
Beyond spatial scalability limitations
with a massively parallel method for
linear oscillatory problems

International Journal of High Perfor-
mance Computing Applications
XX(X):1–18
c©The Author(s) 2016

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Martin Schreiber1, Pedro S. Peixoto1,2, Terry Haut3 and Beth Wingate1

Abstract
This paper presents, discusses and analyses a massively parallel-in-time solver for linear oscillatory PDEs, which
is a key numerical component for evolving weather, ocean, climate and seismic models. The time parallelization in
this solver allows us to significantly exceed the computing resources used by parallelization-in-space methods and
results in a correspondingly significantly reduced wall-clock time. One of the major difficulties of achieving Exascale
performance for weather prediction is that the strong scaling limit – the parallel performance for a fixed problem size
with an increasing number of processors – saturates. A main avenue to circumvent this problem is to introduce new
numerical techniques that take advantage of time parallelism. In this paper we use a time-parallel approximation that
retains the frequency information of oscillatory problems. This approximation is based on (a) reformulating the original
problem into a large set of independent terms and (b) solving each of these terms independently of each other which
can now be accomplished on a large number of HPC resources. Our results are conducted on up to 3586 cores for
problem sizes with the parallelization-in-space scalability limited already on a single node. We gain significant reductions
in the time-to-solution of 118.3 for spectral methods and 1503.0 for finite-difference methods with the parallelization-
in-time approach. A developed and calibrated performance model gives the scalability limitations a-priory for this new
approach and allows us to extrapolate the performance method towards large-scale system. This work has the potential
to contribute as a basic building block of parallelization-in-time approaches, with possible major implications in applied
areas modelling oscillatory dominated problems.

Keywords
Parallelization in time, oscillatory problem, exponential integrator, rational approximation, scalability limitation

1 Introduction
In this paper, we investigate a massively parallel matrix
exponential algorithm for simulating stiff oscillatory PDEs,
which arises in applications such as magnetohydrodynamics,
plasma physics, weather and climate.

With the current trend of HPC towards massive par-
allelism, existing solvers are facing the strong scalability
limitation. Here, a key performance limitation is the satu-
ration of scalability in space and a sequential step-by-step
approach in time. Achieving additional parallel speedup on
future architectures requires novel mathematical approaches
to overcome this scalability limitation. Therefore, our strat-
egy for this paper is to focus on the aspect of developing
algorithms to suit the technology’s strengths and limitations,
rather than modifying the architecture to fit the algorithm.

In this work, we first discuss HPC and mathematical issues
before describing the details of how and when a reduction in
wall-clock time is possible. We are primarily concerned with
the solution of equations that are stiff due to a separation of
time scales in the mathematical description of the physics.
This creates fast oscillations in the system of equations that,
when numerical accuracy is required, bind the magnitude of
the time step to the spatial resolution which is traditionally
solved sequentially in time. Instead of using sequential-in-
time solvers, we explore the viability of time-parallelism
by investigating the rational approximation of exponential
integrators (REXI).

1.1 Challenges in HPC
The trend for performance increase on all silicon-based
hardware components changed one decade ago. Due to
a breakdown of Dennard’s scaling (Dennard et al. 1974)
in about 2005, additional performance by increasing the
frequency for singe-core CPUs was not possible any more.
To achieve further scalability according to Moore’s law∗

(Moore 2006), the only way to gain more performance
was an increase in on-chip parallelism: This resulted in a
change from single-cores to multi-core processors which
are nowadays omnipresent even on mobile devices and an
increase in data processable in one instruction (SIMD).

The reduction of the time-to-solution is therefore limited
by the parallelizable part which itself is limited by the
scalability in space with standard time stepping schemes.
This is the case since the parallelizable part is reduced

1College of Engineering, Mathematics and Physical Sciences, University
of Exeter, UK
2Instituto de Matemática e Estatı́stica, Universidade de São Paulo, Brazil
3 Computer, Computational and Statistical Sciences Division, Los
Alamos National Laboratory, USA

Corresponding author:
Martin Schreiber, College of Engineering, Mathematics and Physical
Sciences - University of Exeter, Exeter, UK.
Email: M.Schreiber@exeter.ac.uk
∗Here, we interpret Moore’s law via performance scaling

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

2 International Journal of High Performance Computing Applications XX(X)

Figure 1. Examples of shallow-water simulations. Top row: Gaussian initial condition (top row) at time t = {0.0, 0.2, 0.4}. Bottom
row: Wave-like initial conditions (bottom row) at time t = {0.0, 0.1, 0.2}. We solve these equations with a parallel-in-time approach
which avoids time step restrictions.

Figure 2. Left: Parallelization-in-space only, each color denotes one compute unit and each slice in time typically requires
additional synchronization for the time stepping.
Center: Parallelization-in-time only, each time slice is assigned to a differently colored group of compute unit. Overheads in space
are non-existent, but a final synchronization in time is required.
Right: Schematic view on the realization of the REXI parallelization. The first group of compute units broadcasts the initial
conditions to all other compute ranks. Second, each group solves the corresponding REXI terms. Third, all solutions are reduced to
the compute units on the first rank.

and at a certain number of processors, the serial part and
communication dominate the computation time. A potential
way to tackle these issues is work in an interdisciplinary way
among mathematics and HPC science.

This is also the case for the types of simulations of
interest in this paper, like climate and weather prediction,
magnetohydrodynamics, and fusion processes, where the
dominant method of achieving parallel speed-ups has been
to use parallelization-in-space by using domain partitioning
techniques. This technique is prone to fail for strong-
scalability on future Exascale architectures described above
due to standard time stepping solvers and their inherent step-
by-step application.

1.2 Parallelization-in-time and Exponential
Integrators

Once the strong-scaling limitation of domain decomposition
methods is reached, new parallelism paradigms need to
be explored. One important avenue is the introduction of
parallelism in the time dimension. Although this is not a new
idea, it has recently gained a lot of attention (see Gander
(2015) for a review). There are several different ways to
explore the time dimension parallelism, with some successes

in applied problems (e.g. Samaddar et al. (2010); Berry et al.
(2012); Speck et al. (2012)).

For highly oscillatory nonlinear problems, such as the
ones arising in climate and weather models, there is still
a lot to be done to show that parallel-in-time methods
can be effective. Haut and Wingate (2014) show a way to
obtain an efficient parallel-in-time method for a simplified
non-linear oscillatory problem, but this relies on having
a time integrator that can permit very long time steps
without damping the linear oscillations. Usual implicit time
integrators, although allow long time steps, generally damp
linear waves, so the time integration techniques needs to be
rethought for parallel-in-time strategies. In this direction, the
use of exponential integrators seems attractive.

Exponential integrators deals with the time evolution
in its exponential form, usually making use of its semi-
group properties (Hochbruck and Ostermann 2010; Cox
and Matthews 2002). Numerically, the problem results in
having to calculate exponential of matrices, which has been
studied for many years and there are numerous solution
strategies (see Moler and Van Loan (2003) for a review).
The work of Güttel (2013) suggests using rational Krylov
spaces to approximate the exponential of skew-Hermitian
matrices, which arise in hyperbolic problems. However,

Prepared using sagej.cls

Schreiber et al. - Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems 3

adding a new Krylov subspace requires an additional matrix-
vector multiplication for each additional subspace, which is
inherently serial. Padé approximations (see Higham (2008);
Moler and Van Loan (2003)) require computing power series
with matrix-matrix multiplications, hence also have this
inherently serial part, which gets critical for large matrices.
Another method to reduce the O(n3) complexity in case of
matrix-matrix multiplications for exponential integrators was
presented in Bonaventura (2015) and is based on splitting
the domain into sub-problems. Exponential integrators have
also been used in the weather and climate community, with
some success (Clancy and Pudykiewicz 2013; Garcia et al.
2014). Nevertheless, these methods are usually intrinsically
serial, and we would like to explore methods that allow an
extra degree of time-parallelism embedded in the exponential
integrator, as a way to reduce time-to-solution.

Along the lines of building a parallel-in-time exponential
integrators, Gander and Guettel (2013) propose a parallel-
in-time method for general linear initial-value problems
which makes use of polynomial and rational Krylov methods
for the exponentiation part. In the present paper, we
follow the ideas of Haut et al. (2015), which proposes a
rational approximation of the exponential integrator, which
we will denote as REXI. The key point is that this
rational approximation is massively parallel. The downside
is that it is less general, as it is built only for hyperbolic
(oscillatory) linear initial-value problems, which fortunately
is the class of problems we are interested in this work.
As a direct comparison, for Krylov methods, reducing
the approximation error requires computing more Krylov
subspaces and hence leads to an increase of the serial parts.
In contrast, as we will show, the REXI approach leads to an
increase in parallelism, which is the main reason we focus on
this approach in this work.

1.3 Overview

For sake of clarity, in Section 2 we review in detail the
implementation of the rational function approach to compute
the matrix exponential integration (REXI). We evaluate
REXI with various different execution scenarios, different
discretization schemes and show its competitiveness. This
is done using various benchmark scenarios (described in
Section 3) which are representative for basic building blocks
of climate and weather simulations. We present our first
results on the numerical accuracy of the method in Section
4. These results are important to understand the role of the
different parameter regimes on the speed and accuracy of
the method. For example, one of these parameters represents
the new degree of parallelization which we can exploit with
REXI to reduce the time-to-solution. The second type of
results, presented in Section 5, is an evaluation of REXI
using different parallelization aspects (space and/or time).
Finally, we gain insight on the behavior of REXI on large-
scale systems using a performance model derived in Section
6.

For sake of reproducibility the source code is published as
well (Schreiber et al. 2016).

2 Review of the Rational Exponential
Integrator (REXI)

This section is a comprehensive discussion of the rational
function exponential integrator (REXI) for linear systems of
equations. It provides a fundamental understanding of how
the mathematics translates into time-parallel speed-ups and
therefore illustrates the method’s strengths and limitations.
Even more importantly, the details published in this section
are required for any other investigators to repeat and improve
on our calculations.

We first review how time parallelism is introduced into
what is often an inherently serial problem before we outline
the details of the REXI approach (Haut et al. 2015).

2.1 Time-parallelism with REXI in a simplified
ODE problem

Consider the ordinary differential equation (ODE),

du

dt
= λu, u(t0) = u0, λ ∈ C (1)

with exact solution

u(t) = u0e
λ(t−t0). (2)

One standard way to approximate (1) numerically is, for
example, using first order forward Euler,

ũ(t+ ∆t) = (1 + λ∆t) ũ(t), (3)

where ũ denotes a numerical approximation to u(t).
Assuming integration up until time T , with n timesteps

(∆t = (T − t0)/n), we have that the Euler scheme
approximates the exact solution with sequential applications
of Eq. (3) resulting in

ũ(T) = (1 + λ∆t)n︸ ︷︷ ︸
≈eλ(T−t0)

u0, (4)

where the exponential approximation under the braces
is adequate for large values of n, or equivalently, ∆t
sufficiently small.

This kind of step-by-step procedure is inherently serial
and may have stability constraints (particularly for explicit
schemes, such as the one described above). For oscillatory
problems (where λ is purely imaginary) we may replace
the inherently serial operation of approximating eλ(T−t0) by
a sum of independent rational functions. This transfers the
serial nature of the problem to one that has more parallelism.
This is accomplished using an approximation of the form

eλt ≈
N∑

k=−N

βk
λt+ αk

(5)

where αk, βk are precomputed complex numbers and
2N + 1 defines the number of terms in the summation to
approximate the exponential, which will be discussed in
details in the next subsections.

Each of the terms in the sum can be evaluated
independently, therefore, can be distributed on different
processors. One time step of this scheme (of size T − t0)
would be analogous to n time steps of size ∆t of the forward

Prepared using sagej.cls

4 International Journal of High Performance Computing Applications XX(X)

Euler scheme, but these terms in the sum may be calculated
in parallel. We will show that the larger the time step (larger
T), the larger the number of terms in the sum needs to be
(larger N), but this can be absorbed in a parallel way. This
represents a fundamental transformation from an inherently
sequential step-by-step in time process to one that can be
parallelized. Rather than taking many small time steps to
find the solution at a certain time, one can take fewer, larger,
parallel steps to reach the same time.

One issue is that each large time step is potentially more
expensive, but highly parallel. This is advantageous if very
large time steps are possible or if there is a gain in accuracy
that can be absorbed in a parallel way. The trade-off between
the extra expense of computing the rational function and its
high degree of parallelization is one of the main topics we
address in this paper.

2.2 REXI with hyperbolic systems
We now extend this approach to linear hyperbolic PDE
problems of the form

Ut = LU, U(t0) = U0 (6)

with L being the operator in space, the subscript t referring
to the time derivative ∂

∂t , and U being a vector of unknowns.
The solution may be written as

U(t) = e(t−t0)LU(t0), (7)

where e(t−t0)L is the semi-group or exponential integrator of
the operator L. The goal of this section is to describe how to
compute an approximation of U(t) of the form

e(t−t0)LU(t0) ≈
N∑
n=0

γn((t− t0)L+ αnI)−1U(t0), (8)

where γn and αn are parameters to be specified and I is
the identity matrix. This will be done using the Rational
Approximation of an Exponential Integrator (Haut et al.
2015) and we will review the method carefully so that other
investigators will be able to understand and reproduce our
results.

Since it is the oscillatory nature of the problem that
we’re investigating, we assume the problem is hyperbolic
and thus that the linear operator has only purely imaginary
eigenvalues. We begin by describing the approximation of
eix (see Sec. 2.3), whose rational approximation for its real
part (Re) is,

Re
(
eix
)
≈

N∑
n=−N

Re

(
βn

ix+ αn

)
, (9)

with complex coefficients αn and βn to be defined, and
range of the sum n ∈ {−N, . . . , N}. Then we will extend
these concepts to the general multi-dimensional case eτL

(see Sec. 2.4) followed by the usage of symmetry properties
which will halve the range of the sum to n ∈ {0, . . . , N} (see
Sec. 2.5).

2.3 Rational approximation of exp(ix)

The approximation of the eix used in this paper relies on the
combination of two approximation steps:

(A) Approximation of eix by a linear combination of
Gaussian kernels.

(B) Approximation of Gaussian kernels by a linear
combination of rational functions.

Step A: Approximation of exp(ix) by Gaussian kernels
Let

ψh(x) = (4π)−
1
2 e−x

2/(4h2), (10)

be our Gaussian function to be used as basis for our
approximation, where h is a parameter that specifies the
width of the main support region of the basis function
(a horizontal “stretching” measure, similar to the standard
deviation of a non-normalized Gaussian distribution).

Given an arbitrary complex function f(x), which will
be later specialized to exp(ix), we use superimposition
of translations of the basis functions ψh(x) to build the
following approximation,

f(x) ≈
M∑

m=−M
bmψh(x+mh), (11)

where M controls the interval of approximation (relative to
width of “domain of interest”) and h defines the sampling
rate (relative to the resolution of “domain of interest”). The
accuracy of the approximation is highly dependent on proper
choices of both h and M . Since the translated points lay
between x−Mh and x+Mh, this approximation has been
shown to be adequate for |x| .Mh (Haut et al. 2015).

To compute the coefficients bm, we rewrite the previous
equation in Fourier space with

f̂(ξ)

ψ̂h(ξ)
=

∞∑
m=−∞

bme
2πimhξ, (12)

where the ·̂ symbols indicate the Fourier transforms of the
respective functions. The bm are now the Fourier coefficients
of the series for the function f̂(ξ)

ψ̂h(ξ)
and can be calculated as,

bm = h

1
2h∫

− 1
2h

e−2πimhξ f̂(ξ)

ψ̂h(ξ)
dξ, (13)

for m integer and 1/h defining the periodicity of the
trigonometric basis function. The parameter h is then chosen
to be small enough (see Section 4.1) so that the support
of the Fourier transform of f is mainly localised within
[−1/(2h), 1/(2h)], i.e. almost zero outside this interval.

Since we are interested in approximating f(x) = eix, we
can simplify the above equation by using the response in
frequency space f̂(ξ) = δ(ξ − 1

2π), where here δ is the Dirac
distribution, which leads to

bm = h e−imhψ̂h

(
1

2π

)−1

. (14)

Using the Fourier transform of the Gaussian function we can
finally build a clear expression for the coefficients bm for
f(x) = eix,

bm = h e−imh
1

h e−h2 = e−imheh
2

. (15)

Prepared using sagej.cls

Schreiber et al. - Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems 5

As shown in Haut et al. (2015), the approximation (11)
is very accurate for |x| .Mh. The x variable in the
exp(ix) function will play the role of representing different
wavenumbers of the linear operator L, therefore we expect
that M and h can be appropriately chosen to allow an
adequate representation of the relevant wavenumbers of the
problem.

Step B: Rational approximation of the Gaussian basis
functions The second step is the approximation of the basis
function ψh(x) itself with a rational approximation. A close-
to-optimal rational approximation of ψh(x) is given by

ψh(x) ≈ Re

(
L∑

l=−L

al
ixh + (µ+ i l)

)
, (16)

where µ and al are constant given in Haut et al. (2015),
Table 1. The number of coefficients (2L+ 1) depends only
on the desired accuracy for this approximation. With L = 11
an accuracy greater than single precision is already obtained.

Final step: Rational approximation of exp(ix)
Combining the approximation (B) into the approximation
(A), we have that

eix ≈
M∑

m=−M
bmψh(x+mh)

=

M∑
m=−M

bm

L∑
l=−L

Re

(
hal

ix+ h(µ+ i(m+ l))

)
.

Now, defining n = m+ l, αn = h(µ+ in), and

βRe
n = h

M∑
m=−M

L∑
l=−L

Re(bm)alδn,m+l, (17)

and

βIm
n = h

M∑
m=−M

L∑
l=−L

Im(bm)alδn,m+l, (18)

where δi,j = 1 if i = j and zero otherwise, we finally obtain
the rational approximation for exp(ix) as

eix ≈
N∑

n=−N
Re

(
βRe
n

ix+ αn

)
+ i Re

(
βIm
n

ix+ αn

)
, (19)

where N = L+M .

2.4 Rational approximation of the linear
operator

To see the relationship between the approximation of eix

with eτL, with τ = (t− t0), remember that the oscillatory
problem L has only purely imaginary eigenvalues. Therefore
it maybe decomposed as ΣΛΣ−1, where Λ is a diagonal
matrix in complex space containing the purely imaginary
eigenvalues of L and Σ is a unitary matrix related to the
eigenvectors.

Consequently

eτL =

∞∑
k=0

(τL)k

k!
=

∞∑
k=0

τkΣΛkΣ−1

k!

= Σ

(∞∑
k=0

(τΛ)k

k!

)
Σ−1 = ΣeτΛΣ−1, (20)

where we used

eτΛ =

 ...
eiλjτ

...

 ,

and the fact that the eigenvalues are imaginary (therefore
λn are real). Since eτΛ is diagonal, it can be eigenvalue-
wise approximated in the same way as the function eix, with
x = τλn.

Although L has imaginary eigenvalues, we wish to
evaluate eτLU , which is real valued. Therefore, we will
use the real approximation of eix applied to the multi-
dimensional linear operator

eτL ≈ Re

(
N∑

n=−N
βn(τL+ αnI)−1

)
, (21)

where βn is given by equation (17) and αn = h(µ+ in).
We verify that directly substituting τL as ix in the rational

approximation for the real part of exp(ix) and treating it as
a matrix operator gives a valid approximation for eτL, since

N∑
n=−N

Re
(
βn(τL+ αnI)−1

)
=

=

N∑
n=−N

Re
(
βn(τΣΛΣ−1 + αnI)−1

)
=

N∑
n=−N

Re
(
βnΣ(τΛ + αnI)−1Σ−1

)
= Σ

[
N∑

n=−N
Re
(
βn(τΛ + αnI)−1

)]
Σ−1

≈ ΣeτΛΣ−1 = eτL, (22)

where I is the identity operator and we used that the
expression in brackets is a rational approximation for the
real part of the exponential of each eigenvalue, eiτλj , and
therefore an approximation to eτΛ.

2.5 Properties of the method
To obtain an accurate representation of eτL, the rational
approximation must take into account the spectra of the
operator L, as shown in equation (22). If λ̄ = maxn |λn|
is the maximum absolute eigenvalue of L, then we need
to build the rational approximation in such way that
τ λ̄ < hM . Assuming a fixed value of h, given by the
accuracy desired for the step A of the procedure to build the
rational approximation, M has to be chosen large enough
to cover the whole spectra of L. Also, if a larger time
step (τ) is required, larger M values are also expected.
Analytical expressions relating the error incurring from
different choices of h and M can be found in Haut et al.
(2015). In section 4, we will numerically explore optimal
choices for these parameters.

The coefficients αn and βn are conjugate symmetric
(Hermitian) about the central pole, such that α−n = ᾱn
and β−n = β̄n, and Im(α0) = Im(β0) = 0. Furthermore, it
holds that (L+ αI)−1U = (L+ αI)−1U with the overbar
denoting the complex conjugate. This allows us to reduce

Prepared using sagej.cls

6 International Journal of High Performance Computing Applications XX(X)

the computational amount almost by a factor of two giving
the real valued solution

e(t−t0)LU(t) ≈
N∑
n=0

Re
(
γn(τL+ αnI)−1U(t0)

)
(23)

with

γn =

{
β0, n = 0

2βn, n > 0

Therefore, the rational approximation requires the solution
of N + 1 linear systems for U of the form(

L+ τ−1αnI
)
U = τ−1U(t0), (24)

where the time step is given by τ = (t− t0).
Some care needs to be taken in the choice of the

method to be used to solve these systems. Since the
rational approximation requires all eigenvalues to be purely
imaginary, the numerical scheme should be able to preserve
this property. We will discuss stability constraints and
strategies to deal with numerical methods that could
potentially produce spurious real eigenvalues in the next
subsection.

2.6 Stability
We briefly analyze the stability of the time-stepping method
based on repeated applications ofRN (τL) ≈ eτL, where the
construction of the rational function,

RN (λ) =

N∑
k=−N

βk
λ+ αk

, (25)

is discussed in the previous sections.
We first assume that L is a matrix with a purely imaginary

spectrum. To do so, suppose that

max
|λ|≤‖L‖2

∣∣RN (τλ)− eiτλ
∣∣ ≤ δ, (26)

where ‖L‖2 is the operator 2-norm, and δ is an error bound
that can be as small as required depending on parameter
choices of the rational approximation.

It then follows that

max
λ≤‖L‖2

|RN (τλ)| = max
λ≤‖L‖2

∣∣eiτλ +
(
RN (τλ)− eiτλ

)∣∣
≤ 1 + δ. (27)

Therefore, repeated applications (n) of RN are bounded by

max
λ≤‖L‖2

‖(RN (τλ))
n‖ ≤ (1 + δ)

n ≤ enδ. (28)

Consequently, as long as the number of time steps n satisfies
n . 1/δ, the method is stable (regardless of the size of τ).

The time stepping error grows linearly in the number n
of time steps, so there is a natural accumulation of errors
O (n∆T) when more time-steps are taken. Therefore, an
accuracy degradation is expected if more than n = O (1/∆t)
time steps are taken, so the stability constraint for the scheme
is not overly restrictive for reasonably accurate solutions.

As discussed in Haut et al. (2015), it is possible to
avoid the above restriction on n - as well as to extend the

above analysis to the case where L is a possibly unbounded
operator - by using a rational function filter S (λ) such that

max
λ∈R
|S (λ)RN (τλ)| ≤ 1. (29)

Defining R̃N = SRN as the filtered rational approximation,
it then follows that∥∥∥R̃N (τL)

∥∥∥
2
≤ max
λ≤‖L‖2

∣∣∣R̃N (τλ)
∣∣∣ ≤ 1, (30)

and the time stepping method is unconditionally stable. See
Haut et al. (2015) for further details. Importantly, this also
allows one to use a rational approximationRN (tλ) that only
approximates eiλ on part of the spectrum of L.

For numerical solvers of equation (24) that do not preserve
purely imaginary eigenvalues, unstable modes can also be
treated with the rational filter. The filter may be applied as
a rational approximation as well, which contributes to the
overall parallelism-in-time. For the discretization methods
adopted in this work, it was not necessary to apply any
filtering for stability reasons.

3 Benchmark description
The purpose of this section is to examine the feasibility and
limitations of gaining more parallelization with REXI for
simple, but realistic problems. We therefore use the linear
rotating shallow water equations for our benchmarks because
they are widely used in the development of algorithms for the
weather and climate models. Although full predictive models
(e.g. weather and climate ones) are non-linear, the linear part
of the systems plays an important role in determining the
oscillatory behaviour (and time step limits) of the problem.

3.1 Problem description
We will solve the rotational linear shallow water equations
(see also Haut et al. (2015)), linearized with respect to
a rest state with mean water depth of η̄, and defined for
perturbations of height η and velocity components (u, v).
The linear operator L may be written as

L =

 0 −η̄∂x −η̄∂y
−g∂x 0 f
−g∂y −f 0

 , (31)

which results in a matrix with purely imaginary eigenvalues
for the discretisation methods used in this work. A bi-
periodic simulation domain is used and we wish to solve

Ut = LU, (32)

where
U = (η, u, v)T . (33)

If not otherwise stated, we set g = η̄ = f = 1 and the
domain will be given by the bi-periodic unit square Ω =
[0, 1]2.

For the rational approximation, linear solutions of
problems of the form

(L+ αI)U = U0, (34)

are obtained in the following way.

Prepared using sagej.cls

Schreiber et al. - Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems 7

First, we note that the momentum equations lead to a
problem of the form

AαV = V0 + g∇η (35)

with V = (u, v) and analogously V0 = (u0, v0), and

Aα =

(
α f
−f α

)
. (36)

The solution is

V = A−1
α (V0 + g∇η). (37)

Further reformulations with the assumption of a constant f
and using κ = f2 + α2 lead to

∆η − κ2η = r0 (38)

where
r0 =

κ

α
η0 − η

f

α
ζ0 + ηδ0, (39)

δ = ux + vy is the wind divergence, ζ = vx − uy is the wind
(relative) vorticity and ∆η = ηxx + ηyy is the Laplacian of
the fluid depth.

Therefore, to solve the linear problems, given as in Eq.
(34), we first solve the associated Helmholtz problem for
η (from equation (38)), and then calculate the velocities
directly from equation (37).

3.2 Numerical methods
In this section we discuss the numerical methods used for the
studies in this paper. An overview of the methods is presented
in Table 1.

Time integration: Two different time integration methods
are used in this work:

• RK4 refers to a Runge-Kutta 4th order time-stepping
method.
• REXI denotes the time integration with the rational

approximations, see Sec. 2.

The Runge-Kutta schemes are well understood methods
for time integration and serve as the baseline for the
comparisons with the alternative time stepping methods.

Space discretization: The benchmarks were conducted
based on two different (and relevant) discretization strategies
in space. The derivatives in the linear operatorL can be based
on:

• Finite differences: Here, the standard second order
differences are used (e.g. a [−1, 0, 1] stencil for d

dx)
• Spectral derivatives: The derivatives computed in

spectral space. In this case, the variables are
transformed to Fourier space, the derivatives are
calculated, and the variable is reverted to physical
space (e.g. d

dxe
i2πx = 2iπei2πx).

We made these choices for the following reasons. First,
finite difference schemes are one common way for solving
PDE problems in general, and are particularly relevant for
weather, climate and ocean models (Wood et al. 2014; Madec
2014). Second, spectral methods allow high order accuracy
with great efficiency if used with optimized fast Fourier
transform algorithms and some state-of-the-art weather
forecasting systems use spectral methods based on spherical
harmonics (Barros et al. 1995; Mozdzynski et al. 2015).

Grid: For the spatial grids we use the following schemes:

• Collocated A-grid: All variables are placed at the cell
center. This method is used for all REXI time stepping
methods and for the RK4 time stepping method with
spectral spatial discretization.

• Staggered C-grid: The potential is placed at the cell
center and the velocity components at the cell edges.
Furthermore, computations are based on the vector
invariant formulation. This placement is used for RK4
time stepping methods with finite-differences.

The A/C naming convention follows Arakawa and Lamb
(1977) convention used in ocean and atmospheric models
and has been discussed for many years. As an example,
Randall (1994) describes how the use of staggered C
grids enable better representation of fast waves existing in
the shallow water equations and avoiding computational
spurious modes. On the other hand, collocated grids (A-
grids) allow the use of efficient FFT solvers.

Solver for (L+ αI)−1: For the REXI timestepping scheme,
a linear system solver is required. More precisely, we need
to solve a Helmholtz problem, given by equation 38. For this
purpose, we implemented two different solvers:

• Finite differences: Finite difference operators are
implemented via a convolution operation of the finite
difference stencil in Fourier space which is then solved
directly.

• Spectral basis functions: Spectral derivative operators
are computed in Fourier space.

The Helmholtz problem is discretized into an algebraic
linear system, which is then solved using a Fast Helmholtz
solver (direct Fourier solver) using spectral basis functions
for spectral methods or convolutions of the stencils for finite
differences, see Swarztrauber and Sweet (1996). Because of
its efficiency, we decided to use the Fast Helmholtz solver.
However, further investigation on more generic solvers is
required and we discuss this in Section 8.

3.3 Initial conditions
We use two different initial conditions for our evaluation of
the REXI approach.

Wave scenario The wave scenario is initialized with the
following values for the perturbation height η and velocity
components (u,v),

η(x, y) = sin(2πxωx) cos(2πyωy)

−1

5
cos(2πxωx) sin(4πyωy) (40)

u(x, y) = cos(4πxωx) cos(2πyωy) (41)
v(x, y) = cos(2πxωx) cos(4πyωy) (42)

with mean water depth given by η̄ = 1 and (ωx, ωy) = (2, 1)
(see Fig. 3).

These initial conditions can be represented in spectral
(Fourier) space, therefore the errors are very small when the
spectral solver is used for the REXI approach. This ensures
that we can use this set of initial conditions to understand the
accuracy of the rational approximation method.

Prepared using sagej.cls

8 International Journal of High Performance Computing Applications XX(X)

ID Space discretization Grid Time integration Solver for (L+ αI)−1

(A) Finite differences C-grid RK4 -
(B) Finite differences A-grid REXI Finite differences in spectral space
(C) Spectral methods A-grid RK4 -
(D) Spectral methods A-grid REXI Spectral basis functions in spectral space

Table 1. Overview of the different combinations of spatial discretizations, grids, timestepping methods and linear solvers for the
REXI terms.

Figure 3. Initial conditions for the wave scenario given by parameters (ωx, ωy) = (2, 1), see Sec. 3.3. The variables shown are the
height perturbation (η), velocity in x-direction (u), velocity in y-direction (v) from left to right.

Gaussian scenario In this case we use an initial Gaussian
function for the fluid height perturbation,

η(x, y) = e−50(x2+y2), (43)

assuming a background constant height of η̄ and zero-valued
velocity fields as initial conditions. This initial condition is
not exactly representable in spectral (Fourier) space.

3.4 Error analysis
For the comparisons of the numerical results in Section 4, we
use the Root Mean Square (RMS) error norm,

Erms(f) =

√√√√∑ij

(
fij − f̃ij

)2

NxNy
, (44)

which is based on the discrete computed solution fij for
the points given by (xi, yj) and on the reference solution
calculated at grid points given by f̃ij the resolutions in x and
y directions given respectively by Nx and Ny .

For the performance results in Section 5, we use the
Maximum error norm which is given by

Emax(f) = max
ij
|fij − f̃ij |. (45)

The reference solution is given by a generalized analytical
solution of the linear operator (see Embid and Majda (1996))
and we always compute the error with respect to the height
(η) field.

4 Numerical evaluation
This paper is based on a new method to accelerate com-
putations. However, the understanding of the relationship
between different parameter/method choices is important to
ensure accurate as well as efficient computations.

A key part is the understanding of how the REXI
parameters M and h interact with each other and with

different methods or model parameters (such as Coriolis
parameter, gravity and mean water depth). In the following
sections, we conduct a sequence of parameter studies
with successively increasing complexity, with the aim of
understanding the accuracy versus workload relationship.

4.1 REXI parameters (h,M)
We start by analysing the REXI parameters, h, M and L.

In Fig 4 we analyse the dependency between M and h
for both solvers (finite differences (B) and spectral (D))
investigated with the REXI method. It shows that h needs
to be chosen sufficiently small (at least h < 2) and M
sufficiently large (at least M > 32). As expected, smaller
values of h require larger values of M to preserve accuracy,
which reveals a triangular region of most accurate results.

Also as expected, we note that REXI has higher accuracy
using a spectral method (lower panel of Fig 4). For the
finite-difference method (upper image), we compute the
differential operators with finite differences, which results in
a lower accuracy of the solution compared to the spectral
method.

For efficiency reasons, we are interested in reducing
the amount of total workload which is given by M .
However, reducing M requires increasing h and the area
with acceptable errors gives an upper limit of h. We will
adopt a fixed parameter h = 0.2 throughout the remainder
of this work, which is large enough to reduce the workload,
but small enough to produce accurate results given M > 32.

4.2 Grid resolution (N)
Using standard time stepping methods, an increasing
resolution would require additional computations due to the
increase in spatial workload, and also an increase in the
number of time steps, due to time step size restrictions (CFL
condition).

With the REXI approach, an increasing resolution would
also require additional computations due to the increase in

Prepared using sagej.cls

Schreiber et al. - Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems 9

Figure 4. Error analysis (RMS) of the REXI scheme with
respect to varying h and M using two methods. Top image
shows method (B) which uses a finite-difference solver. Bottom
image shows method (D) which uses spectral solver. The errors
are those of a single large time step of size, τ = 1, for the waves
initial conditions scenario. We can observe limiting values for h
and M and also that M is linearly inversely proportional to h.

spatial workload, but the time step size can be maintained
the same as long as additional REXI terms (M) are included.
We show in Fig. 5 the errors for varying resolution for the
Gaussian scenario, which reveal that additional resolution
implies a larger frequency spectrum to be represented (larger
λ̄) and therefore larger M . The main advantage of REXI is
that the extra workload of having more REXI terms can be
done massively in parallel, allowing to cope with wall-clock-
time restrictions, whereas in standard time stepping methods
the reduced time step size significantly impacts the wall-
clock time of computation.

4.3 Initial condition wave-number (ω)

Next, we analyse a possible dependency of the REXI
parameters depending on the initial condition. To do so, we
vary the (ωx, ωy) parameters in our waves scenario by setting
(ωx, ωy) = (2ω, ω). The error plots are given in Figure 6
(top panel) and we see indeed a dependency on the frequency
of the initial conditions. As expected, initial conditions

Figure 5. Error analysis (RMS) of the REXI scheme with
respect to varying resolution N and M using method
(D)-spectral solver. The errors are those of a single large time
step of size τ = 1, for the Gaussian initial conditions scenario.
We can observe that M linearly depends on the resolution, so
that higher resolutions require larger values of M .

containing higher wave-numbers require that REXI has more
terms (larger M).

Figure 6. Error analysis (RMS) of the REXI scheme with
respect to varying wave-numbers of the initial condition (ω using
method (D)-spectral solver. The errors are those of a single
large time step of size τ = 1, for the waves initial conditions
scenario. We can observe that M linearly depends on the
wave-number, so that higher ω requires larger values of M .

4.4 Time-step size τ
We investigate the effect of different time step sizes (τ) inM .
Error results are shown in Fig. 7. Due to the known relation
that λ̄τ < hM , for fixed resolution and fixed h, larger time
step sizes require more REXI terms (larger M).

4.5 L stiffness (g, f , η̄)
For standard explicit time stepping methods, the time step
size is limited by the speed of the wave propagation (CFL
condition needs to be respected). A faster wave propagation
would then force smaller time step sizes for stability reasons.

Prepared using sagej.cls

10 International Journal of High Performance Computing Applications XX(X)

Figure 7. Dependency of REXI parameter M on varying time
step size. To compute larger time steps, also M has to be
increased.

This propagation speed also depends on the oscillatory
stiffness of our operator, given by g, f and η̄.

We test for such a potential dependency by varying one of
the paramters f , g, η̄ and keeping the other two values fixed.
Error heatmaps with varying parameter of linear operator
and REXI parameter M are given in Fig. 8. Here, we can
observe again a dependency of the REXI parameter M on
the frequencies which describe the stiffness of the system.
Additionally, the varying frequency requires increasing M
only after a certain point and we discuss this briefly: We
account for that by the other oscillatory parts in the linear
operator. These oscillations dominate the error as it can
be seen by the constant error over a range of the varying
parameter for a constant M . After the parameter which we
vary reaches a frequency which is similar to the one in
the other frequencies in the operator, the varying frequency
starts dominating the error, hence also requires increasing the
REXI parameters M .

Next, we have a look at dispersion effects of the
REXI approximation. We use a spectral representation and
decompose L into a system of independent equations for
each spatial frequency. Furthermore, we assume that an
accurate solver (up to machine precision e.g. with the fast
Helmholtz solver) is used for solving the inverse problem in
each REXI term. The linear operator L can be decomposed
in spectral space to

eτL̂ = Σ̂eτΛ̂Σ̂−1

with the symbol ˆ denoting the spectral representation (see
also Embid and Majda (1996)). Then, we can directly
compute our solution by using

Û(τ) = eτL̂Û(0)

= Σ̂eτΛ̂Σ̂−1Û(0)

and obviously no error is introduced so far. We use REXI to
approximate the frequencies given by eτΛ̂, yielding

Ûk(τ) = eτL̂k Ûk(0)

≈ Σ̂k

[
N∑
n=0

Re
(
γRen (τ Λ̂k + αnI)−1

)]
Σ̂−1
k Ûk(0)

Figure 8. Error sensitivity study with varying parameters f
(Coriolis frequency), g (gravitational constant), and η̄ (average
height) and parameter M on varying frequency ε of linear
operator (larger ε leads to more oscillations) with resolution
1282. The varying frequency requires increasing M only after a
certain point. This is because the frequencies which are kept
constant in the linear operator L are dominating the error.

with the selected spatial frequencies denoted by k = (k1, k2)
and time frequencies by σ. We focus on the case of
k1 6= 0 and k2 6= 0, yielding the eigenvalues for the vorti-
cal/geostrophic mode σ0 = 0 and inertia-gravity (Poincaré)
modes σ±1 = ±

√
4π2(η̄gk2

1 + η̄gk2
2) + f2. With the REXI

parameter M being related to the fastest waves, we can

Prepared using sagej.cls

Schreiber et al. - Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems11

explain the dependencies of the REXI parameter M on f ,
η̄ and g as follows: The stiffness of the operator is linearly
depending on the Coriolis frequency f , hence M ∝ f and
we can observe this linear dependency in the top image in
Fig. 8. Regarding the dependency on η̄ and g, we expect
that the REXI parameter is depending on both coefficients
by M ∝

√
η̄g. This behaviour can be also observed in the

middle and bottom image in Fig. 8 by a steeper slope of the
boundary of sufficiently accurate solutions.

5 HPC performance evaluation
The current trends in high-performance computing go
towards massive parallelism and the parallelization of
applications was so far mainly focusing on a parallelization-
in-space. In this work, we consider problem sizes which are
assumed to be not scalable at all (see Sec. 5.2). To overcome
such scalability limitations, one solution was presented with
REXI (see Sec. 2). This allows us to run simulations on
thousands of cores and this section is on evaluating the
potential reduction in wall-clock time.

We conducted all performance benchmarks on the
CoolMUC2 cluster which is based on Intel(R) Xeon(R) CPU
E5-2697. Each socket is equipped with 14 physical cores,
2 sockets are installed on each compute node and hyper-
threading is deactivated. All computations were done in the
SWEET software which is freely available (Schreiber et al.
2016). The Intel(R) icpc compiler was used for compilation
with IntelMPI for distributed parallelization. For (hybrid
MPI+X) threaded parallelization we pinned the threads to
the cores with compact affinities. We used the FFTW (Frigo
1999) as a third party library compiled with Intel(R) icpc.

All simulations in this section were computed over
∆T = 50 simulation seconds. We used Runge-
Kutta 4 (RK4) time stepping method for the finite-difference
and spectral method. Using a CFL ≈ 0.22, this resulted
in time step sizes of about 0.0017 seconds with RK4. A
reduction of the CFL would result in decreasing the error
in time with order 4 but also an increase in the number
of required time steps. These additional time steps would
then directly lead to an increase in wall clock time with
traditional time stepping methods.

For the REXI time stepping, the size of each time step is
∆t = 5 simulation seconds, hence 10 time steps are done in
total.

5.1 Determining REXI’s M parameter for
performance studies

We first conducted a parameter study with varyingM and the
wave-like initial conditions to assure that all parallel REXI
computations are of sufficient accuracy. Results for spatial
approximation with spectral methods and finite-differences
are given in Fig. 9.

We first analyse the upper plot, which shows the errors for
the finite-difference method. In contrast to the computations
in the previous Section, these simulations are executed over
a relatively long simulation time of 50 seconds with 10
seconds per time step. With the finite difference method, a
reduction in the error only starts with a resolution ≥ 256×
256. However, for a resolution of 128× 128 which is of our
interest, a convergence is reached for M ≈ 2048. We link

this to the results of the previous section: Figure 4 gives
for h = 0.2 a lower limit of M ≥ 256 poles for a single
simulation second and same simulation parameters. Figure
7 shows that taking time steps which are 5 times larger also
requires increasing M by a factor of 5. Hence, M ≥ 5 · 256
poles are required for a convergence which confirms the
REXI results being sufficiently accurate for M = 2048.

The lower plot shows the errors for the spectral
method. With this method, we can observe that the errors
are steadily decreasing with increasing REXI parameter
M . Furthermore, by adding more terms in the REXI
approximations we can also gain results which are more
accurate compared to spectral methods. Here, the spatial
errors are obviously not dominating. We account for that by
the errors in the RK4 time stepping scheme. Using the REXI
approximation allows to overcome the errors introduced
with a RKn time stepping method and we like to remind
that this reduction is paid by an increase in the degrees of
parallelization via the increasing M .

In contrast, reducing the errors with standard time
stepping methods can be e.g. accomplished by decreasing
the time step size. However, this would directly lead to an
increase in total simulation time, whereas with REXI, this
leads to an increase in parallelism.

5.2 Space-parallelization results (non-REXI)
To show that we are tackling a strong scalability problem, we
conducted scalability tests with resolutions of 322, 642 and
1282.

The results for the finite-difference methods on a
(staggered) C-grid are given in top image in Fig. 10.
We omitted plotting results for larger resolutions due to
caching effects resulting in a non-monotone scalability. Only
problem sizes are considered in this work which are not
influenced by these caching effects. These are limited in their
scalability on a single shared-memory NUMA node.

Comparing these results with the ones for spectral
methods on an A-grid (bottom image in Fig. 10), we can
observe that spectral methods are by far more limited in
their scalability. This can be explained by the computational
complexity of spectral methods: First of all, the operations
can be accomplished element-wise in spectral space without
requiring (computational more intensive) stencil operations.
This allows an efficient implementation with a parallel-for
loop and element-wise operations (mainly multiply and add
operations). Second, the afore mentioned issue also results
in a low workload, hence leading to an increase of threading
overheads.

For both methods, we can observe a clear scalability
limitation even for a single shared-memory node with
standard parallelization-in-space methods. In the next
sections, we evaluate the REXI method as one of
the parallelization-in-time strategies to overcome these
scalability limitations.

5.3 Time-parallelization results (REXI)
We first evaluate the time-to-solution with a parallelization
in the time dimension only. The simulation time for finite-
difference and spectral methods with different REXI M
parameters is plotted in Fig. 11. For an improved comparison

Prepared using sagej.cls

12 International Journal of High Performance Computing Applications XX(X)

Figure 9. Maximum error norm computed on surface height for different REXI parameters M. Results are plotted for spectral
methods (bottom) and finite-difference (top). The errors are identical for different resolutions since the initial condition can be
error-free represented in spectral space.

with the RK4 time stepping method, we also plotted the
time-to-solution. Here, we used the best time-to-solution for
the numbers of cores which would typically lead to reduced
scalability.

Regarding the REXI method, we can observe a
convergence of the time-to-solution plots at certain number
of cores. Using 112 cores, all the maximum amount of
workload assigned to each compute core depends on the
number of M . With this number of cores and for REXI
parameters M = (128, 256, 512), the maximum workload
assigned to a compute rank is (2, 3, 5) REXI terms,
respectively. Therefore, we also observe different runtimes
for the different REXI terms. However, this changes when
increasing the number of cores. E.g. if the number of cores
is exceeding the number of REXI terms (e.g. at 896 cores),
the maximum workload on each compute rank is one and all
time-to-solution plots are matching.

Finite-difference methods: For the finite-difference meth-
ods, we can observe a significantly faster computation time
with the REXI approach compared to the RK4 time stepping
method. Using only a single core, we get a simulation time
of 332.19 secs with the RK4 time stepping and 28.71 secs
with the REXI time stepping method. This results in a
performance improvement of 11.57×. Activating the MPI
parallelization with REXI, we get a reduction of the time-
to-solution of 332.19

0.2210 = 1503.0×.
Spectral methods: With the spectral method, the REXI

approach is not able to be time-to-solution competitive with a
single core execution. We account for that by the high spatial

accuracy of the spectral method which also requires the
REXI method representing more time-frequencies accurately
in contrast to the finite-difference method. For the domain
resolution of 128× 128, we require at least M = 16384
REXI terms. Here, the REXI method is only competitive
using at least 4 cores for a parallelization-in-time (58.2
secs with REXI vs. 67.4 secs. with RK4 time stepping).
However, we can continue to increase the number of cores,
since the scalability limitation is given at M + L+ 1 =
16384 + 11 + 1 = 16396 cores. Using 3584 cores, we get
a performance improvement of 67.4

0.57 = 118.3×. These plots
still indicate a further reduction in computation time, but we
reached the resource manager limits of the compute cluster
and we like to point out to Section 6 for a performance
model.

5.4 Space-Time-hybrid-parallelization results
(REXI)

In this section we analyze the combination of different
parallelization concepts presented so far: parallelization-in-
space and -in-time. Figure 12 shows plots for the finite-
difference method (top) and spectral methods (bottom) and
two different parallelization strategies are used:

• “REXI M=... time+spacepar” runs the computations
with an OpenMP parallelization in space and an MPI
parallelization in time. Hence, 14 threads are used in
this case for a spatial parallelization on each socket
and total cores

14 MPI ranks.

Prepared using sagej.cls

Schreiber et al. - Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems13

Figure 10. These examples show the classical strong-scaling
limitation often found for parallelization in space only. The
horizontal axes shows the number of computing cores, the
vertical axes is the scalability for both (Top figure) finite
differences (staggered) C-grid (method id (A)), and (Bottom
figure) spectral methods on an A-grid (method id (B)). The
strong scaling limitation can be seen in every line: for a fixed
number of RK4 steps used in these examples, adding more
processors does not lead to an increase in scalability.

• “REXI M=... timepar” uses an OpenMP and MPI
parallelization only for the parallelization-in-time.
Here, the reduce operations are executed first on each
rank with a threaded parallelization. This is followed
by a reduce operation on the REXI terms over all MPI
ranks.

Similar to the parallelization-in-time method discussed in
Section 5.3, we can observe a limitation in scalability if the
number of cores exceeds 1000, independently of the utilized
discretization in space (FD or spectral).

Finite-difference method: We start by discussing the
results based on finite-differences in space for REXI M =
2048. Using only 14 threads, the parallelization-in-space-
and-time (“REXI M=2048 time+spacepar”) results in larger
time-to-solution compared to using only a parallelization-
in-time (“REXI M=2048 timepar”). Here, the overheads
for the parallelization-in-space are larger than the ones for
the parallelization-in-time. For increasing number of cores,
this compensates (crossing of lines) after only quadrupling
the number of cores to 56. With a parallelization-in-
time computation on 1792 cores, we get a maximum
performance improvement of 42.05

0.2016 ≈ 208.58×. For 1568
cores, switching from a parallel-in-time to a parallelization-
in-space-and-time we get a performance improvement of
0.202
0.140 = 1.44. The total performance improvement is given
by 42.05

0.1401 ≈ 300.14× with a parallelization-in-space-and-
time approach.

Figure 11. This figure shows REXI performance going beyond
the strong scalability limit for time parallelzation only. The
horizontal axes are the number of cores and the vertical axes is
the time-to-solution. Top figure: This plot shows the results for
finite differences. The red line shows the time-to-solution for
RK4. As in Figure 10, the strong-scaling limitation can be easily
seen since the reduction in time-to-solution stagnates. The
other three lines are the REXI method which, for these
benchmarks, always leads to an improvement in the
time-to-solution. Bottom figure: Results for spectral methods are
shown here. The green line with M = 16384 computes results
of higher accuracy with REXI. This also leads to an
improvement in the time-to-solution compared to the
parallelization in space method which is given by the red line.
Notice that the time-to-solution increases with a higher number
of REXI terms, but that all three cases decrease the
time-to-solution as soon as you add more processors.

Spectral methods: We observe that for the spectral
method the hybrid parallelization in space and time is never
or only hardly beneficial. Here, a pure parallelization-in-
time clearly the best choice. We account for this in the
following way: Comparing the number of REXI terms
for the spectral and finite-difference methods, we require
significantly more REXI terms for the spectral methods.
As a consequence, this also results in compensating the
parallelization overheads by the increasing amount of
workload per core. The total performance improvement
is 27.99

0.3402 ≈ 82.28× with a parallelization-in-space-and-time
approach and we expect a more significant performance
improvement for a hybrid parallelization-in-space-and-time
approach with a significantly larger number of computing
cores.

Prepared using sagej.cls

14 International Journal of High Performance Computing Applications XX(X)

Figure 12. This figure shows REXI performance when using
parallelization in both time and space (hybrid) on a grid with a
128× 128 resolution. As in Figure 11, we plot time-to-solution
versus the total number of processors for both the finite
differences and spectral methods. REXI M=... time+spacepar
denotes a parallelization in space (OpenMP) and parallelization
in time (MPI). REXI M=... timepar denotes a parallelization in
time only (MPI+OpenMP). Results are plotted for
finite-difference (top) and spectral methods (bottom). We like to
discuss the solid and dashed blue lines in the top plot: These
lines show the time-to-solution for REXI with M=2048 terms.
The dashed line uses only a single core for each REXI term and
we can observe that they offer the best performance for a low
number of computing cores. After about 2048 cores, adding
more cores does not lead to further decrease of the
time-to-solution. This is because no workload (in our case
solving one REXI terms) can be assigned to the additionally
added cores, hence they are idling. Here, activating also a
parallelization in space to solve the REXI terms results in an
additional reduction of the time-to-solution.

5.5 Speedups depending on REXI time step
size

In this section we investigate the performance of REXI
for varying time step sizes. Obviously, there are overheads
included in running a massively parallel REXI approach.
These overheads have to be compensated by the size of
the time step. To get insight in the runtime behaviour for
different time step sizes, we conducted several benchmarks
with the time-to-solution shown in Fig. 13. The total
simulation time was set to 50 seconds. With dt the time
step size, 50/dt time steps are executed in total. We observe
a very good scalability for time step sizes of at least 5.

0.1

1

10

100

14 28 56 112 224 448 896 1792

Number of cores

RK4, FD method
Dt=0.01, M=16
Dt=0.05, M=81
Dt=0.1, M=163
Dt=0.2, M=327
Dt=0.5, M=819
Dt=1, M=1638
Dt=2, M=3276
Dt=5, M=8190
Dt=10, M=16380
Dt=25, M=40950

Figure 13. Time-to-solution for simulation over 50 seconds and
different REXI time step sizes. Dt=... denotes the time step size
for REXI and M=... the number of required REXI terms to
generate competitive results. With REXI time stepping, 50/Dt
REXI time steps are computed. The topmost green line shows
the time-to-solution with a RK4 time stepping method. The dark
blue line (Dt=0.01, M=16) below this one shows an increasing
runtime for increasing number of cores. This is due to the low
number of REXI terms (M=16) which avoids exploiting the
additional number of cores since there is not enough workload.
Due to parallelization overheads, the runtime is getting even
longer. We see a competitive REXI time stepping method for all
considered time step sizes.

For smaller time step sizes, the scalability gets successively
reduced. For relatively tiny time step sizes of 0.1, the
performance peak is reached at 224 cores. After this peak,
the time-to-solution increases and therefore the scalability
decreases. This is, because only M = 163 REXI terms are
involved in the computation and using more than 224 cores
would only result in additional communication overheads
and idling MPI ranks.

Regarding the competitiveness of REXI with small time
step sizes, we can consider e.g. the results with 14 cores and
Dt = 0.01 for REXI. Using finite-differences in space and
RK4 in time, we can take a time step size of about 0.0017
seconds. For this scenario, REXI is competitive for time step
sizes about 5.88 times larger compared to RK4 time stepping
methods.

6 HPC performance model
To develop a performance model for REXI, we separate its
phases into serial and parallelizable components. We recall
the REXI Equation 23 given by

e(t−t0)LU(t) ≈
N∑
n=0

Re
(
γn(τL+ αnI)−1U(t0)

)
.

We assume a constant problem size (resolution) for each
problem and denote the number of cores which are used with
C. An overview of all involved components in the model is
given in Table 2.

Broadcast sB : To spread the initial conditions U(t0), a
broadcast is used. Regarding the parallel communication
time, we assume a logarithmic runtime for such operations
and denote this by sBlog(C).

Precomputation sL and solver pL: On the first glimpse,
the reduce operation over the sum seems to be itself a

Prepared using sagej.cls

Schreiber et al. - Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems15

Serial/parallel Description of computation /
communication

Runtime in model component Performance model
parameter

Serial Computation:
Preprocessing for solving
Helmholtz problems

TL(C) := sL sL = 0.039167 sec.

Serial Communication:
Broadcast of initial conditions
U(t0)

TB(C) := sB log(C) sB = 0.004985 sec.

Serial / parallel Communication:
Reduce operation over sum

TR(C) := sR log(C) sR = 0.011398 sec.

Parallel Computation:
Solving Helmholtz problem and
compute velocities

TW (C) := pW ·
⌈

W
min(C,W)

⌉
pW = 0.036657 sec.

Table 2. Description of parts in our performance model for the REXI parallelization. C denotes the number of cores and T (C) the
runtime for each specific part determined on the CoolMUC2 cluster. The last column contains the determined model parameters s/p
as discussed in this Section.

purely parallelizable part. However, we can precompute
several components with the reformulation to the Helmholtz
problem (Eq. 38). We recall this equation here

∆η − κ2η = r0

and can observe, that the right-hand side given by r0 is
constant for each term in the REXI sum, hence can be
precomputed. Therefore, such a precomputation belongs to
the serial part of our computations and we denote this
with sL. We like to mention that precomputing these terms
results in less scalability, but improved overall performance.
Solving the Helmholtz problem itself and computing the
velocities with the explicit formulation can then be done in
parallel since all terms in the sum are entirely independent
of each other. We assume that the number of REXI terms
can be evenly spread across the computational resources and
denote the time to compute each term by pL (excluding
the precomputable parts). Furthermore, we have to limit the
parallelizable part in case that there are less REXI terms
than the number of computation resources available. Let the
number of REXI terms be given by

W = M + L+ 1

which represents the independent systems of equations
which are to be solved.

A perfect load balancing of a workload W to C would
result in a runtime of T ∝W/C. However, each workload is
assumed to be atomic, hence resulting in a runtime of T ∝
dW/Ce. Furthermore, there is a limitation C ≤W on the
maximum number of cores which yields T ∝

⌈
W

min(C,W)

⌉
.

This finally yields

pW

⌈
W

min(C,W)

⌉
for the massively parallel solver part pL.

Reduce operation sR: After all independent terms are
solved, a reduce operation over an array of solutions is
applied and we assume a runtime of sR log(C) for these
parallel computation and communication.

The overall runtime for computing one time step with
REXI on C cores and REXI parameter M is then given by

T (C,M) = sL︸︷︷︸
serial part

+ sB log(C) + sR log(C)︸ ︷︷ ︸
serial/parallel part

+ pW

⌈
W

min(C,W)

⌉
︸ ︷︷ ︸

parallel part

(46)

with pL = pW ·W = pW · (M + L+ 1) describing the
total parallelizable workload for REXI parameter M . The
model parameters sL, sB , sR and pW are to be determined.
A hybrid MPI+OpenMP parallelization and parallelization-
in-time only with finite-difference discretization in space
for M ∈ {2048, 4096, 8192} is used. The wall-clock times
T (C) for each phase listed in Table 2 were measured
separately. We computed the performance model parameters
from Table 2 by inverting the corresponding equations. The
parameters which describe all models were then determined
with a weighted averaging: Since the number of cores for
the performance studies are not evenly distributed, using
a standard averaging would lead to a bias towards lower
number of cores. Therefore, we used a weight w(C,M) for
each parameter which is based on the reciprocal of the total
runtime T (C,M), hence

w(C,M) =

1
T (C,M)∑
C

1
T (C,M)

.

Then, e.g. the reduce parameter for all models is computed
via

pW =
∑
C

p′W (C,M)w(C,M)

with p′W (C,M) the parameter computed for the study on C
cores and with REXI parameter M .

The time-to-solution are plotted for the measured timings
and the timings of our model in top image in Fig. 14. We
can observe a very good match of our model with the real
measured timings. This model also allows to get insight
in the behaviour of the time-to-solution over a variety of

Prepared using sagej.cls

16 International Journal of High Performance Computing Applications XX(X)

Figure 14. Top: Comparison of the performance results and the
suggested model for the REXI parameters used in the
finite-difference simulation with a resolution of 1282. We see a
close matching of the performance model with the wall-clock
time of our simulations. Bottom: Application of the performance
model to generic parameters. We see an excellent scalability for
large REXI parameters M.

REXI parameter M and a significantly increased number of
cores. Such studies are given in bottom image in Fig. 14.
First, we can observe a very good scalability in case of
very large REXI M. Second, we see a scalability limitation
given at the lowest extrema. This lowest extrema always
matches also the hard scalability limitation of REXI given
by C ≥M + L+ 1. At this extremum, adding more cores
would not result in a reduce of time-to-solution. We can also
study the behaviour for large-scale system with this model in
Fig. 14 and the scalability limitations are clearly observable
by the local extrema. Furthermore, these plots indicate a
very good scalability on already existing systems with 100k
cores. We can also see that communication required for the
broadcast/reduce operation is still not the limiting part for
100k cores.

7 Summary and discussion
The parallel scalability of standard time stepping methods
for oscillatory problems is limited due to the inherently
sequential nature of the time stepping algorithm. This
is particularly severe in the strong scaling limit, where
parallelization in space only does not lead to further
reductions in the run-time. In this paper we overcome this
issue by developing an inherently parallel time stepping
mechanism which is based on a rational approximation of

an exponential integrator (REXI). Each of these problems
can then be solved independently on a parallel machine.
Introducing this additional level of parallelism allows the
system to be solved on massively parallel machines.

Two new parameters, h andM , are introduced with REXI.
These are related to the accuracy and the novel degree
of time-parallelism of the approach, respectively. We first
conducted several numerical studies about h and M and
their relation to several simulation parameters such as the
resolution, waves in the initial condition, linear stiffness,
etc. These results allow to improve the understanding of
this new parallelization and we like to briefly review one
of the results: An increase of the stiffness of the simulation
would traditionally lead to an increase in the number of
time steps, hence increase in wall-clock time. In contrast, the
REXI approach results in additional parallelism, hence has
the potential to overcome the strong scalability limitations
by allowing to use more computing resources.

To show the feasibility of this concept on HPC
systems, a variety of parallel performance benchmarks for
representative simulations were conducted. For the parallel-
in-time comparisons, the results clearly show a significant
reduction in the time-to-solution of 118.3× for spectral
methods and 1503.0× for finite-difference methods. For the
spectral methods, we were also able to gain results of higher
accuracy with a time-to-solution reduced by one order of
magnitude. Since the degree of parallelism is also based
on the time step size, we conducted time-to-solution studies
with robust performance improvements for varying time step
sizes compared to non-parallel-in-time studies.

With this new degree of parallelization, a model was
developed to improve the understanding of performance
limiting factors. This performance model shows a close
match with the measured data. Furthermore, we can foresee
a potential scalability also on 100k core systems for the
considered problems with an oscillatory stiffness which
would be otherwise strong-scaling limited by their low
resolution of 128× 128 on a single compute node.

8 Outlook and future work
In our work we exploited the regular grid structure and used
a Fast Helmholtz solver for efficiency reasons. However,
this solver is not always applicable, for example, when
unstructured grids are adopted. The strategy presented
in this paper is general enough so that any preferred
solution method for the linear solver could be adopted.
In case of locally refined grids, preconditioned multigrid
solvers (geometric or algebraic) are an interesting possibility.
Multigrid solvers have low memory requirements, but may
require several iterations if high accuracy is needed. Direct
solvers, such as suggested in (Martinsson 2013), may require
more data storage. Overall, the matter of which solver to
be used in the linear spatial problem still requires further
investigation, as it depends greatly on the specific discrete
domain to the used.

The extension of the method to nonlinear hyperbolic
equations is not necessarily straightforward. We are
investigating two strategies. One is to apply REXI as
part of aPinT (see Haut and Wingate (2014)), which is a
combination of the Parareal (Lions et al. (2001)) scheme

Prepared using sagej.cls

Schreiber et al. - Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems17

which assembles a coarse propagator, which could be
based on REXI for the linear parts, and an averaging over
the non-linearities, that allows greater effectiveness of the
parallel-in-time method. The second strategy is a semi-
Lagrangian method which treats advective non-linear parts
in a Lagrangian sense.

We see parallelization-in-time, and methods such as
REXI, as new ways to exploit modern architectures. For
example, with the increasing sizes of vector registers, getting
a vectorization in space is more and more challenging. With
parallel-in-time approaches, each vector element can be used
to run computations for each independently treated problem
in time, hence resulting in a vectorization in the time domain
rather than in space as it is usually the case.

Acknowledgements

The authors gratefully acknowledge the Gauss Centre for Super-
computing e.V. (www.gauss-centre.eu) for funding this
project by providing computing time on the GCS Supercomputer
SuperMUC at Leibniz Supercomputing Centre (LRZ, www.lrz.
de). We also acknowledge use of Hartree Centre resources in this
work on which the early evaluation of the parallelization concepts
were done.

We like to thank Eike Mueller, Daniel Ruprecht and the two
anonymous reviewers for their valuable feedback.

Funding

Peixoto acknowledges funding from the São Paulo Research
Foundation, FAPESP, under grant 2014/10750-0 and the Brazilian
National Council for Scientific and Technological Development
(CNPq) under grant 441328/2014-8.

A Symbols for mathematical formulation

Symbol Description
U(t) Solution at time t
L Linear operator acting on U
I Identity matrix

B Symbols for shallow water equations

η Perturbation of surface height
η̄ Mean surface height constant
f Coriolis frequency
g Gravity acceleration constant

(u, v) Velocity components
δ Divergence
ζ Vorticity

C Abbreviations for REXI

Symbol Description
h Specifies the sampling density in the

approximation of exp(ix) with a Gaussian
basis function

L Number of rational terms to approximate
Gaussian basis function

M Number of Gaussian basis functions used
in the approximation of exp(ix)

X × Y Spatial resolution of simulation domain
τ , dt Time step size for REXI
DT Overall simulation time

(ωx, ωy) Parameters related to the wave-numbers of
the initial conditions

References

Arakawa A and Lamb VR (1977) Computational design of the basic
dynamical processes of the UCLA general circulation model.
Methods in computational physics 17: 173–265.

Barros S, Dent D, Isaksen L, Robinson G, Mozdzynski G and
Wollenweber F (1995) The IFS model: A parallel production
weather code. Parallel Computing 21(10): 1621 – 1638.
Climate and weather modeling.

Berry L, Elwasif W, Reynolds-Barredo J, Samaddar D, Sanchez
R and Newman D (2012) Event-based Parareal: A data-flow
based implementation of Parareal. Journal of Computational
Physics 231(17): 5945–5954.

Bonaventura L (2015) Local Exponential Methods: a domain
decomposition approach to exponential time integration of
PDEs. CoRR abs/1505.02248. URL http://arxiv.org/

abs/1505.02248.
Clancy C and Pudykiewicz JA (2013) On the use of exponential

time integration methods in atmospheric models. Tellus A 65:
1–16.

Cox S and Matthews P (2002) Exponential Time Differencing for
Stiff Systems. Journal of Computational Physics 176(2): 430
– 455.

Dennard RH, Rideout V, Bassous E and Leblanc A (1974)
Design of ion-implanted MOSFET’s with very small physical
dimensions. Solid-State Circuits, IEEE Journal of 9(5): 256–
268.

Embid PF and Majda AJ (1996) Averaging over fast gravity
waves for geophysical flows with arbitrary potential vorticity.
Communications in Partial Differential Equations 21(3–4):
619–658.

Frigo M (1999) A Fast Fourier Transform Compiler. SIGPLAN Not.
34(5): 169–180.

Gander MJ (2015) 50 Years of Time Parallel Time Integration. In:
Carraro T, Geiger M, Korkel S and Rannacher R (eds.) Multiple
Shooting and Time Domain Decomposition. Springer-Verlag.

Gander MJ and Guettel S (2013) PARAEXP: A parallel integrator
for linear initial-value problems. SIAM Journal on Scientific
Computing 35(2): C123–C142.

Garcia F, Bonaventura L, Net M and Sánchez J (2014)
Exponential versus IMEX high-order time integrators for
thermal convection in rotating spherical shells. Journal of
Computational Physics 264: 41–54.

Prepared using sagej.cls

www.gauss-centre.eu
www.lrz.de
www.lrz.de
http://arxiv.org/abs/1505.02248
http://arxiv.org/abs/1505.02248

18 International Journal of High Performance Computing Applications XX(X)

Güttel S (2013) Rational Krylov approximation of matrix functions:
Numerical methods and optimal pole selection. GAMM-
Mitteilungen 36(1): 8–31.

Haut T, Babb T, Martinsson P and Wingate B (2015) A high-order
time-parallel scheme for solving wave propagation problems
via the direct construction of an approximate time-evolution
operator. IMA Journal of Numerical Analysis 36: 688–716.

Haut TS and Wingate BA (2014) As asymptotic parallel-in-time
method for highly oscillatory PDEs. SIAM Journal on
Scientific Computing 36(2): A693–A713.

Higham NJ (2008) Functions of matrices: theory and computation.
Siam.

Hochbruck M and Ostermann A (2010) Exponential integrators.
Acta Numer 19: 209–286.

Lions JL, Maday Y and Turinici G (2001) Résolution d’EDP par un
schéma en temps pararéel. Comptes Rendus de l’Académie des
Sciences - Series I - Mathematics 332(7): 661 – 668.

Madec G (2014) NEMO ocean engine (Draft edition r6039). Note
du Pole de modelisation. Institut Pierre-Simon Laplace (IPSL)
27: ISSN No 1288–1619.

Martinsson PG (2013) A direct solver for variable coefficient
elliptic PDEs discretized via a composite spectral collocation
method. Journal of Computational Physics 242: 460–479.

Moler C and Van Loan C (2003) Nineteen dubious ways to compute
the exponential of a matrix, twenty-five years later. SIAM
review 45(1): 3–49.

Moore GE (2006) Cramming more components onto integrated
circuits Reprinted from Electronics, volume 38, number 8,
April 19, 1965, pp. 114 ff. IEEE Solid-State Circuits Newsletter
3(20): 33–35.

Mozdzynski G, Hamrud M and Wedi N (2015) A Partitioned
Global Address Space implementation of the European Centre
for Medium Range Weather Forecasts Integrated Forecasting
System. International Journal of High Performance
Computing Applications 29(3): 261–273.

Randall DA (1994) Geostrophic adjustment and the finite-
difference shallow-water equations. Monthly Weather Review
122(6): 1371–1377.

Samaddar D, Newman D and Sanchez R (2010) Parallelization
in time of numerical simulations of fully developed plasma
turbulence using the Parareal algorithm. Journal of
Computational Physics 229(18): 6558–6573.

Schreiber M et al. (2016) URL https://github.com/

schreiberx/sweet.
Speck R, Ruprecht D, Krause R, Emmett M, Minion M, Winkel

M and Gibbon P (2012) A massively space-time parallel N-
body solver. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and
Analysis. IEEE Computer Society Press, p. 92.

Swarztrauber PN and Sweet RA (1996) The Fourier and cyclic
reduction methods for solving Poisson’s equation.

Wood N, Staniforth A, White A, Allen T, Diamantakis M,
Gross M, Melvin T, Smith C, Vosper S, Zerroukat M and
Thuburn J (2014) An inherently mass-conserving semi-implicit
semi-Lagrangian discretization of the deep-atmosphere global
non-hydrostatic equations. Quarterly Journal of the Royal
Meteorological Society 140(682): 1505–1520.

Prepared using sagej.cls

https://github.com/schreiberx/sweet
https://github.com/schreiberx/sweet

	1 Introduction
	1.1 Challenges in HPC
	1.2 Parallelization-in-time and Exponential Integrators
	1.3 Overview

	2 Review of the Rational Exponential Integrator (REXI)
	2.1 Time-parallelism with REXI in a simplified ODE problem
	2.2 REXI with hyperbolic systems
	2.3 Rational approximation of exp(ix)
	2.4 Rational approximation of the linear operator
	2.5 Properties of the method
	2.6 Stability

	3 Benchmark description
	3.1 Problem description
	3.2 Numerical methods
	3.3 Initial conditions
	3.4 Error analysis

	4 Numerical evaluation
	4.1 REXI parameters (h, M)
	4.2 Grid resolution (N)
	4.3 Initial condition wave-number ()
	4.4 Time-step size
	4.5 L stiffness (g, f,)

	5 HPC performance evaluation
	5.1 Determining REXI's M parameter for performance studies
	5.2 Space-parallelization results (non-REXI)
	5.3 Time-parallelization results (REXI)
	5.4 Space-Time-hybrid-parallelization results (REXI)
	5.5 Speedups depending on REXI time step size

	6 HPC performance model
	7 Summary and discussion
	8 Outlook and future work
	A Symbols for mathematical formulation
	B Symbols for shallow water equations
	C Abbreviations for REXI

