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II. A module for creating and modifying a landscape of flowering patches from input 

files.  

III. A module for defining food flow and creating corresponding input files for the 

BEEHAVE colony model.  

IV. A module for visualising foraging activities in a given landscape, using output 

from the BEEHAVE colony model. 

For information about how to actually run and use the NetLogo program, see the User 

Manual. 
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I. The foraging model BEESCOUT 

The model description follows the ODD (Overview, Design concepts, Details) protocol, a 

standard format for describing individual-based models (Grimm et al. 2006, 2010). The model 

was implemented in NetLogo (Wilensky, 1999), version 5.0.1.  

1. PURPOSE 

The main purpose of the landscape model is to determine the number, location and size of 

food sources for a honey bee colony on the basis of real or artificial crop maps and to assess 

the probabilities of these food sources to be detected by a scouting bee. Alternatively, also 

detection probabilities for bumblebees can be explored.  

2. ENTITIES, STATE VARIABLES, AND SCALES 

The model includes the following entities:  

1) Grid cells constituting the landscape in which bees can search for food sources ("flower 

patches"). The landscape is a forage map specifying patches where nectar and/or pollen is 

available in flowers. The map is either imported by the user as an image file, or one can be 

generated within the program (BEESCOUT modules II and III). State variables of grid 

cells are listed in Table 1.  

http://ccl.northwestern.edu/netlogo/


2) A certain number of flower patches, which represent fields with crops or wild flowers, as 

defined by the user. A patch is defined if there is a contiguous area of Netlogo grid cells of 

one colour on the map. It is possible to define four different patch types using four colours 

(red, green, yellow and blue). The state variables of flower patches are listed in Table 2. 

3) Optionally a variable number of obstacles in the landscape, representing ‘lakes’. Lakes are 

areas in the landscape that cannot be crossed by bees when they are in a specific search 

mode (flightPhase 2; see below). However, lakes can be crossed when bees have a 

destination (e.g. when returning to the colony). This is in accordance with the behavour of 

real bees, who are hesitant to fly over water but can cross lakes to collect food (Heran & 

Lindauer 1963, von Frisch 1967, Pahl et al. 2011). 

4) A single colony, which is defined by its x-y coordinates. This is the location where bees 

begin and end their scouting trips.  

5) Bees (individual agents), which can either represent  honeybees or  bumblebees. The bees’ 

state variables are listed in Table 3.  

Bees are also characterized by the “search mode”. Since this mode in most simulations is 

identical for all bees, it has not been implemented as a state variable of bees but as a 

simulation parameter: to define where bees start searching in the landscape after they have 

left the colony, (described below as the ‘field destination’ i.e. when flightPhase2 begins) 

the user can choose between SearchModes options. These options take into account 

possible memory/knowledge of patches already encountered either by the individual bee, 

or by another bee in the colony. There is little empirical data available to determine how 

bees make these choices in the field (Biesmeijer & Seeley 2005, Grüter & Farina 2009), 

so different options have been given in the model to enable theoretical predictions and 

comparisons. Since in a given simulation all bees have the same search mode, search 

mode is not a state variable of the bees but of the entire model world. 

SearchModes options are: 

(i) "colony": no field destination is chosen. On leaving the colony the bee immediately 

switches to flightPhase 2 to search the area around the colony. This would be a 

typical choice if the bees have not flown in the landscape before, and do not have 

information from other bees in the colony. 

(ii) "known flowerpatch (individual)": the bee randomly chooses one location that is 

part of a flower patch already detected by this individual bee. Hence, bigger flower 

patches are proportionally more likely to be chosen. This could represent the search 

pattern of  bumblebees, where individual bees learn about the landscape, but do not 

communicate food source locations to their nestmates. 

(iii) "known flowerpatch (recruitment)": similar to "known flowerpatch (individual)", 

but now, a location in any patch that was detected by any bee can become the new 

destination. Again, the probability of a flower patch to be chosen is proportional to 



its size. This might occur if bees have information from other nestmates about patch 

locations (from decoding waggle dances for example). 

(iv) "furthest location (individual)": the bee chooses the location which is the furthest 

from the colony that it has ever been as its new destination. This could represent the 

search patterns of bees in a poor landscape, with a low density of flower patches, 

which forces bees to venture further afield. 

(v) "visited location (recruitment)": the new destination of a bee is randomly chosen 

from a location that was previously visited by any bee and is not placed in a lake. 

(Note that bees can cross lakes when they have a destination). This could be a 

search mode for  honeybees in a landscape with highly transient food sources or if 

the precision of dances is very low (Towne & Gould 1988, Weidenmüller & Seeley 

1999). 

(vi) "last location (individual)": the last location a bee has been at before it returned to 

the colony is chosen as destination. This search mode could apply to  honeybees 

and  bumblebees with scouts resuming searching at the previously visited location.  

(vii) "mixed strategy (individual)": before each scouting trip, one of the above 

SearchModes that do not require communication ("colony", "known flowerpatch 

(individual)", "furthest location (individual)", "last location (individual)") is 

randomly chosen.  

(viii) "mixed strategy (recruitment)": before each scouting trip, one of the above colony 

SearchModes ("colony", "visited NLpatch (recruitment)", "known flowerpatch 

(recruitment)", "furthest location (individual)" "last location (individual)") is 

randomly chosen, irrespective if or if not communication is required. The "mixed 

strategy" search modes take into account that bees will adapt their search behaviour 

depending on landscape structure and scouting success. 

(ix) "random location": any location randomly chosen within the maximal foraging 

range (MaxForagingRange_m) of the bees, irrespective of whether it has been 

visited before. This might reflect a situation of an established honeybee colony in a 

dynamic landscape, where the colony has explored the complete potential foraging 

area and food sources could regularly appear and disappear in the landscape. It is 

not included into the "mixed strategy" search modes as it would overpower the 

effect of the other search modes. 

The model world consists of 300 x 210 grid cells. The size of the area represented by the 

model world depends on the scaling of the forage map. Scaling is incorporated into the model 

by the user, relating the distance between two grid cells in the modelled world to the real 

distance represented. The model world has closed boundaries, i.e. if bees reach the borders of 

the world, they bounce back by randomly changing their direction. 

Time is represented via discrete time steps, or “ticks”. Each time step represents Gap_s [s] of 

real time (default: 3s). The activities of bees are structured in scouting trips. A scouting trip 



starts with the bee leaving the colony and heading towards her destination (if any) 

(determined by the search mode – see below). When the time allowed for a scouting trip is 

over, the bee returns to the colony and then begins a new scouting trip. The duration of a 

scouting trip is either set to TripDuration_s seconds for all bees or determined randomly for 

each individual, with an average trip duration of TripDuration_s seconds. The total duration 

of the simulation is either defined by a period of ScoutingPeriod_hrs hours or by a maximal 

number of scouting trips per bee, whichever is shorter. Default value of ScoutingPeriod_hrs 

represents an estimation of a bees' total time spent on scouting during its life. 

 

Table 1: State variables of grid cells (Netlogo patches): 

Variable Comment 

firstPatchOfFlowerpatch 

a grid cell (NetLogo 'patch') that is defined as food source (red, green, 
yellow or blue) but has not yet been assigned to a flower patch in 
AnalyseProc. It then becomes the first cell of a newly created flower 
patch. 

flowerPatchID the ID of a flower patch (initial value: -1; final value: 0..N patches) 

mapDisplay 
represents the value displayed when pressing the buttons "Detection 
Prob" or "History"  

originalColor 
the color of the grid cell after the InputFile was imported 
(ImportMapProc); can be displayed by pressing the button "Original 
color" 

patchColor 
the main color of a grid cell: red, green, yellow, blue for potential food 
sources, light blue for lakes and obstacles, grey for the matrix and 
magenta for the borders of the world 

satelliteColor 
the color of the grid cell after the SatelliteFile was imported (Setup); 
can be displayed by pressing the button "Satellite" 

visits the total number of times a grid cell is crossed by a bee 

 

Table 2: State variables of patchStatistics, storing the data of flower patches. 

Variable comment 

areaPx number of grid cells belonging to a certain flower patch 

areaSqm area [m2] of a flower patch 

calculatedDetectionProb_per_trip 
probability that a flower patch is detected by an individual 
bee during a single scouting trip, calculated from its size and 
distance to the colony 

closestDistance_m the shortest distance [m] between a flower patch and the 



colony 

concentration 
sugar concentration [mol/l] of the nectar provided at a 
flower patch; only used to create an input file for the 
BEEHAVE model 

detects1000List 
a list, saving the current total number of detections of a 
flower patch every 1000 time steps 

firstDetection_s time [s] until the first detection of a flower patch 

maxDetectProb_per_s 
the highest detection probability (per s) that was ever 
reached for a flower patch 

meanDistance_m distance [m] between the patch centre and the colony 

modelledDetectionProb_per_s 
probability that a flower patch is detected by an individual 
bee per second of scouting, based on the results of the 
simulation 

modelledDetectionProb_per_trip 
probability that a flower patch is detected by an individual 
bee during a single scouting trip, based on the results of the 
simulation 

nectarGathering_s 
a bees' handling time [s] at a patch to collect a full nectar 
load; only used to create an input file for the BEEHAVE 
model 

nNectarVisits 
number of times a patch has been visited by nectar foragers 
on the current day as a result from a BEEHAVE simulation 
run (data imported from InputputForagingFile)  

nPollenVisits 
number of times a patch has been visited by pollen foragers 
on the current day as a result from a BEEHAVE simulation 
run (data imported from InputForagingFile)  

patchType 
type of flower patch (e.g. "Oilseed rape"); only used to 
create an input file for the BEEHAVE model 

pollenGathering_s 
a bees' handling time [s] at a patch to collect a full pollen 
load; only used to create an input file for the BEEHAVE 
model 

quantityNectar_l 
total amount of nectar [l] available at a flower patch during 
flowering period; only used to create an input file for the 
BEEHAVE model 

quantityPollen_g 
total amount of pollen [g] available at a flower patch during 
flowering period; only used to create an input file for the 
BEEHAVE model 



startDay first day of a flower patch's flowering period 

stopDay last day of a flower patch's flowering period 

timeMaxDetectProb_s 
time [s] when the highest detection probability (per s) ever 
was reached in a flower patch 

totalDetections total number of detections of a flower patch 

visitColor 
color to represent the number of nectar, pollen or total visits 
at a flower patch (data from InputForagingFile) 

 

Table 3: State variables of bees. 

Variable comment 

destinationList 
x-y coordinates of the bees' destination, which can either be a 
location in the landscape or the location of the colony 

flightPhase 

flight phases are: phase 1: a bee is leaving the colony in a vector 
flight towards a field destination; phase 2: a bee is searching the 
landscape around its field destination in a small-scaled flight 
pattern; phase 3: a bee is returning in a vector flight to the 
colony 

furthestDistance_m 
saves the furthest distance from the colony an individual bee has 
ever been  

furthestLocationList 
saves the x-y coordinates of the furthest location from the 
colony an individual bee has ever been  

knownPatchesList  a list with the ID of all flower patches known to the bee 

lastDestinationList 
x-y coordinates of the bees' last field destination or the location 
of the colony, if a bee has never been at a field destination 

lastLocationList 
the bees' location in the previous time step (only updated while 
the bee is searching, i.e. in flightPhase 2, when bee is white or 
orange ) 

nowDetectedPatchesList 
ID of those patches, detected by a bee in the current scouting 
trip 

nTrips the bees' number of completed scouting trips 

time_s total time passed [s] 



3. PROCESS OVERVIEW AND SCHEDULING 

In the actual simulation run, bees explore the landscape (procedure MoveBeesProc, see Table 

4). Bees detect a flower patch when they enter a grid cell belonging to this patch for the first 

time of a scouting trip. The flightPhase describes the flight pattern of a bee:  

phase 1: a bee is leaving the colony in a vector flight towards a field destination (i.e. a 

location in the landscape the bee is trying to reach, choice of this location depends on the 

search mode - see below);  

phase 2: a bee is searching the landscape around its field destination in a small-scaled flight 

pattern;  

phase 3: a bee is returning in a vector flight to the colony.  

The bees move forward with a constant step length and the turning angles in flightPhase 2 are 

randomly drawn from a distribution, derived from empirical turning angles of searching  

honeybees or  bumblebees. Additionally, bees perform loops (in flightPhase 2 only), with the 

probability TurnToDestinationProb, in which case they return linearly to their previous 

destination and then switch back to the search flight pattern. All patches ever detected and 

patches detected during the current scouting trip are recorded by the individual bee. Flower 

patches can be detected in any phase, not only in the search phase. Each bee can detect a 

flower patch only once per scouting trip 

When they head to a destination or return to the colony, they show a linear flight pattern 

(flightPhase 1 or 3). When they are in the search phase (flightPhase 2), they show a smaller 

scaled flight pattern. At the beginning of their very first scouting trip, bees are naive without 

any knowledge of the landscape, hence, they have no destination and immediately switch to 

the search phase. At the beginning of the second and all following scouting rounds, bees may 

have a destination. Depending on SearchMode, bees can linearly head to a flower patch or a 

location either they or any other bee has been before. The simulation stops, when the total 

time allowed for scouting (ScoutingPeriod_hrs) is exceeded. Then the detection probabilities 

for the flower patches are calculated and the results can be saved in an output file. 

Table 4 provides and overview of all procedures used in the NetLogo program implementing 

BEESCOUT. Table 5 represents the scheduling of all procedures of all BEESCOUT modules. 

The scheduling of the scouting model (module I) is marked via yellow background.  

 

  



Table 4: Overview of all procedures (procedures marked with † link the BEESCOUT model 

to the BEEHAVE colony model)  

Procedure Description 

AnalyseOutfileProc  

Setup and run of the model to determine the detection probabilities, 

results are written in an outfile for the BEEHAVE model 

AnalyseProc 

determination of flower patches, calls procedures to create scout 

bees, and exploration of landscape 

ClearBeesProc 

kills existing and creates new bees, plots etc. are cleared, detection 

probabilities are set to 0, random-seed set to initial value 

CreateBeesProc creates scout bees 

CreatePatchStatisticsProc 

creates patchStatistics for each flower patch, to store the flower 

patch data 

Default_ButtonProc sets all parameters on the interface to their default values 

DetectionProc determines if/which flower patch is detected by a bee 

DetermineBordersProc 

determines the bordes of the map which cannot be crossed by the 

bees 

DetermineSizeProc determines the size and distance to colony of the flower patches 

DoDetectionPlotsProc updates the plot "detection probability per trip" 

Go 

runs the individual-based scout model to determine the detection 

probabilities of the flower patches 

ImportMapProc imports an image file (forage map) and corrects colours  

MoveBeesProc the movement of the bees 

ReadForagingDataProc † 

reads in the number of nectar and pollen visits for each patch from 

the InputForagingFile, which was created during a previous 

simulation run of the BEEHAVE model 

Setup clears all variables, resets time, sets initial conditions, creates colony 

ShowForagingDataProc † 

displays nectar or pollen visits for all flower patches on the map, 

based on a BEEHAVE simulation 

TurnDestinationProc new direction of the bee if it has a destination 

TurnNoDestinationProc new direction of the bee if it has no destination 

WriteFromListToFileProc † creates an input file for the BEEHAVE model 

 



Table 5: Scheduling of the procedures. Level 1 procedures are called by buttons on the interface, procedures in level 2 and 3 are called by the 

procedure of the next higher level.  

Level 1 Level 2 Level 3 Condition 

Setup 

  

Button: "Setup" 

 

ImportMapProc 

 

if InputFile != "No input file"  

 

DetermineBordersProc 

 

if InputFile != "No input file"  

AND count patches with [ originalColor = BorderColor ] > 0  

 

AnalyseProc 

  

  

CreatePatchStatisticsProc 

 

  

CreateBeesProc 

 

  

DetermineSizeProc 

 Go 

  

Buttons: "Step", "Go"; repeated once or continuously 

 

MoveBeesProc 

  

  

TurnNoDestinationProc if destinationList is empty 

  

TurnDestinationProc if destinationList is not empty 

  

DetectionProc 

 

 

DoDetectionPlotsProc 

 

if count PatchStatistics > 0 

ReadForagingDataProc 

  

Button: "Read foraging data" 

ShowForagingDataProc 

  

Buttons: "Read foraging data", "Go to day 1", "Refresh",  

"Slide show", "-30d".."+30d" 



AnalyseOutfileProc  

  

Button: "Analyse & Outfile" 

 

Setup 

  

 

Go 

 

repeated for ScoutingPeriod_hrs * 3600 / Gap_s  

 

WriteFromListToFileProc 

  ClearBeesProc   Button: "Clear Bees" 

Default_ButtonProc   Button: "Default (Honeybees)" 

BumblebeesProc   Button: "Bumblebees" 

HoneybeesProc   Button: "Honeybees" 



4. DESIGN CONCEPTS 

Basic principles 

The model simulates only scouting trips of honeybees and bumblebees, i.e. the search for new 

food sources. It does not simulate the exploitation of known flower patches. Hence, there is 

no foraging for nectar or pollen implemented, and patches only differ in their size, shape and 

location, but do not have any sort of attractiveness (The nectar and pollen flow for the 

different flower patch types that is defined on the interface is only used to create an input file 

for the BEEHAVE model. It is not used within the BEESCOUT model). There is no 

mortality, so the number of bees remain constant during a simulation run. The movement of 

bees during their search phase is determined by a turning angle and the step width, both based 

on empirical data from radar tracked honeybees amd  bumblebees. The turning angle (i.e. the 

change in direction) is randomly drawn from a distribution, whereas the step width is 

constant. Choice of the location, where the bee begins its actual search, is based on the idea 

that bees would visit a known location, may find it unrewarding and then start to search for a 

new food source from their current location. As honeybees can recruit colony members to 

profitable food sources by waggle dances, destinations are not necessarily restricted to those 

locations already visited by the individual bee. For bumblebees, who do not communicate the 

location of a food source, only information gathered from an individual is used determine the 

field destination, where the bee switches to the search flight. 

Emergence 

Detection probabilities of the flower patches emerge from the bees' flight patterns and the 

landscape structure. 

Sensing 

Bees sense a flower patch or a lake, when they reach it and they know their own location and 

the location of their colony. They remember flower patches they have detected on a previous 

trip, flower patches they have detected on the current trip as well as the last location and the 

furthest location they have ever been. 

Interaction 

Bees search for food patches individually, but can interact via information transfer. They can 

share information of detected food sources via the location of the “new field destination” if 

the search mode is "recruitment" (e.g. SearchMode "known flowerpatch (recruitment)"). This 

reflects the foraging behaviour of bees with a recruitment system, e.g. honeybees. If the 

search mode is "individual" they do not share information, which would reflect the foraging 

behaviour of e.g. bumblebees or aggregations of solitary bees; consequently, there is no 

interaction among bumblebees.  

Stochasticity 

The directions of bees' turning angle is stochastically determined from a given distribution. If 

RandomTripDuration is true, then also the duration of a bees' scouting trip is randomly 

determined 



 

Observation 

From the analysis of the imported map, the number of flower patches, their size and their 

distance to the colony is calculated and displayed on the interface. The number of detections 

is recorded and used to calculated the modelled detection probability per second and per 

scouting trip. The time of the first detection of a flower patch as well as the number of bees 

that crossed a grid cell are recorded. All this information can be displayed on the map of the 

interface. A plot can be used to illustrate the detection probability over time for up to four 

patches. The total area explored by the bees and the furthest distance of bee from the colony 

are also displayed.   

5. INITIALISATION  

The model is initialised in the procedure Setup (ImportMapProc, DetermineBordersProc and 

AnalyseProc (CreateStatisticsProc, CreateBeesProc, DetermineSizeProc)). In the Setup 

procedure, time and agents are cleared, parameters and the random seed are set to their initial 

values. Then a forage map (if provided) is imported (ImportMapProc) and the borders of the 

world are set (DetermineBordersProc). Colour shades are translated into a limited number of 

primary colours. Finally, the scale of the map is calculated, using the real distance between 

two reference points. AnalyseProc determines the number of flower patches in the landscape. 

PatchStatistics (i.e. representations of flower patches) are then created in CreateStatisticsProc 

to keep track of the number of detections for each flower patch. In CreateBeesProc bees are 

created and DetermineSizeProc determines the area of the flower patches. Then lakes are 

defined and an output file may be created in WriteFromListToFileProc. 

5.1 Setup and importing a crop map 

In the Setup procedure, some parameters are set to their initial value. A hive (colony) is 

created and placed at the location Col_X, Col_Y. Then the colour (pcolor) of all grid cells 

(Netlogo patches) is set to the unique BorderColour. The list PatchColoursList is populated 

with the colours of patch types (RedPatches, GreenPatches etc.) included in the analysis. To 

calculate the correct scaling for the map, the x-coordinates of two reference points (Scale_X1, 

Scale_X2) have to be chosen and the real distance [m] between these points has to be 

provided (ScaleDistance_m): 

set Scaling ScaleDistance_m / (Scale_X2 - Scale_X1) 

 If an input file for a forage map is provided, the file is imported in the procedure 

ImportMapProc. After the file was imported, each grid cell (Netlogo patch) saves its colour 

(pcolor) in the variable originalColor. Some shades of colours are then converted into the 

related prime colour (i.e. into red, green, blue, yellow, white or black). The range of colours 

converted into the prime colour are defined by Red_min, Red_max for red (Netlogo colour 

value: 15), Yellow_min, Yellow_max for yellow (colour value: 45), Green_min, Green_max 

for green (colour value: 55), and Blue_min, Blue_max for blue (colour value 105). Black is 

represented in Netlogo by colour values of 0, 10, 20.. 130 and white is represented by 9.9, 



19.9, 29.9.. 139.9. Hence, very dark colours with remainder pcolor 10 < Black_th are set 

to black and very light colours with remainder pcolor 10 > White_th are set to white. 

Each grid cell (Netlogo patch) then saves its colour in its variable patchColor and 

flowerPatchID is set to -1, indicating that the grid cell does not (yet) belong to a flower patch.  

Then the borders of the map are determined in the procedure DetermineBordersProc. The 

borders are those areas on the top and bottom or on the left and the right, with pcolor = 

BorderColor (i.e. the color they were set to before the map was imported. Almost certainly, 

grid cells have changed their colour to the value provided by the imported image). The top 

border, for example, is then defined by the y-coordinate of those patches with the color 

BorderColor in the upper half of the world, which have the lowest y-coordinate: 

set TopBorder min [ pycor ] of patches with  

[(pycor > (max-pycor / 2)) and (originalColor = BorderColor)] 

The other three borders are determined in a similar way. Borders are important, as they cannot 

be crossed by the bees. 

If a satellite or aerial image is provided, it is imported and each grid cell (Netlogo patch) then 

saves its color in its variable satelliteColor.  

5.2. Analysis of the landscape and determination of flower patches 

Flower patches are determined by a number of neighbouring grid cells of the same colour 

indicating food sources: 

First, some variables are set (procedure: AnalyseProc):  

let currentColor 0 

let currentPatchID -1 

let flowerPatchCounter 0 

set Repetitions round (MaxPatchRadius_m / Scaling) 

Repetitions affects the maximal size a flower patch can have. If a field is larger, it will be 

divided in several flower patches. 

Then patchColor of all grid cells (NetLogo patches) is compared in an ordered way (from top 

left to bottom right corner) to PatchColoursList, which contains the up to four colours (red, 

green, yellow, blue) that define food sources:  

foreach sort patches [ ask ? 

 [   

  if member? patchColor PatchColoursList  

  [ ... 

If a grid cell has a patchColour defined as food source and it was not assigned to an already 

existing flower patch yet (i.e. flowerPatchID of the grid cell is still set to its initial value 

of -1), then a new flower patch is being created:  

    if flowerPatchID = -1  

    [ 



      set flowerPatchID (flowerPatchCounter)  

      set currentColor pcolor  

      set firstPatchOfFlowerpatch true 

      set currentPatchID flowerPatchID 

FlowerPatchID of the grid cell is set to current value of the flower patch counter 

(flowerPatchCounter), its colour and flowerPatchID are saved in currentColor and 

currentPatchID (to make sure that neighbouring flower patches of different colours are not 

merged). Then the (eight) neighbouring grid cells are added to the new flower patch, if they 

have the same colour. This process is then repeated Repetitions times, always checking if the 

neighbours of those grid cells already belonging to this new flower patch have the correct 

colour and are not assigned to a flower patch yet. After the last repetition, 

flowerPatchCounter is increased by 1: 

      repeat Repetitions  

      [  

       ask patches  with [(pcolor = currentColor) and (flowerPatchID 

= currentPatchID)]  

         [   

          ask neighbors with [(pcolor = currentColor) and 

                              (flowerPatchID = -1)]  

            [ set flowerPatchID currentPatchID ]  

          ]  

       ] 

      set flowerPatchCounter flowerPatchCounter + 1 

   ] ] ] ]     
 

The relevant data for each flower patch (like area, number of detections etc.) is saved in the 

entities patchStatistics (Tab. 3). For each flower patch, a patchStatistic is created 

(CreatePatchStatisticsProc). Then bees are created (CreateBeesProc) and and the position of 

the hive (colony) is defined. 

If the Netlogo switch Lakes is set true, then grid cells with a black patchColor are interpreted 

as water (or other obstacles with a similar effect), and their patchColor is reset to LakeColor. 

This will affect the movement of the bees (MoveBeesProc) who cannot cross these grid cells 

while they are in the search mode (flightPhase 2). However, water can be crossed when bees 

are heading to a field destination or are returning to the colony (Heran & Lindauer 1963, von 

Frisch 1967, Pahl et al. 2011).  

6. INPUT DATA 

BEESCOUT does not import data representing time series of driving variables, for example 

weather. 

Optionally, an input file, created by a previous simulation run of the BEEHAVE model with 

the same landscape can be read in. This input file does not affect the simulation run of the 

BEESCOUT model but only serves to visualise the foraging activities of bees as they were 

recorded during a previous run of the BEEHAVE model in the same landscape. The input file 

contains the number of all visits of nectar and pollen foragers at the flower patches for every 



day of one year. The landscape model can then visualise the foraging patterns the bees 

showed during the BEEHAVE simulation. The input file has the following format: 

551 

day who nectarVisits pollenVisits 

1 0 0 0  

1 1 0 0  

1 2 0 0  

... 

365 549 0 0  

365 550 0 0  

365 551 0 0 

The first line shows the number of flower patches, the second line is the header for the four 

colums: day of the year (1 - 365), the patch ID, the number of recorded nectar visits on that 

day at the specified patch and the number of recorded pollen visits on that day at the specified 

patch. E.g. 181 112 100 300 would mean that 100 nectar foragers and 300 pollen foragers had 

visited patch number 112 on day 181 in the BEEHAVE simulation. 

7. SUBMODELS 

The scouting efforts of a honeybee colony depends on forage availability in the landscape and 

ranges from ca. 5% to ca. 35% of all foragers (for "rich" and "poor" forage conditions, Seeley 

1983). The average total flight performance of a honey bee is ca. 500 km during its lifetime 

(Neukirch 1982; J Comp Physiol: 146, 35-40). Therefore, we estimate the total scouting 

distance of a bee to range from ca. 25 km to 175 km. Assuming an average flight speed of 3 

m/s (based on our harmonic radar data), a honey bee spends between ca. 2 hrs to 16 hrs with 

scouting. We hence set ScoutingPeriod_hrs to 9 [hrs] for honeybees and, lacking equivalent 

data, also for bumblebees. 

Perception (i.e. "detections") of flower patches in the model only takes place when bees enter 

the patch. In reality, bees will perceive a flower patch based on visual and/or olfactory cues 

before they reach it. An object can be seen by a honeybee, when the visual angle is greater 

than ca. 5° (Giurfa et al. 1996). As flight heights of bees are usually low (Riley et al. 1999), 

the visual angle of even large fields is relatively small (assuming a flat horizontal topography) 

so that the visual detection range is only marginally larger than the field itself (using 

trigonometry, one can calculate that e.g. a field with a diameter of 500 m can be seen by a bee 

flying 1.9 m high (Riley et al. 2005) from a distance of no more than 21 m). Hence, by not 

including visual perception range in the model we only slightly underestimate the detection 

probabilities.  Far more difficult to assess is the impact of olfaction, as direction and intensity 

of a floral scent plume will vary for different plant species and especially with wind 

conditions (Wright & Schiestl 2009). Air turbulence will make it difficult for the bees to 

follow an odour "uphill" to the source (Reinhard & Srinivasan 2009) and an upwind zig-zag 



flight within the scent plume, as suggested by Wenner et al. (1991), is likely to be 

prohibitively time and energy consuming for long-distance search flights (Reinhard & 

Srinivasan 2009) and has never been observed in reality (Reynolds et al. 2009). Given the 

current uncertainties around how bees respond in different wind conditions, we have not 

modelled this process, but when clear empirical information becomes available, then the 

model can be modified accordingly.  

Once the final setup of flower patches has been made, the detection probabilities for each of 

these patches can be determined. This is achieved by simulating the movements of N_Bees 

agents, each representing a single honeybee or bumblebee scout. Starting from the location of 

the colony, they explore the landscape following an artificial or empirically based flight 

pattern. The movement is calculated in the procedure MoveBeesProc. Each step represents 

Gap_s seconds of real time and the new location of a bee is determined by its turning angle 

and the step width.  

The step width is set in the reporter procedure DisplacementREP with displ_m 2.96m * Gap_s 

for honeybees and 3.22m * Gap_s for bumblebees. Displ_m is then divided by Scaling to 

transform the real distance into a distance in the Netlogo world (displ_NLpatches) and 

multiplied by DisplacementFactor (range: 0..10, default: 1) to allow for smaller or larger step 

widths 

We distinguish three flight phases (flightPhase) in the bees movement: In flightPhase 1, bees 

are heading in an linear vector flight towards a field destination, defined in destinationList 

(e.g. the coordinates of flower patch they visited before) and are shown in green. In 

flightPhase 3 destinationList is set to the coordinates of the colony and the bees (shown in 

blue) are heading in an linear vector flight towards the colony. FlightPhase 2 describes a 

small scaled search pattern (although patches can be detected in any flightPhase) and bees are 

shown in white or, if they perform a loop, in orange. 

If a bee has no destination (i.e. a white bee during flightPhase 2 and not looping), its new 

flight direction is set in the procedure TurnNoDestinationProc. Based on a distribution of 

turning angles (0 - 180°, bin width 10°) from experimental data, the turning angle to either the 

right or left side (with equal probabilities) is randomly chosen, e.g. for honeybees (reporter 

procedure TurningREP): 

if BeeSpecies = "Honeybees" 

[ 

  let randBar random 628 + 1  

  if randBar >= 1 and randBar < 92 [set turn 0 + random-float 10] 

  if randBar >= 92 and randBar < 144 [set turn 10 + random-float 10] 

  ... 

  if randBar >= 599 and randBar <= 628 [set turn 170 + random-float 10] 

 ] 

 

if random-float 1 > 0.5 [ set turn turn * -1 ] 

If RandomWalk is true, than a random turning angle is chosen from an equal distribution 

if RandomWalk = true [ set turn random-float 360 ] 



resulting in an uncorrelated random walk.  

The turning angle turn is then multiplied with LinearisationFactor (range: 0..1, default: 1) to 

allow for a more linear movement. 

If FixTurningAngle is true, then the turning angle is set to the fix value FixRightTurn, 

resulting in circular movement of the bees during the searching phase. 

A bee might then perform a loop: with the probability TurnToDestinationProb (default: 2%) 

its destinationList is set to lastDestinationList, i.e. it turns toward its previous destination, 

which can either be a location in the field or - if the bee has never been at a field destination - 

the location of the colony. They then change their colour to orange until they reach their 

destination.  

If a bee has a destination (i.e. it is in flightPhase 1 or 3 (green and blue bees) or doing a loop 

in flightPhase 2 (orange bees)), then it turns towards the location of its destination 

(destinationList). If the destination is a location outside the colony and the distance is smaller 

than the length of a bees' step width, then lastDestinationList is updated, destinationList is 

emptied, the bee choses a new, random direction, changes its colour to white, and finally 

switches to flightPhase 2, and (TurnDestinationProc): 

if destinationList !=   [] 

 [          

if (distancexy item 0 destinationList item 1 destinationList) < 

DisplacementREP and destinationList != list Col_x Col_y        

   [  

          set lastDestinationList destinationList 

   set destinationList []                

      set heading random-float 360  

          set color white 

          set flightPhase 2 

       ] 

 ] 

If a bee is heading back (flightPhase 3) and reaches the hive (colony), then destinationList is 

reset and nowDetectedPatchesList, a list that contains all patches detected by this bee during 

its current scouting trip, is emptied. 

Furthermore, some data are recorded during the movement of a bee: 

 MaxHiveDisplAllBees_m: A global variable with the largest distance any of the bees ever 

had to the hive.  

 visits: A Netlogo patch (grid cell) specific variable that is increased by 1, whenever a bee 

is located on this Netlogo patch. 

 lastLocationList: A bee specific variable that records the last xy-position of a bee during 

flightPhase 2. This location is then set to the field destination in the next scouting trip, if 

the search mode is "last location (individual)". 

 furthestLocationList, furthestDistance: records the xy-coordinates and the distance to the 

hive of the furthest location an individual bee has ever been.  



If RandomTripDuration is false, then the duration of a trip is defined by TripDuration_s, 

otherwise it is randomly determined with an average duration of TripDuration_s 

(returningProb = Gap_s / TripDuration_s). If a bee ends its scouting trip, it switches into 

flightPhase 3 and heads towards the location of the hive (colony) (i.e. destinationList is 

populated with the xy-coordinates of the hive): 

if (RandomTripDuration = false and remainder (ticks * Gap_s) (Gap_s * 

                         round  (TripDuration_s / Gap_s)) = 0 

    or (RandomTripDuration = true and random-float 1 <= returningProb) 

       [  

         set destinationList list Col_x Col_y   

         set color sky  

         set flightPhase 3 

       ] 

The actual movement of a bee is implemented as: 

ask bees with [ nTrips <= MaxTrips ]  

  [ fd DisplacementREP 

    ...          

i.e. bees have chosen their direction and now move forward by the distance determined in 

DisplacementREP. Only bees who have not performed more than MaxTrips scouting trips yet 

are allowed to move, all others stay in the colony. If the new location of the bee is defined as 

lake (while the bee is white, i.e. in the small scaled search mode) or as border, then the 

movement is withdrawn and the bee choses randomly a new direction: 

    if (patchColor = LakeColor)                          

      or (originalColor = BorderColor)                      

      or (pxcor = max-pxcor) or (pxcor = min-pxcor)           

      or (pycor = max-pycor) or (pycor = min-pycor)  

       [  

         if flightPhase = 2 and destinationList = []  

          [ 

            setxy item 0 lastLocationList item 1 lastLocationList    

            set heading random-float 360                            

   ] ] ] 

Whenever a bee enters a flower patch (i.e. a grid cell (Netlogo patch) with a patchColor being 

defined as food source (potentially: red, green, blue or yellow)) that has not been entered 

before by this bee in its current scouting round, then the number of this patch is added to the 

bees' nowDetectedPatchesList and totalDetections of this flower patch (i.e. of its 

PatchStatistic agent) is increased by 1. If the patch has never been detected before, the 

patches' firstDetection_s is set to the current time.  

If the bee has never been at this patch before, the number (who) of the patch is added to the 

bees' knownPatchesList. If ImmediateReturn is true, then the bee switches to flightPhase 3 

and sets its destination to the colony (irrespective of TripDuration_s) (DetectionProc): 

if nTrips <= MaxTrips    

  [ 

if member? patchColor PatchColoursList   

   [  



     let patchNumber flowerPatchID         

     if member? patchNumber nowDetectedPatchesList = false  

     [  

             set nowDetectedPatchesList fput patchNumber 

 nowDetectedPatchesList  

       ask PatchStatistic patchNumber  

          [  

            set totalDetections totalDetections + 1  

            if firstDetection_s = 0  

                [ set firstDetection_s ticks * Gap_s ]  

          ]  

 

if member? patchNumber knownPatchesList = false  

 [  

  set knownPatchesList fput patchNumber         

  if ImmediateReturn = true  

   [  

      set destinationList list Col_x Col_y  

      set color sky  

      set flightPhase 3 

   ]   

  ]]     

The exploration of the landscape by the bees finally stops, when ScoutingPeriod_hrs is 

exceeded: 

if ticks * Gap_s > ScoutingPeriod_hrs * 3600 [ stop ] 

Search options: 

There are several options (SearchMode) how the new field destination is chosen in the 

reporter procedure RelocationREP after a bee has returned to the colony: 

"Colony": no field destination is chosen and the bee immediatly switches to flightPhase 2: 

if SearchMode = "Colony" [ set result []  ] 

"known flowerpatch (individual)": the bee chooses randomly one location (i.e. Netlogo patch) 

that is part of a flower patch already detected by this individual bee. Hence, bigger flower 

patches are proportionally more likely to be chosen:  

if SearchMode = "known flowerpatch (individual)"   

   [                                                

       let memoKnownPatchesList [] 

       ifelse empty? knownPatchesList 

         [ set result [] ] 

         [ 

           set memoKnownPatchesList knownPatchesList 

           ask one-of patches with  

[ flowerpatchid = one-of memoKnownPatchesList ]  

            [ set result list pxcor pycor ]  

         ] 

     ] 

"known flowerpatch (recruitment)": similar to "known flowerpatch (individual)", but now, a 

location in any patch that was detected by any bee can become the new destination. Again, the 

probability of a flower patch to be chosen is proportional to its size: 



if SearchMode = "known flowerpatch (recruitment)"    

    [                                                

       let memoKnownPatchesList [] 

       ask patchstatistics 

        [ 

          if totalDetections > 0   

           [ set memoKnownPatchesList fput who memoKnownPatchesList ]  

        ] 

       ifelse empty? memoKnownPatchesList 

         [ set result [] ] 

         [ 

            let theChosenPatch one-of memoKnownPatchesList             

            ask one-of patches with [flowerpatchid = theChosenPatch 

  [ set result list pxcor pycor ] ] ] 

"furthest location (individual)": the bee chooses the location with furthest distance from the 

colony it has ever been as its new destination:        

if SearchMode = "furthest location (individual)"   
      [ set result furthestLocationList ] 

"random location": the bee chooses random location within a distance of 

MaxForagingRange_m from the colony that does not belong to a lake or the borders: 

if SearchMode = "random location"  

     [  

        ask one-of patches with  

         [ patchColor != LakeColor and  

            distancexy Col_X Col_Y * Scaling < MaxForagingRange_m and 

               originalColor != BorderColor  ] 

         [  

set result list pxcor pycor  

   ]  

     ] 

"visited NLpatch (recruitment)": the new destination of a bee is randomly chosen from any 

location (i.e. Netlogo patch) that was ever visited by any bee and is not placed in a lake. (Note 

that bees can cross lakes while they are in flightPhase 1 or 3). If no such location exists, then 

the location of the hive (colony) is defined as the new destination: 

if SearchMode = "visited NLpatch (recruitment)"    

      [  

   ifelse count patches  

       with [ visits > 0 and patchColor != LakeColor ] > 0 

   [ ask one-of patches  

       with [ visits > 0 and patchColor != LakeColor ]   

            [ set result list pxcor pycor ] ]  

   [ set result list Col_X Col_Y ]   

 ] 

"last location (individual)": the bee returns to the location where it had stopped its previous 

scouting trip to return to the colony and resumes searching from there: 

if SearchMode = "last location (individual)"   

   [ set result lastLocationList ]   



If no destination has been chosen, the bee switches to the search mode (flightPhase 2), 

otherwise, flightPhase is set to 1 and the bee heads out to its field destination: 

ifelse empty? result 

    [  

      set color white  

      set flightPhase 2  

    ] 

    [  

      set color green  

      set flightPhase 1 

    ] 

If SearchMode is set to "mixed strategy (individual)" or "mixed strategy (recruitment)", then 

the search mode is randomly chosen in the procedure MoveBeesProc from a list with 

whenever a new field destination of a bee is determined:  

ask bees  

   [ ... 

     if SearchMode = "mixed strategy (individual)" 

       [ 

         set MixedStratInd true 

         set SearchMode one-of  

          [ "colony" "known flowerpatch (individual)" "furthest 

             location (individual)" "last location (individual)" ]    

          ] 

        

     if SearchMode = "mixed strategy (recruitment)" 

       [ 

         set MixedStratCol true 

         set SearchMode one-of  

          [ "colony" "visited NLpatch (recruitment)" "known 

             flowerpatch (recruitment)" "furthest location 

             (individual)" "last location (individual)" ]    

          ] 

The variables MixedStratInd and MixedStratCol are required to finally set SearchMode back 

to its initial "mixed strategy" choice: 

if MixedStratInd = true  

   [ set SearchMode "mixed strategy (individual)" ] 

if MixedStratCol = true  

   [ set SearchMode "mixed strategy (recruitment)" ] 

II. A module for creating and modifying a landscape of flowering 

patches.  

If no input file for a forage map is provided, then the color (orignalColor) of all grid cells 

(Netlogo patches) is set to grey. The user can then define flower patches with the help of the 

"Artificial landscape creator". Flower patches can either be drawn with the mouse directly on 

the map, after a colour and a brush size was chosen from SetColour and BrushSize. 

Alternatively, the user can define (circular) flower patches by their size (SetRadius_m), their 

distance (SetDistanceToCentre_m), and their direction (SetDirection_deg) from the colony. 

Both methods of creating patches can be combined and also be used, if a forage map was 

uploaded. After all patches are created or modified, the setup process has to be repeated by 



pressing the "Update" button. Note that the borders are identical with the borders of the 

Netlogo world, if no crop map was imported. 

III. Define food flow and create inputfile for BEEHAVE colony model 

The Landscape module can also be used to create an input file (NameOutfile) for the 

BEEHAVE colony model. By pressing the "Analyse & Outfile" button, the crop map is 

imported and analysed as described above and the bees explore the landscape as defined by in 

the interfaces' "Search mode" options. At the end of the run, the results are written in a file 

(NameOutfile). This file contains information on size, location, nectar and pollen availability 

and detection probabilities of each identified flower patch. As nectar and pollen availability 

can change with the season, all information are provided for each day of the year, hence, the 

file consists of N flower patches x 365 + 1 (header) lines. The 15 columns of the file are:  

1. day: the day of year (1..365) 

2. id: the id of a flower patch (0.. N-1 flower patches within MaxForagingRange_m) 

3. oldPatchID: the original id (who) of a flower patch (i.e. the number shown in the map 

of the interface) (identical with id, unless flower patches are removed due to a limiting 

MaxForagingRange_m) 

4. patchType: information for the user about the crop or flowers in the patch (e.g. "OSR" 

or "RedPatch") 

5. distance_m: closest distance [m] of the patch to the hive (colony) 

6. xcor: distance [m] on x-axis to the hive (colony) 

7. ycor: distance [m] on y-axis to the hive (colony) 

8. size_sqm: size of the flower patch [m
2
] 

9. quantityPollen_g: amount of pollen [g] offered at the patch today 

10. concentration: sugar (sucrose) concentration [mol/l] of the nectar 

11. quantityNectar_l: amount of nectar [l] offered at the patch today 

12. calculatedDetectionProb_per_trip: the probability that a scout finds the flower patch 

during a single scouting trip, calculated on the basis of size and distance of the patch 

13. modelledDetectionProb_per_trip: the probability that a scout finds the flower patch 

during a single scouting trip as an output of the simulation run 

14. nectarGathering_s: handling time [s] for nectar, i.e. the time a bee has to spent in a 

patch to fill its crop 

15. pollenGathering_s: handling time [s] for pollen, i.e. the time a bee has to spent in a 

patch collect a pollen load  

Data on patch type, quantity of nectar [ml/ m
2
] and pollen [g/ m

2
], handling times [s], nectar 

concentration [mol/l] have to be provided by the user (interface: "Definition of flower 



patches"). Flower patches only offer nectar and pollen during a certain period of the year, 

defined by Start_(patchtype) and Stop_(patchtype).  

IV. Display of foraging activities, modelled in BEEHAVE 

The output file NameOutfile can now be used as an input file for the BEEHAVE colony 

model. BEEHAVE also offers the options, to write the nectar and pollen visits of all patches 

for each day of one year into a file (default name: "Input_1-2_Foraging.txt"). This file can 

then be uploaded by the Landscape module (interface: "Show foraging data") to display either 

the nectar and/or pollen visits on the map for each day of a year. Various buttons allow the 

user to move forwards or backwards through the dataset, to show a specific date or to run a 

slide show.  
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