8 

MP_3500-5624_re_R1 6,427,207,800 942,637,509 14.7 

MP_3500-5624_re_R2 6,427,207,800 912,979,760 14.2 

 

Table S 2 Predicted C. maenas miRNAs and their annotations as determined by BLAST 

miRNA Sequence Annotation Hit 

mirc_1 aagagagcuauccgucgacagu miRNA_hit Drosophila yakuba mir-281-2 precursor RNA 

(Dyak\mir-281-2), miRNA 

mirc_3 guugugaccguuauaaugggca miRNA_hit TPA: Capitella teleta microRNA cte-mir-2001 

precursor 

mirc_4 uaggaacuucauaccgugcucu miRNA_hit Drosophila melanogaster strain Zimbabwe-109 mir-

276a miRNA gene,  

mirc_5 ugagaucauugugaaagcugauu miRNA_hit TPA: Tribolium castaneum microRNA tca-bantam-

3p 

mirc_7 aauugcacuagucccggccugc miRNA_hit Drosophila melanogaster strain Zimbabwe-109 mir-

92b miRNA gene,  

mirc_9 cgugcagaacgaauguccgca miRNA_hit PREDICTED: Saimiri boliviensis boliviensis LON 

peptidase N-terminal  

mirc_11 ugacuagauccacacucaucca miRNA_hit Apis mellifera microRNA mir-279d (Mir279d), 

microRNA 

mirc_12 aauggcacuggaagaauucacgg miRNA_hit Drosophila yakuba mir-263a precursor RNA 

(Dyak\mir-263a), miRNA 

mirc_24 uugguaacuccaccaccguuggc miRNA_hit Apis mellifera microRNA mir-2765 (Mir2765), 

microRNA 

mirc_30 uggcagugugguuagcugguugu miRNA_hit TPA: Drosophila melanogaster microRNA dme-

miR-34-5p 

mirc_32 uaucacagccagcuuugaugagc miRNA_hit Apis mellifera microRNA mir-2b (Mir2b), microRNA 

mirc_34 ucucacuaucuugucuuucacg miRNA_hit Acyrthosiphon pisum microRNA mir-71 (Mir71), 

microRNA 

mirc_35 ugaguauuacaucagguacuggu miRNA_hit Nasonia vitripennis microRNA mir-12 (Mir12), 

microRNA 

mirc_37 uaucacagccaccuuugaugagcu miRNA_hit Drosophila melanogaster strain Zimbabwe-109 mir-

2a-2 miRNA gene,  

mirc_41 ugacuagaucuacacucauca miRNA_hit Acyrthosiphon pisum microRNA mir-279b 

(Mir279b), microRNA 

mirc_48 cuuggcacuggaagaauucacag miRNA_hit Acyrthosiphon pisum microRNA mir-263b 

(Mir263b), microRNA 

mirc_52 uggaauguaaagaaguauggag miRNA_hit Drosophila yakuba mir-1 precursor RNA (Dyak\mir-

1), miRNA 

mirc_53 uacuggccugcuaagucccaag miRNA_hit Apis mellifera microRNA mir-193 (Mir193), 

microRNA 

mirc_54 agauauguuugauauucuugguug miRNA_hit Bombyx mori microRNA mir-190 (Mir190), 
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microRNA 

mirc_55 auaaagcuagauuaccaaagc miRNA_hit Drosophila yakuba mir-79 precursor RNA 

(Dyak\mir-79), miRNA 

mirc_57 augcauugucguugcauugca miRNA_hit Strongylocentrotus purpuratus microRNA mir-33 

(Mir33), microRNA 

mirc_62 cuaaguacuagugccgcagga miRNA_hit Drosophila melanogaster strain Zimbabwe-109 mir-

252 miRNA gene,  

mirc_66 ccagaucuaacucuuccagcuca miRNA_hit TPA: Capitella teleta microRNA cte-mir-750 

precursor 

mirc_80 gaagcucguuucuacagguaucu miRNA_hit Drosophila melanogaster strain Zimbabwe-109 mir-

993 miRNA gene,  

mirc_95 ugagauucaacuccuccaacuuag miRNA_hit TPA: Bombyx mori microRNA bmo-miR-1175-3p 

mirc_120 ucagguaccugauguagcgcgc miRNA_hit Drosophila yakuba mir-275 precursor RNA 

(Dyak\mir-275), miRNA 

mirc_125 auauuguccugucacagcag miRNA_hit TPA: Drosophila melanogaster microRNA dme-

miR-1000-5p 

mirc_146 cuugugcgugugacagcggcu miRNA_hit Drosophila yakuba mir-210 precursor RNA 

(Dyak\mir-210), miRNA 

mirc_155 caaugcccuuggaaaucccaaa miRNA_hit Bombyx mori microRNA mir-2788 (Mir2788), 

microRNA 

mirc_164 uagccucuccucggcuuugucu miRNA_hit TPA: Tribolium castaneum microRNA tca-miR-282-

5p 

mirc_177 cucacaaaguggcuguuguaug miRNA_hit Nasonia vitripennis microRNA mir-2a (Mir2a), 

microRNA 

mirc_2 uacccuguagauccgaauuugu Blast_hit Drosophila busckii chromosome 3R sequence 

mirc_6 cggacauucguucugcacgccu Blast_hit Pseudomonas cremoricolorata strain ND07, 

complete genome 

mirc_8 ucuuugguuaucuagcuguauga Blast_hit PREDICTED: Haplochromis burtoni 

uncharacterized LOC102292141  

mirc_10 caucuuaccggacagcauuaga Blast_hit Drosophila busckii chromosome 2R sequence 

mirc_13 cggcaucuguuggaguacaguag Blast_hit TPA_asm: Aspergillus nidulans FGSC A4 

chromosome II 

mirc_14 caugcagaacguaugucugca Blast_hit Spirometra erinaceieuropaei genome assembly 

S_erinaceieuropaei  

mirc_15 ugacuagauccauacucaucu Blast_hit Nippostrongylus brasiliensis genome assembly 

N_brasiliensis_RM07_v1_5_4  

mirc_16 gagcugcccaaugaagggcug Blast_hit Apteryx australis mantelli genome assembly 

AptMant0, scaffold  

mirc_17 ugacuagaggacuacucaucc Blast_hit Oryza sativa Japonica Group DNA, chromosome 4, 

cultivar: Nipponbare,  

mirc_18 ucuuuggugaucuagcuguauga Blast_hit PREDICTED: Haplochromis burtoni 

uncharacterized LOC102292141  

mirc_19 auagguagcuuugaguccagag Blast_hit PREDICTED: Fukomys damarensis KIAA0141 

ortholog (Kiaa0141), transcript  
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mirc_20 uauugcacuuuccccggccu Blast_hit PREDICTED: Pan paniscus HMG box domain 

containing 3 (HMGXB3),  

mirc_21 cggacauucguucugcacgcc Blast_hit Pseudomonas cremoricolorata strain ND07, 

complete genome 

mirc_22 ugacuagacacuuacucaucug Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 3 sequence 

mirc_23 agagaauccguaugggggaguag Blast_hit Bifidobacterium bifidum strain BF3, complete 

genome 

mirc_25 ccagcuaguuucccaguuuuug Blast_hit PREDICTED: Colobus angolensis palliatus 

monoglyceride lipase  

mirc_26 uaucacaguccuaguuaccuag Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 2 sequence 

mirc_27 cgugcagaaugaauguccgca Blast_hit PREDICTED: Orussus abietinus cell division cycle 

protein 27 homolog  

mirc_28 ccauuaccuucuuccccucuu Blast_hit Uncultured delta proteobacterium clone Ar-cDNA-

16S-P1-50 16S  

mirc_29 ugacuagagucucacucaucca Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 2 sequence 

mirc_31 ccguuaagucugcuguggugug Blast_hit Trichobilharzia regenti genome assembly 

T_regenti_v1_0_4 ,scaffold  

mirc_33 ucccugagacccuuucuuguga Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome X sequence 

mirc_36 ucagguacuaugugacucugca Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome X sequence 

mirc_38 ugacuagagauucacacucaucca Blast_hit Schistocephalus solidus genome assembly 

S_solidus_NST_G2 ,scaffold  

mirc_39 gugagcaaaguuucaggugugu Blast_hit Schistosoma curassoni genome assembly 

S_curassoni_Dakar ,scaffold  

mirc_40 uaagcguauggcuuuuccccuc Blast_hit Drosophila busckii chromosome 2L sequence 

mirc_42 uagcaccacaggauucagcau Blast_hit Bifidobacterium catenulatum DSM 16992 = JCM 

1194 = LMG 11043  

mirc_43 ccgugcuagacgaucguaagug Blast_hit Echinostoma caproni genome assembly 

E_caproni_Egypt ,scaffold  

mirc_44 uuuugauuguugcucagaaggcc Blast_hit Drosophila busckii chromosome 3L sequence 

mirc_45 uucguugucgucgaaaccugca Blast_hit Drosophila busckii chromosome X sequence 

mirc_46 auguagguguguuacucccac Blast_hit Drosophila melanogaster chromosome X 

mirc_47 uagcaccaguggauucagcaug Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 2 sequence 

mirc_49 cggaaaaagauucacucgcagg Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 24 sequence 

mirc_50 uaucacaguguuaguuaccuuca Blast_hit Sparus aurata clone contig01026 genomic 

sequence 

mirc_51 uugagcaaagcuucaggggguuu Blast_hit Nomascus siki isolate J03 mitochondrial sequence 

mirc_56 ucggugggauuaucguccguu Blast_hit Dichelobacter nodosus VCS1703A, complete 
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genome 

mirc_58 aaauaucagcugguaaauuugg Blast_hit Schistocephalus solidus genome assembly 

S_solidus_NST_G2 ,scaffold  

mirc_59 guucgagucucggugggac Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 1 sequence 

mirc_60 uuuacgaccuucuagcacggu Blast_hit Schistocephalus solidus genome assembly 

S_solidus_NST_G2 ,scaffold  

mirc_61 uagccucauuaucaguguuaca Blast_hit Homo sapiens, clone RP11-74D11, complete 

sequence 

mirc_63 uagcaccaugugaauucaguaca Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 12 sequence 

mirc_64 uuuacgaccauuuagcacggu Blast_hit Aggregatibacter aphrophilus strain W10433, 

complete genome 

mirc_65 ugggcgcccgacaggugcaugc Blast_hit Bifidobacterium bifidum strain BF3, complete 

genome 

mirc_67 cuaaguaguagugccgcagguaa Blast_hit Onchocerca flexuosa genome assembly 

O_flexuosa_Cordoba ,scaffold  

mirc_68 uuuauauucuucuacuguccu Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 2 sequence 

mirc_69 cuucuucuuguucuucuucuac Blast_hit PREDICTED: Cicer arietinum protein LST8 

homolog (LOC101511790),  

mirc_70 cuccgugauacaguugaggcug Blast_hit Heligmosomoides polygyrus genome assembly 

H_bakeri_Edinburgh  

mirc_71 aacgucacgucgccggcagacu Blast_hit Capsaspora owczarzaki ATCC 30864 

transmembrane protein mRNA 

mirc_72 auccgugguucagugguagaauuc Blast_hit Archaeon GW2011_AR10, complete genome 

mirc_73 ucuuugguauuaccaggaugcaug Blast_hit Mus musculus BAC clone RP24-132O18 from 

chromosome 15, complete  

mirc_74 ugugacuaggguaccuguuacc Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 10 sequence 

mirc_75 gaaacgaagggcuugucau Blast_hit Gongylonema pulchrum genome assembly 

G_pulchrum_Hokkaido ,scaffold  

mirc_76 cguugaguaccguucguucuuc Blast_hit Trichobilharzia regenti genome assembly 

T_regenti_v1_0_4 ,scaffold  

mirc_77 cuccgugauacaguugaggcag Blast_hit Heligmosomoides polygyrus genome assembly 

H_bakeri_Edinburgh  

mirc_78 aggcaagacuccggcguagcug Blast_hit Anabaena sp. 90 chromosome chANA01, complete 

sequence 

mirc_79 auuuuagucucuauggucagac Blast_hit Cyprinus carpio genome assembly common carp 

genome ,scaffold  

mirc_81 aaaaugcccguggugauaauug Blast_hit Cyprinus carpio genome assembly common carp 

genome, scaffold  

mirc_82 gacgggacgaucucaacacuau Blast_hit PREDICTED: Nelumbo nucifera uncharacterized 

LOC104591445 (LOC104591445),  
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mirc_83 ucaucaaggguguuuugccacu Blast_hit TPA_asm: Oryzias latipes strain Hd-rR, complete 

genome assembly,  

mirc_84 cuaccagaucgaauagccucgug Blast_hit Pseudoplusia includens SNPV IE, complete 

genome 

mirc_85 aaugggcggucuccuaacacc Blast_hit Rasamsonia emersonii CBS 393.64 MAP kinase 

kinase kinase (Bck1)  

mirc_86 gugguguuaguagaacuugua Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 1 sequence 

mirc_87 aagcgacuucgaagaaaaaccc Blast_hit Bacillus sp. FJAT-18017 genome 

mirc_88 cgcacuggcccucccucugaccu Blast_hit PREDICTED: Astyanax mexicanus paired related 

homeobox 1 (prrx1),  

mirc_89 cggaaaaagauucacucccau Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome X sequence 

mirc_90 uuguguacucugcuuuguuaca Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 10 sequence 

mirc_91 guaguaguaguaguaguaguagua Blast_hit Oryza sativa Japonica Group DNA, chromosome 4, 

cultivar: Nipponbare,  

mirc_92 uuucagucauuuguccgcggac Blast_hit Echinostoma caproni genome assembly 

E_caproni_Egypt ,scaffold  

mirc_93 cuaccuaaucaucaccccuauc Blast_hit Stereum hirsutum FP-91666 SS1 hypothetical 

protein (STEHIDRAFT_128450),  

mirc_94 ucgaguaaauggcgguuauaugu Blast_hit Apteryx australis mantelli genome assembly 

AptMant0, scaffold  

mirc_96 uguggcaugguacugacucacu Blast_hit Moraxella catarrhalis strain 25239, complete 

genome 

mirc_97 cucccccuuccuacgacccaucc Blast_hit PREDICTED: Apteryx australis mantelli nuclear 

factor I/B (NFIB),  

mirc_98 ucgcuccggcuucccccaugg Blast_hit Apteryx australis mantelli genome assembly 

AptMant0, scaffold  

mirc_99 guaguaguaguaguaguagua Blast_hit Oryza sativa Japonica Group DNA, chromosome 4, 

cultivar: Nipponbare,  

mirc_100 uacuuacaacacccuuaggcuc Blast_hit PREDICTED: Xenopus (Silurana) tropicalis acyl-

CoA synthetase  

mirc_101 uacccaaggaugcucuagaacu Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 9 sequence 

mirc_102 uguguacuguacccauaucgac Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 11 sequence 

mirc_103 ucgcuccucguccuugguucac Blast_hit Setosphaeria turcica Et28A hypothetical protein 

mRNA 

mirc_104 ccacuagauggaucaugcuug Blast_hit Spirometra erinaceieuropaei genome assembly 

S_erinaceieuropaei  

mirc_105 cuaccagaucgagcagccuug Blast_hit Sulfuricella denitrificans skB26 DNA, complete 

genome 

mirc_106 aaguuuggacuuacauucguag Blast_hit Ovis canadensis canadensis isolate 43U 
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chromosome 3 sequence 

mirc_107 ucaagcauccuuauguucucgcu Blast_hit Synechococcus sp. CC9902, complete genome 

mirc_108 ccgugcuaggcggucguaagug Blast_hit Oryza sativa Japonica Group DNA, chromosome 4, 

cultivar: Nipponbare,  

mirc_109 aucuugaucguuuugcaaaaug Blast_hit Nitrosomonas europaea ATCC 19718, complete 

genome 

mirc_110 ugaauggauguguugaaaaacg Blast_hit Trifolium pratense genome assembly redclover, 

chromosome : chr4 

mirc_111 uucccgcccgcccaugcccccu Blast_hit Rhodosporidium toruloides strain CECT1137, 

genomic scaffold,  

mirc_112 cccguggagucgcuuuaaacug Blast_hit Oryza sativa Japonica Group DNA, chromosome 1, 

cultivar: Nipponbare,  

mirc_113 uuauugcuaucguugguaccu Blast_hit Lactobacillus helveticus strain CAUH18, complete 

genome 

mirc_114 uaaaauucgcguuacguaagac Blast_hit Spirometra erinaceieuropaei genome assembly 

S_erinaceieuropaei  

mirc_115 ugcuucaggaacuaugcccu Blast_hit Batrachochytrium dendrobatidis JAM81 

hypothetical protein (BATDEDRAFT_28984),  

mirc_116 cucccccuccccuaccuccucc Blast_hit PREDICTED: Chrysochloris asiatica deltex 3, E3 

ubiquitin ligase  

mirc_117 uggacgggacgaucucaacacu Blast_hit PREDICTED: Nelumbo nucifera uncharacterized 

LOC104591445 (LOC104591445),  

mirc_118 agcaugcaccugucgggcgccc Blast_hit Bifidobacterium bifidum strain BF3, complete 

genome 

mirc_119 uaccuaacaucgaaaggcaccg Blast_hit PREDICTED: Salmo salar synaptic vesicle 

glycoprotein 2C-like  

mirc_121 gcuaccagaucgagcagucuug Blast_hit Singulisphaera acidiphila DSM 18658, complete 

genome 

mirc_122 cuaccagaucgaacagccuugu Blast_hit Pseudomonas cremoricolorata strain ND07, 

complete genome 

mirc_123 uucuccaguagccuguuaggua Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 3 sequence 

mirc_124 ucacaaccuccuugagugagu Blast_hit Drosophila busckii chromosome 2R sequence 

mirc_126 uugguccccuucaaccagcugu Blast_hit Drosophila busckii chromosome 2L sequence 

mirc_127 aggacucuagaugaaugacacac Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 24 sequence 

mirc_128 uugcuaccagaucgagaagccu Blast_hit Bordetella pertussis strain B3621, complete 

genome 

mirc_129 caacugccucgcacucugccgu Blast_hit PREDICTED: Zea mays uncharacterized 

LOC100193635 (LOC100193635),  

mirc_130 ugccggagguggaaggcgccg Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 3 sequence 

mirc_131 ggcagcgacgucgugaggg Blast_hit Stenotrophomonas maltophilia D457 complete 

genome 
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mirc_132 ugucuuuuucugcuuugcug Blast_hit Burkholderia sp. HB1 chromosome 1, complete 

sequence 

mirc_133 cacugucauggaagaaguccu Blast_hit Apteryx australis mantelli genome assembly 

AptMant0, scaffold  

mirc_134 gaggacagguguuaaggggacu Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 9 sequence 

mirc_135 acagaggagccuggcucucgg Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome X sequence 

mirc_136 ccgacgagucuucaguugggu Blast_hit Spirometra erinaceieuropaei genome assembly 

S_erinaceieuropaei  

mirc_137 uugcauagucacaaaagugaug Blast_hit Onchocerca flexuosa genome assembly 

O_flexuosa_Cordoba ,scaffold  

mirc_138 uaaucucacaagguaaagcug Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 3 sequence 

mirc_139 ucugcacugucaagacaacuug Blast_hit PREDICTED: Zonotrichia albicollis LanC lantibiotic 

synthetase  

mirc_140 ucagaagugagaacacaaagcu Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 16 sequence 

mirc_141 acgcacugagcugagcacaccu Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 18 sequence 

mirc_142 gaggucugcaggcuuugcugug Blast_hit Pan troglodytes chromosome 22 clone:PTB-

017A17, map 22, complete  

mirc_143 cuauacaccaaaagauaugcccu Blast_hit Apteryx australis mantelli genome assembly 

AptMant0, scaffold  

mirc_144 ugcaugugaggucugcagacu Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 5 sequence 

mirc_145 uagcacucaggacuguuuucuc Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 16 sequence 

mirc_147 uuuguucgccuggcucagucg Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 1 sequence 

mirc_148 ccagacagccauagagau Blast_hit Drosophila busckii chromosome 3L sequence 

mirc_149 ugacuagauccaacacucaucug Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome X sequence 

mirc_150 acccggaucagcuuugcccu Blast_hit Scylla paramamosain map kinase-interacting 

serine/threonine mRNA,  

mirc_151 augaggcagucgcggcacg Blast_hit Zea mays LOC100284192 (umc1302), mRNA 

mirc_152 ugggaacuugcagacagucucc Blast_hit Endocarpon pusillum Z07020 hypothetical protein 

mRNA 

mirc_153 cccuggagaagugaauaucugagg Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 2 sequence 

mirc_154 uaaaugcauugucugguaugucau Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 1 sequence 

mirc_156 ucgaauccuguccgcagcgca Blast_hit Drosophila busckii chromosome 2R sequence 

mirc_157 uauagaucugauauggcguguau Blast_hit Apteryx australis mantelli genome assembly 
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AptMant0, scaffold  

mirc_158 guggcaccuguuagagccuugguac Blast_hit Homo sapiens solute carrier family 25 

(mitochondrial carrier;  

mirc_159 auguuuuuaguguucguccauu Blast_hit Oryza sativa Japonica Group DNA, chromosome 1, 

cultivar: Nipponbare,  

mirc_160 uagguccaaagaguuaagagu Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 1 sequence 

mirc_161 uggcaagaauuccugagcacaa Blast_hit Shewanella putrefaciens 200, complete genome 

mirc_162 uagcaccauuugaaaucagu Blast_hit PREDICTED: Thamnophis sirtalis uncharacterized 

LOC106543447 (LOC106543447),  

mirc_163 uuaauccaauguuguggucugga Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 3 sequence 

mirc_165 ucaucaccgucgccauuggca Blast_hit Mesocestoides corti genome assembly 

M_corti_Specht_Voge ,scaffold  

mirc_166 uuuguucguuuuacuugggau Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 5 sequence 

mirc_167 gagguguucggcgauugc Blast_hit Neisseria gonorrhoeae strain 35/02, complete 

genome 

mirc_168 guagcacaccuguagacccaaccu Blast_hit Chlorocebus aethiops BAC clone CH252-485N20 

from chromosome 16,  

mirc_169 aagacgacugccguuugcucgu Blast_hit Heligmosomoides polygyrus genome assembly 

H_bakeri_Edinburgh  

mirc_170 aguuggcgcgcauaaagccgug Blast_hit Deinococcus swuensis strain DY59, complete 

genome 

mirc_171 auuguuaaguuugguguagaguu Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome X sequence 

mirc_172 uuagguuagguuagguuag Blast_hit Drosophila busckii chromosome 2R sequence 

mirc_173 cggaugccacuggucagcug Blast_hit Drosophila busckii chromosome 2R sequence 

mirc_174 caaggcuggagauuucgu Blast_hit Coccidioides immitis RS NACHT and WD repeat 

protein partial mRNA 

mirc_175 ugaaacagugcauucucuccu Blast_hit Cyprinus carpio genome assembly common carp 

genome, scaffold  

mirc_176 cuugaggacaauuuucacugaac Blast_hit Cyprinus carpio genome assembly common carp 

genome, scaffold  

mirc_178 cuucggcaauagaaaacgguua Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 13 sequence 

mirc_179 ugggcgguuugguucauu Blast_hit Confluentimicrobium sp. EMB200-NS6, complete 

genome 

mirc_180 auuugagaaaggcugucc Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 1 sequence 

mirc_181 uuacuaagcaucauggucuggaca Blast_hit Rat DNA sequence from clone bRB-337A12, 

complete sequence 

mirc_182 agagaucucggguucgaucccc Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome 7 sequence 
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mirc_183 gaauggcagugaggcugu Blast_hit Ovis canadensis canadensis isolate 43U 

chromosome X sequence 

mirc_184 ucaguuggcagagcgacg Blast_hit Olsenella sp. oral taxon 807 strain F0089, complete 

genome 

mirc_185 uaaucgaaucggacuaaccccc Blast_hit Drosophila melanogaster chromosome X 
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Chapter 5: Sequencing and De novo assembly of the Homarus 

gammarus transcriptome and characterization of its immune 

system.  

 

5.1 Abstract 

The European lobster (Homarus gammarus) is a prominent aquatic crustacean of economic 

importance across European oceans and seas. Its meat is a highly valued commodity and 

therefore the species is commercially fished, particularly in the United Kingdom. Due to its 

commercial and ecological value, research efforts have been directed to support stocking 

and culture programs for this species. Understanding the critical developmental stages 

where mortality in culture is highest and host-pathogen interactions for this species are 

examples. Despite these initiatives, molecular information of H. gammarus is sparse, limiting 

our ability to conduct experiments at the genomic level. To address this need, we applied 

next generation sequencing technology to produce a de novo transcriptome for H. 

gammarus. A de novo transcriptome assembly was produced using sequence data from 

nine different tissues and the Trinity pipeline, resulting in 106,498 transcripts. The transcripts 

were filtered and subsequently annotated using a variety of tools (including BLAST, MEGAN 

and RSEM) and databases (including NCBI, Gene Ontology and KEGG). Similar to 

transcriptomes produced for other aquatic crustacea, around 20-25 % of transcripts could be 

annotated. This relatively low proportion of annotated transcripts is associated with the lack 

of genomic resources for aquatic crustacea. The White Spot Syndrome Virus has the ability 

to infect all tested aquatic crustacea but displays varying degrees of pathogenicity. 

Comparisons between the immune system of a relatively resistant species (Carcinus 

maenas) and the more susceptible H. gammarus showed little differences, suggesting that 

the differences in susceptibility to WSSV between these two species may be linked with 

sequence variation in viral receptors, including Rab7, rather than structural differences in 

their immune system. 
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5.2 Introduction 

The European Lobster (Homarus gammarus) is a much valued seafood commodity. The 

flavour of its meat is held in high regard by consumers, enabling this species to yield 

substantial prices on the market [1]. It is commercially fished across Europe, yielding an 

average of 4972.5 tonnes between 2010 and 2013 [2]. Lobster fisheries are concentrated 

around the United Kingdom, which accounted for 65 % of total capture (2013) [2]. Because 

of commercial and ecological interests there are numerous research initiatives with the 

objective of supporting the lobster sector, ranging from optimization of stocking programs [3] 

to development of land-based larvae-to-plate culture systems [4]. The production of lobsters 

(from juveniles for restocking to fully grown animals) is complicated by cannibalistic 

behaviour, operating costs and density [4]. Despite these issues successes have been 

achieved and commercial lobster farms are operational, but are thus far not widespread 

throughout the world.  

A major factor that impacts population dynamics, fisheries and ecology of several lobster 

species is the rise in lobster diseases [5]. Lobsters are faced with several significant 

pathogens, both in wild populations or post-capture holding facilities [5-8]. Parasitic marine 

plankton species like the dinoflagellate Hematodinium perezi can infect lobsters and cause 

the meat to acquire a bitter taste, resulting and an unmarketable product, or in worst case 

mortality [5, 9]. The Panulirus argus Virus (PaV1) can cause significant mortalities in 

juveniles of the Caribbean spiny lobster (Panulirus argus) [10]. Bacterial pathogens like 

Aerococcus viridians, which causes gaffkaemia, and Aquimarina homaria, which potentially 

causes epizootic shell disease, have had major impact on American lobster (Homarus 

americanus) fisheries and there have been indications of prevalence amongst European 

lobsters [11]. The susceptibility of H. gammarus to White Spot Syndrome Virus (WSSV), the 

most devastating virus in crustacean aquaculture, constitutes a threat to management and 

aquaculture of this species [12]. Bateman et al. 2012 showed that H. gammarus can develop 

WSSV infections after feeding with WSSV-positive supermarket-derived shrimp [13]. 

Research on molecular interactions between the lobster and its pathogens can aid in 

management of the diseases affecting lobster fisheries and aquaculture, improving 

sustainability of these actives while protecting lobster populations in the marine ecosystem.  

Molecular research on H. gammarus, and other lobster species, has been scarce. One of the 

major hurdles is the lack of genomic information in public databases, including DNA and 

protein sequences. However, with development of next-generation sequencing technologies 

it is now possible to generate such data at affordable cost. We used Illumina HiSeq 2500 

RNA-sequencing to sequence, assemble and quantify the lobster transcripts expressed 
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across nine tissue types. This dataset will be an excellent platform for future studies on H. 

gammarus facilitating the molecular analysis of essential processes including development, 

growth and response to disease. We have investigated the immune system of H. gammarus 

in order to infer its potential responses to pathogens. In previous work we applied Illumina 

HiSeq 2500 RNA-sequencing to assemble a transcriptome for the shore crab Carcinus 

maenas [14]. Bateman et al. 2012 showed that C. maenas is relatively resistant to WSSV 

injection compared to other crustaceans, including H. gammarus [12]. We aimed to 

investigate whether the variation in disease susceptibility could be attributed to differences in 

the immune system of both H. gammarus and C. maenas. Therefore, we characterized and 

compared the components of the immune system and known WSSV interacting molecules 

for both species. Such a description of immune system transcripts should also aid 

identification of host-pathogen interactions between H. gammarus and other pathogens.  

 

5.3 Methods 

5.3.1 Animals and tissues – Work performed by colleagues at Cefas 

Ten individual lobsters (Homarus gammarus) were obtained from a lobster vivier in 

Weymouth, UK (landed and caught from the surrounding area) and placed on ice prior to 

dissecting tissues and organs of interest (including heart, muscle, hepatopancreas, nerve, 

eye, gut, gill, testis and ovary). All tissues and organs were immediately snap-frozen in liquid 

nitrogen prior to sample preparation and analysis. 

All tissues were disrupted by grinding frozen tissue fragments with liquid nitrogen before 

homogenisation with a rotor stator homogeniser in lysis reagent. RNA was extracted using 

Qiagen’s mRNeasy mini kit, with on column DNase digestion, according to the 

manufacturer’s instructions. RNA quality was measured using an Agilent 2100 Bioanalyzer 

with RNA 6000 nano kit (Agilent Technologies, CA, USA). cDNA libraries for each individual 

were constructed using 1.0 μg of RNA. Four replicates were used for each tissue, including 

two males and two females (except for gonad tissue, where four same sex samples were 

sequenced). ERCC Spike-In control mixes (Ambion via Life Technologies, Paisley, UK) were 

added to control for technical variation during sample preparation and sequencing, and 

analysed using manufacturer’s guidelines. mRNA purification was performed via poly (A) 

enrichment using Tru-Seq Low Throughput protocol and reagents (Illumina, CA, USA). 

Finally, cDNA libraries were constructed using Illumina’s TruSeq Stranded mRNA Sample 

Preparation kit. Each sample was labelled with a unique barcode sequence to enable 
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multiplexing of samples across three lanes. All libraries were diluted to 10nM and sequenced 

on an Illumina HiSeq 2500 with the 2 × 100 bp paired-end read module. 

 

5.3.2 Data pre-processing and de novo transcriptome assembly 

The quality of the sequencing data was assessed with FastQC v 0.10.1 [15]. After this 

assessment the reads were pre-processed in order to remove any remaining adapter 

sequences and reduce low confidence information. The paired-end libraries were trimmed by 

Trimmomatic v 0.32 [16] with the following settings: removal of Illumina adapters, removal of 

the first 12 bases, removal of the last 3 bases, removing bases with low quality based on a 

sliding window of 4 and minimal Phred quality of 20 and applying a minimal remaining length 

of 25. De novo assembly was performed with paired-end reads where both mates in a pair 

passed the quality thresholds. Sequencing reads from all tissues were combined and used 

for de novo assembly with the Trinity assembler v 2.0.6 [17]. Trinity settings were optimized 

based on contig count and length distribution statistics. Ultimately Trinity was run with a k-

mer of 25 and requiring minimal k-mer coverage of 10. After assembly, transcripts were 

clustered with CD-HIT-EST v 4.6 using default parameters, to reduce redundancy [18, 19]. 

The number of contigs, contig lengths, N50 and other assembly statistics on the resulting 

assembly were derived through QUAST v 2.2 [20].  

 

5.3.3 Transcriptome annotation 

Annotation of the de novo transcriptome was achieved through the Trinotate suite v. 2.0.1. 

Within the Trinotate suite, BLASTx 2.2.28+ [21] was used to identify sequence similarities 

between H. gammarus transcripts and the UniProt/SwissProt database. The proteins 

encoded by the transcripts were identified through TransDecoder v.2.0.1 [22] and their 

sequences were compared to the UniProt/SwissProt data with BLASTp 2.2.28+ [21]. 

Conserved domains in the protein sequences were analysed through HMMER 3.1.b2 [23]  in 

combination with the Pfam domain database (version 28.0) [24]. Transmembrane regions in 

protein sequences were predicted with TMHMM-2.0c [25] and identification of potential 

signalling peptides was performed through SignalP v.4.1 [26]. The output of these programs 

was combined into a Trinotate annotation report, applying a BLAST e-value threshold of 1e-

5. Outside Trinotate, the transcripts, and their corresponding predicted protein sequences, 

were compared to the NCBI non-redundant (nr) database using BLASTx 2.2.28+ and 

BLASTp 2.2.28+ with an e-value threshold of 1e-5, retaining the top 10 hits. The presence of 

highly conserved core eukaryotic genes was tested with CEGMA v2.5 [27]. Transcripts were 

annotated with Gene Ontology functional annotations based on Blast2GO PRO (Sept. 2015) 
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[28] using the results of BLASTx to nr. Finally, taxonomic classifications of the transcripts 

were determined and visualized using MEGAN 5.10.4 [29], and transcripts that did not 

annotate to the metazoan taxon were removed from the transcriptome assembly.  

 

5.3.4 Transcriptome expression and differential expression analysis 

The reads from each individual sample were mapped to the transcriptome, including the 

non-metazoan transcripts in order to not alter the alignment, using bowtie2 v. 2.2.6 [30]. 

From this alignment the expression of transcripts was derived by RSEM 1.2.21 [31], 

obtaining values in transcripts per million (TPM) and Fragments Per Kilobase of transcript 

per Million mapped reads (FPKM). Tissue-specific differentially-expressed genes and 

transcripts were derived by comparing a single tissue to all other tissues, the latter were 

treated as biological replicates. Differential expression calculation was performed with the 

edgeR package v. 3.4.2 [32]. Only transcripts/genes with a minimal count of 10 TPM across 

all samples were considered in DE calculations. Genes/transcripts with an FDR below 0.05 

were considered differentially expressed. Principal component analysis was performed on 

transcripts counts on log10(FPKM+1) values, including all transcripts accepted for DE 

calculations. The lists of differentially-expressed genes for each tissue were analysed for 

enrichment of Gene Ontology categories using Blast2GO® PRO (Sept. 2015), terms with an 

FDR below 0.05 were considered significantly enriched.  

 

5.3.5 Pathway analysis and comparative genomics 

KEGG ontology groups were assigned to assembled transcripts using the KEGG Automatic 

Annotation Server (KAAS) web service, using bi-direction best hit [33]. The same server was 

employed to produce the pathway visualizations to show coverage of components by C. 

maenas, H. gammarus or both species (C. maenas data from Verbruggen et al. 2015 [14]). 

The components of the immune system pathways were identified through a custom R script 

(Supplementary file S1). The script included an NCBI protein database search, a tBLASTn 

search to the transcriptome and subsequent result filtering based on taxonomic distance. 

The results of the script were examined to reduce redundancies and remove unintended 

results from the NCBI protein database search. Phylogenetic analysis was performed in 

MEGA 6.06. The protein sequences for the trees were derived from the NCBI protein 

database and the protein sequences of the open reading frames in H. gammarus and C. 

maenas (identified by TransDecoder). Multiple-sequence alignments were produced using 

ClustalW in MEGA6.06. Phylogenetic trees were generated using the maximum likelihood 

algorithm and tested with 250 bootstrap replications, a Jones-Taylor-Thornton substitution 
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model and Nearest-Neighbor-Interchange Method for tree inference as was default in MEGA 

6.06 defaults.  

5.4 Results and discussion 

5.4.1 Sequencing and pre-processing 

To generate the H. gammarus transcriptome, isolated RNA from nine tissues, with four 

individuals representing each tissue, was sequenced on the Illumina HiSeq 2500 platform. 

Sequencing delivered a total of 1,295,369,286 reads across the 36 samples. After quality 

filtering a total of 1,170,279,158 reads were retained with an average of 32,507,754 per 

sample.  The details of the sequencing data generated across all the samples are presented 

in Supplementary File S2. 

5.4.2 De novo assembly 

In order to generate a high quality de novo transcriptome for H. gammarus, sequencing data 

from all samples were combined together during assembly to improve coverage of all 

transcripts in this species, including those expressed only in certain tissues. After assembly 

the final transcriptome encompassed 106,498 transcripts with a total length of 117,379,008 

bp and a GC content of 41 %. In total 31,824 transcripts had a length over 1,000 bp, ranging 

up to a length of 24,324 bp for the largest transcript assembled, and the N50 was calculated 

to be 2,648 (see Table 1).  

Table 1 De novo assembly statistics 

Assembly statistic Value 

Contigs (>= 200 bp) 106,498 

Contigs (>= 1000 bp) 31,824 

Total length 117,379,008 

GC % 41.34 

N50 2,648 

N75 1,377 

L50 11,077 

L75 24,184 

 

The presence of strongly conserved genes in a genome or transcriptome can be a good 

indicator of quality, and absence of a large fraction of such genes should arouse concerns 

about the quality of the assembly [27]. The presence of 248 conserved eukaryotic genes in 

the de novo transcriptome was assessed in CEGMA [27]. In the H. gammarus transcriptome 

99.6 % of the conserved genes were identified, with only a single core gene missing: 

KOG2948 (Predicted metal-binding protein). Additionally, near-universal single-copy 
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orthologues from OrthoDB were compared to the transcriptome using BUSCO [34]. The 

orthologues from the arthropod lineage, 2,675 in total, were selected for the search. Out of 

these, 83 % were identified completely, 22 % of which were duplicated, and 5.4 % were 

fragmented, and there were 303 BUSCO groups missing from the assembly (Table 2). 

Together these results show that the H. gammarus transcriptome contains nearly all core 

genes, strengthening confidence in its quality. 

Table 2 BUSCO results 

BUSCO  Count 

Complete Single-copy BUSCOs 1624 (61 %) 

Complete Duplicated BUSCOs 602 (22 %) 

Fragmented BUSCOs 146 (5.4 %) 

Missing BUSCOs 303 (11 %) 

Total BUSCO groups searched 2675 

 

 

5.4.3 Transcript annotation 

The assembled transcripts were annotated at the whole transcript and predicted peptide 

level. Comparing the transcript sequence to the NCBI non-redundant protein database using 

BLASTx resulted in 25,763 annotations. Furthermore, 12,330 were linked to at least one 

Gene Ontology term using BLAST2GO. In total 7,293 transcripts were annotated to KEGG 

Orthologies based on annotations using the KAAS server [33]. Within the H. gammarus 

transcripts, 54,916 open reading frames (ORF) were identified. Within the Trinotate suite 

[35], the peptide sequences were screened for the presence of conserved domains, signal 

peptides and transmembrane regions. We found that 18,924 protein sequences contained at 

least one predicted Pfam domain and 7,548 had predicted transmembrane regions. 

Predicted signalling peptides were identified in 3,265 of the predicted open reading frames. 

The annotation statistics are summarised in Table 3 and the complete annotation report can 

be found in Supplementary File S3.  
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Table 3 H. gammarus transcript annotation statistics 

Input Annotation method Number of annotated transcripts 

Trinity transcripts BLASTx – NCBI nr protein 25,763 (24.2 %) 

Trinity transcripts BLAST2GO 12,330 (11.6 %) 

Trinity transcripts KEGG 7,293 (6.8 %) 

Trinity transcripts TransDecoder ORF finder 54,916 (51.6 %) 

TransDecoder Peptides  BLASTp – UniProt/SwissProt 12,453 (22.7 %) 

TransDecoder Peptides Pfam 18,924 (34.5 %) 

TransDecoder Peptides SignalP 3,265 (5.9 %) 

TransDecoder Peptides TMHMM 7,548 (13.7 %) 

 

5.4.4 Taxonomy 

Next generation sequencing datasets can produce contaminating sequences existing within 

assembled transcriptomes. For example, some of the RNA could have been isolated from 

bacteria, fungi and viruses within H. gammarus or even on the kits used in the laboratory 

[36]. It is thus desirable to remove transcripts with questionable origin. The BLASTx to NCBI-

nr results were uploaded in MEGAN5 in order to illustrate the distribution of likely sequence 

origin across various taxa. Figure 1 shows a partially collapsed taxonomic tree with 

transcripts counts. The tree shows that most transcripts with taxonomic annotation map 

along the metazoan, arthropod, Crustacea lineage. There is one artificial sequence which 

shows that even with pre-processing a complete removal of sequence adapters was not 

achieved. Furthermore, there are several sequences that have a bacterial or viral origin. A 

reduced transcriptome was produced that encompasses only transcripts mapping to the 

metazoan taxa (23,815 transcripts in total) in order to remove the potential contamination by 

organisms living within the lobster tissues sequenced or the sequencing kits and hardware. It 

has to be noted that this process would remove previously unidentified sequences from H. 

gammarus that bear no resemblance to previously annotated sequences in NCBI-nr (such 

transcripts would be present in the ‘No Hits’ taxon in Figure 1). 
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Figure 1 MEGAN5 Taxonomic tree with transcript counts. Numbers illustrate the number of transcripts representing each taxonomic group. Within the metazoan taxon, the 

Pancrustacea represented the largest taxonomic group 
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5.4.5 Tissue distribution of transcript expression  

The expression of transcripts in every tissue sample was estimated through RSEM [31]. The 

expression of transcripts ranged between 0 to over two million FPKM for some transcripts in 

a tissue. Figure 2 shows the range of expression values and the squared coefficient of 

variation (CV2) across expression levels. At low and high FPKM values CV2 increases, while 

it is more stable at intermediate transcript expression. High variation is often observed in 

highly expressed transcripts and at low expressed transcripts the CV2 calculations becomes 

sensitive to small variations in the mean expression. The top 10 highest expressed 

transcripts for every tissue are summarized in Supplementary File 3 and the highest 

expressed transcript in Table 4. There are several transcripts that appear amongst the 

highest expressed in multiple tissues. For example, the transcripts ‘TR36398_c1_g1_i1’ 

(elongation factor-1 alpha), ‘TR1499_c0_g1_i1’ (elongation factor 2), ‘TR31500_c0_g1_i1’ 

(clottable protein) and ‘TR41301_c3_g1_i1’ (actin), ‘TR31683_c0_g1_i1’ (polyA-binding 

protein) are represented in at least five tissues. The function of the proteins encoded by 

these transcripts can be placed in the ‘housekeeping’ category; therefore it is no surprise 

that they are found in several tissues. Transcripts that are only found in the top10 of a single 

tissue would be of more interest and related to the tissue function. In the gut tissue chitin 

binding protein is highly expressed, which is related to the presence of the peritrophic 

membrane, a protective structure in invertebrate midguts [37]. In the muscle tissue 

transcripts coding for myosin, ‘TR41401_c4_g1_i2’ myosin heavy chain type 1, and other 

muscle related proteins are predominant. However, the highest expressed transcript in this 

tissue type is arginine kinase, which is related to the high demand for energy. Interestingly, 

the arginine kinase transcript is not represented in the transcriptome filtered for metazoan 

sequences. The transcript ‘TR4625_c0_g1_i1’ has the highest sequence homology to 

arginine kinase of H. gammarus (Genbank P14208.4), but on the MEGAN5 tree it is 

represented on the ‘Eukaryota’ node and therefore not included in the metazoan 

transcriptome. This indicates that filtering for metazoan sequences through MEGAN5 is not 

optimal and H. gammarus transcripts can be undesirably excluded. Due to similarities in 

tissue function the highest expressed transcripts in the heart tissue resemble the muscle 

tissue. Again arginine kinase shows the highest expression, followed by other energy related 

transcripts like NADH dehydrogenase and muscle fibre proteins like tropomyosin.
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Figure 2 Transcript expression variations. Squared coefficient of variation at various levels of expression. Left: includes transcripts that are 

expressed in every tissue and have at least a summarized FPKM over 10 across all tissues. Right: includes transcripts of likely metazoan origin. 
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Table 4 Highest expressed transcript per tissue 

All 

Tissue Transcript Avg. FPKM Annotation 

eye TR18259_c0_g1_i1 984712.0 No significant similarity 

gill TR31500_c0_g1_i1 102903 Hemolymph clottable protein 

gonad_F TR20798_c2_g1_i1 2077837.25 Hypothetical protein 

gonad_M TR20798_c2_g1_i1 1046796.75 Hypothetical protein 

gut TR13506_c0_g1_i1 70281.5 Peritrophic membrane chitin binding 

protein 

heart TR4625_c0_g1_i1 331119.75 Arginine kinase 

hepatopancreas TR39501_c0_g1_i2 618815 Hemocyanin 

muscle TR4625_c0_g1_i1 1196705.5 Arginine kinase 

nerve TR31500_c0_g1_i1 161152.5 Hemolymph clottable protein 

Metazoan 

Tissues Transcript Avg. FPKM Annotation 

eye TR29785_c0_g1_i1 166819.75 hypothetical protein  

[Macrobrachium nipponense] 

gill TR31500_c0_g1_i1 102903 Hemolymph clottable protein 

gonad_F TR36398_c1_g1_i1 41172 Elongation factor 1A 

gonad_M TR36398_c1_g1_i1 77736.25 Elongation factor 1A 

gut TR13506_c0_g1_i1 70281.5 Chitin binding  

heart TR40601_c0_g2_i1 148572.25 NADH dehydrogenase 

hepatopancreas TR39501_c0_g1_i2 618815 Hemocyanin 

muscle TR41401_c4_g1_i2 802680.25 Myosin heavy chain 

nerve TR31500_c0_g1_i1 161152.5 Hemolymph clottable protein 

 

5.4.6 Differential gene expression 

In order to identify differentially expressed transcripts for a tissue, the samples of that 

tissue were compared to the remaining samples. The remaining samples represent a 

wide range of tissues, thus function as a background to which each tissue is 

compared. The number of differentially expressed transcripts in each tissue is shown 

in Table 5, and range from 1,114 in the eye to 11,472 in the testis. The latter number 

is large compared to the other samples as the second largest is hepatopancreas with 

around half that number of DE transcripts. There was also a higher degree of 

variation amongst transcripts in the testis, in particular for transcripts ranging 

between 1,000 and 10,000 FPKM (see Figure 2). However, investigating the 

distribution of the average expression of differentially-expressed transcripts in each 

tissue showed no peculiarities in the male gonad tissue, thus this increase in 

variation within any FPKM region was not responsible for the inflated DE count 

(Figure S 1). It is possible that the relatively inflated DE transcript count is caused by 
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outlier samples, e.g. a particular testis sample might have been infected with a 

parasite which impacts expression values. The first two components of a principal 

component analysis (PCA) on transcript expression, plotted in Figure 3, did not show 

clear outliers. Samples from identical tissues all clustered together, with the 

exception of one of the nerve samples. The PCA plot follows the DE analysis in 

respect to the male gonad and hepatopancreas tissues showing the largest 

deviations from the other samples. The expression values of transcripts do show that 

the male gonad tissue had the largest number of expressed transcripts and also the 

largest number of exclusively expressed transcripts (over 5,000; see Table S 1). The 

latter are probably responsible for the large difference in total differentially expressed 

transcripts as compared to the other tissues.  

Table 5 differentially expressed genes per tissue 

Tissue DE 

transcripts 

DE transcripts 

metazoan 

eye 1,114 277 

gill 2,034 524 

gonad_F 5,120 1,528 

gonad_M 11,472 3,639 

gut 1,882 313 

heart 2,467 643 

hepatopancreas 6,373 2,068 

muscle 4,679 1,661 

nerve 2,058 385 

 

Figure 3 Principal component analysis of Lobster tissue samples. Principal component analysis 

was performed based on log10 transformed expression values. Left: all transcripts accepted for DE 
analysis. Right: metazoan transcripts accepted for DE analysis.  
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Analysis of over- or under representation of GO terms was conducted in the lists of 

differentially or uniquely expressed transcripts in each tissue, using BLAST2GO [28]. 

It was expected that the overrepresented GO terms align with the function of the 

tissue. The enriched GO terms are summarized in Supplementary File S5. For most 

tissues functionally related GO terms were identified. For example: in the eye GO 

terms enriched included ‘phototransduction’ (FDR = 3.5e-02) and ‘detection of light 

stimulus’ (FDR = 4.19e-02), as well as many terms related to programmed cell death 

of retinal cells. In the gill GO terms enriched related to respiration, e.g. ‘respiratory 

system development’ (FDR = 3.32e-06). Among the list of genes over-expressed or 

unique to female gonad tissue enriched GO terms terms included those related to 

metabolism and transporter activities for various compounds (‘urate metabolic 

process’, FDR 1.85e-02) which can serve to build up reserves for the embryo. In the 

male gonads GO terms related to cuticle (FDR 3.29e-10) and vesicular transport were 

identified (e.g. COPI-coated vesicle, FDR 1.72e-03) which are not related to the 

functions usually associated with the testis. Filtering the DE transcripts in the testis 

by keeping only transcripts that are also expressed in other tissues, results in 

enrichment of terms related to retrograde vesicle transport (COPI-coated vesicles), 

thus similar to the original list of DE transcripts. Vice versa, keeping only DE 

transcripts uniquely expressed in the male gonads showed enrichment for many 

terms (over 300) with trends in transporter activities, cell type differentiation/transition 

and production of hard tissues (cuticle, enamel and hair are listed). All of these are 

not related to H. gammarus testis function. A possible explanation could be the 

presence of a parasite in the male testes, which would have to be confirmed through 

microscopy on the tissue samples. However a repeat BLASTx of these transcripts 

and subsequent analysis through MEGAN5 did not indicate any particular species of 

parasite. GO enrichment of these unique/not-unique transcripts for the testis can also 

be found in Supplementary File S5. Given lack of explanation an experimental error 

cannot be excluded at this point. Transporter activities were particularly over-

represented in the gut (‘transmembrane transporter activity’; FDR = 4.22e-04). The 

heart is a muscle that requires large quantities of energy, and thus many terms 

related to energy generation (‘energy derivation by oxidation of organic compounds’, 

FDR = 9.17e-21) and muscle cells (‘myosin complex’, FDR = 2.32e-04) were found to 

be enriched. For the hepatopancreas enrichment of GO terms related to catabolism, 

including hydrolase and polysaccharide catabolic activity were over-represented 

which relates to the digestive function of this organ. Similarly to the heart, 

differentially expressed transcripts in the muscle samples were functionally enriched 

for cellular components that are part of muscle cells (sarcomere, FDR = 1.66e-20 and 
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contractile fiber FDR = 1.09e-19). Finally, in the nerve enriched GO terms included 

‘voltage-gated sodium channel activity’ (FDR = 7.27e-05), related to generation of 

action potential. Thus, as expected, over-representation of GO terms allowed for the 

identification of functional pathways associated with tissue function for most of the 

tissues analysed, further informing on the molecular mechanisms associated with 

those functions. 

 

5.4.7 Characterisation of the molecular pathways associated with the immune 

system  

Diseases constitute a risk for the management of both aquaculture and wild 

populations of H. gammarus. To study diseases in a species it is fundamental to 

understand the interactions between the host and its pathogens, and this requires 

knowledge of the immune system. The characterization of the immune system further 

develops the available genomics resources for H. gammarus, facilitating disease 

studies in this species. Of particular interest to this thesis are the interactions 

between the immune system and WSSV. Given observations that WSSV can infect a 

broad range of aquatic crustaceans with different levels of pathogenicity and 

susceptibility, ranging from susceptible H. gammarus to relatively resistant C. 

maenas, it was investigated whether such differences are explained by significant 

differences in the immune systems of these species [12]. The immune system of C. 

maenas was studied in my previous work, allowing for comparisons between the 

molecular pathways related to immune defence in the lobster compared to the 

crab[14]. In Verbruggen et al. 2015 [14] KEGG pathways were used to identify the 

presence and absence of immune system components of immune system pathways 

including the toll-like receptor pathway, the immune deficiency (IMD) pathway, the 

JAK-STAT and mitogen activated protein kinase (MAPK) signalling pathways. 

Because viruses often use the endocytosis pathway as a means to enter the host 

cell, this pathway was also compared. The metazoan transcripts of H. gammarus 

were assigned KEGG orthology groups through a KEGG annotation server, resulting 

in 7,293 transcript-KOG relations (30.6 % of all metazoan transcripts – 

Supplementary File S6). Together with the information for C. maenas the same 

server was used to provide overlap comparisons for each pathway. Additionally, 

components of the invertebrate immune system not represented in KEGG pathways 

were identified through filtered BLAST searches.  
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Pattern Recognition Proteins 

Hosts produce (receptor) proteins that are capable of binding pathogen associated 

molecular patterns (PAMP). There are several groups of recognition proteins, each 

specializing in different types of PAMP, including peptidoglycan and 

lipopolysaccharides [38]. A possible exception is Down syndrome cell adhesion 

molecule (Dscam), a molecule that displays highly variable regions and is 

hypothesized to play a similar role to antibodies in members of the Pancrustacea 

clade [39]. Once activated through binding its target, the pattern recognition proteins 

initiate signalling or proteolytic cascades that mediate the host immune response [38, 

40]. Table 6 shows which recognition proteins were identified in the H. gammarus 

transcriptome and whether a counterpart was found in the C. maenas transcriptome. 

Not all significant similarities are shown in Table 6, since there are redundancies and 

unrelated queries. The complete list can be found in Supplementary File S7. 

Whereas the C. maenas transcriptome did not appear to contain peptidoglycan 

recognition proteins (PGRP), the H. gammarus transcriptome might contain such 

transcripts. Transcript TR44312_c0_g1_i1 had a high level of similarity to FreD 

(Genbank: AIE45535.1), a shrimp protein that is hypothesized to act as a PGRP [41]. 

Additionally, transcript TR21885_c0_g1_i1 was similar to the bumblebee PGRP. This 

difference in receptor presence could be indicative of a difference in how both 

species deal with pathogens that display a peptidoglycan molecular pattern. Since 

this is a bacterial PAMP it does not explain difference in WSSV susceptibility, but 

may contribute to interpret putative differences in susceptibility to bacterial 

pathogens.  
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Table 6 Pathogen recognizing proteins in H. gammarus 

Protein H. gammarus  Query e-value Ancestor Found in  

C. maenas 

PGRP TR44312_c0_g1_i1 gi|662179288 FreD 

 [Penaeus monodon] 6.00E-110 Decapoda 

No 

 TR21885_c0_g1_i1 gi|289583706 peptidoglycan 

recognition protein 

 [Bombus ignitus] 4.00E-48 Pancrustacea 

No 

C-type lectin TR45055_c0_g1_i1 gi|558701366 C-type lectin 4 

[Marsupenaeus japonicus] 2.00E-111 Decapoda 

Yes 

 

TR39758_c0_g1_i1 

gi|83595279 C-type lectin 

[Glossina morsitans morsitans] 1.00E-71 Pancrustacea 

Yes 

Dscam 

TR38654_c0_g1_i1 

gi|331031260 down syndrome 

cell adhesion molecule 

[Pacifastacus leniusculus] 0 Astacidea 

Yes 

GNBP 

TR39963_c0_g1_i1 

gi|939841624 Gram-negative 

binding protein gnbp  

[Daphnia magna] 2.00E-80 Crustacea 

Yes 

TECP 

TR41443_c13_g1_i1 

gi|331031262 TEP isoform 1 

[Pacifastacus leniusculus] 0 Astacidea 

Yes 

 

After a pathogen has been recognized, the host immune system will typically illicit a 

response. The response can occur through different mechanisms, e.g. a proteolytic 

cascade leading to melanisation or activation of transcription factors that lead to the 

production of antimicrobial or antiviral proteins. The pathways that mediate these 

mechanisms are central in the innate immune system: the Toll-like receptor pathway, 

the immunodeficiency pathway, the JAK-STAT pathway and the melanization 

pathway.  

Toll-like receptor pathway 

Upon activation of the initial toll-like receptor, the toll-like receptor signalling pathway 

will activate its associated transcription factor, Nf-κb. The activated transcription 

factor subsequently moves to the nucleus where it enhances the expression of genes 

involved in the immune response [38]. The toll-like receptor pathway was 

represented in KEGG and therefore a comparison between H. gammarus and C. 

maenas was made using this pathway as reference (note that KEGG contains 

vertebrate pathways, differences are expected when investigating aquatic 

invertebrates such as crab and lobster). Figure 4 shows the presence and absence 

of components of the toll-like receptor pathway as indicated through KEGG. Most of 
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the components of this pathway are shared amongst both species. However, 

according to the KEGG annotation there are notable absences in the H. gammarus 

transcriptome including the toll-like receptors and NF-κb, which are both instrumental 

in innate immunity. Given that KEGG is constructed using predominantly information 

from vertebrate species, its components are annotated according to similarity to 

sequences from those vertebrate species. Thus in addition to the KEGG pathway a 

manual search for invertebrate TLR-pathway components was performed as was 

done for the recognition proteins. The results in Table 7 show that the proteins of the 

Drosophila melanogaster TLR-pathway, as reported in Kingsolver et al. [38] and Li et 

al. [42], are all present. This includes toll-like receptors and Dorsal, the NF-κb 

homologue. Thus it can be concluded that the TLR-pathway is represented in both 

the lobster and crab transcriptomes, which is not surprising when considering the 

central role this pathway plays in the innate immune system.  

 

Figure 4 KEGG Toll-like receptor signalling pathway. KEGG reference pathway for Toll-like receptor 
signalling pathway (map04620). Proteins are indicated by boxes. Shades indicate presence in H. 
gammarus and C. maenas transcriptomes: present in both transcriptomes (green), present in only H. 
gammarus (orange), present only in C. maenas (purple) and not present in either (white).  
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Table 7 TLR pathway proteins in H. gammarus 

Protein H. gammarus  Query e-value Ancestor Found in 

C. maenas 

spatzle TR38162_c0_g1_i1 

gi|341650466 Spz1 

[Litopenaeus 

vannamei] 7.00E-153 Decapoda 

Yes 

 TR35249_c0_g1_i2 

gi|729056743 spatzle 

[Penaeus monodon] 7.00E-102 Decapoda 

Yes 

Toll-like 

receptor TR19562_c0_g1_i1 

gi|914344131 toll-like 

receptor [Portunus 

trituberculatus] 6.00E-57 Pleocyemata 

Yes 

 TR2891_c0_g1_i1 

gi|914344131 toll-like 

receptor 

 [Portunus 

trituberculatus] 5.00E-134 Pleocyemata 

Yes 

 TR30593_c0_g1_i1 

gi|914344133 toll-like 

receptor  

[Portunus 

trituberculatus] 0 Pleocyemata 

Yes 

pelle TR23620_c0_g1_i3 

gi|826135738 pelle 

[Eriocheir sinensis] 0 Pleocyemata 

Yes 

myd88 TR38896_c2_g1_i1 

gi|530341204 myeloid 

differentiation factor 

[Eriocheir sinensis] 0 Pleocyemata 

Yes 

cactus TR27620_c0_g1_i1 

gi|408366913 cactus 

[Fenneropenaeus 

chinensis] 5.00E-169 Decapoda 

Yes 

dorsal TR20019_c0_g1_i2 

gi|575498409 dorsal 

[Eriocheir sinensis] 0 Pleocyemata 

Yes 

 

Immunodeficiency (IMD) pathway  

Where the toll-like receptor pathway mainly responds to the presence of Gram 

positive bacteria, the IMD pathway focuses on the recognition and response to Gram 

negative bacteria. After recognition, a signal is transmitted through IMD, FADD and 

DREDD which ultimately results in the activation of Relish, a transcription factor of 

the NF-κb family [38]. The KEGG database does not contain the IMD pathway 

because it is only characterized in invertebrates although the tumour necrosis factor 

pathway is considered to be a homologous pathway [43]. IMD pathway members in 

the H. gammarus transcriptome are shown in Table 8, additionally the KEGG 

mapping to the TNF-pathway (hsa04668) is shown in Figure S 2. In the C. maenas 
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transcriptome the only missing member was FADD, but in the H. gammarus there is 

an additional missing gene, the FADD binding partner, Dredd. In the Eriocheir 

sinensis transcriptome FADD was also not reported which is an indication that this 

might a prevalent occurrence amongst aquatic crustacea as compared to hexapoda 

like Drosophila [42]. Protein binding studies based on H. gammarus, C. maenas or E. 

sinensis IMD could reveal whether possible alternatives to FADD exist, or whether 

there is a direct link between IMD and Dredd in these organisms (and other aquatic 

Crustacea).  

Table 8 IMD pathway proteins in H. gammarus 

Protein H. gammarus  Query e-value Ancestor Found in  

C. maenas 

IMD TR33354_c1_g1_i3 gi|523485292 IMD 

[Fenneropenaeus 

chinensis] 

4.00E-52 Decapoda Yes 

FADD - - - - No 

Dredd - - - - Yes 

Tab2 TR38854_c2_g2_i2 gi|914701667 TGF-

beta-activated 

kinase 1 and 

MAP3K7-binding 

protein 2 

[Litopenaeus 

vannamei] 

0 Decapoda Yes 

Tak1 TR34157_c0_g1_i1 gi|167864302 tak1 

[Culex 

quinquefasciatus] 

1.00E-42 Pancrustacea Yes 

 TR34887_c1_g2_i1 gi|167864308 tak1 

[Culex 

quinquefasciatus] 

1.00E-139 Pancrustacea Yes 

IKK TR31700_c1_g1_i1 gi|442628615 I-

kappaB kinase 

epsilon, isoform C 

[Drosophila 

melanogaster] 

0 Pancrustacea Yes 

 TR37566_c2_g1_i1 gi|386765870 I-

kappaB kinase beta 

[Drosophila 

melanogaster] 

1.00E-51 Pancrustacea Yes 

Relish TR32007_c0_g1_i1 gi|846925119 relish 

[Macrobrachium 

rosenbergii] 

0 Pleocyemata Yes 
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JAK-STAT signalling pathway 

The JAK-STAT signalling pathway differs from the IMD and TLR pathways in that it 

does not respond directly to the presence of pathogens, instead it is activated 

through chemical messengers like cytokines. The messenger molecules bind the 

receptor (Domeless in invertebrates) which results in phosphorylation of JAK and 

STAT. The latter translocates to the nucleus and regulates gene expression of target 

genes. Through phosphatases, such as SOCS, and inhibitors, like PIAS, the 

response can be regulated. It is known that the JAK-STAT pathway plays a role in 

WSSV infection [44]. It was shown during WSSV infection of Penaeus monodon that 

the virus can exploit host STAT to promote expression of its own genes (early gene 

ie1) [45]. Furthermore, it was recently shown that the viral WSSV-miR-22 can 

influence the translation of host STAT, thereby reducing its numbers [46]. 

Knockdown of JAK/STAT through siRNA resulted in increased copies of WSSV, 

partly due to a reduction of expression of response proteins like thioester-containing 

proteins [46]. Thus JAK-STAT signalling plays an apparently contradictory role 

through both promoting WSSV gene expression and bolstering the host immune 

response. It should be noted that STAT is not the only transcription factor capable of 

promoting ie1 expression and furthermore its requirement could only be necessary in 

early stages of infection. As infection spreads a disruption of the host immune 

response through STAT repression might be more effective. Since the JAK-STAT 

signalling pathway is well conserved it is no surprise that its components are present 

in both C. maenas and H. gammarus (Table 9).  
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Table 9 JAK-STAT signalling pathway in H. gammarus 

Protein H. gammarus Query e-

value 

Ancestor Found in 

C. maenas 

Domeless 

TR40378_c2_g1_i6 

gi|552331594 domeless 

[Litopenaeus vannamei] 0 Decapoda 

Yes 

JAK 

TR39053_c0_g1_i1 

gi|831252996 Janus kinase  

[Litopenaeus vannamei] 0 Decapoda 

Yes 

STAT 

TR39575_c0_g1_i1 

gi|576250986 signal 

transducer and activator of 

transcription  

[Scylla paramamosain] 0 Pleocyemata 

Yes 

PIAS 

TR35494_c3_g1_i2 

gi|147903229 protein inhibitor 

of activated STAT  

[Ciona intestinalis] 

1.00E-

75 Bilateria 

Yes 

SOCS 

TR31627_c3_g1_i1 

gi|646701115 Suppressor of 

cytokine signaling 5 

 [Zootermopsis nevadensis] 

5.00E-

120 Pancrustacea 

Yes 

 

Response proteins 

The signalling cascade through the IMD, Toll and JAKSTAT pathways results in a 

transcriptional immune response mediated by transcription factors including STAT 

and members of the NF-κB family. One part of this immune response is to increase 

expression of pathogen recognizing proteins like thioester-containing proteins. 

Another part is to generate proteins that are capable of attacking the pathogen e.g. 

anti-lipopolysaccharide factor (ALF) and lysozyme [47]. Such proteins are listed in 

Table 10. In H. gammarus the same group of response proteins was found as in the 

set of predicted proteins of C. maenas. Proteins identified in shrimp were also 

investigated; these are stylicins (from Litopenaeus stylirostris) [48] and penaeidins 

(from Litopenaeus vannamei) [49, 50]. However, there were no transcripts with 

significant sequence similarity to these proteins, either in H. gammarus or in C. 

maenas. Thus it appears that both stylicins and penaeidins are limited to shrimp 

species.  
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Table 10 Response proteins in H. gammarus 

Protein H. gammarus Query e-value Ancestor Found in  

C. maenas 

ALF TR31265_c0_g1_i1 

gi|349502999 anti-

lipopolysaccharide 

factor 

 [Macrobrachium 

rosenbergii] 6.00E-44 Pleocyemata Yes 

Crustin TR25234_c1_g1_i1 

gi|452056154 crustin-

like protein 

[Macrobrachium 

rosenbergii] 3.00E-22 Pleocyemata Yes 

Carcinin TR22441_c0_g1_i1 

gi|187450114 carcinin-

like protein 

[Fenneropenaeus 

chinensis] 

 9.00E-33 Decapoda Yes 

Lysozyme TR34979_c1_g1_i1 

gi|262385514 

lysozyme 

[Procambarus clarkii] 8.00E-40 Astacidea Yes 

iNOS TR34333_c0_g1_i2 

gi|959093568 

inducible nitric oxide 

synthase [Tigriopus 

japonicus] 4.00E-147 Crustacea Yes 

 

Melanization pathway 

The pathways discussed above are involved in the mediation of gene expression. In 

contrast, the melanization pathway acts through proteolytic cascades and its 

components are readily available as zymogens. The activation of PRRs results in the 

processing of the zymogens into active enzymes which eventually lead to functionally 

active phenol oxidase (PO). PO generates melanin which can encapsulate 

pathogens. Furthermore, production of melanin from phenols and quinones 

generates reactive oxygen species that can damage the pathogen. Melanization has 

significant impact on WSSV infection in shrimp (Sutthangkul et al. 2015 [51]), with 

inhibition of PPO activity resulting in higher susceptibility of P. monodon to WSSV. 

Through yeast two-hybrid experiments it was shown that WSSV453 can inhibit the 

activity of PPO activating enzyme (PPAE), thereby decreasing the effectiveness of 

this immune system pathway. As in P. monodon, all of the players in the melanization 

pathway have counterparts in H. gammarus and C. maenas (Table 11). This shows 
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that, like other immune pathways, melanization is well conserved within 

invertebrates.  

Table 11 Melanization pathway in H. gammarus 

Protein H. gammarus Query e-value Ancestor Found in  

C. maenas 

lozenge TR39957_c3_g1_i1 

gi|607367383 

Protein lozenge 

[Cerapachys biroi] 2.00E-90 Pancrustacea 

Yes 

mp1 TR39920_c0_g1_i4 

gi|28571479 

melanization 

protease 1, isoform 

A  

[Drosophila 

melanogaster] 

 3.00E-61 Pancrustacea 

Yes 

peroxynectin TR33034_c0_g1_i1  

 peroxinectin 

[Hydra vulgaris] 4.00E-41 Eumetazoa 

Yes 

PPAE TR39910_c2_g1_i1 

gi|414151636 

prophenoloxidase 

activating enzyme 

[Litopenaeus 

vannamei] 5.00E-150 Decapoda 

Yes 

PPO TR37035_c0_g1_i1 

gi|448918007 

prophenoloxidase 

[Callinectes 

sapidus] 0 Pleocyemata 

Yes 

serpent TR36556_c2_g2_i7 

gi|270008081 

serpent  

[Tribolium 

castaneum] 3.00E-30 Pancrustacea 

Yes 

serpin TR29171_c0_g1_i1 

gi|764399009 

serine proteinase 

inhibitor-2 

[Eriocheir sinensis] 0 Pleocyemata 

Yes 

sp7 TR39920_c0_g1_i4 

gi|665393450 

serine protease 7, 

isoform F 

[Drosophila 

melanogaster] 8.00E-46 Pancrustacea 

Yes 
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RNAi pathway 

RNA interference (RNAi) is one of the major antiviral pathways within the invertebrate 

innate immune system [52]. Small RNA molecules can regulate the translation of 

proteins and this strategy can be employed by the host, for example for the fine 

tuning of the activity of the immune system or through directly targeting mRNA of 

viral origin. Similarly, a virus can influence expression of the host genes, e.g. inhibit 

the immune system or maintaining a cellular environment conducive to viral 

replication. The role of miRNAs in WSSV infection has been reviewed in Verbruggen 

et al. 2016 [53]. WSSV expresses several miRNAs that regulate either its own gene 

expression or that of the host. In both cases the virus requires host proteins from the 

RNAi pathway for synthesis of its own miRNAs, in particular Drosha and Dicer-1 [54]. 

Thus for successful WSSV infection in H. gammarus, the presence of at least these 

two proteins would be a requirement. Similar to the other pathways of the immune 

system, most known members of the RNAi pathway are indeed found in the H. 

gammarus transcriptome. A notable absentee is Dicer-2, a protein that is involved in 

the siRNA route in RNAi. This could indicate that Dicer-1 plays the role of Dicer-2 in 

H. gammarus as occurs in Homo sapiens [55]. This is not the case in C. maenas and 

D. melanogaster where Dicer-2 transcripts were found, and in the latter case shown 

to have separate function [55]. Since these species are closely related to H. 

gammarus more research is required to establish the roles of Dicer in the lobster 

before firm conclusions can be drawn.  
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Table 12 RNAi pathway components 

Protein H. gammarus Query e-value Ancestor Found in  

C. maenas 

TRBP TR26624_c0_g1_i2 

gi|444174849 TAR 

RNA-binding protein 

1  

[Penaeus monodon] 0 Decapoda 

Yes 

DGCR8 TR38870_c0_g1_i1 

gi|941117436 

Microprocessor 

complex subunit 

DGCR8  

[Daphnia magna] 4.00E-147 Crustacea 

Yes 

Drosha TR26624_c0_g1_i3 

gi|954619683 

Ribonuclease 3 

[Trichinella sp. T8] 7.00E-85 Ecdysozoa 

Yes 

AGO1 TR40750_c4_g1_i1 

gi|283827858 

argonaute 1 

[Marsupenaeus 

japonicus] 0 Decapoda 

Yes 

AGO2 TR41530_c2_g2_i1 

gi|563729913 

argonaute2 

 [Penaeus monodon] 3.00E-120 Decapoda 

Yes 

Dicer1 TR27435_c0_g1_i1 

gi|17738129 Dicer-1 

[Drosophila 

melanogaster] 0 Pancrustacea 

Yes 

Dicer2 - -  - - Yes 

 

Endocytosis pathway 

Whilst not directly associated with the immune system, the endocytosis pathway is 

nevertheless of significant importance to viral infections because most viruses 

employ the endocytosis pathway as their gateway into the host cells [56]. This is 

generally accomplished through binding of proteins on the host cell surface to the 

virus, followed by endocytic uptake (usually Clathrin- or caveolar-mediated 

endocytosis) [56]. Once inside the vesicles, the virus is transported closer to its 

destination, the host nucleus. WSSV has been shown to use this strategy in 

successful infections and several interactions between host receptors and viral 

proteins have been identified, for example interactions between integrin and VP26 in 

L. vannamei (see Verbruggen et al. 2016 [53] for more a detailed discussion on these 

interactions). Further experiments involving endocytosis inhibiting chemicals have 
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shown that these interactions can result in uptake through Clathrin-mediated 

endocytosis for cellular entry [57]. Lastly, an interaction between VP28 and Rab7, an 

important regulator in the endocytosis pathway, has been identified. This could be a 

trigger that aids WSSV in escaping from the endosomes in order to avoid 

degradation in lysosomes and to continue toward the nucleus [53].  

The different endocytic pathways and the subsequent vesicle transport and 

maturation systems are shown in Figure 5. Both H. gammarus and C. maenas have 

a good coverage of the components of this system according to KEGG annotation. 

As compared to C. maenas, more components were identified for H. gammarus, 

most notably, caveolin was identified in H. gammarus but not in C. maenas (although 

a transcript with some similarity a caveolin protein sequence was identified [14]). This 

pathway can be used in gene expression studies to identify whether the host cell 

transport mechanisms are adjusted in response to viral presence, either under 

direction of the host or the virus.  

 

Figure 5 KEGG endocytosis pathway. KEGG reference pathway for endocytosis (ko04144). Proteins 

are indicated by boxes. Shades indicate presence in H. gammarus and C. maenas transcriptomes: 
present in both transcriptomes (green), present in only H. gammarus (orange), present only in C. 
maenas (purple) and not present in either (white). 
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5.4.8 Comparative genomics of WSSV receptors  

The immune systems of H. gammarus and C. maenas are similar and share the 

majority of their components. Therefore, it is difficult to relate differences in the 

sequence or presence of specific genes to susceptibility to infection by WSSV. The 

factors that can influence disease susceptibility are multiple and complex. These 

include the interaction between WSSV and host proteins, particularly those at the 

initial stages of infection. As was mentioned before, WSSV requires binding to cell 

surface receptors in order to initiate Clathrin-mediated endocytosis. Experiments in 

shrimp have shown that the host integrin and lectin proteins can serve as the 

receptor for WSSV [58, 59]. Once taken up the virus has to escape the endosomes in 

order to avoid degradation in lysosomes [56]. At this stage another well documented 

interaction between WSSV and host proteins can take place. Rab7, an important 

regulator on late endosomes (Figure 5), has been shown to interact with VP28 [60]. 

This interaction could be related to the virus leaving the late endosomes, attaching 

itself to late endosomes for perinuclear transport or small amounts of VP28 could be 

present on the host cell surface acting as a viral receptor [60]. Thus there are three 

host proteins that are important for the initial infection stages of WSSV. The 

sequence and configuration of these receptors determines whether the viral proteins 

can bind and differences in these can affect binding either beneficially or 

detrimentally, explaining some of the differences in susceptibility observed between 

hosts [61, 62]. In line with this the sequences of the WSSV receptors for H. 

gammarus, C. maenas and other crustaceans were aligned and compared in a 

phylogenetic tree.  

Prior to comparing the viral receptors, it is necessary to understand the phylogeny of 

crustaceans. It can be expected that crustacean species that are further away on the 

phylogenetic tree would have a larger difference in sequence. Koenemann et al. 

2010 studied arthropod phylogeny based on sequences for 16S rDNA, cytochrome C 

oxidase subunit I and the nuclear ribosomal gene 18S rDNA of 88 arthropod species 

[63]. Their work showed differences according to the method chosen for the analysis 

but the Decapoda order appears relatively stable across all trees (see Figure 6), and 

the phylogenetic distance between crabs (Carcinus) and lobsters (Jasus, Hommarus 

is not shown) is smaller than crabs compared to shrimps (Penaeus). A phylogenetic 

analysis of cytochrome C oxidase subunit I based on the H. gammarus and C. 

maenas transcriptromes (Chapter 3) is shown in the Supplement to this chapter. 
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Figure 6 Decapod phylogenic trees. Cropped phylogenetic trees from Koenemann et al. 2010 [63]. 

Trees were produced from five separate runs with different software tools and settings. Shrimps are 
represented by Penaeus, crabs by Carcinus and lobsters by Jasus.  

 

Figure 7 Maximum Likelihood phylogenetic tree for crustacean intregrin.  A phylogenetic tree was 

generated for integrin sequences from H. gammarus (orange), C. maenas (purple) and available 
crustacean sequences from NCBI, hexapoda were added as outgroup. The tree was generated in 
MEGA 6.06. There were two possible peptide sequences for H. gammarus, both derived from transcript 
‘TR40213_c2_g2_i3’. The C. maenas peptide sequence is based on transcript ‘comp89839_c0_seq1’. 
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Figure 8 Maximum Likelihood phylogenetic tree for crustacean lectins. A phylogenetic tree was 
generated for lectin sequences from H. gammarus (orange), C. maenas (purple) and available 
crustacean sequences from NCBI, hexapoda were added as outgroup. The tree was generated in 
MEGA 6.06. The H. gammarus peptide sequence is based on transcript ‘TR33161_c0_g1_i1’. The C. 
maenas peptide sequences are based on: lectin 1 ‘comp82774_c0_seq1’, lectin 2 by 
‘comp87522_c4_seq1’ and lectin 3 by ‘comp75697_c0_seq1’. The blue box indicates the lectin that was 
identified to aid in WSSV infection [59].  
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Figure 9 Maximum Likelihood phylogenetic tree for crustacean rab7. A phylogenetic tree was 
generated for rab7 sequences from H. gammarus (orange), C. maenas (purple) and available 

crustacean sequences from NCBI, hexapoda were added as outgroup. The tree was generated in 
MEGA 6.06. The H. gammarus peptide sequence is based on transcript ‘TR37571_c0_g1_i1’. The C. 
maenas peptide sequence is based on transcript ‘comp81392_c0_seq1’. 

For the viral receptors, transcripts with significant tBLASTn homology to these 

receptors were selected. The peptide sequences of the open reading frames that 

corresponded to the viral interaction proteins were used in MEGA to generate the 

phylogenetic trees. In the phylogenetic tree for the integrin receptor (Figure 7), 

instead of grouping with the crab, the H. gammarus transcripts show a closer 

relationship to L. vannamei. This contrasts to the trees in Figure 6. It is indicative of a 

difference in evolutionary rate for integrin compared to 16SrDNA, cytochrome C 

oxidase subunit I and 18S rDNA.  

There are many members of C-type lectin family across the invertebrates. The 

phylogenetic tree for the lectins identified in H. gammarus and C. maenas illustrate 

this diversity (Figure 8). For H. gammarus only a single lectin was identified whereas 

three were found in C. maenas. The H. gammarus lectin is once again grouped 

alongside the lectins from L. vannamei in the group that also contains C. maenas 

lectin 1. The other C. maenas lectins each appear to be members of separate 

families, each in turn showing homology to other crab/crayfish/shrimp lectins. The 

lectin that was identified to have an interaction with the virus and promote its infection 

groups with C. maenas lectin 2 family, but does boast large difference in sequence 

[59].  
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The Rab7 tree (Figure 9) shows that this gene is particularly well conserved amongst 

invertebrates, indicating its importance to the fundamental endocytosis pathway. The 

aquatic crustaceans group together with nearly all shrimp species showing identical 

sequences. The H. gammarus and C. maenas rab7 have slight differences in 

sequence, six amino acids across the protein sequence. It is noteworthy that this is 

the only three wherein the H. gammarus and C. maenas sequences group together, 

indicating that more stronger conserved sequences align better with the consensus 

from Koenemann et al. 2010 [63]. 

It is interesting to see that the WSSV receptors of H. gammarus are very similar to 

those identified in L. vannamei. Given the trees presented in Koenemann et al. 2010 

[63] one would expect a larger distance between these species. This might be 

interpreted as a possible indication of different evolutionary rates, and thus a 

selective pressure, for WSSV receptors in crustaceans. Based on current data one 

can only speculate on the nature of this selective pressure but there are hypotheses 

that WSSV is originally derived from a virus that infected crab [64]. Given current 

observations it could be that the disease caused by this precursor of WSSV is the 

basis of this pressure, but this requires further investigation.  

 

5.5 Conclusion 

 

The European lobster, H. gammarus, is an important economic species with limited 

genomic resources available. In this body of work a de novo assembled 

transcriptome for this species based on RNA-sequencing data from nine tissues was 

produced. The transcriptome consisted of 106,498 transcripts out of which 25,763 

(24.2 %) showed similarity to known sequences. Nearly all well-conserved genes 

were identified in the transcriptome and differentially-expressed genes related to 

tissue function. In order to enable studies on host pathogen interactions and disease, 

including viral pathogens like WSSV, we characterized the immune system and 

showed the presence of most known components in the toll-like receptor, IMD, JAK-

STAT, RNAi and endocytosis pathways. We compared the coverage of the immune 

system to that of the shore crab, C. maenas, in order to derive whether susceptibility 

to WSSV infection could be attributed to significant differences therein. The immune 

system pathways appeared very similar in both species, often containing the same 

components. The most significant difference is that a PGRP was identified in H. 
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gammarus but lacking in the C. maenas transcriptome. This could be relevant in the 

case of bacterial infections, but is insufficient in explaining the difference in WSSV 

susceptibility since the virus does not contain peptidoglycan. Another difference is 

the absence of Dredd in the IMD pathway of H. gammarus, which is another factor 

whose principal task involves antibacterial defence. Perhaps more relevant to the 

WSSV pathogen are differences in interacting proteins between virus and host. We 

generated phylogenetic trees for three known WSSV-interacting proteins containing 

sequences of H. gammarus, C. maenas and proteins from susceptible shrimp 

species. The tree for Rab7, a highly conserved protein involved in regulation of 

endocytosis which interacts with WSSV VP28, showed that the H. gammarus Rab7 is 

more similar to those of the susceptible species. I hypothesise that the differences in 

WSSV pathogenicity could thus related to the Rab7 receptor. However, verifying this 

hypothesis would require more detailed knowledge of the interaction between Rab7 

and VP28 in order to derive the important domains/amino acids involved, and how 

binding affinity between WSSV and RAB7 related to pathogenicity.  

The current dataset points to differences in the Rab7 receptor as possible 

explanation for diverse pathogenicity of WSSV in aquatic crustacean species. 

However it should to be noted that the current dataset is limited in its ability to explain 

differences in pathogenicity. For example expression changes upon pathogen 

exposure were not determined as part of this study and information on miRNAs that 

often play an important role in crustacean responses to viruses was not measured. 

Infection studies of H. gammarus exposed to WSSV and comparative analysis of the 

responses to WSSV with other susceptible and resistant species would allow for a 

more in-depth understanding of the molecular pathways determining susceptibility to 

this important pathogen in the future. 
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5.6 Supplementary Tables, Figures and Topics 

 

Figure S 1 DE transcript FPKM distribution. Distribution of gene expression values, in FPKM, per 

tissue.  

Table S 1 Expression of transcripts in tissues. 

Tissue Total number of 

transcripts 

expressed in at 

least 1 sample 

Number of 

transcripts only 

expressed in this 

tissue 

Total number of 

transcripts 

expressed in at 

least 1 sample 

(metazoan)  

Number of 

transcripts only 

expressed in 

this tissue 

(metazoan) 

All tissues 106,498  23,815  

eye 53,382 593 14,625 132 

gill 57,640 958 14,947 185 

gonad_F 55,741 1,133 14,981 221 

gonad_M 68,793 5,792 18,556 1,288 

gut 57,034 853 14,355 121 

heart 54,502 620 14,133 98 

hepatopancreas 46,691 633 12,844 123 

muscle 46,988 604 13,319 100 

nerve 58,104 901 15,054 155 
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Figure S 2 KEGG TNF pathway. KEGG reference pathway for the TNF pathway (hsa04668). Proteins 
are indicated by boxes. Shades indicate presence in H. gammarus and C. maenas transcriptomes: 
present in both transcriptomes (green), present in only H. gammarus (orange), present only in C. 
maenas (purple) and not present in either (white). 

 

Phylogenetic analysis based on transcriptome sequences for H. gammarus 

and C. maenas.  

Koenemann et al. 2010 [63] presented an extensive analysis of arthropod phylogeny 

based on 18SrDNA, 16S rDNA, and cytochrome c oxidase I (COI). Their data was 

derived from PCR amplification and sequencing of a wide range of arthropod 

species. To see whether similar results could be obtained through analysis of 

sequences in the transcriptoms from Chapter 3 (C. maenas) and Chapter 5 (H. 

gammarus) we performed a phylogenetic analysis for COI. 18SrDNA and 16SrDNA 

could not be identified since ribosomal RNA is depleted during RNA isolation (see 

methods).  

C. maenas COI and H. gammarus COI were identified using the sequences obtained 

by Koenemann et al. 2010 [63] as query for a BLASTN search to the transcriptomes. 

Searches identified one potential COI transcripts in C. maenas 

(comp90149_c3_seq1) and one in H. gammarus (TR37622_c1_g1_i1). Since the 

alignments in Koenemann et al. 2010 were performed on partial sequences, the 
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same partial sequences were retrieved for C. maenas and H. gammarus. For 

example, in the C. maenas transcript only bases 3936 – 3456 covered the C.maenas 

sequence. A maximum likelihood phylogenetic tree (Nearest-Neighbour-Interchange 

withTamura-Nei model and 500 bootstrap iterations), was generated in MEGA 6.06.  

 

Figure S 3 Crustacean phylogenetic tree of Cytochrome Oxidase Subunit I. Phylogenetic tree 

generated by MEGA 6.06. Sequences derived from Koenemann et al. 2010 [63] and Chapter 3 (C. 
maenas: comp90149 c3 seq1) and Chapter 5 (H. gammarus: TR37622 c1 g1 i1). 

The sequence alignment showed a sequence identity > 99% for both the C. maenas 

and H. gammarus transcripts as compared to the sequences from Koenemann et al. 

2010. Therefore it can be expected that any differences in the tree are the result of 

choices made in the multiple sequence alignment and tree assembly process. The 

tree in Figure S 3 shows differences to those presented in Figure 6. For example, C. 

maenas is closes to Anaspides tasmaniae instead of the expected E. sinensis. It is 

however noteworthy that the bootstrap shows that support for the branches is not 

very high. Given that sequences are nearly identical and the analysis by Koenemann 

et al. 2010 [63] includes additional sequence data it is advisable to follow their 

analysis. 

 

5.7 Supplementary Files 

Supplementary file 1: S1_Pathway_annotation.R – R script for immune system component identification. 

Supplementary file 2: S2_Hgammarus_readcounts.txt – post quality filtering readcounts for every 

sample.  

Supplementary file 3: S3_Hgammarus_trinotate_annotation.xls – annotation of transcripts in the H. 

gammarus transcriptome 
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Supplementary file 4: S4_Hgammarus_top10_expressed.xlsx – Top10 highest expressed transcripts in 

every tissue, along with annotation. 

Supplementary file 5: S5_Hgammarus_GO_enrichment.xlsx – Tissue specific GO enrichment as 

determined by BLAST2GO® 

Supplementary file 6: S6_Hgammarus_transcripts_to_KOG.txt – KEGG orthology groups associated 

with H. gammarus transcripts based on bi-direction best hit.  

Supplementary file 7: S7_Hgammarus_immune_pathways.zip – H. gammarus transcripts with significant 

similarity to immune system proteins. The archive contains excel files for every immune pathway 

described in the text.  
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Chapter 6 

RNA sequencing of the shore crab (Carcinus maenas) after White Spot Syndrome 

Virus exposure points to endocytosis regulation as source of resistance to infection. 

 

 

Supplementary material available in the ‘Chapter 6’ folder on the DVD 
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Chapter 6: RNA sequencing of the shore crab (Carcinus 

maenas) after White Spot Syndrome Virus exposure suggests 

endocytosis regulation as source of resistance to infection. 

 

6.1 Abstract 

Shrimp farming and other implementations of crustacean aquaculture have 

experienced large growth over the years. The sector suffers from disease epidemics 

that kill a large portion of production and inhibits further development. Since its 

emergence in the 1990s the White Spot Syndrome Virus (WSSV) has caused billions 

of dollars’ worth of damage, making it the most devastating virus to impact the shrimp 

farming sector. The pathogenicity of WSSV is high, reaching 100 % mortality within 

3-10 days in penaeid shrimp. However, alone amongst tested aquatic crustacea, the 

shore crab Carcinus maenas was shown to be relatively resistant WSSV. To uncover 

the basis of this resistance we infected C. maenas with WSSV and measured mRNA 

and miRNA over a time series of 7 time points during a period of 28 days. C. maenas 

was confirmed to be resistant to WSSV infection as no mortalities occurred during 

the infection period and transcription of WSSV transcripts was only observed after 7 

days suggesting replication, and in only five out of 28 samples in total. A de novo 

assembly of the transcriptome was conducted resulting in 129,049 transcripts, of 

which 30 % could be annotated.  Differentially expressed transcripts were identified 

in every time point: in the first 12 hours post exposure we observed decreased 

expression of important regulators of endocytosis. It is established that WSSV enters 

the host cells through endocytosis and that interactions between the viral protein 

VP28 and Rab7 are important in successful infection, thus changes in expression of 

these components can have major impact on viral entry into host cells. Additionally 

we observed an increased expression of transcripts involved in RNA interference 

across many time points, indicating a longer term response to initial viral exposure. 

miRNA sequencing resulted in several miRNAs that were differentially expressed, 

including a novel C. maenas miRNA that was significantly downregulated in every 

WSSV exposed individual, suggesting that it may play an important role in mediating 

the response of crabs to virus. In silico target prediction pointed to involvement in 

endocytosis regulation. Taken together we hypothesize that the origin of C. maenas 

resistance to WSSV stems from the prevention of viral entry by endocytosis, a 

process probably regulated through miRNAs, resulting in inefficient uptake of virions. 
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6.2 Introduction 

 

The crustacean aquaculture sector, and shrimp farming in particular, is an important 

part of global food production. According to statistics of the Food and Agriculture 

Organization (FAO) of the United Nations the sector has consistantly grown over the 

last years and it is likely to continue to do so in the future [1]. A major obstacle to 

further growth of the industry is the prevalence of diseases [2]. Over the last decade 

the most devastating disease in crustaceans has been caused by White Spot 

Syndrome Virus (WSSV) infection, which first emerged in the 1990s [3]. The host 

range of WSSV is large and is thought to comprise most aquatic crustacean species, 

which includes the commercially important penaeid shrimp [4].Since its emergence 

White Spot Disease (WSD) has had a major impact on global shrimp aquaculture [5]. 

It was estimated that to date the losses due to this disease have accumulated to over 

US $ 10bn, with approximately 1 US $ bn in losses added every year [6-8]. WSD is 

caused by the White Spot Syndrome Virus (WSSV), an enveloped dsDNA virus 

belonging to the family of the Nimaviridae. Upon infection hosts display lethargic 

behaviour, reduced food consumption, discoloration of tissues and a loosening 

cuticle [9, 10]. Some hosts develop white spots, the clinical sign after which WSSV 

was named. Penaeid shrimps generally suffer high mortality rates as a result of 

WSD, often close to 100 % within 3-10 days post infection [11].  

The host range of WSSV extends beyond Penaeid shrimp and includes most 

decapod crustaceans [12], but the susceptibility and pathogenicity of WSD varies 

between these different hosts [9]. Bateman et al. 2012 [9] tested the susceptibility of 

various aquatic crustacean species to WSSV infection and grouped species into 

three categories: the first group contained highly susceptible species including 

penaeid shrimp and crabs such as Eriocheir sinensis. The European lobster 

Homarus gammarus, edible crab Cancer pagurus and the Norway lobster Nephrops 

norvegicus were classified as moderately susceptible, and only one species was 

placed in the low susceptibility group: the shore crab Carcinus maenas.  The 

observation that the disease susceptibility of C. maenas to WSSV is relatively high 

offers an opportunity to investigate what mechanisms operate in this species to 

facilitate this enhanced resistance. Identifying mechanism (s) for resistance to WSSV 

infection in C. maenas might provide information for developing methodologies to 
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prevent or treat WSD in more susceptible and economically important species like 

penaeid shrimps. 

Over the years there has been extensive research into WSSV infection, particularly in 

penaeid shrimp. This work has resulted in identification of biological processes and 

molecular interactions that are significant in the WSSV infection process. A 

comprehensive review on this was published by Verbruggen et al. 2016 [13]. Like 

most viruses, for WSSV it has been established that the virus enters the host cell 

through Clathrin-mediated endocytosis after binding to proteins on the host cell 

surface (e.g. integrin [14]) [15]. Once inside, expression of the WSSV genome takes 

place in the nucleus under action of host transcription factors [13, 16-18]. Viral 

proteins influence the host pathways in order to maintain a cellular environment 

conducive to viral replication and virion assembly [13]. C. maenas resistance to 

WSSV infection could emerge from disruption of any one of these infection stages, 

although often earlier stages such as viral endocytosis are more likely. In addition to 

the interactions involving proteins, there has been research into the role of miRNAs 

in viral infection and it is now well established that miRNAs are important for 

successful replication [13, 19, 20]. miRNAs are small, ~21 nucleotides (nt), non-

coding RNA molecules that are produced from pre-miRNA and regulate gene 

expression at the post-transcriptional level through association with the RISC 

complex. This can range from fine-tuning of gene expression to complete inhibition 

said gene. Viral or host miRNAs can impact the infection process on several levels, 

including: viral miRNAs targeting viral or host proteins and host miRNAs targeting 

host or viral proteins. To date, WSSV has been shown to express 89 miRNAs [13, 

21]. A characterization by He et al. 2012 [22] showed that most viral miRNAs could 

target viral genes (e.g. WSSV-miR144, WSSV-miR164 and WSSVmiR211) and 

others that might influence host genes due to lack of viral targets (e.g. WSSV-miR36-

5p, WSSV-miR36-3p and WSSV-miR72) [22]. Conversely host miRNAs are an 

important part of antiviral defence and it has been shown that shrimp miR-7 can 

target WSSV early gene wsv477, reducing viral replication [23, 24]. It is likely that in 

C. maenas miRNAs play also an important role in the resistance to WSSV. 

The experiments described in this chapter aimed to characterize the response of C. 

maenas to WSSV through the study of temporal changes in mRNA and miRNA 

expression in WSSV injected crabs compared to crabs injected with saline solution. 

In order to capture both short term and long term effects, sampling was performed 

over a period of 28 days. Expression of mRNA and miRNA in gill samples were 

measured with next generation sequencing technology. After sequencing the RNA-
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sequencing data was used to assemble and annotate a transcriptome. A previously 

published C. maenas transcriptome, Verbruggen et al. 2015 [25], was used to verify 

the assembly. For the small RNA sequencing data, a genome scaffold (Chapter 4) 

was used to identify miRNA precursors, confirming their origins. WSSV replicated 

successfully in several samples as verified by mapping sequencing data to the 

WSSV. Differentially expressed transcripts and miRNAs between WSSV injected and 

control samples were identified over time points. Through functional annotation and 

pathway analysis, relevant biological processes underlying the infection processes 

and C. maenas apparent resistance to WSD were identified. After identification of the 

important factors, their suitability for treatment development that could be applied to 

other species was discussed. 

6.3 Materials and Methods 

6.3.1 Animals and experimental set up  

All experimental trials were performed within the biosecure exotic disease facility at 

the Cefas Weymouth laboratory and utilised local, filtered and UV treated seawater. 

Day length was set at 14 h day/ 10 h night with a 30 min transition to simulate dusk 

and dawn. The flow rate was set a 3-4 L /min and salinity during the experimental 

period remained constant at 35ppt. A temperature of 20 °C was maintained 

throughout the trial.   

One hundred and twenty shore crabs approximately 25mm - 60mm in carapace 

width, were collected from the shoreline at Newton’s Cove, Weymouth, UK (50°34’ N, 

02°22’ W). All animals utilised in this experiment appeared to be healthy. To prevent 

conflict, shore crabs were housed individually in custom-made compartments within 

large trough tanks, with individuals separated but sharing the same water supply, and 

a maximum of 15 crabs were housed per trough. All animals were acclimatised to the 

trial start conditions for a minimum of one week before trials commenced.   

 

6.3.2 Preparation of viral inoculum and challenge trials  

Viral inoculates of WSSV were obtained from the OIE Reference Laboratory for 

White Spot Syndrome Virus (WSSV) at the University of Arizona, USA. The OIE 

isolate of WSSV (UAZ 00-173B) was generated in Litopenaeus vannamei [26] from 

an original outbreak of WSD in Fenneropeneaus chinensis [26] in China in 1995. 

Subsequent passage of this isolate into Specific Pathogen Free (SPF) L. vannamei 

held at the Cefas Weymouth laboratory have demonstrated continued virulence of 
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this isolate. All challenges reported utilised WSSV-infected L. vannamei carcasses 

generated within the Cefas Weymouth laboratory. As such, WSSV-infected shrimp 

carcasses were prepared by injection of the UAZ 00-173B isolate into SPF L. 

vannamei obtained from the Centre for Sustainable Aquaculture Research (CSAR) at 

the University of Swansea, United Kingdom. Individual L. vannamei were inoculated 

via intra-muscular injection of the diluted viral homogenate at a rate of 10 l g-1 shrimp 

weight and the initial viral loading was 2206708.6/mg. Following incubation, dead and 

moribund shrimp were removed from the experimental tanks and infection with 

WSSV was confirmed using histopathology, transmission electron microscopy (TEM) 

and PCR, as appropriate (see below for techniques). Remaining tissues were stored 

at –80 °C until required. Confirmed infected carcasses were used to prepare 

inoculums. Infected shrimp carcasses were macerated in isolated conditions using a 

sterile razor blade prior to homogenisation in 2% sterile saline (4mL of saline per 

gram of minced tissue) using a blender until tissues were liquefied. The homogenate 

was centrifuged at 5,000 x g for 20 minutes at 4°C to pellet solid debris prior to the 

supernatant being diluted 1:20 with sterile saline and filtered (0.2µm Minisart syringe 

filter, Sartorius Stedim Biotech GmbH, Germany) to form the inoculum for the 

injection studies. 

 

6.3.3 WSSV Challenge 

120 shore crabs (Carcinus maenas), were randomly allocated into two treatment 

groups (n=60 per treatment) and water temperature was held constant at 20 ˚C for 

the duration of the trial. Crabs were injected at the base of the second walking leg 

with saline or a single dose of the diluted WSSV homogenate at a rate of 10µl g-1 wet 

body weight on Day 0. This corresponded to an initial viral loading of 2.19 

E+07virions/ gram. Crabs were sampled at 0, 6, 12, 24, 48 hours, 7 days, 14 days 

and 28 days post-injection. Gill, hepatopancreas, heart, gonad, connective tissues 

and muscle were dissected and placed into histological cassettes and fixed 

immediately in Davidson's seawater fixative. For molecular analyses of viral 

replication, gill samples were removed and placed into tubes containing 100% 

ethanol. For sequencing analysis, gill tissues were dissected, immediately snap 

frozen in liquid nitrogen and stored at -80°C until analysis. For the purpose of this 

thesis, I will focus exclusively on the analysis of the sequencing data. All other 

analyses were conducted independently as part of the collaborative programme of 

work with Cefas but are outside the scope of this thesis. 
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6.3.4 RNA extraction, library preparation and sequencing 

RNA was extracted using Qiagen’s miRNeasy mini kit, with on column DNase 

digestion, according to the manufacturer’s instructions. RNA quality was measured 

using an Agilent 2100 Bioanalyzer, using the RNA 6000 nano kit (Agilent 

Technologies, CA, USA). 

mRNA sequencing 

cDNA libraries for each individual crab gill, 63 samples in total, were constructed 

using 1.25 μg of RNA. ERCC Spike-In control mixes (Ambion via Life Technologies, 

Paisley, UK) were added to control for technical variation during sample preparation 

and sequencing, and analysed using the manufacturer’s guidelines. mRNA 

purification was performed via poly (A) enrichment using NEB Next Poly(A)mRNA 

magnetic isolation module (NEB, Herts, UK). cDNA libraries were constructed using 

Epicentre’s ScriptSeq v2 RNA-seq library preparation kit (Illumina, CA, USA) with 

Agencourt AMPure XP system (Beckman Coulter, Bucks, UK) to purify cDNA and 

Epicentre’s ScriptSeq Index PCR primers to produce barcoded libraries. This 

enabled multiplexing of all samples across four lanes. All libraries were diluted to 

10nM. Sequencing was performed on an Illumina HiSeq 2500 in standard mode with 

100 bp paired-end read module. 

Small RNA sequencing 

cDNA libraries for each individual crab gill were constructed using 1.0 μg of total 

RNA, using the Illumina’s Tru-seq small RNA sample preparation kit (Illumina, CA, 

USA) with indexed adapters 1 - 36. This enabled multiplexing of samples across two 

lanes. All libraries were diluted to 2nM, and sequencing was performed on an 

Illumina HiSeq 2500 rapid run mode with 50 bp single read module. 

 

6.3.5 Transcriptome assembly and annotation 

Prior to transcriptome assembly the reads were trimmed in order to remove bases 

with low confidence and adapter contamination. The paired-end read libraries were 

trimmed using Trimmomatic with the following settings: removal of Illumina adapters, 

removal of the first 12 bases, removal of the last 3 bases, removing bases based on 

a sliding window of 4 and minimal Phred quality of 20 and finally applying a minimal 

remaining length of 25. Only reads where both members of the pair passed the 
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quality trimming were kept for de novo transcriptome assembly. Supplementary file 

S1 shows the number of reads remaining after quality-trimming for every sample. De 

novo transcriptome assembly was performed with the Trinity de novo assembler 

using reads from all samples pooled together, requiring minimal kmer coverage of 

10. After assembly, transcriptome redundancy was reduced with CD-HIT-EST v4.6, 

default settings [27]. Assembly statistics like average length and N50 were calculated 

with quast-2.3 [28]. In order to investigate the presence of conserved genes the 

cegma 2.5 tool was used [29]. Furthermore, the presence of a selection of near-

universal single-copy orthologs, representative of arthropods, was investigated using 

BUSCO v.1.1 (tBLASTn threshold of 1e-10). The resulting transcripts were annotated 

using Trinotate which encompasses several steps including: ORF identification with 

TransDecoder [30], BLAST for sequence similarity to SwissProt (November 2015, 

protein domain identification with HMMER [31], identification of signal peptides with 

signal [32] and non-coding RNA with RNAmmer [33]. The KEGG annotation server 

(KAAS [34]) was used to assign KEGG Orthologies (KO) to the transcripts based on 

bi-directional best hits, enabling mapping to pathways contained in the KEGG 

database. Additionally, BLASTx was used to identify sequence similarities to the 

NCBI non-redundant protein database (November 2015) with an e-value threshold of 

1e-5. These BLAST results were used as input for MEGAN5 [35] for taxonomic 

classification of transcripts. Transcripts that mapped to metazoan taxonomies were 

treated as originating from C. maenas. The assembled transcriptome was compared 

to a previously assembled transcriptome for C. maenas (Verbruggen et al. 2015; 

Chapter 3) through both BLASTn and BLASTp searches with an e-value threshold of 

1e-10. This comparison was done for both the complete and metazoan filtered 

transcriptomes. Functional annotation was provided through BLAST2GO® PRO 

(September 2015) with the BLASTx to NCBI-nr results as input and default settings. 

KEGG orthology identifiers were assigned through the KEGG Automatic Annotation 

Server [34].  

 

6.3.6 Detection and assembly of WSSV transcriptome 

In order to detect the presence of replicating WSSV, the quality-trimmed RNA-

sequencing reads were aligned to the WSSV genome (Chinese isolate; WSSV-CN, 

Genbank AF332093.3 [36]) using bowtie2 version 2.2.3 with default settings [37]. 

Overall, alignment rates were used to identify samples containing replicating WSSV 

(> 1 % of total reads). Reads that mapped successfully were extracted using 

samtools version 0.1.19 [38]. The alignment of reads to the WSSV-CN genome was 
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visualized in IGV [39]. Coverage of the WSSV-CN genome was calculated using 

bedtools v2.17.0 [40]. Transcriptome assemblies based on the WSSV reads were 

generated by Trinity v2.1.1, both genome guided and de novo, and Cufflinks v2.1.1 

[41]. Trinity assemblies were performed with either default settings or with –

min_kmer_cov and –min_glue changed to values ranging from 5 to 200). Transcripts 

in the assemblies were aligned to the WSSV-CN genome using BLAT v36 [42], not 

allowing for introns. BLAT alignments were visualized in IGV along with the WSSV-

CN ORF annotation, based on the AF332093.3 Genbank file. Calculation of WSSV-

CN ORF expression values were based the alignment of WSSV mapping reads to 

the WSSV-CN genome and estimated by RSEM 1.2.21 [43]. Differential expression 

calculations between WSSV samples were performed by using RSEM output in 

EBSeq v1.1.5 comparing virus-injected to control samples. Transcripts with a 

differential expression probability higher than 0.95 were treated as differentially 

expressed.  

 

6.3.7 Differential transcript expression and gene ontology enrichment 

Sequence reads from every sample were mapped to the assembled transcriptome, 

including non-metazoan transcripts, using bowtie2 version 2.2.3 [37]. The alignment 

was used to derive expression counts for transcripts in the transcriptome using 

RSEM 1.2.21 [43]. Expression counts were listed in transcripts per million (TPM) and 

Fragments Per Kilobase of transcript per Million mapped reads (FPKM). From these 

expression counts, differentially-expressed transcripts were identified using EBSeq 

1.1.5 [44], which is coupled to RSEM 1.2.21 [43, 45]. Differential expression analysis 

was performed at every time point, by comparing WSSV exposed crabs to time-

matched control samples. Transcripts with a differential expression probability higher 

than 0.95 were treated as differentially expressed. The lists of differentially-

expressed genes for each time point were analysed for functional enrichment of 

Gene Ontology categories using Blast2GO® PRO [46]. Terms with an FDR below 

0.05 were considered significantly enriched after applying Benjamini and Hochberg 

correction for multiple testing.  
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6.3.8 miRNA annotation and expression 

miRNA sequencing data were processed through the mirdeep2 version 0.0.7 

package [47] . The first stage involved trimming of adapters, removal of t/rRNA 

sequences, filtering reads less than 18 bp in length and mapping to the C. maenas 

genome (Chapter 4) and WSSV-CN genome with the mapper script. Within the 

mirdeep2 package this mapped output was used to predict existing miRNAs from 

closely related species Marsupenaeus japonicus, Tribolium castaneum and Daphnia 

pulex, as present in miRbase (accessed January 2016) [48-51]. Novel miRNA 

prediction was based on the C. maenas draft genome. Potential WSSV miRNAs 

identified by Huang et al. 2014 [21] were used to identify miRNAs of viral origin for 

each sample. Expression of predicted miRNAs was derived through the mirdeep2 

quantifier script. A final list of expressed miRNAs was generated by clustering the 

identified miRNAs with CD-HIT-EST v4.6 [27] (similarity threshold 0.95), thus 

eliminating redundancy. Differentially-expressed miRNAs were identified for every 

time point by edgeR-GLM v3.4.2 [52], after filtering for miRNAs with at least 10 

counts per million across half the samples in a time point to ensure that only 

consistently expressed miRNAs were included in the analysis. miRNAs with a FDR 

below 0.05 were considered differentially expressed. Target prediction of miRNAs 

was performed with MicroTar [53] and miRanda v3.3a [54] against the assembled C. 

maenas transcriptome. Free energy thresholds of -10 kcal/mol and -20 kcal/mol were 

applied to identify miRNA-mRNA associations.  
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Figure 1 Overview of experimental setup and analysis. 

 

6.4 Results and discussion 

Over the 28 days of the experiment there were no reported mortalities. Four 

individuals could be selected for every condition/time point combination for small- 

and mRNA isolation.  

6.4.1 Sequencing and pre-processing 

Illumina sequencing over four lanes yielded a total of 1,385,269,552 reads across the 

63 samples (see Supplementary File S1). After quality-filtering, a total of 

1,097,977,516 reads were retained with an average of 17,999,631 reads and 

standard deviation of 3,351,031 reads per gill library. Small RNA sequencing yielded 

155,394,008 reads with an average of 2,589,900 ± 858,880 per sample. Pre-

processing of the small RNA data (adapter removal, t/rRNA removal and size 

filtering) resulted in 73,696,599 reads being retained with an average of 1,228,276 ± 

508,163 per sample. Small RNA read counts are summarised in Supplementary File 

S1 and overall sequencing statistics are summarized in Table 1. 
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Table 1 Illumina sequencing statistics 

Dataset Total  Average Std Dev Trimmed Total Trimmed 

Average 

Trimmed 

Std Dev 

mRNA 1,385,269,552 22,680,492 4,086,594 1,097,977,516 17,999,631 3,351,031 

smallRNA 155,394,008 2,589,900 858,880 73,696,599 1,228,276 508,163 

 

6.4.2 De novo assembly and annotation 

In order to generate a de novo transcriptome assembly representing all transcripts 

present in the gills of both control and infected organisms, including those only 

present as a response to WSSV infection, all sequences (from both control and 

infected samples) were combined. The assembly statistics as calculated through 

quast [28] are shown in Table 2. The assembled transcriptome contained 129,049 

transcripts with a N50 of 1,437. In total, the transcriptome covered 39,323,954 

nucleotides with a GC content of 43.18 %.   

Table 2 De novo transcriptome assembly statistics 

Assembly statistic Value 

Contigs (>= 200 bp) 129,049 

Contigs (>= 1000 bp) 20,065 

Median Contig length 395 

Total length 39,323,954 

GC % 43.18 

N50 1,437 

N75 839 

L50 11,745 

L75 23,310 

 

The representation of a set of 248 strongly conserved genes amongst metazoan and 

eukaryotes, described by Parra et al. 2007 [29], in a transcriptome is a sign of high 

quality. Should a large portion of this set of transcripts be absent this can be 

indicative of experimental or assembly problems, the latter potentially solvable 

through alternative assembly strategies. Using the cegma tool on the transcriptome, 

192 out of the 248 conserved genes (77.42 %) were identified completely (full length) 

and 237 (95.56 %) were identified at least partially (a fragment of the gene was 

present). Nearly all conserved eukaryotic genes thus have a counterpart in the 

transcriptome assembled here, although some have only been partially retrieved. In 

similar fashion Simão et al. 2015 compiled a set of benchmarking universal single 

copy orthologues (BUSCO) that can be expected in transcriptomes belonging to 
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species of certain evolutionary lineages. For the C. maenas transcriptome the 

presence of the set of 2,675 arthropod BUSCOs was investigated. A total of 1,501 

(56 %) BUSCO were completely covered in the transcriptome and a further 420 (16 

%) were found in fragmented form. 28 % of arthropod BUSCOs remained 

unidentified in the C. maenas transcriptome (Table 3). The results from both cegma 

and BUSCO suggest that the assembled transcriptome is not complete and some 

transcripts have been fragmented during the assembly process.  It is important to 

note that the current transcriptome is based on a single tissue, explaining why some 

of the  orthologues were missing, as on average only about 1/3rd of all genes are 

expected to be expressed in any one individual tissue, while the remaining genes are 

likely to be functionally switched off or expressed at low levels [55]. 

Table 3 BUSCO group identification 

BUSCO  Count 

Complete Single-copy 

BUSCOs 

1,201 (45 

%) 

Complete Duplicated 

BUSCOs 

300 (11 %) 

Fragmented BUSCOs 416 (16 %) 

Missing BUSCOs 758 (28 %) 

Total BUSCO groups 

searched 

2,675 

 

Transcript annotation 

The gill transcriptome was annotated using several methods. The Trinotate 

annotation suite was used to identify conserved domains, signal peptides and 

transmembrane regions within the open reading frames identified in the C. maenas 

transcripts. Open reading frames with the potential to code for proteins/peptides were 

identified in 59,777 (46.3 %) of the assembled transcripts. Out of these predicted 

amino acid sequences, 18,508 (31.0 %) showed significant similarity to known 

proteins in the UniProt/Swissprot database. Furthermore, 17,005 (28.4 %) contained 

at least one Pfam domain. Lastly, 4,129 (6.9 %) potential signal peptides and 14,920 

(25.0 %) transmembrane regions were identified (Supplementary File S2). In addition 

to the Trinotate suite, a BLASTx search was performed against the NCBI non-

redundant protein database, yielding 30,090 (23.3 %) transcripts with a significant hit. 

These results were used to connect transcripts to Gene Ontology terms in 

BLAST2GO® PRO which resulted in 23,855 (18.5 %) connections. The KEGG 

annotation server (KAAS [34]) was used to assign KEGG Orthologies (KO) to the 
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transcripts based on bi-directional best hits resulting in 5,857 annotations. KEGG is 

focussed on mammalian pathways and sequences and therefore the yield is 

expected to be lower than for other annotation methods. Overall, 45,967 (35.6 %) of 

transcripts could be assigned with at least one annotation using Trinotate. The 

overall annotation rate for C. maenas transcripts is low which raises the question on 

whether this is related to this specific dataset or rather common for sequencing work 

for aquatic crustaceans in general. In previous work, we produced a transcriptome for 

eight tissues of C. maenas [25] and a transcriptome for the nine tissues of the 

European lobster, Homarus gammarus. We compared these datasets to the one 

presented in this chapter and concluded that these rates are similar across 

experiments for C. maenas and for other aquatic crustacean species (Supplementary 

Information 1), likely reflecting the significant knowledge gap on sequencing data for 

aquatic crustaceans. 
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Figure 3 MEGAN5 Taxonomic tree with transcript counts. Numbers illustrate the number of transcripts representing each taxa. 

Transcripts were assigned to taxa depending on the mapping of the best BLASTx to NCBI-nr hit by MEGAN5. Within the metazoan 
taxon, the pancrustacea represented the largest taxonomic group. Minimal threshold for showing a taxon is 100 transcripts for taxon 
and subtaxa. 
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Taxonomy 

It is expected that during isolation not only host/virus RNA is isolated but also RNA 

from other organisms present in the sample, including the microbiome located on the 

C. maenas gills. During library preparation and sequencing a distinction cannot be 

made between C. maenas, WSSV or RNA of different origin. Additionally RNA can 

be present in the kits used in the laboratory work [56]. A separation can be achieved 

bioinformatically by filtering for transcripts that show similarity to taxa that are neither 

host nor virus. Figure 2 shows a tree with the distribution of assembled transcripts 

over various taxa based on BLASTx annotation (tree generated with MEGAN5 [35]). 

The figure shows that WSSV transcripts are present in the final transcriptome. For 

multi-cellular organisms, most annotated transcripts are related to bilateria, 

Crustacea and hexapoda taxons. Because of the lack of genomic information within 

aquatic Crustacea it can be expected that large numbers of C. maenas transcripts 

map to hexapoda or bilateria taxa instead. As was stated in the last section, a large 

group of transcripts do not show any similarity to known sequences and therefore no 

biological interpretation can be given on either their function or the quality of the 

assembly for those transcripts. Any transcript that did not map to either WSSV or the 

metazoan taxon was removed from the assembly. After this filter, the ‘metazoan’ 

transcriptome encompassed 22,738 transcripts. This quantity is very close to those 

observed in Verbruggen et al. 2015, which identified 23,151 transcripts that mapped 

to metazoan being expressed in the gill tissue. A more detailed comparison of the 

‘metazoan’ transcriptome in this Chapter compared to Verbruggen et al. 2015 is 

offered in the Supplementary Information 2. In comparison, only 14,947 ‘metazoan’ 

transcripts appeared to be expressed in the gills of H. gammarus (see Chapter 5). 

Figure 2 also shows the presence of 144 WSSV transcripts in the transcriptome 

assembly, an indication that the viral genes were being expressed within the exposed 

crabs. 
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6.4.3 Detection of WSSV replication in RNA sequencing data 

The MEGAN5 tree in Figure 2 illustrated the presence of WSSV transcripts in the 

transcriptome assembly, indicating that WSSV was successfully replicating in at least 

some individual gill samples. In order to detect which samples contained replicating 

virus, RNA sequencing reads from individual gill samples were mapped to the 

available WSSV-CN genome (Genbank: AF332093.3). Successful mapping of a 

significant number of sequencing reads to the viral genome suggested that within 

that individual viral mRNA was being produced and thus the virus had successfully 

infected the host. Only five samples contained a significant portion (> 1 %) of reads 

mapping to the viral genome: ws_36 (4. 87 %; 7 days), ws_37 (2.78 %; 7 days), 

ws_48 (8.08 %; 14 days), ws_50 (4.85 %; 28 days) and ws_51 (7.57 %; 28 days), 

and Sample ws_52 (0.33 %; 28 days) also had a small amount of mapped reads 

(Supplementary Table S 1). We used the WSSV reads to produce and characterize a 

WSSV transcriptome which could aid in annotation of the WSSV genome (see 

Supplementary information 3).  

The low number of individual crabs where WSSV transcripts were found (5 out of 28) 

demonstrated the resistance of this species to WSSV infection. Where susceptible 

species like P. monodon and L. vannamei show mortality rates within 3-10 days and 

replication within hours of injection [57, 58], in C. maenas it was not until 7 days post-

injection that replication became apparent. Additionally, not every crab contained 

replicating virus at the later time points. There was individual variation with only 

between 25-50 % of samples showing development of an infection.  
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Figure 3 Individuals with replicating WSSV. RNA derived from WSSV was only detected in five 

individuals injected with the virus. Two individuals at 7 and 28 days post injection and one at 14 days 
post injection.  

 

6.4.4 Differential gene expression  

Differential expression analysis was carried out by comparing expression patterns of 

four saline injected crabs to four WSSV injected crabs in every time point (See Figure 

4). The number of differentially expressed transcripts between the gills of WSSV 

injected crabs and their time-matched controls is shown in Table 4. Additionally the 

numbers of DE transcripts attributed to C. maenas (metazoan) and WSSV, as 

determined by MEGAN5, are shown. Differentially expressed (DE) transcripts ranged 

from 477 (147 metazoan) at 6 hours post injection to 1,968 (685) at 672 hours post 

injection. In agreement with the previous section, DE transcripts of WSSV origin are 

only detected in the later time points. However, the 336 hour time point only identified 

a single DE WSSV transcript, probably a result of there being only a single WSSV 

replicating sample as opposed two at 168 h and 672 h. The DE transcripts that were 

classified as neither WSSV nor metazoan can represent transcripts of non-host non-

virus origin or novel transcripts from the host. Lists of differentially expressed 

transcripts at every time point are found in Supplementary File S2.   
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Figure 4 Differential expression analysis - single and multiple time points. Differential expression 

analysis starts by identification of DE transcripts in every time point. Analysis of DE transcripts in a time 
point can provide insight in processes that are active at that time post injection whereas transcripts that 
are DE in across multiple time points are indicative of changes that persist over time after WSSV 
exposure.  

 

Table 4 Number of differentially expressed transcripts 

Time (hours post 

injection) 

Number of DE 

transcripts 

(downregulated/ 

upregulated) 

Number of metazoan DE 

transcripts (#) 

Number of WSSV DE 

transcripts (#) 

6 477 (363 / 144) 147 (49 / 98) 0 

12 1565 (944 / 621) 628 (136 / 492) 0 

24 1318 (720 / 598) 519 (161 / 358) 0 

48 500 (294 / 206)  181 (71 / 112) 0 

168 938 (490 / 448) 265 (142 / 123) 97 

336 587 (258 / 329) 217 (100 / 117) 1 

672 1968 (907 / 1061) 685 (359 / 326) 76 

 

To determine whether WSSV injected samples could be separated based on 

expression of DE transcripts we plotted expression values in FPKM on a heatmap 

and subjected the samples to a principal component analysis. The heatmap, Figure 

5, shows that the WSSV replicating samples (ws_36, ws_37, ws_48, ws_50 and 
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ws_51) cluster together. Similarly in the PCA plot, Figure 6, showed that the first 

principal component separates samples that contained replicating WSSV from the 

other samples. Less clearly, the second principal component appears to separate 

samples by time after injections as early time points generally have lower values. 

Figure 6 also illustrates that other than the WSSV replicating samples most WSSV 

injected samples cluster relatively close together, indicating that expression changes 

over time are not substantial. Analysis of the identity of DE transcripts within and 

across time points can reveal the biological basis of the separation of samples in the 

PCA plot and accordingly the responses of C. maenas to WSSV exposure.  

 

Figure 5 Heatmap of DE transcript expression values in WSSV injected samples. Expression of 

differentially expressed transcripts is represented by log10 FPKM values as derived by RSEM. Rows 
contain DE transcripts and columns WSSV injected samples. The samples that contain replicating 
WSSV cluster together, in addition the transcripts derived from WSSV are indicated on the heatmap.   

log10 FPKM 

WSSV 

transcripts 

Replicating 

WSSV 
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Figure 6 Principal component analysis of WSSV injected samples. Plot of the first two principal 

components identified in the expression of WSSV injected samples. Samples in the plot are labelled 
according to their time and sample ID. A colour gradient illustrates early to late time points. ‘*’ symbols 
following a sample name indicate that the sample contained replicating WSSV. The ellipse illustrates the 
clustering of WSSV replicating samples along the first principal component.  

The biological interpretation of the response of C. maenas to WSSV infection, as 

characterized by DE transcripts, can be examined either across all time points or for 

each time point specifically. Transcripts that are DE across all the time points allow 

for analysis the long term response of C. maenas, while analyses across individuals 

for any one time point can provide insight in what specifically happening at that time 

point. For the WSSV exposure, first the consistent effects as characterized by DE 

transcripts in multiple time points are discussed. This is followed by changes that 

occur in individual time points.  

 

Differential expression across multiple time points 

In order to characterize the response that occurs over the length of the experiment, 

transcripts that were DE across at least 4 of the 7 time points are listed in Table 5. 

The majority of the DE transcripts were annotated as predicted/putative or 

hypothetical proteins which complicates biological interpretation. Three transcripts 

have an annotation: mannose-binding protein (TR29999|c0_g1_i1), peritrophin 

(TR38732|c2_g1_i1) and argonaute 2 (TR48022|c1_g1_i2). Mannose-binding protein 
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is a member of the innate immune system where it performs the role of recognizing 

carbohydrate patterns present on pathogens like bacteria and viruses [59]. Table 5 

shows that this transcript is DE at the earliest time points (6h and 12h) and two of the 

later time points (168h and 336h). Mannose-binding protein expression thus changes 

during the initial contact with the virus and again at time points where replicating 

WSSV is detected, although not DE in the 672h time point. This indicates that the 

immune system of C. maenas responds to the presence of viral particles. Re-

emergence of DE expression of Mannose binding-protein at later time points could 

be related to the release newly made virions in infected cells. Peritrophin is a 

structural protein that is an important part of the peritrophic matrix in insects [60], but 

in crustaceans it appears to be involved in oogenesis as shown by Khayat et al. 2001 

[61]. However, a study on a perithropin-like protein in the fleshy prawn 

(Fenneropenaeus chinensis) showed expression in hemocytes, heart, stomach, 

intestine and gill after bacterial infection. This suggests that this protein may respond 

to recognize invading microorganisms and detect exposed chitin, and then trigger 

appropriate physiological or developmental response [62]. Since the expression of 

transcript TR38732|c2_g1_i1 was measured in C. maenas gill tissues upon pathogen 

exposure it is likely that the protein encoded by this transcript is functionally related to 

the peritrophin-like protein from F. chinensis rather than the structural role perithropin 

plays in oogenesis in the ovaries. Like mannose-binding protein, peritrophin is 

expressed in during both early and later time points. Argonaute2 is an important 

constituent of the RISC complex of the RNA interference (RNAi) pathway [63]. 

Argonaute2 binds to a short guide RNA (miRNA or siRNA) which directs RISC to 

complementary mRNAs that are targets for RISC-mediated gene silencing [64]. As 

discussed in Verbruggen et al. 2016 [13], RNAi through miRNAs is an important part 

in crustacean immune responses to viruses. Alterations in the expression of C. 

maenas Argonaute2 (TR48022|c1_g1_i2) appear during the first three time points (6-

24h) and once more at 168h post WSSV injection. Indeed, the higher expression of 

C. maenas Argonaute 2 in WSSV injected samples is indicative of an immune 

response involving miRNAs.  Thus overall the transcripts with annotation that are 

differentially expressed across multiple time points are all related to the immune 

response of C. maenas to WSSV. The results of transcripts with predicted/putative 

and hypothetical annotations are more difficult to interpret, just like differentially 

expressed C. maenas transcripts that did not yield any significant BLASTx results 

(see Supplementary File S2). However, their role in WSSV infection might be a 

ground for further investigation of the biological role of these transcripts.   
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Table 5 Metazoan transcripts DE across at least 4 time points 

Transcript 6h 12h 24h 48h 168h 336h 672h BLASTx – NCBI nr e-value 

TR45167|c3_g1_i1 2.62 -1.51  2.58  -1.78 -1.12 putative cuticle protein 

CPR151 [Bombyx mori] 

2.00E-10 

TR48022|c1_g1_i2 0.32 0.6 0.48  0.18   argonaute 2 

[Marsupenaeus 

japonicus] 

0 

TR32896|c2_g2_i2   0.32 0.25 0.31  0.28 PREDICTED: terminal 

uridylyltransferase 7-

like [Takifugu rubripes] 

0 

TR47978|c0_g1_i1  -2.05   1.38 -1.86 -2.37 hypothetical protein 

DAPPUDRAFT_312544 

[Daphnia pulex] 

1.00E-13 

TR38732|c2_g1_i1 1.61 -2.34    -2.18 -2.26 peritrophin, partial 

[Rimicaris exoculata] 

4.00E-27 

TR12957|c0_g1_i1 1.24 -1.1    -1.4 -1.07 PREDICTED: 

uncharacterized protein 

LOC100159027 

[Acyrthosiphon pisum] 

2.00E-59 

TR15199|c2_g1_i4 0.78  2.3 -

1.84 

  0.83 conserved hypothetical 

protein [Culex 

quinquefasciatus] 

4.00E-86 

TR29999|c0_g1_i1 1.95 -1.39   1.25 -1.31  mannose-binding 

protein [Portunus 

pelagicus] 

3.00E-56 

 

The transcripts that were differentially expressed in multiple time points following 

WSSV infection were also interpreted along functional categories, e.g. through 

overrepresented GO terms. Enriched GO terms amongst transcripts that were DE in 

at least 3 time points are summarized in Table 6. Structural constituent of peritropic 

membrane (GO:0016490), is probably related to the peritrophin-like protein that plays 

a part in pathogen-associated molecular pattern recognition, as discussed earlier. 

However, the majority of enriched terms were related to RNAi, with miRNAs in 

particular, again confirming the importance of this pathway in the response of C. 

maenas to WSSV. The miRNA sequencing data that will be discussed below 

provides more detail about exactly which miRNAs were up/down regulated during 

this exposure experiment. Combining results from Tables 5 and 6 indicate a two-step 

longer term expression response: firstly, perturbations in the expression of pathogen 

recognizing proteins and secondly higher expression of components involved in the 

miRNA-mediated immune response.  
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Table 6 Overrepresented GO terms in transcripts DE at least 3 time points, FDR <= 0.05. 

Gene 

Ontology -

ID 

Gene Ontology Term FDR P-Value 

GO:00164

90 

structural constituent of peritrophic membrane 1.18E-

03 

9.35E-08 

GO:00709

22 

small RNA loading onto RISC 1.11E-

02 

8.73E-06 

GO:00906

24 

endoribonuclease activity, cleaving miRNA-paired mRNA 1.11E-

02 

8.73E-06 

GO:00906

25 

mRNA cleavage involved in gene silencing by siRNA 1.11E-

02 

8.73E-06 

GO:00351

97 

siRNA binding 1.11E-

02 

8.73E-06 

GO:00352

80 

miRNA loading onto RISC involved in gene silencing by 

miRNA 

1.11E-

02 

8.73E-06 

GO:00350

87 

siRNA loading onto RISC involved in RNA interference 1.11E-

02 

8.73E-06 

GO:00708

83 

pre-miRNA binding 1.11E-

02 

8.73E-06 

GO:00705

51 

endoribonuclease activity, cleaving siRNA-paired mRNA 1.11E-

02 

8.73E-06 

GO:00705

78 

RISC-loading complex 1.11E-

02 

8.73E-06 

GO:00459

74 

regulation of translation, ncRNA-mediated 1.47E-

02 

1.74E-05 

GO:00400

33 

negative regulation of translation, ncRNA-mediated 1.47E-

02 

1.74E-05 

GO:19025

55 

endoribonuclease complex 1.47E-

02 

1.74E-05 

GO:00352

78 

negative regulation of translation involved in gene silencing 

by miRNA 

1.47E-

02 

1.74E-05 

GO:00350

68 

micro-ribonucleoprotein complex 1.47E-

02 

1.74E-05 

GO:00058

45 

mRNA cap binding complex 2.30E-

02 

2.90E-05 

GO:00168

93 

endonuclease activity, active with either ribo- or 

deoxyribonucleic acids and producing 5'-

phosphomonoesters 

2.51E-

02 

4.11E-05 

GO:00351

98 

miRNA binding 2.51E-

02 

4.35E-05 

GO:00987

95 

mRNA cleavage involved in gene silencing 2.51E-

02 

4.35E-05 
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GO:00352

79 

mRNA cleavage involved in gene silencing by miRNA 2.51E-

02 

4.35E-05 

GO:00345

18 

RNA cap binding complex 2.51E-

02 

4.35E-05 

GO:00459

47 

negative regulation of translational initiation 2.51E-

02 

4.35E-05 

GO:00003

40 

RNA 7-methylguanosine cap binding 3.35E-

02 

6.09E-05 

GO:00313

32 

RNAi effector complex 3.95E-

02 

8.11E-05 

GO:00164

42 

RISC complex 3.95E-

02 

8.11E-05 

GO:00310

54 

pre-miRNA processing 3.95E-

02 

8.11E-05 

GO:00080

61 

chitin binding 4.71E-

02 

1.04E-04 

GO:00009

93 

RNA polymerase II core binding 4.71E-

02 

1.04E-04 

 

Differential expression in individual time points 

As mentioned, a different perception of the biological response of C. maenas to 

WSSV exposure was achieved by examining changes in transcript expression at 

individual time points. Table 4 and Supplementary File S2 indicate that hundreds of 

transcripts were DE at each time point, making it intractable to discuss each 

individual transcript’s function and relation to WSSV exposure. Instead, interpretation 

of the transcriptional response was done based on processes and pathways that 

were over-represented within the lists of DE genes for each time point. 

Overrepresentation of GO terms associated with DE transcripts was not identified for 

every time point: data obtained at 6h , 48h and 336h post-infection did not show 

significant enrichment at the chosen cut off. The top 6 GO terms of the biological 

process (P), cellular component (C) and molecular function (F) branches for each 

time point are shown in Table 7, and a full table can be found in Supplementary file 

S3.  
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Table 7 Enriched GO terms in DE transcripts across time points 

Time & GO 

branch 

GO-ID Term FDR P-Value 

6h )     

12h ) P GO:0006418 tRNA aminoacylation for protein translation 2.84E-06 3.29E-10 

P GO:0043039 tRNA aminoacylation 2.84E-06 1.08E-09 

P GO:0043038 amino acid activation 2.84E-06 1.08E-09 

P GO:0015031 protein transport 9.91E-04 1.36E-06 

P GO:0006399 tRNA metabolic process 1.67E-03 2.90E-06 

P GO:0006886 intracellular protein transport 2.79E-03 5.37E-06 

C GO:0030662 coated vesicle membrane 7.03E-05 4.52E-08 

C GO:0030120 vesicle coat 1.10E-04 9.66E-08 

C GO:0048475 coated membrane 1.10E-04 1.00E-07 

C GO:0030117 membrane coat 1.10E-04 1.00E-07 

C GO:0030135 coated vesicle 2.51E-04 2.54E-07 

C GO:0030660 Golgi-associated vesicle membrane 5.66E-04 6.23E-07 

F GO:0004812 aminoacyl-tRNA ligase activity 2.84E-06 7.36E-10 

F GO:0016876 ligase activity, forming aminoacyl-tRNA and related 

compounds 

2.84E-06 1.56E-09 

F GO:0016875 ligase activity, forming carbon-oxygen bonds 2.84E-06 1.56E-09 

F GO:0016490 structural constituent of peritrophic membrane 2.71E-02 8.72E-05 

F GO:0090624 endoribonuclease activity, cleaving miRNA-paired 

mRNA 

3.13E-02 1.26E-04 

F GO:0070883 pre-miRNA binding 3.13E-02 1.26E-04 

24h ) P GO:0044093 positive regulation of molecular function 2.60E-02 9.70E-06 

F GO:0016787 hydrolase activity 2.60E-02 6.06E-06 

F GO:0016788 hydrolase activity, acting on ester bonds 2.60E-02 7.33E-06 

F GO:0042578 phosphoric ester hydrolase activity 2.60E-02 9.70E-06 

F GO:0008081 phosphoric diester hydrolase activity 2.60E-02 1.19E-05 

48h )     

168h ) P GO:0048016 inositol phosphate-mediated signalling 1.71E-03 3.15E-07 

P GO:0006414 translational elongation 1.07E-02 6.85E-06 

P GO:0098662 inorganic cation transmembrane transport 2.02E-02 1.48E-05 

P GO:0098660 inorganic ion transmembrane transport 2.86E-02 2.62E-05 

P GO:0098655 cation transmembrane transport 2.98E-02 3.00E-05 

P GO:0046034 ATP metabolic process 3.16E-02 3.48E-05 

F GO:0005220 inositol 1,4,5-trisphosphate-sensitive calcium-release 

channel activity 

1.71E-03 3.15E-07 

F GO:0015278 calcium-release channel activity 2.25E-03 6.20E-07 

F GO:0005217 intracellular ligand-gated ion channel activity 3.89E-03 1.89E-06 

F GO:0022834 ligand-gated channel activity 3.89E-03 2.14E-06 

F GO:0015276 ligand-gated ion channel activity 3.89E-03 2.14E-06 

F GO:0003746 translation elongation factor activity 2.39E-02 1.98E-05 
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336h )     

672h ) P GO:0055114 oxidation-reduction process 2.74E-07 1.01E-10 

P GO:0044710 single-organism metabolic process 1.93E-04 2.12E-07 

P GO:0006030 chitin metabolic process 2.71E-04 3.24E-07 

P GO:1901071 glucosamine-containing compound metabolic process 9.26E-04 1.60E-06 

P GO:0006040 amino sugar metabolic process 2.75E-03 6.09E-06 

P GO:0009205 purine ribonucleoside triphosphate metabolic process 2.75E-03 6.49E-06 

C GO:0005739 Mitochondrion 2.95E-09 2.71E-13 

C GO:0044429 mitochondrial part 1.05E-07 2.88E-11 

C GO:0031966 mitochondrial membrane 5.57E-05 3.58E-08 

C GO:0098800 inner mitochondrial membrane protein complex 7.23E-05 5.31E-08 

C GO:0098798 mitochondrial protein complex 8.66E-05 7.15E-08 

C GO:0044455 mitochondrial membrane part 1.15E-04 1.05E-07 

F GO:0016491 oxidoreductase activity 8.17E-09 1.50E-12 

F GO:0008061 chitin binding 4.49E-07 2.06E-10 

F GO:0003954 NADH dehydrogenase activity 5.21E-05 2.87E-08 

F GO:0050136 NADH dehydrogenase (quinone) activity 1.47E-03 2.82E-06 

F GO:0008137 NADH dehydrogenase (ubiquinone) activity 1.47E-03 2.82E-06 

F GO:0016651 oxidoreductase activity, acting on NAD(P)H 1.67E-03 3.53E-06 

 

In the analysis of DE transcripts across multiple time points it was observed that 

there were significant expression changes in pathogen recognizing proteins, the 

initial actors of the immune response. However at an individual time point level 

responses of the immune system are not illustrated through the enrichment of GO 

terms amongst DE transcripts (see Table 7). However given the lack of transcript 

annotation and subsequent linking of GO terms this is not necessarily evidence that 

an immune response does not occur. Especially in the later time points, where some 

WSSV injected samples showed evidence of replicating WSSV, one would expect 

changes in the expression of many components of the C. maenas immune system. 

Indeed, there have been numerous studies that show differential expression of 

immune system components upon WSSV challenge in susceptible species (reviewed 

by Shekhar and Ponniah 2014 [65]). The lack of immune response could be genuine 

and stem from the fact that C. maenas is relatively resistant to WSSV as compared 

to other aquatic crustaceans. In most samples the virus did not manage to replicate 

which removes the necessity of a significant transcription change of immune system 

components. However, there are additional complexities to this issue. It has been 

shown that WSSV hijacks immune system transcription factors to promote 

expression of its own genes. For example, P. monodon STAT (PmSTAT) can 

enhance expression of WSSV ie1 [16, 66], and other examples are described in 
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Verbruggen et al. 2016 [13]. Therefore, oxymoronically, not responding to viral 

presence could be beneficial to the host, complicating establishment of successful 

replicating. In our experiment we only identified a significantly upregulated transcript 

with similarity to PmSTAT, TR51123|c13_g1_i2, at 672 hours post injection (See 

Supplementary File S2).  

6 hours post injection 

The fact that only five individuals developed replicating WSSV suggested that C. 

maenas might have methods of disposing the viral threat prior to infection 

establishment. In the time covered by this exposure experiment such mechanisms 

would probably occur at the earlier time points. The GO enrichment of DE transcripts 

in Table 7 does not point toward a clear direction for the 6 hour time point as no 

enrichment was identified. Nevertheless there were individual DE transcripts which 

could be of importance. While the whole list of annotated DE transcript cannot be 

discussed, several well annotated can be highlighted. There are two antimicrobial 

peptides: Lysozyme (TR24811|c2_g1_i1, down regulated) and crustin-1 

(TR7697|c0_g1_i1, up-regulated), one of the most important antimicrobial peptides 

found in decapod crustaceans [67-69]. Both of these antimicrobial peptides are 

known for their activity against bacterial pathogens. However, Antony et al. 2011 

showed that WSSV exposure caused significant upregulation of crustin-3 expression 

in P. monodon [70]. Crustins thus might act against viral pathogens like WSSV as 

well, given their expression changes in both C. maenas and P. monodon. The activity 

of the RNAi system upon WSSV exposure was mentioned in the previous section. At 

6 hours post injection there is upregulation of both Argonaute 2 and Dicer-1 

(TR5657|c0_g1_i1), an enzyme that produces miRNAs from their precursor 

molecules. This will be further discussed below, together with the analysis of the 

miRNA sequencing data. 

12 hours post injection - endocytosis 

The 12 hour time point showed differential expression of transcripts enriched for 

Gene Ontology terms with two main mechanisms: vesicle trafficking (e.g. 

GO:0030135 – coated vesicle) and RNAi (GO:0090624 - endoribonuclease activity, 

cleaving miRNA-paired mRNA) (Table 7). Vesicle trafficking, as part of the 

endocytosis pathway, is often employed by viruses to penetrate the host cells [71]. 

Through binding to cell surface receptors, subsequent uptake by endocytic vesicles, 

transport to the perinuclear area and subsequent escape from the endosomes, 

viruses can efficiently approach the host nucleus. Indeed it has been shown that 
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WSSV also employs endocytosis for viral entry [13]. WSSV enters through Clathrin-

mediated endocytosis [15] and interacts with Rab7, an important regulator protein in 

endocytosis, through VP28 [72]. However the exact details of the WSSV entry 

process along with its accompanying host-pathogen interactions remain to be 

investigated [13]. Because of its importance to the early stage of infection, any 

disruption of this cellular system can significantly reduce the probability of successful 

infection. Indeed it has been shown for many viruses that disruption of endocytosis is 

detrimental to viral infection. Disruption can take place at various stages of 

endocytosis: from early endosome regulators to late regulators. Many examples of 

such cases are available in literature. For example: the infection of Infectious bursal 

disease virus is dependent on Rab5, an early endosome regulator [73]. Depletion of 

factors important in the late stages of endocytosis, e.g. Rab7, had an inhibiting effect 

on poxvirus infection [74]. Internalization of influenza virus is significantly affected by 

disruption of the COPI complex, a protein that coats vesicles that transport proteins 

between the Golgi apparatus and endoplasmic reticulum [75]. Similarly dsRNA-

mediated silencing of COPI inhibited the early stage of vesicular stomatitis virus 

replication [76]. To provide an overview of the effects of WSSV exposure on the 

endocytosis system in C. maenas, expression changes were mapped onto the KEGG 

canonical pathway (Figure 7). Figure 7 shows that most of the components are 

upregulated in response to WSSV exposure indicating increased activity of this 

pathway, however there are several important regulators that are downregulated: 

Hsc70, Rab11 and Rab7. Decreased expression of these regulators could impact the 

flow of the vesicle transport system. Firstly, Hsc70 plays multiple roles in the 

formation and processing of Clathrin-coated vesicles, which are the vesicles through 

which WSSV virions enter the endocytosis pathway [77]. Hsc70 is required during 

coated-pit invagination/constriction and additionally in chaperoning Clathrin after the 

coat is dissociated from the vesicles [78]. Downregulation of Hsc70 would thus result 

in a reduction in the formation and processing of Clathrin-coated vesicles, impeding 

viral entry. Exemplary is the dependency of Japanese encephalitis virus entry in 

Drosphila cells on Hsc70 [79]. Rab11 is an important regulator for endocytic 

recycling, and its presence on a cellular compartment is defining for endocytic 

recycling compartments (ERC) [80]. The ERC can be employed by viruses during 

viral entry, e.g. the human Vaccinia virus and Kaposi’s sarcoma-associated 

herpesvirus localize in the ERC upon which viral fusion and core uncoating might 

occur [80]. It is not clear whether WSSV can employ a similar route during viral entry. 

The last regulator that is downregulated upon WSSV exposure was Rab7. Rab7 is a 

well-studied regulator that is mainly involved in endosome maturation and the 
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degradative pathway in the endocytosis system [80]. Important in regards to WSSV 

infection is that Sritunyalucksana et al. 2006 showed that the major WSSV structural 

protein VP28 binds to Rab7, an interaction that appears to be necessary for 

successful infection [72, 81, 82]. A reduction of C maenas Rab7 could thus 

significantly impact the viral entry process in this host. Taken together, the 

downregulation of these three regulators appear to impact the endocytosis pathway 

in such a way as to reduce the ability of WSSV to enter the host cell. Figure 8 

summarizes the effect of downregulation of Hsc70, Rab11 and Rab7 on endocytosis. 

Transport of WSSV virions into early endosomes is reduced due to decreased 

expression of Hsc70. In the early endosome cargo is either sorted to the recycling, or 

degradative pathways. At 12 hours post injection decreased expression of Rab11 

and Rab7 reduce transport into either the degradative or slow recycling pathways. 

WSSV particles that reach the early endosomes are thus likely to either accumulate 

in those vesicles or be transported back to the cellular exterior through the fast-

recycling pathway. Given that WSSV was not able to establish a successful infection 

until a week after injection it can be hypothesized that passing through C. maenas 

endosomes negatively affected the virus’ ability to infect C. maenas cells. Waikhom 

et al. 2006 [83] showed that prior passing of WSSV through an organism can affect 

viral pathogenicity in subsequent infections. But whether a similar effect can be 

achieved by only passing through C. maenas early endosomes, and if so by what 

mechanism, remains to be clarified.  
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Figure 7 KEGG endocytosis pathway 12h post injection. KEGG endocytosis pathway for C. maenas 

at the 12h time point. Components are coloured according to log10 fold change as determined by 
EBSeq comparing WSSV exposed to control. Components not identified in the C. maenas transcriptome 
have a purple background colour. Most components have a higher expression in WSSV exposed 
samples, but a number of transcripts were down-regulated Rab7, Rab11  and Hsc70.  
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Figure 8 Overview of C. maenas endocytosis at 12h post injection. The downregulation of Hsc70, 

Rab11 and Rab7 will likelly change the flows of the endocytosis pathway. Decreased expression of 
Hsc70 may result in a lower flow into the early endosome through Clathrin-mediated endocytosis. The 
flow from the early endosomes into the degrative pathway, which ends in the lysozome, may be reduced 
through lower expression of Rab7. Similarly, the flow from the early endosome into the ERC/slow 
recylcing pathway may be limited by Rab11 availability. Note: endocytosis was not explicitly measured 
in this experiments, conclusions are based purely on transcript expression data and probably need to be 
confirmed.  

 

12 hours post injection - RNAi 

The second group of enriched GO terms at the 12h time point relate to RNAi (Table 

7). As stated earlier, miRNAs are an important component of the crustacean immune 

system [13]. Expression changes of components of the RNAi pathway at the 12h 

time point are listed in Table 8. Most of the components of this pathway show 

increased expression after viral exposure. There are components of the RNAi 

pathway that are represented by multiple C. maenas transcripts. For example: Dicer-

1 is represented by transcripts TR42801|c3_g1_i4, TR42801|c3_g1_i5, 

TR4912|c0_g1_i1 and TR4912|c3_g1_i1. Of these TR42801|c3_g1_i5 is differentially 

expressed. Overall the TAR RNA-binding protein/R2D2, Dicer-1 and Argonaute 1/2 

are all differentially expressed at this time point, indicating an overall increased 

activity of the RNAi pathway.  
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Table 8 C. maenas RNAi pathway expression changes at 12h post WSSV injection 

C. maenas 

transcript 

RNAi pathway component 

homolog 

NCBI gi  tBLASTn 

evalue 

EBSeq 

PPDE 

log10_FC 

TR28381|c10_g2_i1 R2D2 [Bemisia tabaci] gi|619831236 2.00E-92 0.098 0.204 

TR28381|c10_g2_i1 TAR RNA-binding protein 1 

[Penaeus monodon] 

gi|444174849 0 0.098 0.204 

TR28381|c10_g2_i2 R2D2 [Bemisia tabaci] gi|619831236 1.00E-79 1 1.969 

TR28381|c10_g2_i2 TAR RNA-binding protein 1 

[Penaeus monodon] 

gi|444174849 0 1 1.969 

TR28381|c10_g3_i1 R2D2 [Bemisia tabaci] gi|619831236 8.00E-45 0.046 0.068 

TR28381|c10_g3_i1 TAR RNA-binding protein 1 

[Penaeus monodon] 

gi|444174849 1.00E-

114 

0.046 0.068 

TR29298|c7_g1_i1 drosha [Marsupenaeus 

japonicus] 

gi|396941645 0 0.086 -0.247 

TR33054|c1_g1_i1 argonaute 1 [Marsupenaeus 

japonicus] 

gi|283827858 0 0.383 0.19 

TR33054|c1_g1_i1 argonaute2 [Penaeus 

monodon] 

gi|563729913 1.00E-

108 

0.383 0.19 

TR33054|c3_g1_i1 argonaute 1 [Marsupenaeus 

japonicus] 

gi|283827858 0 0.053 0.111 

TR33054|c3_g1_i1 argonaute2 [Penaeus 

monodon] 

gi|563729913 4.00E-71 0.053 0.111 

TR42801|c3_g1_i4 Dicer-1 [Drosophila 

melanogaster] 

gi|17738129 2.00E-43 0.073 -0.188 

TR42801|c3_g1_i5 Dicer-1 [Drosophila 

melanogaster] 

gi|17738129 4.00E-66 1 0.512 

TR48022|c0_g1_i1 argonaute 1 [Marsupenaeus 

japonicus] 

gi|283827858 1.00E-69 0.998 0.56 

TR48022|c0_g1_i1 argonaute2 [Penaeus 

monodon] 

gi|563729913 9.00E-83 0.998 0.56 

TR48022|c0_g1_i2 argonaute 1 isoform B 

[Penaeus monodon] 

gi|110294438 6.00E-74 1 0.48 

TR48022|c0_g1_i2 argonaute2 [Penaeus 

monodon] 

gi|563729913 4.00E-92 1 0.48 

TR48022|c1_g1_i2 argonaute2 [Penaeus 

monodon] 

gi|563729913 0 1 0.604 

TR48022|c1_g1_i2 argonaute 1 isoform B 

[Penaeus monodon] 

gi|110294438 1.00E-

127 

1 0.604 

TR4912|c0_g1_i1 Dicer-1 [Drosophila 

melanogaster] 

gi|17738129 2.00E-

177 

0.002 0.057 

TR4912|c3_g1_i1 Dicer-1 [Drosophila 

melanogaster] 

gi|17738129 7.00E-

159 

0 -0.151 
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After 24 hours the GO enrichment of the endocytosis and RNAi pathways has 

disappeared and been replaced with terms related to enzymatic activity, mainly 

hydrolase activity. These terms are more difficult to relate to the process of viral 

infection. Again in this time point many annotations are either derived from 

hypothetical or predicted sequences. In relation to the immune system it was found 

that TR40119|c12_g1_i8, a homologue to the Eriocheir sinensis NF-κB transcription 

factor Relish, is significantly downregulated (log10 FC = -1.49, Supplementary File 

S2). Huang et al. 2010 [84] showed that L. vannamei Relish can bind to the WSSV 

ie1 promoter and thereby regulate expression of viral genes. Downregulation of this 

particular transcription factor should thus decrease the ability of WSSV to replicate. 

At 48 hours post WSSV injection there were no enriched GO terms and again the 

majority of DE transcripts were annotated to hypothetical or predicted, an indication 

that aquatic crustacean species are underrepresented in studies. In this time point 

again several transcripts related to the immune system were significantly suppressed 

including TR19437|c1_g1_i1, similar to L. vannamei Toll3 and the serine protease 

TR23315|c5_g1_i2. While serine proteases have many functions in invertebrates, 

one role they play is to cleave proteins in the proteolytic cascade of the melanization 

response [85]. Over all the early time points, it appears that the 12 hour time point 

corresponds to the timing where most significant changes in transcription occur as 

part of the C. maenas response to WSSV exposure. Whilst the other time points 

show differential expression of a handful of immune system related proteins, at 12 

hours a clearer over-representation of RNAi and endocytosis related genes was 

identified. It can be hypothesized based on the response at 12 hours that cells either 

accumulate WSSV in early endosomes or recycle virions to the cellular surface, 

which could render the virions incapable of further damaging the host.  

7 – 28 days post injection 

During the later time points (7 – 28 days post injection) signs of replicating WSSV 

were detected in several crabs through mapping of sequencing reads to the WSSV-

CN genome. GO enrichment analysis also revealed the presence of terms related to 

the virus. Enrichment calculations based on the complete transcript set, thus 

unfiltered for metazoan sequences only, showed enrichment of viral components: 

GO:0036338 viral membrane FDR 6.93E-07, GO: 0019031 viral envelope FDR 

6.93E-07, GO:0044423 virion part FDR 3.70E-03 and GO:0019012 virion FDR 

3.92E-03 at the 7 day time point (Supplementary File S3). Similar results were found 

for the samples at 28 days post injection, however not for the 14 day time point. The 

latter result is probably due to the fact that only a single individual sampled at that 
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time point had developed replicating WSSV. Other than virus-related GO terms, there 

appears to be up-regulation of transcripts that function within transport and 

metabolism processes at the 7 day time point (Table 7). The latest time point, 28 

days post injection, shows clear enrichment for terms related to energy generation 

(e.g. mitochondrion and oxidation-reduction process). When a virus is replicating the 

demands for energy are high due to increased protein production, and often viruses 

influence host metabolism to ensure enough energy is available. Indeed, WSSV has 

been shown to be able to induce the Warburg effect in host cells, increasing energy 

generation via anaerobic signalling pathways [86]. Influence of WSSV on host 

process is more clearly demonstrated by comparing only WSSV replicating samples 

to control samples in the later time points. Differential transcript expression was 

performed in a similar manner, but omitting the WSSV injected, but infection free 

samples. The number of differentially expressed transcripts identified at each time 

point is listed in Table 9. A selection of enriched GO terms for WSSV replicating 

samples are shown in Table 10. At the 168h time point, terms related to the presence 

of the virus are once again over-represented but in this comparison modulation of 

host process by the virus are also visible. The 336h time point did not yield any 

enriched GO terms, probably caused by there being only a single sample in the 

WSSV replicating group which handicaps statistical tests (represented by the lower 

number of DE transcripts when compared to the other WSSV replicating time points). 

The enriched GO terms in the latest time point reflect the ones identified in the 

previous comparison: terms related to energy generation and virus modulation of 

host processes.   

There is only a limited number of DE transcripts related to the immune system, and 

Supplementary File S2 shows activity of processes involving biosynthesis of nitric 

oxide (NO). For example, C. maenas nitric oxide synthase (TR24850|c3_g1_i1) is 

upregulated at 672h. Within the immune response, inducible NO synthase can 

rapidly generate NO free radicals that are damaging to invading pathogens. Current 

knowledge of the NO response in crustaceans is limited and is believed to primarily 

target bacterial, fungal and parasitic pathogens instead of viruses [87]. Increased 

biosynthesis of NO under WSSV infection could thus be a first indicator that the 

invertebrate immune system also employs NO radicals against viral pathogens. 

However NO plays a variety of roles within organisms and thus whether the 

increased expression of C. maenas nitric oxide synthase is related to the immune 

response or another process required further investigation.  
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Table 9 Number of differentially expressed transcripts in samples with replicating WSSV 

Time (hpi) WSSV replicating 

only 

Number of DE transcripts 

(#) 

168  3647 

336 985 

672 5444 

 

Table 10 Representative enriched Gene Ontology terms in WSSV replicating samples 

Time GO-ID Term FDR P-

Value 

168h 

(WSSV) 

GO:003633

8 

viral membrane 2.22E-

05 

8.78E-

09 

GO:001903

1 

viral envelope 2.22E-

05 

8.78E-

09 

GO:000451

7 

nitric-oxide synthase activity 3.47E-

03 

7.85E-

06 

GO:000621

0 

thymine catabolic process 3.47E-

03 

7.95E-

06 

GO:000620

8 

pyrimidine nucleobase catabolic process 3.47E-

03 

7.95E-

06 

GO:190156

5 

organonitrogen compound catabolic process 9.51E-

03 

3.44E-

05 

GO:001905

4 

modulation by virus of host process 9.51E-

03 

3.76E-

05 

GO:001904

8 

modulation by virus of host morphology or 

physiology 

4.13E-

02 

2.41E-

04 

GO:004659

6 

regulation of viral entry into host cell 4.13E-

02 

2.41E-

04 

336h 

(WSSV) 

    

672h 

(WSSV) 

GO:000395

4 

NADH dehydrogenase activity 5.65E-

07 

7.13E-

10 

GO:000574

6 

mitochondrial respiratory chain 9.40E-

07 

1.26E-

09 

GO:009880

3 

respiratory chain complex 2.34E-

06 

3.33E-

09 

GO:000574

7 

mitochondrial respiratory chain complex I 3.62E-

06 

6.01E-

09 

GO:003196

7 

organelle envelope 1.27E-

07 

1.30E-

10 

GO:001665

1 

oxidoreductase activity, acting on NAD(P)H 1.47E-

07 

1.62E-

10 
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GO:001598

0 

energy derivation by oxidation of organic 

compounds 

1.24E-

03 

3.43E-

06 

GO:003633

8 

viral membrane 7.24E-

05 

1.60E-

07 

GO:001903

1 

viral envelope 7.24E-

05 

1.60E-

07 

GO:001905

4 

modulation by virus of host process 2.34E-

02 

1.95E-

04 

GO:003964

8 

modulation by virus of host protein ubiquitination 9.43E-

03 

4.17E-

05 

 

 

6.4.5 Analysis of miRNA expression 

A consistent result of the RNA-sequencing data was the increased expression of 

genes involved in the production and activity of miRNAs. The importance of RNAi to 

C. maenas response to WSSV warrants investigation of differential expression of 

miRNAs upon exposure to this pathogen. Therefore, small RNAs were sequenced on 

an Illumina HiSeq-2500 platform. Known and novel miRNAs were identified based on 

miRbase miRNAs from related species (M. japonicus, T. castaneum and D. pulex 

)[48-51, 88]. Using mirdeep2 and subsequent clustering with CD-HIT-EST, a total of 

322 host miRNAs were identified. Of these, 207 miRNAs were novel and 

subsequently named ‘cma_pmiR-XXX’, the p standing for predicted. Filtering for 

miRNAs with at least 10 CPM across 4 samples within a time point retained 77 

miRNAs for testing, of which 24 were novel C. maenas miRNAs. A list of miRNAs 

and their expression values can be found in Supplementary File S4 and S5. For 

every time point differentially-expressed host miRNAs were identified (Table 11). 

Interestingly, the novel cma_pmiR-12 miRNA was differentially expressed in six of 

the seven time points. The mature sequence of cma_pmiR-12 is 5’ 

ATCCTGGTCACGGCACCA 3’ was identified within C. maenas genome 

scaffold_23728 (Chapter 4), and its pre-miRNA structure is shown in Figure 9. A 

heatmap of normalized expression values shows that this miRNA has a lower 

expression in WSSV-injected samples across all time points (Figure 10). Since this is 

a novel miRNA it would be important to determine the potential targets of 

cma_pmiR_12. Prediction of miRNA targets was performed by the miRanda and 

MicroTar software packages which resulted in 3691 target predictions using miRanda 

and 5592 target predictions using MicroTar with a free energy cut-off of -10 kcal/mol 

(Table 12). Investigating potential roles for the 321 shared targets of both prediction 
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methods through GO-term enrichment as derived by BLAST2GO resulted in only a 

single enriched term: LIM domain binding (GO:0030274) with an FDR of 0.039. LIM 

domains are involved in cytoskeleton organization [89]. However it should be noted 

that only four of the 321 targets are annotated with GO:0030274 and therefore a 

large fraction of the targets is not represented by this ontology term. Investigating 

only the MicroTar results for GO term enrichment did not yield any significant results. 

Targets identified by miRanda at a threshold of -10 kcal/mol were enriched for 48 GO 

terms (Supplementary File S6). The enriched GO term with the largest group of 

associated transcripts was GO:0012505, endomembrane system, with FDR 0.0305. 

This potentially relates to the hypothesis generated in the previous section, where 

changes in the endocytosis pathway were identified as a major characteristic of C. 

maenas apparent resistance to WSSV infection. However, as illustrated by the small 

amount of overlap between the in silico miRNA-target prediction methods, the target 

predictions can be capricious and should be confirmed through further 

experimentation e.g. proteomics studies involving overexpression/knockdown of 

cma_pmiR-12. Extending such overexpression/knockdown target studies with WSSV 

exposure should reveal how strongly this miRNA is correlated with the resistance 

mechanisms operating in C. maenas. 

Table 11 differentially expressed C. maenas miRNAs. 

Time Total 

expressed 

Differentially expressed logFC (Control v WSSV) FDR 

6h 71 cma_pmiR-11 -8.16111282 6.35E-12 

 cma_pmiR-12 -2.698356631 0.000827715 

tca-miR-2788-3p 7.693217558 0.000827715 

12h 63 cma_pmiR-12 -3.812747811 1.46E-14 

24h 66 cma_pmiR-12 -3.070854024 1.46E-14 

48h 66 cma_pmiR-12 -2.874475441 0.000710241 

 tca-miR-133-3p -5.683121602 0.003192561 

168h 70 cma_pmiR-12 -4.373954592 1.97E-07 

 tca-miR-980-3p 2.164258414 0.029730543 

336h 72 cma_pmiR-12 -4.142390557 0.000710241 

 cma_pmiR-107 -3.987799503 0.003192561 

672h 64 tca-miR-2788-3p -9.147749945 8.75E-05 

 tca-miR-263b-5p -2.377694806 0.002527052 

tca-miR-750-3p -3.466759432 0.002527052 

tca-miR-3884-3p 1.5331964 0.050555679 
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Table 12 cma_pmiR-12 target prediction 

Prediction 

software 

Number of 

targets  

(< -20 kcal/mol) 

Overlap  

(< -20 kcal/mol) 

Number of 

targets  

(< -10 kcal/mol) 

Overlap  

(< -10 kcal/mol) 

miRanda 1020 0 3691 321 

MicroTar 25 5592 

 

Figure 9 Structure of cma_pmiR-12. The structure of cma_pmiR-12 as predicted by mirdeep2 and the 
sequence in C. maenas genome. The sequence is presend on C. maenas scaffold 23728. 

 

Figure 10 Heatmap of normalized expression of cma_pmiR_12 across time points, for individual 
samples. Expression values for cma_pmiR_12 were obtained using edgeR normalization. Rows depict 

time points, columns indicate the control/WSSV replicates for that each time point. Each box represents 
normalised expression values for a single C. maenas individual. Across all samples and time points the 
expression of cma_pmiR_12 is lower than those in controls. 
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The mirdeep2 mapper function mapped small RNA sequencing data of five samples 

to the WSSV-CN genome. These were the same samples found to contain 

replicating WSSV in the RNA-sequencing data: ws_36 (0.03 % mapped), ws_37 

(0.01 % mapped), ws_48 (0.044 % mapped), ws_50 (0.045 % mapped) and ws_51 

(0.009 % mapped). Using the same method as for C. maenas, 15 WSSV miRNAs 

were identified in these samples. Of these 11 were described by Huang et al. 2014 

[21] and four were classified as novel (named ‘WSSV_pmiR-[1-4]’). The sequences 

of the WSSV miRNAs are listed in Supplementary File S7. The study of WSSV 

miRNA expression by Huang et al. 2014 described that viral miRNA expression was 

tissue specific, with 18 miRNAs detected in the gill of P. monodon. This study 

confirmed the expression of 4 of these 18 miRNAs, showing there is not only a 

difference between tissues but also between species. The confirmed WSSV-miRNAs 

included WSSV-miR-N24 which was shown to target shrimp caspase 8, thereby 

exerting influence on the host apoptosis pathway, enabling WSSV to maintain a host 

environment conductive to replication [21].  

Table 13 WSSV miRNAs detected in WSSV replicating samples 

Time (hours post 

infection) 

Sample 

ID 

Detected WSSV miRNA  

(* found in gill tissue by Huang et al. 

2014) 

Detected novel WSSV 

miRNA 

168 ws_36 WSSV-miR-N24* 

WSSV-miR-N38* 

WSSV-miR-N41 

 

168 ws_37 WSSV-miR-N13 

WSSV-miR-N25 

WSSV-miR-N29* 

WSSV-miR-N39 

WSSV-miR-N43 

WSSV-pmiR-1 

336 ws_48 WSSV-miR-N47 WSSV-pmiR-2 

672 ws_50 WSSV-miR-N26 

WSSV-miR-N29* 

WSSV-pmiR-3 

672 ws_51 WSSV-miR-N41 WSSV-pmiR-4 

 

6.5 Conclusion 

While many aquatic crustaceans are very highly susceptible to WSSV infection, C. 

maenas was shown to be relatively resistant to this virus. In order to investigate the 

basis of this apparent resistance we performed RNA-sequencing and small RNA-

sequencing experiments on C. maenas gill tissue after injection with either WSSV or 

saline solution. Our experiment confirmed that C. maenas is indeed recalcitrant to 
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WSSV infection as in our study only five individuals developed replicating virus. 

Furthermore, viral replication occurred only after a relatively long period of time 

compared to WSSV virus infections in other aquatic crustacea. The generated gene 

expression data suggest that the innate immune system is probably not the main 

mechanism for the ability of C. maenas to defend itself against this pathogen. 

Instead, it is the RNAi pathway that shows high level activity across the duration of 

our experiment, with several miRNAs showing differential expression. Cma_pmiR-12 

in particular is of great interest both because of its differential expression patterns 

and potential to target the endocytosis system. Expression changes of important 

endocytosis regulators were identified shortly after viral exposure. We hypothesize 

that in C. maenas viral entry via endocytosis is made more complicated due to 

changes in endocytosis transport processes. WSSV virions are probably recycled 

quickly from early endosomes back to the cellular exterior. Future experiments 

involving WSSV exposure in combination with endocytosis inhibition or 

overexpression/silencing of cma_pmiR-12 (or its targets) in both C. maenas and 

susceptible shrimp species should provide deeper insight  into this process, and 

potentially be useful in identifying management and treatment strategies able to 

increase resistance of penaeid shrimp species to WSSV.  

6.6 Supplementary Information 

6.6.1 Annotation rate comparison for C. maenas and H. gammarus 

In previous work, we produced a transcriptome for eight tissues of C. maenas [25] 

and a transcriptome for the nine tissues of the European lobster, H. gammarus. 

Transcripts of both of these assemblies were annotated, enabling comparison of 

annotation rates across these datasets. Transcript annotation with BLASTx to the 

NCBI-non redundant protein database was best for the C. maenas transcriptome 

from Verbruggen et al. 2015 while the transcriptomes for H. gammarus and the 

assembly produced from the exposure data showed similar percentages. All three 

transcriptomes had an annotation rate between 20-30 %. Since ultimately annotation 

relies on sequence similarity, this relatively low rate of annotation is probably the 

result of a lack of genomic data and experimental work in aquatic crustacean species 

as mentioned in Verbruggen et al. 2015 [25]. Analysis showed that the percentage of 

transcripts containing an ORF was lower in the Verbruggen et al. 2015 transcriptome 

but the subsequent comparison to UniProt/SwissProt yielded a much higher rate of 

protein sequence identification. This is not an effect of a better assembly, but more 

likely a function of the similarity threshold criteria applied during the annotation, since 
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in Verbruggen et al. 2015 an e-value threshold of 1e-3 was applied, compared to 1e-5 

in the other assemblies. Thus the low annotation rates are not an artefact of the 

experiment described in this chapter specifically, but an expected characteristic of 

transcriptome annotations in aquatic crustacean species, for which limited annotation 

for related species is available. 

Table 14 C. maenas transcriptome annotation statistics 

Input Annotation method Number of 

annotated 

transcripts 

C. maenas 

transcriptome 

annotation 

percentage 

H. gammarus 

transcriptome 

annotation 

percentage 

Trinity transcripts BLASTx – NCBI nr 

protein 

30,090 (23.3 %) 29.6 24.2 

Trinity transcripts BLAST2GO 23,855 (18.5 %) 3.8 11.6 

Trinity transcripts KEGG 5,857 (4.5 %) 14.3 6.8 

Trinity transcripts TransDecoder ORF 

finder 

59,777 (46.3 %) 27.5 51.6 

TransDecoder 

Peptides  

BLASTp – 

UniProt/SwissProt 

18,508 (31.0 %) 70.4 22.7 

TransDecoder 

Peptides 

Pfam 17,005 (28.4 %) 67.4 34.5 

TransDecoder 

Peptides 

SignalP 4,129 (6.9 %) 1.9 5.9 

TransDecoder 

Peptides 

TmHMM 14,920 (25.0 %) 0 13.7 

 

6.6.2 Comparison of C. maenas ‘ metazoan’ transcriptomes 

In previous work we characterized a de novo transcriptome for C. maenas based on 

RNA extracted from multiple tissue types [25] (Chapter 3). That transcriptome was 

larger than the one produced in the current experiment, containing 212,427 

transcripts in total. The size difference can be attributed to the fact that only a single 

tissue was used in the current experiment compared to twelve in the assembly of 

Verbruggen et al. 2015 [25] (Chapter 3). The contents of both transcriptomes were 

compared through BLAST searches to check for consistency across different 

experiments. The GC content of both transcriptomes was similar with 43.18 % in the 

current assembly compared to 44.53 % in Verbruggen et al. 2015 [25].  Sequence 

similarity showed that there is a reasonable degree of agreement between both 

assemblies. Comparing nucleotide sequences from each assembly showed that 
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96,729 (75 %) of transcripts from the current assembly had significant similarity to 

116,337 (55 %) transcripts in the Verbruggen et al. 2015 assembly. As the number 

show there is a group of transcripts without a counterpart in the other assembly. 

Filtering for metazoan sequences reduced the unrepresented group. Of the 

metazoan transcripts in the current assembly 20,845 (91 %) showed significant 

sequence similarity to 36,508 (61 %) metazoan transcripts in Verbruggen et al. 2015. 

Like the overall transcriptome size, the larger unrepresented group in the latter is 

likely to be due to the additional tissues represented. These results demonstrate that 

filtering for metazoan transcripts increases overlap between transcriptomes 

assembled in separate experiments. Therefore it can be recommended as an 

analysis strategy since it facilitates comparisons across experiments and reduces 

dataset size and complexity. However, it should be noted that this may also result in 

the loss of novel transcripts. 

6.6.3 WSSV transcriptome assembly and analysis 

Insight into the transcriptome of WSSV was gained through alignment of RNA-

sequencing reads to the genome of WSSV-CN. The coverage of the WSSV genome 

by RNA-sequencing reads is shown in Figure 11. From this analysis, it was apparent 

that generally the whole WSSV genome was transcribed into mRNA. Across the 

genome, only 15 bases were not covered by the RNA-sequencing data: bases at 

positions 32,272-32,283, within wsv060, and at positions 240,187-240,189. Given 

that the rest of the genome was covered, it is likely that these regions indicate a 

deletion in the genome of the injected virus. The difference in coverage of regions is 

large; the median is 589x whereas the maximum is 267,400x. The region of maximal 

coverage lays within wsv230, a gene that produces ICP11, and has been described 

by Wang et al. 2007 as the most highly expressed gene in WSSV [90].  
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Figure 11 Coverage of WSSV genome by RNA-sequencing reads. The graph shows the log10 

coverage of each base in the WSSV-CN genome (AF332093.3). The coverage of each position in the 
WSSV-CN genome represents the sum of coverage in the ws_36, ws_37, ws_48, ws_50 and ws_51 
samples. 

The sequencing reads of viral origin were used to generate a transcriptome for 

WSSV. Both genome-guided and de novo methods were applied with various 

settings. Assembly statistics are shown in Table 15 and the transcripts were aligned 

to the WSSV-CN genome and visualized in Figure 12. The statistics show that most 

assemblies were similar in size with a large N50 values. This indicates that the 

assembled transcriptomes consist of few, but long, transcripts. Of note, the Cufflinks 

assembly consisted of a single transcript the cause of which lies in the coverage of 

the WSSV genome and likely corresponds to a technical error of the assembler. The 

visualization in Figure 12 also illustrates this point. Comparing the assembled 

transcripts to the existing WSSV-CN annotation shows that many assembled 

transcripts cover multiple open reading frames (ORF).  

Table 15 WSSV transcriptome assembly statistics 

Quast Trinity (genome guided) Trinity (de novo) Cufflinks 

 Default Min_cov/glue 

100 

Default Min_cov/glue 

100 

 

Contigs 76 242 75 65 1 

Contigs  

(> 500 bp) 

59 131 53 49  

Total length 337328 246749 412159 378973 305119 

Total length  332474 212628 405258 373453  
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(> 500 bp) 

Largest contig 18920 10652 35072 35063 305119 

GC % 40.56 40.56 40.72 40.77  

N50 9768 2089 16673 13504  

 

 

 

 

 

 

 

 

 

 

 

 

 

Additionally, the alignment of assembled transcripts to the WSSV genome shows that 

both de novo and genome guided assemblies are sensitive to the settings chosen. 

For example: Trinity genome guided and de novo assemblies (each at different 

settings) around WSSV-CN 50kb generate different results. Both the combining of 

multiple ORFs in single transcripts and the capriciousness of the assemblies can be 

ascribed to polycistronic mRNAs which are widespread in eukaryotic viruses [91]. 

Indeed, it has been shown that WSSV employs many polycistronic mRNAs to 

produce its proteins [92]. Many open reading frames identified in the WSSV genome 

do not contain a polyadenylation (polyA) signal. Such open reading frames lay within 

clusters of ORFs where only the last ORFs contains the polyA signal e.g. the 

vp31/vp39b/vp11 cluster [93]. An additional complication is that such clusters can 

give rise to multiple polycistronic mRNAs. Kang at al. 2009, for example, showed that 

the VP60/wsv419/wsv420/VP28 in WSSV-CN (vp60b/wssv478/wssv479/vp28 in 

WSSV-TW AF440570) cluster transcribed: a ∼3.4 kb polycistronic mRNA that 

encoded the VP60b and VP28 proteins; a ∼1.3 kb bicistronic mRNA that included 

wssv479 and vp28; and a ∼1.0 kb monocistronic mRNA containing only VP28. Thus 

Figure 4 IGV visualization of WSSV transcriptome assemblies. Trinity de novo (blue) and genome guided (green) 
assemblies aligned to the WSSV-CN genome. Both assemblies have a version with default parameters and one with –min_glue / 
--min_kmer_cov of 100. The Genbank annotation track is shown in Red.  
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within this cluster VP28 can be transcribed as three separate transcripts. The 

differences in coverage of the VP60/wsv419/wsv420/VP28 cluster in the RNA 

sequencing data illustrates that it is likely that this cluster is indeed represented by 

different mRNAs (Figure 13). The coverage of the VP28 is higher compared to the 

other ORFs in the cluster, indicating that there is indeed high expression of a VP29 

monocistronic mRNA.  

 

Figure 13 RNA sequencing coverage of WSSV ORF cluster. The coverage of the genomic region of 
WSSV-CN containing the VP60/wsv419/wsv420/VP28 cluster. ORF boundaries are indicated by 
coloured vertical lines. Blue: VP60. Green: wsv419. Purple: wsv420. Red: VP28. The cluster has been 
shown to code for multiple poly-/monocistronic mRNAs. The coverage of the VP28 is higher than other 
ORFs in the cluster, indicating high expression of the VP28 monocistronic mRNA. 

Both genome-guided and de novo assemblers will combine the reads in this cluster 

into a single transcript because there are many reads supporting it (i.e. the reads of 

the polycistronic mRNA). Thus the monocistronic VP28 mRNA will be lost from the 

assembly. In addition in follow up gene expression calculations the reads of 

VP60/wsv419/wsv420/VP28 are combined into a single FPKM value. It is possible to 

change the parameters of the assembler to improve results, e.g. a minimal threshold 

for joining contigs (--min_glue and --min_kmer_cov in Trinity). However given the 

variation in expression it is unlikely that a single parameter value can be found to 

resolve poly-/monocistronic situations throughout the transcriptome (see Figure 12). 

Assemblies produced with a reduced dataset, e.g. only aligning reads from the 

ws_52 sample, contained more transcripts, thus bringing out more monocistronic 

mRNAs but again were not consistent across the transcriptome (Table S 2). The 
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assembly of this viral transcriptome is not tractable with currently available 

assemblers and would require a specialized assembler.   

Since transcriptome assembly in WSSV proved complex, instead expression of 

WSSV ORFs was derived through mapping RNA sequencing reads directly to the 

ORF sequences as found in Genbank AF332093.3. Mapping was performed by 

bowtie2 and subsequent expression estimation by RSEM. Results showed that out of 

the 524 ORFs in the WSSV-CN genome, 361 had expression higher than 0 FPKM 

and 330 an expression higher than 100 FPKM. Thus, according to RSEM estimation, 

163 ORFs were not expressed (Table S 3). Like the genomic coverages the 

expression values for most WSSV-CN ORFs lie between 100 – 10000 FPKM, see 

Figure 14. Measuring expression in FPKM confirms that ICP11 is indeed the most 

highly expressed WSSV gene. Two important structural proteins of WSSV, VP28 and 

VP26, are also expressed at high levels. Because of the time resolution and 

individual variability between samples the expression of WSSV ORFs cannot be 

compared in a meaningful way. However, the ws_52 sample data contained a much 

smaller amount of WSSV RNA sequencing reads which might be indicative of an 

earlier stage in infection. Therefore comparison of this sample to the other WSSV 

replicating samples (samples (ws_36, ws_37, ws_48, ws_50 and ws_51) might 

indicate which viral genes are expressed at earlier stages of infection. Analysis with 

EBSeq identified five DE genes between ws_52 and the other WSSV replicating: 

wsv159, wsv430, wsv456, wsv103 and wsv452. Wsv103 is an immediate early gene 

[17], the other have not been extensively studied.  

Because of a lack of literature with similar analysis, it is difficult to place the 

expression of WSSV genes in C. maenas into context. It would be interesting to 

identify whether there are significant differences in WSSV gene expression between 

viral infections in susceptible penaeid shrimp species and C. maenas. These 

analyses could address the questions of whether WSSV change its gene expression 

patterns depending on the host organism and/or whether C. maenas inhibit 

expression of specific viral genes, thereby delaying replication and lowering infection 

success rate. 
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Figure 14 Expression of WSSV ORFs. The plot shows the expression values of WSSV ORFs in log10 
FPKM. ORFs are ordered according to their annotation in Genbank AF332093.3, e.g. wsv230 is at 
position 230 on the x-axis. ICP11, the most expressed protein, and VP28/VP26 which are important 
structural proteins are highlighted.  

 

6.7 Supplementary Tables 

 

Table S 1 Percentage of reads aligning to WSSV genome 

Sample_id Time WSSV alignment 

con_02 0.01% Time 0 

con_04 0.01% Time 0 

con_06 0.02% Time 0 

con_07 0.01% Time 0 

con_10 0.01% 6 hours 

con_12 0.01% 6 hours 

con_15 0.01% 6 hours 

con_16 0.01% 6 hours 

con_19 0.01% 12 hours 

con_22 0.01% 12 hours 

con_23 0.01% 12 hours 

con_24 0.01% 12 hours 

con_25 0.01% 24 hours 
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con_28 0.01% 24 hours 

con_30 0.01% 24 hours 

con_31 0.01% 24 hours 

con_34 0.01% 48 hours 

con_36 0.01% 48 hours 

con_37 0.02% 48 hours 

con_40 0.00% 48 hours 

con_41 0.01% Day 7 

con_42 0.01% Day 7 

con_45 0.01% Day 7 

con_48 0.01% Day 7 

con_50 0.01% Day 14 

con_51 0.01% Day 14 

con_54 0.01% Day 14 

con_56 0.01% Day 14 

con_57 0.02% Day 28 

con_60 0.01% Day 28 

con_62 0.01% Day 28 

con_64 0.01% Day 28 

ws_1 0.01% 6 hours 

ws_2 0.01% 6 hours 

ws_4 0.03% 6 hours 

ws_6 0.01% 6 hours 

ws_11 0.01% 12 hours 

ws_12 0.01% 12 hours 

ws_14 0.01% 12 hours 

ws_16 0.01% 12 hours 

ws_17 0.01% 24 hours 

ws_18 0.01% 24 hours 

ws_20 0.01% 24 hours 

ws_23 0.01% 24 hours 

ws_26 0.01% 48 hours 

ws_29 0.01% 48 hours 

ws_30 0.01% 48 hours 

ws_31 0.02% 48 Hours 

ws_35 0.01% Day 7 

ws_36 4.87% Day 7 

ws_37 2.78% Day 7 

ws_40 0.01% Day 7 

ws_41 0.01% Day 14 

ws_42 0.01% Day 14 
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ws_47 0.01% Day 14 

ws_48 8.08% Day 14 

ws_49 0.01% Day 28 

ws_50 4.85% Day 28 

ws_51 7.57% Day 28 

ws_52 0.33% Day 28 

ws_53 0.01% Day 28 

 

Table S 2 Quast statistics for WSSV transcriptomes based on ws_52 

Quast ws_52 ws_52 

 GG Trinity de novo Trinity 

Contigs 299 307 

Contigs (> 500bp) 121 122 

Contigs (> 1000bp) 62 60 

Total length 223473 222498 

Total length (> 500bp) 167497 164623 

Total length (> 1000bp) 128575 123852 

Largest contig  5286 5286 

GC % 40.82 40.85 

N50 1752 1653 

N75 1023 1016 

L50 28 28 

L75 60 60 

 

Table S 3 Unexpressed WSSV ORfs 

Unexpressed WSSV ORFs (AF332093.3) 

wsv007, wsv011, wsv014, wsv015, wsv016, wsv018, wsv019, wsv026, wsv027, wsv030, wsv031, 

wsv032, wsv033, wsv035, wsv037, wsv038, wsv039, wsv041, wsv045, wsv047, wsv048, wsv068, 

wsv069, wsv070, wsv072, wsv078, wsv083, wsv084, wsv090, wsv097, wsv100, wsv101, wsv105, 

wsv113, wsv114, wsv116, wsv117, wsv119, wsv120, wsv121, wsv134, wsv137, wsv141, wsv142, 

wsv144, wsv146, wsv147, wsv148, wsv149, wsv149a, wsv150, wsv156, wsv157, wsv160, wsv162, 

wsv163, wsv166, wsv167, wsv168, wsv169, wsv178, wsv182, wsv187, wsv189, wsv190, wsv193, 

wsv195, wsv203, wsv204, wsv205, wsv206, wsv208, wsv209, wsv210, wsv214, wsv216, wsv217, 

wsv218, wsv219, wsv229, wsv230, wsv231, wsv242, wsv246, wsv249, wsv250, wsv251, wsv252, 

wsv258, wsv259, wsv263, wsv271, wsv275, wsv276, wsv277, wsv288, wsv293, wsv297, wsv299, 

wsv304, wsv307, wsv310, wsv312, wsv314, wsv315, wsv316, wsv317, wsv318, wsv328, wsv331, 

wsv332, wsv333, wsv335, wsv336, wsv337, wsv338, wsv339, wsv340, wsv341, wsv342, wsv343, 

wsv344, wsv345, wsv348, wsv349, wsv353, wsv356, wsv366, wsv378, wsv382, wsv395, wsv398, 

wsv399, wsv402, wsv404, wsv407, wsv409, wsv410, wsv415, wsv416, wsv420, wsv421, wsv423, 

wsv424, wsv445, wsv454, wsv455, wsv458, wsv468, wsv469, wsv470, wsv473, wsv474, wsv477, 

wsv478, wsv479, wsv480, wsv482, wsv483, wsv484, wsv492, wsv520, wsv522 
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6.8 Supplementary Files 

Supplementary file S1: Illumina_Sequencing_results.xlsx 

Supplementary file S2: Trinotate annotation report.xlsx 

Supplementary file S3: Differentially_expressed_transcripts.xlsx 

Supplementary file S4: Enriched_GO_terms.xlsx 

Supplementary file S5: Cmaenas_miRNAs.fa 

Supplementary file S6: Cmaenas_miRNA_expression.txt 

Supplementary file S7: cma_pmiR-12_miranda_targets_GOenrichment.txt 

Supplementary file S8: WSSV_miRNAs.fa 
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Chapter 7: General Discussion 

 

The crustacean aquaculture sector is an important part of global food production. 

FAO statistics from 1985 to the current decade show that the sector has grown and is 

likely to continue to do so at a similar or greater rate in the future. The largest 

obstacle to further growth of the industry is the prevalence of disease epidemics, and 

over the last decade the most devastating disease has been caused by White Spot 

Syndrome Virus. The host range of WSSV is large and is thought to include most 

aquatic crustacean species, including the commercially important penaeid shrimp. 

Experiments carried out by Bateman et al. showed that the shore crab C. maenas is 

a crustacean with the greatest apparent resistance to this virus amongst a group of 

seven ecologically or economically important crustacean species from across Europe 

[1]. This observation was the basis of the hypothesis addressed in this thesis which 

aimed to identify the how this resistance operates. Understanding the resistance 

mechanism(s) of C. maenas might enable exploitation of this knowledge for the 

protection of disease sensitive and economically important penaeid shrimp species.  

In the first phase of this thesis work knowledge was gathered on the process of 

WSSV infection, with a focus on the molecular interactions that occur between 

WSSV and proteins of the host cell during viral entry and replication. Because of the 

importance of WSSV to the aquaculture sector there has been a large body of 

research into this viral disease. The genomes of four WSSV isolates have been 

assembled and annotated. Furthermore, the function and interactions of many WSSV 

proteins have been elucidated. However there are still many significant knowledge 

gaps. It is known that WSSV enters host cells through Clathrin-mediated endocytosis 

but how the virions reach the host nucleus is unclear. The expression of WSSV 

genes has resulted in identification of immediate early, early and late genes along 

with transcription factors that can bind promoters. Changes that occur in the host cell 

in the presence of the virus have also been documented. The last stages of virion 

assembly and host cell exit have not been explored in much detail in the literature. 

The acquired knowledge of WSSV has been applied in the development of various 

treatments but thus far none have been applied outside the laboratory environment.  

The experimental work in this thesis involved the generation of genomic resources 

for C. maenas and H. gammarus. For H. gammarus a transcriptome was assembled 

and for C. maenas a transcriptome and draft genome were assembled and 
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annotated. Now follows a discussion of the main conclusions, strengths and 

weaknesses of each of the research findings in the different thesis chapters. 

7.1 Carcinus maenas transcriptome assembly 

The assembled transcriptome contained over 200,000 transcripts which is likely 

larger than the real number of transcripts C. maenas produces. The higher than 

expected number of transcripts may have resulted from a number of factors. Firstly, 

RNA sequencing does not distinguish reads based on their origin. This means that 

RNA from organisms, like bacteria, present in the sample will be sequenced along 

with RNA of the species of interest. Thus, transcripts of foreign origin are included in 

the transcriptome of the species of interest. Secondly, it can be the case that single 

transcripts are fragmented and subsequently represented by multiple smaller 

transcripts. This artefact of RNA-sequencing could be reduced by performing 

sequencing on platforms that offer longer reads. Furthermore, the C. maenas 

transcriptome was based on a pooled RNA sample, meaning that for every tissue 

RNA was pooled from four different individuals. Since the genotypes of these 

individuals are different, this can cause problems during the assembly process and a 

degree of redundancy can be introduced to the assembled transcriptome.  

Benefits and drawbacks of pooled samples 

Based on the issue of pooling samples, it can be debated whether it is better to 

generate sequencing data from a single individual or from a pooled sample of 

multiple individuals. Using a single individual, provided enough RNA can be isolated 

from the required tissues, would reduce redundancy due to genotype variation. 

However, using a single individual might result in a biased representation of 

transcripts since it is a snapshot of the status in that one individual at that point in 

time. If the individual experienced a stressor, such as an infection, then this will be 

reflected in the expression of its genes and thus the assembled transcriptome. 

Naturally, this variation can be reduced by using RNA pooled from different 

individuals. Once pooled, it is assumed that the resulting data is a better 

representation of a ‘normal’ transcriptome for that species. The pooling of individuals 

is easily done for microorganisms. However when considering larger eukaryotes it 

becomes more labour intensive and expensive to isolate RNA from many individuals, 

especially when RNA is separated based on tissue type. One of the aims for the 

transcriptome assembly was to investigate tissue specific expression. Unfortunately, 

the design of the RNA sequencing libraries in Chapter 3 was performed in a manner 

that did not allow separation of data based on the individual it was derived from. For 
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example, the sequencing reads for the gills were generated from a pooled RNA 

sample of four individuals. This pooled sample was provided a certain barcode which 

allowed these data to be separated from the data of other tissues in the sequencing 

run. The individual resolution is lost in this manner. Should enough barcodes be 

available, it is possible to label every individual-tissue with a unique barcode which 

allows combining/separating data based on origin. However, it was also the case that 

the overall aim of the transcriptome assembly was not to investigate the effects of 

pooling on sequencing data/assembly but rather the analysis of tissue specific 

expression. To this end the experimental design (pooling prior to labelling) was 

sufficient for purpose. Also, improving the resolution to individual-tissue level 

represented a significant investment of labour and resources, which would not 

contribute to the aim of the experiment.  

Transcript annotation 

After assembly, the annotation of the transcripts relies on sequence similarity to 

known transcripts/proteins. The success rate of annotation for a new transcriptome is 

highly dependent on the availability of known transcript/protein annotations of closely 

related species. For example, the annotation of a de novo transcriptome for a new 

Drosophila species is greatly facilitated by the broad knowledge available for other 

Drosophila species (e.g. Drosophila melanogaster). Unfortunately, aquatic 

crustaceans are not supported by such a large body of information. For Carcinus 

maenas, annotation had to be derived mainly from Penaeus shrimp species, 

Daphnia, planktonic crustaceans or insects like T. castaneum or D. melanogaster. 

Due to the very limited knowledge base for aquatic Crustacea only around 30 % of 

transcripts could be annotated, even when sequence similarity thresholds were 

lowered to BLASTX e-values below 1e-5. At those e-values it is possible to get 

sequence similarities around 30%, but it becomes more difficult to justify whether the 

annotation is truly meaningful. Another pitfall can occur when an annotation yields 

similarity to a transcript in a database that was itself annotated by prediction through 

sequence similarity. For example: C. maenas transcript 1 shows BLASTX similarity to 

giant honeybee (Apis dorsata) protein A, which is predicted to be similar to D. 

melanogaster Dscam. In this case, how well C. maenas transcript 1 actually 

resembles D. melanogaster Dscam is open to major questioning. The size of de novo 

transcriptomes, often over 100k transcripts, makes it impractical to manually 

investigate every annotation. Furthermore, raising thresholds would result in an even 

lower rate of annotation. Missing annotation could also be due to an incorrect 

assembly of a transcript by the de novo assembler. For example, due to insufficient 
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coverage a single mRNA can be fragmented and split into multiple shorter transcripts 

in the transcriptome assembly. Sequencing errors too can cause problems in 

assembly, often encountered in lowly expressed transcripts. Again, the transcriptome 

size often makes it intractable to check for these assembly artefacts.  

Filtering  

The low level of C. maenas transcript annotation complicated the subsequent 

analysis. As mentioned, it is likely that some of the transcripts in the transcriptome 

did not derive from C. maenas but instead from microorganisms present in the tissue 

at time of isolation. The annotation of transcripts was used to derive which transcripts 

were of metazoan origin and therefore likely to be genuine C. maenas transcripts. 

Applying such a filter to the transcriptome reduced its size significantly, but at the 

cost of removing potential novel C. maenas transcripts. Removal of novel C. maenas 

transcripts was not a major problem for the analysis however, because in the original 

work we were mainly interested in the presence of conserved pathways of the innate 

immune system.  Where this could be detrimental is in the identification of novel 

antimicrobial peptides (AMP), especially ones that do not bear resemblance to known 

AMP families. So depending on the question asked of the data, one could consider 

removing the filter in order to identify novel transcripts. It is likely that over the coming 

years more genomic resources will become available for aquatic crustaceans and it 

could be beneficial to repeat the annotation step conducted in this thesis in order to 

benefit from this new information. Repeat analyses could include more transcripts 

into the metazoan-annotated group and thus improve the power of analysis 

performed on the generated dataset.  

Gene expression analysis 

Expression values for transcripts were used to derive differentially-expressed 

transcripts across tissues. Because the dataset did not contain different treatment 

conditions or whole body samples the analysis was performed by comparing a single 

tissue to all the remaining tissues. The latter were assumed to approximate for the 

whole body. However, for every tissue only a single sample is available. This lack of 

replicates is a weak point in the analysis since estimation of expression variation is 

not possible. As discussed in the introduction to this thesis, overdispersion is often 

observed in RNA sequencing datasets and its estimation is necessary for differential 

expression calculations. In the C. maenas analysis this issue was resolved by setting 

a constant dispersion for every tissue according to recommendations by the statistics 

package (edgeR), however, this is a suboptimal solution. In designing new NGS 



Page | 253  
 

experiments it is recommended to always include replicates since it strengthens 

subsequent statistical analysis. A recent publication by Schurch et al. recommends 

using 6 to 12 biological replicates depending on the desired resolution in detection of 

differentially expressed transcripts [2].  

Immune system annotation 

The immune system of C. maenas was characterized through two methods. The first 

was through the use of the KEGG pathway database and secondly through a semi-

automated software pipeline. The KEGG database was used because it provides 

good visual representation of curated pathways. However KEGG pathways are 

based mainly on vertebrate/mammalian species. As such its use is limited since 

KEGG orthology groups are assigned to C. maenas transcripts based on sequence 

similarity to vertebrate species. Furthermore, there are differences in the pathways 

for invertebrates compared to vertebrates. Therefore we also used a semi-automated 

software pipeline that allowed identification of components of the invertebrate 

system. This pipeline involved searching for known protein sequences in the NCBI 

protein database, potentially with added terms to filter undesired sequences. 

Searching for STAT sequences, for example, could be done through the following 

query: “STAT[Protein name] pancrustacea not hypothetical not putative not predicted 

not uncharacterized not partial”. The results of such queries were then used as input 

for a TBLASTN search against the C. maenas transcriptome in order to identify 

transcripts with significant similarity. However, the results required some manual 

post-processing, hence the use of a semi-automated pipeline, because the NCBI 

query could still yield undesirable proteins. When the “[Protein name]” filter was not 

used in the above query then the results would yield proteins like luciferase, which 

are not related to STAT. However, in some cases the [Protein name] addition was 

too strict for the NCBI search to yield results and thus had to be removed. Manual 

inspection was facilitated by a filter that produced the best hits for transcripts based 

on taxonomy. It would be interesting to see whether the capabilities of this pipeline 

can be developed further to remove the need for the manual aspect entirely, making 

it easier to use and less biased by user input. Overall, it was found that almost all the 

expected components of the invertebrate immune system were present in the C. 

maenas transcriptome, and those that are absent may be due to their absence in the 

sequencing dataset, for example because of low expression levels in the selected 

tissues analysed.  
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NGS technology can deliver large volumes of data that can be applied to effectively 

and comprehensively answer scientific questions and provide platforms onto which 

further studies can be based. We used de novo assemblers to generate a 

transcriptome that has great utility for future studies in C. maenas or closely related 

organisms. However, as the results of Chapter 3 have shown, the application of 

RNA-sequencing to organisms in species with little genomic resources is challenging 

due to problems with annotation. It is thus likely that the results in Chapter 3 contain 

errors in the assembly and annotation, but the size of data makes it extremely difficult 

to manually deduce these errors. Improvements in assemblers and sequence 

annotations in C. maenas and its close relatives would strengthen of the current 

dataset.  

7.2 Carcinus maenas genome assembly 

DNA isolated from C. maenas muscle was used as a basis for a sequencing 

experiment with the aim to produce a genome scaffold. Analysis of the generated 

sequencing data indicated issues with quality, in particular in the matepair libraries. In 

order to resolve the sequence quality problem, a repeat sequencing run was 

performed and stringent quality filters were applied to the data. Combining 

sequencing data into a single genome scaffold can be done through many different 

assembly pipelines. Currently there are no agreed standards by which the quality of 

assemblies can be assessed. It would be valuable to have an international standard 

for such assessments, which would allow comparisons between laboratories. Often 

assessment of quality and choice for final assembly are based on statistics 

describing the total number of contigs and distribution of contig sizes (e.g. N50), 

mainly because these are the only metrics that are available after assembly. The 

scaffolds generated in Chapter 4 were relatively similar in respect to these statistics, 

assemblies encompassing several millions of contigs. Metrics that take content of the 

assembly into account rather than pure size distribution statistics might be advisable 

for assembly evaluation. For example, one could consider including annotation into 

assembly choice, preferring assemblies that cover certain genes. The choice of 

genes can either be well-conserved genes, enabling comparison across 

laboratories/species, or specific for a project, favouring presence of genes likely to be 

related to a certain research topic. Again here a form of international guideline or 

evaluation method is advisable. However, annotation of an assembly is a 

computationally and time consuming process and repeating it for a set of assemblies 

would result in a significant delay of analysis with no guaranteed output, therefore 

incorporation into assembly choice is intractable at this time. Should faster annotation 
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methods become available it is worth considering. Unlike the majority of DNA-

sequencing projects, an RNA-sequencing data set was available for C. maenas 

which could be used as a proxy for annotation, as its mapping to a genome scaffold 

informs on total exon content. In the end, a choice was made for an assembly of 

limited size (338,980 scaffolds) that still incorporated a large portion of RNA-

sequencing reads.  

Library construction 

The comparison between the draft genome assemblies for C. maenas (Chapter 4), E. 

sinensis [3] and N. denticulata [4] illustrates that genome sequencing experiments in 

relatively closely related species can have different outcomes depending on 

sequencing strategy. These three studies were all performed on the Illumina HiSeq 

platform, Illumina HiSeq-2500 for C. maenas and Illumina HiSeq-2000 for E. sinensis 

and N. denticulata. However the library construction schemes and sequencing depth 

were different in the different studies. Table 1 lists the study designed applied for 

each species. The C. maenas and E. sinensis studies both employed libraries with a 

large range of insert sizes whereas the sequencing of the N. denticulata genome was 

performed on a single library of a small size. The total amount of generated 

sequence data also showed a wide range, from the 12 x coverage of the N. 

denticulata to the 155 x coverage of the E. sinensis data. Out of the three species, 

the draft genome for E. sinensis showed the best results, achieving coverage of 67.5 

% of the estimated genome size with 17,553 scaffolds (Table 2). The draft genomes 

for the other two species were highly fragmented, consisting of 338,980 to 3,346,358 

scaffolds covering less than half of the estimated genome sizes.  

The reasons for these different results could be related to three aspects: library 

design and coverage, genome assembly pipeline and/or biological basis. Certain 

genomes can be more difficult to assemble than others due to large quantities of 

repeats or strong GC bias. Indeed, the presence of repeats is hypothesized as the 

reason for assembly fragmentation in C. maenas and N. denticulata. However, 

repeat analysis of the E. sinensis draft genome indicated that 50 % of the assembled 

genome consisted of repeat structures thus repeat structures were not causing 

significant fragmentation in this assembly. As illustrated by results in Chapter 4, the 

choice of assembler influence the statistics applied to the resulting assemblies. The 

C. maenas and N. denticulata assemblies were attempted using several assemblers 

whereas the E. sinensis only listed the platanus assembler. It is always worth 

exploring different assemblers since simply applying the platanus assembler, as used 
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in the E. sinensis study, to the C. maenas dataset did not produce the optimal results 

nor relieved fragmentation. Another lesson that can be learned relates to sequencing 

study design. The E. sinensis study had the largest range of insert sizes, seven in 

total, as compared to the five for C. maenas and the single library for N. denticulata. 

Additionally, the total amount of sequence generated was the largest for E. sinensis, 

although this choice is dependent on available budget. A larger quantity of 

information combined with a larger spread of insert sizes could thus provide the best 

opportunity for reducing fragmentation. Overall, it can be concluded that it is 

beneficial to design an Illumina technology based genome sequencing study with as 

many insert sizes as possible, to apply different assembly strategies and generate as 

much coverage as the budget allows. The developments of alternative sequencing 

technologies provide more opportunities to optimize study design. A combination of 

the longer reads offered by the PacBio platform with high coverage Illumina data and 

hybrid assembly methods could make improved assemblies at reasonable budgets 

more likely.  

Table 1 Aquatic crustacean sequencing library designs 

Species Platform Library insert 

sizes (bp) 

Total sequence 

yield (Gb) 

Estimated genome size 

(sequence coverage, given 

estimated size) 

C. maenas  Illumina HiSeq 

2500 

300-500, 500-700, 

3500-5624, 7361-

11741 

~ 135 Gb 1 Gb (135 x) 

E. sinensis [3] Illumina HiSeq 

2000 

170, 250, 500, 800, 

2000, 5000, 10000 

~ 258 Gb 1.66 Gb (155 x) 

N. denticulata 

[4] 

Illumina HiSeq 

2000 

167 ~ 36 Gb 3 Gb (12 x) 

 

Table 2 Aquatic crustacean draft genome assembly results 

Species Assembler (alternatives explored) Total 

scaffolds 

Total length (%) N50 (bp) 

C. maenas SOAP-denovo2 + BESST (SPAdes, 

platanus, ALLPATHS) 

338,980 0.36 Gb (36.0 %) 1,107 

E. sinensis [3] Platanus 17,553 1.12 Gb (67.5 %) 224,000 

N. denticulata [4] ABySS (Velvet, SOAP-denovo) 3,346,358 1.28 Gb (42.7 %) 400 
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Gene model 

One of the major outputs of the C. maenas genome assembly is the gene model that 

contains the location of predicted genes and their respective exons/introns. The gene 

model was generated through a combination of ab initio predictions and predictions 

based on known sequence information. As mentioned earlier, sequence information 

for aquatic crustaceans is scarce which complicates this avenue for prediction. Also 

the ab initio predictors can be trained with prior information which propagates into 

better gene models. The C. maenas genome ab initio prediction benefitted from the 

RNA-sequencing data described in chapter 3 [5]. Should such a dataset not be 

available, as for the E. sinensis and N. denticulata draft genomes, training of 

predictors like AUGUSTUS was based on more distant species like Homo sapiens, 

Crassostrea gigas, Caenorhabditis elegans, Drosophila melanogaster and Daphnia 

pulex. Despite the availability of RNA-sequencing data and the combination of 

multiple gene prediction methods the resulting gene model is often still improved 

through manual examination. The characterization of the predicted Dscam gene on 

C. maenas scaffold 192 showed that the final gene model incorrectly split up the C. 

maenas Dscam gene into two parts. It is likely that such artefacts occur in other 

predicted genes as well. However, due to the volume of data, manual examination is 

often not tractable with limited financial and labour resources. Therefore it can be 

recommended that prior to using draft genomes, like those of C. maenas, E. sinensis 

and N. denticulata, a manual inspection of the scaffold assembly and gene model 

support is performed on loci of interest.  

miRNAs 

The absence of introns and the clear structure of their precursors facilitate the 

identification of miRNAs in the draft assemblies. Investigation of miRNA precursor 

structures was not performed for E. sinensis and N. denticulata, possibly due to not 

having a small RNA sequencing dataset available. Combination of small RNA 

sequencing data and the draft genome resulted in the prediction of 184 miRNA 

precursors, with 31 showing similarity to known miRNAs. Thus a significant number 

of novel miRNAs were identified in C. maenas. Considering that in miRbase (release 

21) there are a total of 223 species represented (only 27 arthropods) the C. maenas 

miRNAs are of real value to the scientific community – particularly in the invertebrate 

clade. Since miRNAs fulfil an important regulatory role across many cellular 

processes their identification can aid in understanding these processes. However, a 
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complete picture of the role if miRNAs would require knowledge on the mRNA targets 

that each miRNA can bind to in order to influence translation/degradation.  

Contrary to the less complex precursor structures, the prediction of the gene targets 

of miRNA was difficult. The applied miRNA target prediction algorithms, MicroTar and 

miRanda, did not tend to agree on miRNA-mRNA target combinations. Because 

animal miRNAs tend to bind to the 3’ or 5’ UTR regions of mRNA, some miRNA 

target prediction methods like MicroTar require only 3’ UTR sequences as input. The 

transcriptome for C. maenas is available, but precise determination of 3’ UTR regions 

in the transcripts was not performed. A more detailed investigation of these, for 

example by identification of transcript regions after the stop-codon of the coding 

areas in the assembled transcripts, could lead to improvements of the miRNA target 

predictions. However even with improvements it is likely that miRNA target prediction 

remains capricious, as precision of target prediction algorithms can be around 50 % 

with a sensitivity ranging from 6 to 12 % [6]. It is likely that many of the miRNA 

targets will have to be identified through experimental means rather than rely on 

bioinformatic predictions.  

Viral insertions 

Rozenberg et al. 2015 showed the presence of WSSV ORFs in the Jamaican 

bromeliad crab (Metopaulias depressus) genome, as determined through Roche 454 

sequencing [7]. Within their sequencing data, 186,890 reads with an average length 

of 265.5 bp, they found 10 % of reads coming from viral origins. In the C. maenas 

such evidence was not found. While there were reads with significant similarity to 

WSSV sequences, their quantity was low (0.00158 % of reads in the paired-end 

library with insert size 300-500). The integration events in M. depressus appear to 

have been facilitated through the action of transposable elements which provide the 

means for multiplication across the genome. Should a similar integration even have 

taken place in C. maenas the percentage of WSSV derived sequences would be 

higher. The small amount of sequence identified in the C. maenas data is more likely 

to derive from contamination of previous sequencing experiments with WSSV 

performed on the same machine. Nevertheless genome-walking experiments with 

primers based on wsv514 (RefSeq: NP_478036.1), wsv209 (RefSeq: NP_477731.1) 

or wsv037 (RefSeq: NP_477559.1) could verify a possible integration event since 

these are WSSV ORFs with reads in C. maenas sequencing data.  

The transcriptome assembly described in Chapter 3 is by itself a good fundamental 

resource for C. maenas. But placing this transcriptome in the context of the genome 
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scaffold assembly enables a wider perspective that is greater than the sum of its 

parts. For example: knowledge on the introns/exons of a gene enables tracking of 

splice variation (e.g. Dscam transcript variations), regulatory elements in gene 

promoter regions sheds light on signalling circuitry and miRNA identification allows 

progress in studying their role. The availability of these datasets thus allows 

scientists to ask more detailed questions, design more powerful experiments with 

greater ease and facilitates interpretation of their results. This could potentially result 

in a snowball effect which propels C. maenas to become an important model 

organism for aquatic invertebrates/arthropods.  

However there is room for significant improvement in the assembly and annotation. 

The assembly remains fragmented and annotation could benefit from manual 

interventions. The coverage of the C. maenas genome by Illumina sequencing reads 

ought to be sufficient for assembly; therefore additional sequencing with this 

technology should have little impact on improving the assembly. Should funds be 

available for additional sequencing, it is advisable that this is performed on a different 

platform. Sequencing technologies like PacBio and Oxford Nanopore can offer read 

lengths that extend far beyond those delivered by Illumina. It has been suggested 

that a 5-10x coverage of the C. maenas genome with PacBio data, which would 

amount to a cost of around £ 40,000 can significantly improve the genome scaffold 

via hybrid assembly strategies. The annotation is more difficult to improve. While a 

higher quality, less fragmented, assembly would achieve better in silico annotation, 

significant improvements would have to be derived either through manual 

inspections, novel algorithms or incorporating additional data sources on C. maenas 

genes.  

7.3 Homarus gammarus transcriptome assembly 

The European lobster (H. gammarus) is an important aquatic crustacean species in 

Europe and the United Kingdom in particular. Research efforts in these species focus 

on topics like conservation, stock enhancement, improvement of husbandry 

techniques, impacts of environmental threats and diseases. Many of these studies 

can benefit from the molecular platform offered by the assembled H. gammarus 

transcriptome. For example, identification of genetic components linked to growth 

and disease resistance of the lobster could be meaningful in optimizing stocking 

programmes and potentially enhancing their aquaculture. In this thesis we aimed at 

the immune system, characterization of which can aid in the study of disease like 

WSD and allows for comparisons to results from C. maenas.  
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Assembly and annotation  

Many of the previous comments made regarding the C. maenas transcriptome are 

also applicable to the H. gammarus transcriptome. While data generation and 

assembly are feasible with current technologies, the annotation of the transcriptome 

remains difficult. Transcriptome annotation relying on sequence similarities has a low 

rate of success, even when thresholds are lowered. However, availability of the 

transcriptome does facilitate wet lab experiments that can aid in elucidating the 

function of transcripts, thus widening the knowledgebase for annotation.  The 

identification and comparison of relevant biological pathways in H. gammarus and C. 

maenas depended partially on the KEGG database. As mentioned in the text, KEGG 

is focused on mammalian/vertebrate species which makes it less viable in 

invertebrates like crabs and lobsters. It would be beneficial for all studies conducted 

in invertebrate species to have an equivalent resource to KEGG available to facilitate 

pathway visualization and analysis. Given that currently there are large invertebrate 

genome sequencing projects underway, e.g. the i5k projects that aims to sequence 

5000 invertebrate genomes (including aquatic crustacea) [8] and that analysis of all 

this data would benefit from such a resource, it could be possible for an invertebrate 

KEGG to be developed. 

Through comparing transcript expression in H. gammarus samples, profiles of 

differentially expressed transcripts for nine lobster tissues were generated. Amongst 

these profiles the male gonad tissue stood out in its quantity of differentially 

expressed transcripts. Further analysis showed that for those transcripts with 

functional annotation, there was enrichment of terms not typically associated with 

testes. Cell differentiation of various types like osteoBLASTs, mesenchymal cells, 

epidermal cells, keratinocytes, astrocytes and more were identified but not 

spermatozoa. In addition, terms related to higher rates of cell division that 

accompany production of spermatozoa were also not identified. Underlying reasons 

for the large count of differentially expressed transcripts observed and their functional 

annotation could involve: previously discussed difficulties of transcript annotation, 

presence of complex parasites, other invading agents in the sampled testes or even 

mislabelling of samples during tissue isolation and subsequent RNA extraction (e.g. 

whole body juveniles labelled as male gonad tissue).  

Comparison of the immune systems of H. gammarus and C. maenas showed many 

overlapping components. Most components could be identified in both species. 

Notable exceptions were: peptidoglycan recognition protein (present in H. gammarus 
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but not in C. maenas), Dredd (present in C. maenas but not in H. gammarus) and 

Dicer2 (present in C. maenas but not in H. gammarus). The first two could have 

implications on how both organisms deal with pathogens of bacterial origin whereas 

the latter can be related to antiviral defence. In invertebrates like Drosophila Dicer2 is 

important in the siRNA component of the RNAi system. siRNAs can be created from 

virus derived dsRNA which in combination with the RISC complex promote 

degradation of complementary mRNAs. WSSV is a dsDNA virus, but because 

transcription can take place in both sense and antisense directions from its genome 

dsRNA molecules can be formed [9]. Since Dicer2 is lacking in H. gammarus, the 

efficacy of its siRNA could be compromised as Dicer1 is less efficient in the siRNA-

RISC complex [10]. Experiments involving introduction of C. maenas Dicer2 in H. 

gammarus or silencing of Dicer2 in C. maenas, both in combination with WSSV 

exposure, could reveal the impact of these differences in the immune system WSD 

development.  

For many viruses the success of infection is largely dependent on the process of viral 

entry [11]. Prior to viral entry via endocytosis WSSV bind to proteins present on the 

host cell surface, the efficiency of which is determinant of whether infection will be 

successful. Furthermore, the target host proteins are important determining factors 

for the range of species a virus can infect. Often viruses have interactions with 

conserved proteins which enables a greater host range and potential host jumping 

[12]. In the 1990s WSSV was identified as a virus that mainly impacts penaeid 

shrimp. Therefore the more closely a cellular environment matches that in penaeid 

shrimp, the more likely it is that WSSV can successfully infect that host [12]. 

According to this theory the sequences of three WSSV receptors in the 

transcriptomes of H. gammarus and C. maenas were compared to those of penaeid 

shrimp species. One of the major interactions between WSSV and host proteins is 

the interaction between WSSV VP28 and host Rab7 [13]. For all the WSSV receptors 

(integrin, lectin and Rab7) the H. gammarus sequences were closer to those of 

penaeid shrimp than the C. maenas sequences. This may offer a partial explanation 

as to why C. maenas are less susceptible to the virus compared to H. gammarus. 

7.4 Carcinus maenas response to WSSV infection 

For the study on the response of C. maenas to WSSV, the virus was introduced to C. 

maenas through injection and animals were subsequently kept for a period of up to 

28 days. Over this period C. maenas individuals were sampled at regular timepoints. 

The response was measured in the gill tissue, which is relatively easy to dissect from 
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an individual crab and tends to be one of the tissues where the virus first appears 

and replicates [14].  

After sequencing it was found that only five (out of 28) samples contained RNA 

derived from WSSV. The presence of WSSV RNA indicates that the gill tissues of 

those crabs contained cells wherein WSSV was expressing its genes and replicating. 

It would be interesting to compare this result to those of certified WSSV PCR 

detection kits used on the same samples. There should be differences in results 

since the PCR kits will pick up presence of virus, even if it is not replicating. This 

would give an indication on how long the virus remains present in the C. maenas 

after injection and the fraction of individuals that develop infection over time. 

Additionally, histology data would provide extra depth of insight in the fate of WSSV 

in C. maenas. To observe what cellular compartments the virions are present, e.g. 

the nucleus, endosomes and lysosomes, would be highly informative. Thus together 

histology, PCR and RNA-sequencing can describe the whole infection process from 

confirming virus presence to entry, localization and ultimately replication. Collectively 

this would help to provide additional depth and understanding of the infection 

process. 

As mentioned, replicating WSSV was detected in 5 out of 28 C. maenas individuals 

injected with WSSV. Infected individuals were spread over three timepoints: two at 7 

days post injection, one at 14 days post injection and another two at 28 days post 

injection. Since there were four individuals sampled at every timepoint it was clear 

there was individual variation in relation to infection success of WSSV. This 

intraspecies variation could provide greater detail to understanding C. maenas 

resistance. The exposure experiment in Chapter 6 sampled different individuals at 

every timepoint. Elucidating the individual variation in response to the virus requires 

repeated sampling if the same individual over the set time period. Sampling gill tissue 

multiple times is intractable and instead only sampling of haemocytes can be 

considered. Studies of WSSV in crustacean haemocytes have been performed [15, 

16]; however even repeated blood sampling might incur significant stress on 

individuals that might act as a confounding factor in the study.  

A further point of note is that the infected individuals were all sampled at the later 

timepoints; 7-28 days post infection. Thus there is a slower speed of infection 

compared with in penaeid shrimp, where infection takes places within 12-48 hours 

[17]. This slower rate confirmed the previously established recalcitrance C. maenas 

has towards WSSV infection [1]. One of the main objectives of this thesis was to 
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identify the (molecular) basis of this apparent resistance.  One explanation for this 

has already been provided through the comparison of sequences of the identified 

WSSV receptors. Sequence variation could cause the interaction between host 

receptor and viral proteins to lose stability, slowing down the viral entry process and 

thus only infections at later timepoints are observed. However, gene and miRNA 

expression measurements showed there are other interesting interactions which are 

considered later in this discussion.  

While genomes of four WSSV isolates have been sequenced, a large fraction of their 

annotation is based on ORF predictions. The availability of RNA-sequencing data for 

WSSV provided an opportunity to improve annotation by determining which 

transcripts were expressed. To this end a WSSV transcriptome was assembled. 

Application of both genome-guided and de novo assemblers resulted in assemblies 

containing long transcripts with multiple ORFs. It appeared that the assemblies were 

capricious in regard to the used settings in the assemblies (see Chapter 6). 

Assembly was complicated by two factors. Firstly, the genome of WSSV is densely 

packed with ORFs which was confirmed by the fact that de facto the whole genome 

was covered by RNA-sequencing reads. This results in some assemblers like 

cufflinks to generate a single transcript from the RNA sequencing data. The second 

complication is the presence of clusters of WSSV genes that are represented by 

multiple polycistronic mRNAs. Having many individual regions of the genome being 

represented by multiple distinct transcripts is a situation that many assemblers 

apparently struggle with. As was shown for the VP60/wsv419/wsv420/VP28 cluster, 

the monocistronic mRNA for VP28 was not represented and RNA likely originating 

from this transcript was ended up as part of a polycistronic mRNA. The difficulty in 

WSSV transcriptome assembly points to a need for a novel assembler that is able to 

deal with data of this nature. As was shown, adjustment of parameters for 

assemblies did not yield consistent results across the whole transcriptome. Perhaps 

assemblers have to estimate the location of potential clusters and adjust parameters 

within said clusters to derive better results.  

The transcriptomic response in C. maenas to WSSV was determined by comparing 

injected with control samples at each timepoint of the infection study. The first 

observation was that overall there was only a limited change in the expression of 

immune system components of the C. maenas immune system. Increased 

expression was observed for some pattern recognizing and response proteins. This 

stands in contrast to studies in penaeid shrimp species wherein significant 

upregulation of the immune system is often observed. Paradoxically a limited 
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response could be in favour of C. maenas because WSSV hijacks transcription 

factors that are activated by the immune system. The absence of a transcriptomic 

response of the immune system could thus be part of the molecular basis of C. 

maenas resistance to WSSV infection.  

Expression analyses at the 12h timepoint indicated significant changes to expression 

of genes involved in the endocytosis pathway. It appeared that the flow of the 

endocytosis system is changed due to lower expression of several of its key 

regulators, the Rab GTPases. Firstly, there would be reduced uptake of cargo via 

Clathrin-mediated endocytosis which reduces the ability of WSSV to enter the cell. 

This is the first barrier of defence for C. maenas against WSSV infection. Should 

WSSV still manage to enter endocytic vesicles it faces the next barrier: the early 

endosome. Like many viruses, WSSV probably requires a pH trigger in order to 

escape the endosomes. The lower pH in maturing/late endosomes is thought to be 

such trigger and indeed WSSV proteins interact with one of the key regulators of 

endosome maturation: Rab7. It appears that in C. maenas the process of endosome 

maturation is slowed down due to lower expression of Rab7 which cause WSSV 

particles to remain in early endosomes. The slow recycling transport mechanism, 

which flows through the endosomal recycling complex, is also reduced while the fast 

recycling pathway remains at equal levels. All these transport mechanisms combined 

would result in accumulation of WSSV in early endosomes and increased recycling to 

the cellular surface, thereby hindering successful viral infection. Combining the fact 

that this change was only observed at the 12 hour timepoint with the low infection 

rate of WSSV lead us to hypothesise that passing through C. maenas early 

endosomes may influence subsequent pathogenicity of the virions. While similar 

defence mechanisms have been observed in other virus/host interactions, it has to 

be noted that the described hypothesis is purely based on observed changes in gene 

expression [18]. Endocytosis is a complex process, the complexities of which might 

not be fully captured in expression data alone. Therefore, it is recommended that an 

attempt to observe accumulation of WSSV in early endosomes and their recycling to 

the cell surface through microscopy would be useful to clarify if this hypothesis 

explains, at least to some extent, the resistance to WSSV in the crab. Studying the 

effects of endocytosis mediating chemical agents and knockdown/overexpression of 

important regulators like Rab5, Rab7, Rab11 or Phosphoinositides kinases on WSSV 

infection in C. maenas would also be good steps in verifying this hypothesis. In 

addition it would also be of significant interest to identify the signal through which 

these changes are initiated and the regulators that bring them to fruition. 
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MicroRNAs could represent one class of such regulators. Over the course of the 

exposure experiment, components of the RNAi system (e.g. ago2) were upregulated, 

indicating an increased activity of miRNA mediated expression regulation. Small RNA 

sequencing allowed detection of differentially expressed miRNAs. Across most 

timepoints there was not a lot of coherence, apart from cma_pmiR-12 which showed 

significant downregulation in WSSV exposed samples. There is thus a contrast 

between cma_pmiR-12 downregulation and the overall increase of RNAi activity. 

Nevertheless, this miRNA is thus of major interest in regards to WSSV infection in C. 

maenas. To determine the function of cma_pmiR-12 its targets were predicted using 

two software packages: miRanda and MicroTar. Analysis of results showed a low 

level of agreement between the two packages, indicating that in silico miRNA-target 

prediction is not consistent. A factor that has been indicated previously [19]. Targets 

predicted by miRanda showed enrichment for genes involved in the endomembrane 

system and this could thus be one of the regulators of the C. maenas endocytosis-

mediated resistance to WSSV infection. Confirmation through proteomics 

experiments following silencing of cma_pmiR-12, e.g. by using antagomirs [20], 

might reveal which mRNAs’ translation is inhibited by this miRNA. Should 

cma_pmiR-12 indeed be directly involved in C. maenas resistance to WSSV, the next 

step would be to investigate whether this knowledge can be applied to commercially 

important species like penaeid shrimp. If shrimp such as L. vannamei also produce a 

miRNA that is similar to cma_pmiR-12 then silencing experiments are a good start. If 

not, the focus should shift on the targets of cma_pmiR-12.    

After examining the data, several hypotheses on why C. maenas is relatively 

resistant to WSSV infection can be formulated. First, C. maenas viral receptors 

deviate from those in susceptible shrimp species. Secondly, the immune system of 

C. maenas does not undergo large changes in gene expression which could be 

beneficial for the host. Thirdly, at 12 hours post injection there are significant 

changes in the C. maenas endocytosis and RNAi systems that could disrupt viral 

entry. Finally, the novel miRNA cma_pmiR-12 may be involved in mediating C. 

maenas response to WSSV exposure, but thus requires further investigation to 

provide more strength to this hypothesis. Applications of these hypotheses to other 

aquatic crustacean species can only be done for the third and fourth hypotheses. 

Sequences of viral receptors and the immune system are difficult to change without 

genetic modification. Influencing host endocytosis and cma_pmiR-12 can be applied 

more readily in a form of treatment. For example, it has already been shown that 

injection of P. monodon Rab7 or antibody for P. monodon Rab7 could increase the 
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survival rate upon WSSV challenge [13]. As mentioned, treatments based on 

cma_pmiR-12 would depend on whether a similar miRNA is present in the species of 

interest or alternatively design treatments that act on the targets of cma_pmiR-12. 

7.5 Results in the wider context 

The work presented in this thesis had several practical outputs. The second chapter 

summarized current knowledge on the WSSV infection process which is beneficial to 

anyone working in, or being introduced to, this field. We generated transcriptomes for 

C. maenas and H. gammarus and a draft genome assembly for C. maenas. Taken 

together, this body of work is a valuable resource for future studies involving these 

species as has been elaborated earlier in this discussion.  

In this work, one particular component of the immune system, C. maenas Dscam, 

received special attention as there are suggestions of its link to pancrustacean 

immune memory. A gene model for Dscam was identified on a scaffold in the C. 

maenas genome. The gene model recovered the latter domains of the gene whereas 

the earlier domains were not present on the scaffold. Sequencing based on gene 

walking is thus necessary to extend the scaffold in the 5’ direction of the C. maenas 

scaffold. An understanding of immune memory in C. maenas and penaeid shrimp 

could be valuable to the crustacean aquaculture sector. Work by Ng et al. has 

already shown that WSSV-induced Dscam from the Australian freshwater crayfish 

(Cherax quadricarinatus) could neutralize the virus and sustain the host during 

persistent infection (> 1 month) [21]. Identifying whether a similar form of Dscam can 

be induced in shrimp would be of high importance to penaeid shrimp aquaculture. 

Given that farmed shrimp only have to survive 3 – 6 months in order to reach 

marketable size, any protective effect from Dscam can aid in achieving that biomass 

without succumbing to WSSV infection. It would be an asset if production of WSSV-

neutralizing Dscam could be initiated prior to placement in ponds and through 

addition of e.g. neutralized virus as is done in vertebrate vaccinations. As is the case 

for cattle and other farmed animals, vaccinations that prevent diseases are 

preferable to drugs that cure a disease. Therefore, exploring whether Dscam-

associated ‘vaccination’ is a plausible route for crustacean aquaculture would be 

preferable to deploying resources to develop drugs that cure diseases like WSD.  

The C. maenas – WSSV exposure study yielded insights on how a relatively resistant 

crustacean responds to the pathogen. As described, RNA- and miRNA sequencing 

data analysis pointed to changes in endocytosis and miRNA expression. Both of 

these provide angles of research into WSD. Firstly, it can be explored whether 
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temporarily changing endocytosis via small molecules or gene knockdown has a 

significant effect on WSSV infection and replication efficiency. If this be the case, 

endocytosis-related targets can be explored for the development of pharmaceuticals. 

However, endocytosis is an important cellular process and interfering with its 

regulation can result in significant side effects. In Drugbank, a database for human 

drugs and their targets, there are no pharmaceuticals that specifically target the Rab 

family of endocytosis regulators (accessed in June 2016) [22]. Given that many 

human diseases can be linked to endocytosis (e.g. Griscelli syndrome), mental 

retardation, neuropathy (Charcot–Marie–Tooth), kidney disease (tuberous sclerosis), 

and blindness (choroideremia), yet the fact that no endocytosis targeting drugs exist 

might be circumstantial evidence that they are impractical targets [23].  

The RNAi pathway is a well-studied antiviral pathway in invertebrates and tackling 

WSSV via this route might be easier than interfering with endocytosis. The 

identification of a C. maenas miRNA that is downregulated in every WSSV exposed 

sample, cma_pmiR-12, provides a great opportunity for potential treatment 

development and should be given preference. Firstly, it might be insightful to identify 

whether or not penaeid shrimp species expressed a similar miRNA to cma_pmiR-12. 

If this is the case, testing the effects of reduced expression on WSSV pathogenicity 

can be measured. If shrimp do not possess a cma_pmiR-12 focus should shift to its 

targets. As discussed previously, target identification for miRNAs in silico is 

problematic, thus laboratory experiments are a definite requirement. Identified cma-

pmiR-12 targets can be investigated for potential therapeutic development.  

While the insights gained on C. maenas-WSSV interactions are interesting and 

yielded angles for drug target discovery, it should be questioned whether new drug 

targets should be the top priority for WSSV-related research. The current body of 

knowledge on WSSV infection provides many potential pathways/genes/miRNAs for 

treatment development. And indeed several treatments have been shown to increase 

shrimp survival after WSSV exposure e.g. injection of plasmids that enable 

expression of long hairpin RNAs that target viral genes like vp19 and vp28. To date, 

however, the treatments that work in laboratory have not found application in the 

field. The main hurdle is the lack of an effective delivery method. Delivery of small 

molecules to shrimps in ponds is complex, since they would have to be administered 

either through the food or water. Laboratory treatments for WSSV are often delivered 

via injection, which is impractical in an aquaculture context.  In order to combat future 

epidemics as well as the current threat of WSSV it would be important  to develop a 

cost effective system that can deliver drugs (be it small molecule, miRNA or protein 
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based) to shrimps in ponds. An example of a realistic method of delivery and 

treatment is through food. Valdez et al. showed that oral administration of B. subtilis 

spores expressing VP26 on their surface was shown to convey a 100 % protection 

against WSSV in L. vannamei [24]. It is claimed that this method of treatment is easy 

to produce, practical to handle, environmentally stable, human-safe and economically 

feasible. Furthermore, the system could be adapted by changing the presented 

protein to one that is relevant to the disease to combat. Alternatively, one could 

consider to genetically modify shrimp to make them resistant to WSSV infection, e.g. 

through expression of small RNA molecules targeted to viral genes like VP28. 

However, applicability of this method depends on global attitudes toward GMO food 

sources. Thus development of delivery methods should be given a higher priority 

than additional target discovery and optimization. Furthermore, once a delivery 

method is developed there is potential for it to be applied to other diseases in 

addition to WSSV specifically.  

While WSSV has been the most devastating viral epidemic in crustacean aquaculture 

thus far, it is likely that other diseases will emerge. The recent outbreak of Early 

Mortality Syndrome in South East Asia is such an example. Should these new 

diseases develop into global epidemics, resulting in significant losses of food and 

resources, again methods for vaccination and/or treatment have to be developed. 

Such studies would probably follow a similar pattern as those for WSSV research: 

identify the pathogen, the major host pathogen interactions and identification of 

potential targets for treatment. To this date, most of the work in aquatic crustacea 

has been performed on whole organisms. For human disease studies, most of the 

experimental work has moved toward immortalized cell lines platforms since 

experimenting on whole organisms is time consuming, costly and ethically 

undesirable. Cell lines are available for insects, and indeed some studies referenced 

in this thesis were conducted on Sf9 insect cells. However to date there are no lines 

available for aquatic crustacea like penaeid shrimp. Jayesh et al. 2012 [25] described 

problems with cell line development, and why it has been unsuccessful to date. 

Despite of 25 years of ongoing attempts to develop shrimp cell lines, a continued 

effort is highly desirable given the multibillion dollar size of the shrimp aquaculture 

industry and its importance in supplying the world with a source of protein. An 

additional benefit is that not only pathogen-related studies can be facilitated through 

cell lines and research in aquatic crustaceans can be sped up resulting in increased 

understanding of these invertebrates. Thus datasets like the C. maenas 

transcriptome and exposure can be interpreted with greater detail.  
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It is likely that development of antiviral vaccinations, delivery methods and treatments 

for shrimp diseases will take more time. Once developed there will be the 

considerable challenge of actually implementing said treatment in an efficient 

manner. This can be due to production and distribution limitations, potential costs of 

treatments and education how and when to administer it. With these problems, one 

should accept that WSSV and other (viral) diseases will be endemic in the 

aquaculture industry in the future. In such an environment it is vital to have an 

understanding on how diseases emerge and develop into epidemics and to identify 

whether a disease is affected by conditions in the ponds – preferably those that can 

be controlled. Establishing good guidelines based on such real world data might be 

equally important as the treatment development in itself.  

To conclude, the work presented in this thesis delivers a significant contribution the 

genomic resources available for aquatic crustacea. In addition we identified 

mechanisms behind the resistance of C. maenas to WSSV infection and identified 

potential targets for treatment development. Endocytosis regulators, the cma_pmiR-

12 miRNA and its targets are angles that can be explored in future experiments. 

Current understanding of WSSV is at a good level and most importantly a series of 

targets is available to probe for intervention strategies.  What is lacking, however, is 

field/commercial scale application of this knowledge. Therefore although further 

molecular studies will likely help to better identify targets for possible optimised 

treatment interventions, it might be prudent also to investigate the potential of 

(Dscam related) vaccination, development of effective treatment delivery methods 

and development of penaeid shrimp cell lines in the research route(s) to help combat 

WSD. 
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