
BEESCOUT: a model of bee scouting

behaviour and a software tool for

characterizing nectar and pollen

landscapes for BEEHAVE

Supplementary material to:

Becher, M. A., Grimm, V., Knapp, J., Horn, J., Twiston-Davies, G., Osborne, J.L.

(2016) BEESCOUT: a model of bee scouting behaviour and a software tool for

characterizing nectar/pollen landscapes for BEEHAVE. Ecological Modelling.

BEESCOUT is computer program implemented in NetLogo (Wilensky 1999) which includes

four modules which are all based on the same kind of representation of a landscape in which

honeybees or bumblebees can forage. The first two modules are applicable to both honeybees

and bumblebees, the other two modules are related to the honeybee colony model

BEEHAVE:

I. The model BEESCOUT which simulates scouting of honeybees and bumblebees

in given landscape. The landscape can be imported from input files (module II).

II. A module for creating and modifying a landscape of flowering patches from input

files.

III. A module for defining food flow and creating corresponding input files for the

BEEHAVE colony model.

IV. A module for visualising foraging activities in a given landscape, using output

from the BEEHAVE colony model.

For information about how to actually run and use the NetLogo program, see the User

Manual.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/77032733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I. The foraging model BEESCOUT .. 2

1. PURPOSE ... 2

2. ENTITIES, STATE VARIABLES, AND SCALES ... 2

3. PROCESS OVERVIEW AND SCHEDULING ... 8

4. DESIGN CONCEPTS ... 12

5. INITIALISATION .. 13

5.1 Setup and importing a crop map .. 13

5.2. Analysis of the landscape and determination of flower patches 14

6. INPUT DATA ... 15

7. SUBMODELS ... 16

II. A module for creating and modifying a landscape of flowering patches. 22

III. Define food flow and create inputfile for BEEHAVE colony model 23

IV. Display of foraging activities, modelled in BEEHAVE ... 24

REFERENCES ... 24

I. The foraging model BEESCOUT

The model description follows the ODD (Overview, Design concepts, Details) protocol, a

standard format for describing individual-based models (Grimm et al. 2006, 2010). The model

was implemented in NetLogo (Wilensky, 1999), version 5.0.1.

1. PURPOSE

The main purpose of the landscape model is to determine the number, location and size of

food sources for a honey bee colony on the basis of real or artificial crop maps and to assess

the probabilities of these food sources to be detected by a scouting bee. Alternatively, also

detection probabilities for bumblebees can be explored.

2. ENTITIES, STATE VARIABLES, AND SCALES

The model includes the following entities:

1) Grid cells constituting the landscape in which bees can search for food sources ("flower

patches"). The landscape is a forage map specifying patches where nectar and/or pollen is

available in flowers. The map is either imported by the user as an image file, or one can be

generated within the program (BEESCOUT modules II and III). State variables of grid

cells are listed in Table 1.

http://ccl.northwestern.edu/netlogo/

2) A certain number of flower patches, which represent fields with crops or wild flowers, as

defined by the user. A patch is defined if there is a contiguous area of Netlogo grid cells of

one colour on the map. It is possible to define four different patch types using four colours

(red, green, yellow and blue). The state variables of flower patches are listed in Table 2.

3) Optionally a variable number of obstacles in the landscape, representing ‘lakes’. Lakes are

areas in the landscape that cannot be crossed by bees when they are in a specific search

mode (flightPhase 2; see below). However, lakes can be crossed when bees have a

destination (e.g. when returning to the colony). This is in accordance with the behavour of

real bees, who are hesitant to fly over water but can cross lakes to collect food (Heran &

Lindauer 1963, von Frisch 1967, Pahl et al. 2011).

4) A single colony, which is defined by its x-y coordinates. This is the location where bees

begin and end their scouting trips.

5) Bees (individual agents), which can either represent honeybees or bumblebees. The bees’

state variables are listed in Table 3.

Bees are also characterized by the “search mode”. Since this mode in most simulations is

identical for all bees, it has not been implemented as a state variable of bees but as a

simulation parameter: to define where bees start searching in the landscape after they have

left the colony, (described below as the ‘field destination’ i.e. when flightPhase2 begins)

the user can choose between SearchModes options. These options take into account

possible memory/knowledge of patches already encountered either by the individual bee,

or by another bee in the colony. There is little empirical data available to determine how

bees make these choices in the field (Biesmeijer & Seeley 2005, Grüter & Farina 2009),

so different options have been given in the model to enable theoretical predictions and

comparisons. Since in a given simulation all bees have the same search mode, search

mode is not a state variable of the bees but of the entire model world.

SearchModes options are:

(i) "colony": no field destination is chosen. On leaving the colony the bee immediately

switches to flightPhase 2 to search the area around the colony. This would be a

typical choice if the bees have not flown in the landscape before, and do not have

information from other bees in the colony.

(ii) "known flowerpatch (individual)": the bee randomly chooses one location that is

part of a flower patch already detected by this individual bee. Hence, bigger flower

patches are proportionally more likely to be chosen. This could represent the search

pattern of bumblebees, where individual bees learn about the landscape, but do not

communicate food source locations to their nestmates.

(iii) "known flowerpatch (recruitment)": similar to "known flowerpatch (individual)",

but now, a location in any patch that was detected by any bee can become the new

destination. Again, the probability of a flower patch to be chosen is proportional to

its size. This might occur if bees have information from other nestmates about patch

locations (from decoding waggle dances for example).

(iv) "furthest location (individual)": the bee chooses the location which is the furthest

from the colony that it has ever been as its new destination. This could represent the

search patterns of bees in a poor landscape, with a low density of flower patches,

which forces bees to venture further afield.

(v) "visited location (recruitment)": the new destination of a bee is randomly chosen

from a location that was previously visited by any bee and is not placed in a lake.

(Note that bees can cross lakes when they have a destination). This could be a

search mode for honeybees in a landscape with highly transient food sources or if

the precision of dances is very low (Towne & Gould 1988, Weidenmüller & Seeley

1999).

(vi) "last location (individual)": the last location a bee has been at before it returned to

the colony is chosen as destination. This search mode could apply to honeybees

and bumblebees with scouts resuming searching at the previously visited location.

(vii) "mixed strategy (individual)": before each scouting trip, one of the above

SearchModes that do not require communication ("colony", "known flowerpatch

(individual)", "furthest location (individual)", "last location (individual)") is

randomly chosen.

(viii) "mixed strategy (recruitment)": before each scouting trip, one of the above colony

SearchModes ("colony", "visited NLpatch (recruitment)", "known flowerpatch

(recruitment)", "furthest location (individual)" "last location (individual)") is

randomly chosen, irrespective if or if not communication is required. The "mixed

strategy" search modes take into account that bees will adapt their search behaviour

depending on landscape structure and scouting success.

(ix) "random location": any location randomly chosen within the maximal foraging

range (MaxForagingRange_m) of the bees, irrespective of whether it has been

visited before. This might reflect a situation of an established honeybee colony in a

dynamic landscape, where the colony has explored the complete potential foraging

area and food sources could regularly appear and disappear in the landscape. It is

not included into the "mixed strategy" search modes as it would overpower the

effect of the other search modes.

The model world consists of 300 x 210 grid cells. The size of the area represented by the

model world depends on the scaling of the forage map. Scaling is incorporated into the model

by the user, relating the distance between two grid cells in the modelled world to the real

distance represented. The model world has closed boundaries, i.e. if bees reach the borders of

the world, they bounce back by randomly changing their direction.

Time is represented via discrete time steps, or “ticks”. Each time step represents Gap_s [s] of

real time (default: 3s). The activities of bees are structured in scouting trips. A scouting trip

starts with the bee leaving the colony and heading towards her destination (if any)

(determined by the search mode – see below). When the time allowed for a scouting trip is

over, the bee returns to the colony and then begins a new scouting trip. The duration of a

scouting trip is either set to TripDuration_s seconds for all bees or determined randomly for

each individual, with an average trip duration of TripDuration_s seconds. The total duration

of the simulation is either defined by a period of ScoutingPeriod_hrs hours or by a maximal

number of scouting trips per bee, whichever is shorter. Default value of ScoutingPeriod_hrs

represents an estimation of a bees' total time spent on scouting during its life.

Table 1: State variables of grid cells (Netlogo patches):

Variable Comment

firstPatchOfFlowerpatch

a grid cell (NetLogo 'patch') that is defined as food source (red, green,
yellow or blue) but has not yet been assigned to a flower patch in
AnalyseProc. It then becomes the first cell of a newly created flower
patch.

flowerPatchID the ID of a flower patch (initial value: -1; final value: 0..N patches)

mapDisplay
represents the value displayed when pressing the buttons "Detection
Prob" or "History"

originalColor
the color of the grid cell after the InputFile was imported
(ImportMapProc); can be displayed by pressing the button "Original
color"

patchColor
the main color of a grid cell: red, green, yellow, blue for potential food
sources, light blue for lakes and obstacles, grey for the matrix and
magenta for the borders of the world

satelliteColor
the color of the grid cell after the SatelliteFile was imported (Setup);
can be displayed by pressing the button "Satellite"

visits the total number of times a grid cell is crossed by a bee

Table 2: State variables of patchStatistics, storing the data of flower patches.

Variable comment

areaPx number of grid cells belonging to a certain flower patch

areaSqm area [m2] of a flower patch

calculatedDetectionProb_per_trip
probability that a flower patch is detected by an individual
bee during a single scouting trip, calculated from its size and
distance to the colony

closestDistance_m the shortest distance [m] between a flower patch and the

colony

concentration
sugar concentration [mol/l] of the nectar provided at a
flower patch; only used to create an input file for the
BEEHAVE model

detects1000List
a list, saving the current total number of detections of a
flower patch every 1000 time steps

firstDetection_s time [s] until the first detection of a flower patch

maxDetectProb_per_s
the highest detection probability (per s) that was ever
reached for a flower patch

meanDistance_m distance [m] between the patch centre and the colony

modelledDetectionProb_per_s
probability that a flower patch is detected by an individual
bee per second of scouting, based on the results of the
simulation

modelledDetectionProb_per_trip
probability that a flower patch is detected by an individual
bee during a single scouting trip, based on the results of the
simulation

nectarGathering_s
a bees' handling time [s] at a patch to collect a full nectar
load; only used to create an input file for the BEEHAVE
model

nNectarVisits
number of times a patch has been visited by nectar foragers
on the current day as a result from a BEEHAVE simulation
run (data imported from InputputForagingFile)

nPollenVisits
number of times a patch has been visited by pollen foragers
on the current day as a result from a BEEHAVE simulation
run (data imported from InputForagingFile)

patchType
type of flower patch (e.g. "Oilseed rape"); only used to
create an input file for the BEEHAVE model

pollenGathering_s
a bees' handling time [s] at a patch to collect a full pollen
load; only used to create an input file for the BEEHAVE
model

quantityNectar_l
total amount of nectar [l] available at a flower patch during
flowering period; only used to create an input file for the
BEEHAVE model

quantityPollen_g
total amount of pollen [g] available at a flower patch during
flowering period; only used to create an input file for the
BEEHAVE model

startDay first day of a flower patch's flowering period

stopDay last day of a flower patch's flowering period

timeMaxDetectProb_s
time [s] when the highest detection probability (per s) ever
was reached in a flower patch

totalDetections total number of detections of a flower patch

visitColor
color to represent the number of nectar, pollen or total visits
at a flower patch (data from InputForagingFile)

Table 3: State variables of bees.

Variable comment

destinationList
x-y coordinates of the bees' destination, which can either be a
location in the landscape or the location of the colony

flightPhase

flight phases are: phase 1: a bee is leaving the colony in a vector
flight towards a field destination; phase 2: a bee is searching the
landscape around its field destination in a small-scaled flight
pattern; phase 3: a bee is returning in a vector flight to the
colony

furthestDistance_m
saves the furthest distance from the colony an individual bee has
ever been

furthestLocationList
saves the x-y coordinates of the furthest location from the
colony an individual bee has ever been

knownPatchesList a list with the ID of all flower patches known to the bee

lastDestinationList
x-y coordinates of the bees' last field destination or the location
of the colony, if a bee has never been at a field destination

lastLocationList
the bees' location in the previous time step (only updated while
the bee is searching, i.e. in flightPhase 2, when bee is white or
orange)

nowDetectedPatchesList
ID of those patches, detected by a bee in the current scouting
trip

nTrips the bees' number of completed scouting trips

time_s total time passed [s]

3. PROCESS OVERVIEW AND SCHEDULING

In the actual simulation run, bees explore the landscape (procedure MoveBeesProc, see Table

4). Bees detect a flower patch when they enter a grid cell belonging to this patch for the first

time of a scouting trip. The flightPhase describes the flight pattern of a bee:

phase 1: a bee is leaving the colony in a vector flight towards a field destination (i.e. a

location in the landscape the bee is trying to reach, choice of this location depends on the

search mode - see below);

phase 2: a bee is searching the landscape around its field destination in a small-scaled flight

pattern;

phase 3: a bee is returning in a vector flight to the colony.

The bees move forward with a constant step length and the turning angles in flightPhase 2 are

randomly drawn from a distribution, derived from empirical turning angles of searching

honeybees or bumblebees. Additionally, bees perform loops (in flightPhase 2 only), with the

probability TurnToDestinationProb, in which case they return linearly to their previous

destination and then switch back to the search flight pattern. All patches ever detected and

patches detected during the current scouting trip are recorded by the individual bee. Flower

patches can be detected in any phase, not only in the search phase. Each bee can detect a

flower patch only once per scouting trip

When they head to a destination or return to the colony, they show a linear flight pattern

(flightPhase 1 or 3). When they are in the search phase (flightPhase 2), they show a smaller

scaled flight pattern. At the beginning of their very first scouting trip, bees are naive without

any knowledge of the landscape, hence, they have no destination and immediately switch to

the search phase. At the beginning of the second and all following scouting rounds, bees may

have a destination. Depending on SearchMode, bees can linearly head to a flower patch or a

location either they or any other bee has been before. The simulation stops, when the total

time allowed for scouting (ScoutingPeriod_hrs) is exceeded. Then the detection probabilities

for the flower patches are calculated and the results can be saved in an output file.

Table 4 provides and overview of all procedures used in the NetLogo program implementing

BEESCOUT. Table 5 represents the scheduling of all procedures of all BEESCOUT modules.

The scheduling of the scouting model (module I) is marked via yellow background.

Table 4: Overview of all procedures (procedures marked with † link the BEESCOUT model

to the BEEHAVE colony model)

Procedure Description

AnalyseOutfileProc

Setup and run of the model to determine the detection probabilities,

results are written in an outfile for the BEEHAVE model

AnalyseProc

determination of flower patches, calls procedures to create scout

bees, and exploration of landscape

ClearBeesProc

kills existing and creates new bees, plots etc. are cleared, detection

probabilities are set to 0, random-seed set to initial value

CreateBeesProc creates scout bees

CreatePatchStatisticsProc

creates patchStatistics for each flower patch, to store the flower

patch data

Default_ButtonProc sets all parameters on the interface to their default values

DetectionProc determines if/which flower patch is detected by a bee

DetermineBordersProc

determines the bordes of the map which cannot be crossed by the

bees

DetermineSizeProc determines the size and distance to colony of the flower patches

DoDetectionPlotsProc updates the plot "detection probability per trip"

Go

runs the individual-based scout model to determine the detection

probabilities of the flower patches

ImportMapProc imports an image file (forage map) and corrects colours

MoveBeesProc the movement of the bees

ReadForagingDataProc †

reads in the number of nectar and pollen visits for each patch from

the InputForagingFile, which was created during a previous

simulation run of the BEEHAVE model

Setup clears all variables, resets time, sets initial conditions, creates colony

ShowForagingDataProc †

displays nectar or pollen visits for all flower patches on the map,

based on a BEEHAVE simulation

TurnDestinationProc new direction of the bee if it has a destination

TurnNoDestinationProc new direction of the bee if it has no destination

WriteFromListToFileProc † creates an input file for the BEEHAVE model

Table 5: Scheduling of the procedures. Level 1 procedures are called by buttons on the interface, procedures in level 2 and 3 are called by the

procedure of the next higher level.

Level 1 Level 2 Level 3 Condition

Setup

Button: "Setup"

ImportMapProc

if InputFile != "No input file"

DetermineBordersProc

if InputFile != "No input file"

AND count patches with [originalColor = BorderColor] > 0

AnalyseProc

CreatePatchStatisticsProc

CreateBeesProc

DetermineSizeProc

 Go

Buttons: "Step", "Go"; repeated once or continuously

MoveBeesProc

TurnNoDestinationProc if destinationList is empty

TurnDestinationProc if destinationList is not empty

DetectionProc

DoDetectionPlotsProc

if count PatchStatistics > 0

ReadForagingDataProc

Button: "Read foraging data"

ShowForagingDataProc

Buttons: "Read foraging data", "Go to day 1", "Refresh",

"Slide show", "-30d".."+30d"

AnalyseOutfileProc

Button: "Analyse & Outfile"

Setup

Go

repeated for ScoutingPeriod_hrs * 3600 / Gap_s

WriteFromListToFileProc

 ClearBeesProc Button: "Clear Bees"

Default_ButtonProc Button: "Default (Honeybees)"

BumblebeesProc Button: "Bumblebees"

HoneybeesProc Button: "Honeybees"

4. DESIGN CONCEPTS

Basic principles

The model simulates only scouting trips of honeybees and bumblebees, i.e. the search for new

food sources. It does not simulate the exploitation of known flower patches. Hence, there is

no foraging for nectar or pollen implemented, and patches only differ in their size, shape and

location, but do not have any sort of attractiveness (The nectar and pollen flow for the

different flower patch types that is defined on the interface is only used to create an input file

for the BEEHAVE model. It is not used within the BEESCOUT model). There is no

mortality, so the number of bees remain constant during a simulation run. The movement of

bees during their search phase is determined by a turning angle and the step width, both based

on empirical data from radar tracked honeybees amd bumblebees. The turning angle (i.e. the

change in direction) is randomly drawn from a distribution, whereas the step width is

constant. Choice of the location, where the bee begins its actual search, is based on the idea

that bees would visit a known location, may find it unrewarding and then start to search for a

new food source from their current location. As honeybees can recruit colony members to

profitable food sources by waggle dances, destinations are not necessarily restricted to those

locations already visited by the individual bee. For bumblebees, who do not communicate the

location of a food source, only information gathered from an individual is used determine the

field destination, where the bee switches to the search flight.

Emergence

Detection probabilities of the flower patches emerge from the bees' flight patterns and the

landscape structure.

Sensing

Bees sense a flower patch or a lake, when they reach it and they know their own location and

the location of their colony. They remember flower patches they have detected on a previous

trip, flower patches they have detected on the current trip as well as the last location and the

furthest location they have ever been.

Interaction

Bees search for food patches individually, but can interact via information transfer. They can

share information of detected food sources via the location of the “new field destination” if

the search mode is "recruitment" (e.g. SearchMode "known flowerpatch (recruitment)"). This

reflects the foraging behaviour of bees with a recruitment system, e.g. honeybees. If the

search mode is "individual" they do not share information, which would reflect the foraging

behaviour of e.g. bumblebees or aggregations of solitary bees; consequently, there is no

interaction among bumblebees.

Stochasticity

The directions of bees' turning angle is stochastically determined from a given distribution. If

RandomTripDuration is true, then also the duration of a bees' scouting trip is randomly

determined

Observation

From the analysis of the imported map, the number of flower patches, their size and their

distance to the colony is calculated and displayed on the interface. The number of detections

is recorded and used to calculated the modelled detection probability per second and per

scouting trip. The time of the first detection of a flower patch as well as the number of bees

that crossed a grid cell are recorded. All this information can be displayed on the map of the

interface. A plot can be used to illustrate the detection probability over time for up to four

patches. The total area explored by the bees and the furthest distance of bee from the colony

are also displayed.

5. INITIALISATION

The model is initialised in the procedure Setup (ImportMapProc, DetermineBordersProc and

AnalyseProc (CreateStatisticsProc, CreateBeesProc, DetermineSizeProc)). In the Setup

procedure, time and agents are cleared, parameters and the random seed are set to their initial

values. Then a forage map (if provided) is imported (ImportMapProc) and the borders of the

world are set (DetermineBordersProc). Colour shades are translated into a limited number of

primary colours. Finally, the scale of the map is calculated, using the real distance between

two reference points. AnalyseProc determines the number of flower patches in the landscape.

PatchStatistics (i.e. representations of flower patches) are then created in CreateStatisticsProc

to keep track of the number of detections for each flower patch. In CreateBeesProc bees are

created and DetermineSizeProc determines the area of the flower patches. Then lakes are

defined and an output file may be created in WriteFromListToFileProc.

5.1 Setup and importing a crop map

In the Setup procedure, some parameters are set to their initial value. A hive (colony) is

created and placed at the location Col_X, Col_Y. Then the colour (pcolor) of all grid cells

(Netlogo patches) is set to the unique BorderColour. The list PatchColoursList is populated

with the colours of patch types (RedPatches, GreenPatches etc.) included in the analysis. To

calculate the correct scaling for the map, the x-coordinates of two reference points (Scale_X1,

Scale_X2) have to be chosen and the real distance [m] between these points has to be

provided (ScaleDistance_m):

set Scaling ScaleDistance_m / (Scale_X2 - Scale_X1)

 If an input file for a forage map is provided, the file is imported in the procedure

ImportMapProc. After the file was imported, each grid cell (Netlogo patch) saves its colour

(pcolor) in the variable originalColor. Some shades of colours are then converted into the

related prime colour (i.e. into red, green, blue, yellow, white or black). The range of colours

converted into the prime colour are defined by Red_min, Red_max for red (Netlogo colour

value: 15), Yellow_min, Yellow_max for yellow (colour value: 45), Green_min, Green_max

for green (colour value: 55), and Blue_min, Blue_max for blue (colour value 105). Black is

represented in Netlogo by colour values of 0, 10, 20.. 130 and white is represented by 9.9,

19.9, 29.9.. 139.9. Hence, very dark colours with remainder pcolor 10 < Black_th are set

to black and very light colours with remainder pcolor 10 > White_th are set to white.

Each grid cell (Netlogo patch) then saves its colour in its variable patchColor and

flowerPatchID is set to -1, indicating that the grid cell does not (yet) belong to a flower patch.

Then the borders of the map are determined in the procedure DetermineBordersProc. The

borders are those areas on the top and bottom or on the left and the right, with pcolor =

BorderColor (i.e. the color they were set to before the map was imported. Almost certainly,

grid cells have changed their colour to the value provided by the imported image). The top

border, for example, is then defined by the y-coordinate of those patches with the color

BorderColor in the upper half of the world, which have the lowest y-coordinate:

set TopBorder min [pycor] of patches with

[(pycor > (max-pycor / 2)) and (originalColor = BorderColor)]

The other three borders are determined in a similar way. Borders are important, as they cannot

be crossed by the bees.

If a satellite or aerial image is provided, it is imported and each grid cell (Netlogo patch) then

saves its color in its variable satelliteColor.

5.2. Analysis of the landscape and determination of flower patches

Flower patches are determined by a number of neighbouring grid cells of the same colour

indicating food sources:

First, some variables are set (procedure: AnalyseProc):

let currentColor 0

let currentPatchID -1

let flowerPatchCounter 0

set Repetitions round (MaxPatchRadius_m / Scaling)

Repetitions affects the maximal size a flower patch can have. If a field is larger, it will be

divided in several flower patches.

Then patchColor of all grid cells (NetLogo patches) is compared in an ordered way (from top

left to bottom right corner) to PatchColoursList, which contains the up to four colours (red,

green, yellow, blue) that define food sources:

foreach sort patches [ask ?

 [

 if member? patchColor PatchColoursList

 [...

If a grid cell has a patchColour defined as food source and it was not assigned to an already

existing flower patch yet (i.e. flowerPatchID of the grid cell is still set to its initial value

of -1), then a new flower patch is being created:

 if flowerPatchID = -1

 [

 set flowerPatchID (flowerPatchCounter)

 set currentColor pcolor

 set firstPatchOfFlowerpatch true

 set currentPatchID flowerPatchID

FlowerPatchID of the grid cell is set to current value of the flower patch counter

(flowerPatchCounter), its colour and flowerPatchID are saved in currentColor and

currentPatchID (to make sure that neighbouring flower patches of different colours are not

merged). Then the (eight) neighbouring grid cells are added to the new flower patch, if they

have the same colour. This process is then repeated Repetitions times, always checking if the

neighbours of those grid cells already belonging to this new flower patch have the correct

colour and are not assigned to a flower patch yet. After the last repetition,

flowerPatchCounter is increased by 1:

 repeat Repetitions

 [

 ask patches with [(pcolor = currentColor) and (flowerPatchID

= currentPatchID)]

 [

 ask neighbors with [(pcolor = currentColor) and

 (flowerPatchID = -1)]

 [set flowerPatchID currentPatchID]

]

]

 set flowerPatchCounter flowerPatchCounter + 1

]]]]

The relevant data for each flower patch (like area, number of detections etc.) is saved in the

entities patchStatistics (Tab. 3). For each flower patch, a patchStatistic is created

(CreatePatchStatisticsProc). Then bees are created (CreateBeesProc) and and the position of

the hive (colony) is defined.

If the Netlogo switch Lakes is set true, then grid cells with a black patchColor are interpreted

as water (or other obstacles with a similar effect), and their patchColor is reset to LakeColor.

This will affect the movement of the bees (MoveBeesProc) who cannot cross these grid cells

while they are in the search mode (flightPhase 2). However, water can be crossed when bees

are heading to a field destination or are returning to the colony (Heran & Lindauer 1963, von

Frisch 1967, Pahl et al. 2011).

6. INPUT DATA

BEESCOUT does not import data representing time series of driving variables, for example

weather.

Optionally, an input file, created by a previous simulation run of the BEEHAVE model with

the same landscape can be read in. This input file does not affect the simulation run of the

BEESCOUT model but only serves to visualise the foraging activities of bees as they were

recorded during a previous run of the BEEHAVE model in the same landscape. The input file

contains the number of all visits of nectar and pollen foragers at the flower patches for every

day of one year. The landscape model can then visualise the foraging patterns the bees

showed during the BEEHAVE simulation. The input file has the following format:

551

day who nectarVisits pollenVisits

1 0 0 0

1 1 0 0

1 2 0 0

...

365 549 0 0

365 550 0 0

365 551 0 0

The first line shows the number of flower patches, the second line is the header for the four

colums: day of the year (1 - 365), the patch ID, the number of recorded nectar visits on that

day at the specified patch and the number of recorded pollen visits on that day at the specified

patch. E.g. 181 112 100 300 would mean that 100 nectar foragers and 300 pollen foragers had

visited patch number 112 on day 181 in the BEEHAVE simulation.

7. SUBMODELS

The scouting efforts of a honeybee colony depends on forage availability in the landscape and

ranges from ca. 5% to ca. 35% of all foragers (for "rich" and "poor" forage conditions, Seeley

1983). The average total flight performance of a honey bee is ca. 500 km during its lifetime

(Neukirch 1982; J Comp Physiol: 146, 35-40). Therefore, we estimate the total scouting

distance of a bee to range from ca. 25 km to 175 km. Assuming an average flight speed of 3

m/s (based on our harmonic radar data), a honey bee spends between ca. 2 hrs to 16 hrs with

scouting. We hence set ScoutingPeriod_hrs to 9 [hrs] for honeybees and, lacking equivalent

data, also for bumblebees.

Perception (i.e. "detections") of flower patches in the model only takes place when bees enter

the patch. In reality, bees will perceive a flower patch based on visual and/or olfactory cues

before they reach it. An object can be seen by a honeybee, when the visual angle is greater

than ca. 5° (Giurfa et al. 1996). As flight heights of bees are usually low (Riley et al. 1999),

the visual angle of even large fields is relatively small (assuming a flat horizontal topography)

so that the visual detection range is only marginally larger than the field itself (using

trigonometry, one can calculate that e.g. a field with a diameter of 500 m can be seen by a bee

flying 1.9 m high (Riley et al. 2005) from a distance of no more than 21 m). Hence, by not

including visual perception range in the model we only slightly underestimate the detection

probabilities. Far more difficult to assess is the impact of olfaction, as direction and intensity

of a floral scent plume will vary for different plant species and especially with wind

conditions (Wright & Schiestl 2009). Air turbulence will make it difficult for the bees to

follow an odour "uphill" to the source (Reinhard & Srinivasan 2009) and an upwind zig-zag

flight within the scent plume, as suggested by Wenner et al. (1991), is likely to be

prohibitively time and energy consuming for long-distance search flights (Reinhard &

Srinivasan 2009) and has never been observed in reality (Reynolds et al. 2009). Given the

current uncertainties around how bees respond in different wind conditions, we have not

modelled this process, but when clear empirical information becomes available, then the

model can be modified accordingly.

Once the final setup of flower patches has been made, the detection probabilities for each of

these patches can be determined. This is achieved by simulating the movements of N_Bees

agents, each representing a single honeybee or bumblebee scout. Starting from the location of

the colony, they explore the landscape following an artificial or empirically based flight

pattern. The movement is calculated in the procedure MoveBeesProc. Each step represents

Gap_s seconds of real time and the new location of a bee is determined by its turning angle

and the step width.

The step width is set in the reporter procedure DisplacementREP with displ_m 2.96m * Gap_s

for honeybees and 3.22m * Gap_s for bumblebees. Displ_m is then divided by Scaling to

transform the real distance into a distance in the Netlogo world (displ_NLpatches) and

multiplied by DisplacementFactor (range: 0..10, default: 1) to allow for smaller or larger step

widths

We distinguish three flight phases (flightPhase) in the bees movement: In flightPhase 1, bees

are heading in an linear vector flight towards a field destination, defined in destinationList

(e.g. the coordinates of flower patch they visited before) and are shown in green. In

flightPhase 3 destinationList is set to the coordinates of the colony and the bees (shown in

blue) are heading in an linear vector flight towards the colony. FlightPhase 2 describes a

small scaled search pattern (although patches can be detected in any flightPhase) and bees are

shown in white or, if they perform a loop, in orange.

If a bee has no destination (i.e. a white bee during flightPhase 2 and not looping), its new

flight direction is set in the procedure TurnNoDestinationProc. Based on a distribution of

turning angles (0 - 180°, bin width 10°) from experimental data, the turning angle to either the

right or left side (with equal probabilities) is randomly chosen, e.g. for honeybees (reporter

procedure TurningREP):

if BeeSpecies = "Honeybees"

[

 let randBar random 628 + 1

 if randBar >= 1 and randBar < 92 [set turn 0 + random-float 10]

 if randBar >= 92 and randBar < 144 [set turn 10 + random-float 10]

 ...

 if randBar >= 599 and randBar <= 628 [set turn 170 + random-float 10]

]

if random-float 1 > 0.5 [set turn turn * -1]

If RandomWalk is true, than a random turning angle is chosen from an equal distribution

if RandomWalk = true [set turn random-float 360]

resulting in an uncorrelated random walk.

The turning angle turn is then multiplied with LinearisationFactor (range: 0..1, default: 1) to

allow for a more linear movement.

If FixTurningAngle is true, then the turning angle is set to the fix value FixRightTurn,

resulting in circular movement of the bees during the searching phase.

A bee might then perform a loop: with the probability TurnToDestinationProb (default: 2%)

its destinationList is set to lastDestinationList, i.e. it turns toward its previous destination,

which can either be a location in the field or - if the bee has never been at a field destination -

the location of the colony. They then change their colour to orange until they reach their

destination.

If a bee has a destination (i.e. it is in flightPhase 1 or 3 (green and blue bees) or doing a loop

in flightPhase 2 (orange bees)), then it turns towards the location of its destination

(destinationList). If the destination is a location outside the colony and the distance is smaller

than the length of a bees' step width, then lastDestinationList is updated, destinationList is

emptied, the bee choses a new, random direction, changes its colour to white, and finally

switches to flightPhase 2, and (TurnDestinationProc):

if destinationList != []

 [

if (distancexy item 0 destinationList item 1 destinationList) <

DisplacementREP and destinationList != list Col_x Col_y

 [

 set lastDestinationList destinationList

 set destinationList []

 set heading random-float 360

 set color white

 set flightPhase 2

]

]

If a bee is heading back (flightPhase 3) and reaches the hive (colony), then destinationList is

reset and nowDetectedPatchesList, a list that contains all patches detected by this bee during

its current scouting trip, is emptied.

Furthermore, some data are recorded during the movement of a bee:

 MaxHiveDisplAllBees_m: A global variable with the largest distance any of the bees ever

had to the hive.

 visits: A Netlogo patch (grid cell) specific variable that is increased by 1, whenever a bee

is located on this Netlogo patch.

 lastLocationList: A bee specific variable that records the last xy-position of a bee during

flightPhase 2. This location is then set to the field destination in the next scouting trip, if

the search mode is "last location (individual)".

 furthestLocationList, furthestDistance: records the xy-coordinates and the distance to the

hive of the furthest location an individual bee has ever been.

If RandomTripDuration is false, then the duration of a trip is defined by TripDuration_s,

otherwise it is randomly determined with an average duration of TripDuration_s

(returningProb = Gap_s / TripDuration_s). If a bee ends its scouting trip, it switches into

flightPhase 3 and heads towards the location of the hive (colony) (i.e. destinationList is

populated with the xy-coordinates of the hive):

if (RandomTripDuration = false and remainder (ticks * Gap_s) (Gap_s *

 round (TripDuration_s / Gap_s)) = 0

 or (RandomTripDuration = true and random-float 1 <= returningProb)

 [

 set destinationList list Col_x Col_y

 set color sky

 set flightPhase 3

]

The actual movement of a bee is implemented as:

ask bees with [nTrips <= MaxTrips]

 [fd DisplacementREP

 ...

i.e. bees have chosen their direction and now move forward by the distance determined in

DisplacementREP. Only bees who have not performed more than MaxTrips scouting trips yet

are allowed to move, all others stay in the colony. If the new location of the bee is defined as

lake (while the bee is white, i.e. in the small scaled search mode) or as border, then the

movement is withdrawn and the bee choses randomly a new direction:

 if (patchColor = LakeColor)

 or (originalColor = BorderColor)

 or (pxcor = max-pxcor) or (pxcor = min-pxcor)

 or (pycor = max-pycor) or (pycor = min-pycor)

 [

 if flightPhase = 2 and destinationList = []

 [

 setxy item 0 lastLocationList item 1 lastLocationList

 set heading random-float 360

]]]

Whenever a bee enters a flower patch (i.e. a grid cell (Netlogo patch) with a patchColor being

defined as food source (potentially: red, green, blue or yellow)) that has not been entered

before by this bee in its current scouting round, then the number of this patch is added to the

bees' nowDetectedPatchesList and totalDetections of this flower patch (i.e. of its

PatchStatistic agent) is increased by 1. If the patch has never been detected before, the

patches' firstDetection_s is set to the current time.

If the bee has never been at this patch before, the number (who) of the patch is added to the

bees' knownPatchesList. If ImmediateReturn is true, then the bee switches to flightPhase 3

and sets its destination to the colony (irrespective of TripDuration_s) (DetectionProc):

if nTrips <= MaxTrips

 [

if member? patchColor PatchColoursList

 [

 let patchNumber flowerPatchID

 if member? patchNumber nowDetectedPatchesList = false

 [

 set nowDetectedPatchesList fput patchNumber

 nowDetectedPatchesList

 ask PatchStatistic patchNumber

 [

 set totalDetections totalDetections + 1

 if firstDetection_s = 0

 [set firstDetection_s ticks * Gap_s]

]

if member? patchNumber knownPatchesList = false

 [

 set knownPatchesList fput patchNumber

 if ImmediateReturn = true

 [

 set destinationList list Col_x Col_y

 set color sky

 set flightPhase 3

]

]]

The exploration of the landscape by the bees finally stops, when ScoutingPeriod_hrs is

exceeded:

if ticks * Gap_s > ScoutingPeriod_hrs * 3600 [stop]

Search options:

There are several options (SearchMode) how the new field destination is chosen in the

reporter procedure RelocationREP after a bee has returned to the colony:

"Colony": no field destination is chosen and the bee immediatly switches to flightPhase 2:

if SearchMode = "Colony" [set result []]

"known flowerpatch (individual)": the bee chooses randomly one location (i.e. Netlogo patch)

that is part of a flower patch already detected by this individual bee. Hence, bigger flower

patches are proportionally more likely to be chosen:

if SearchMode = "known flowerpatch (individual)"

 [

 let memoKnownPatchesList []

 ifelse empty? knownPatchesList

 [set result []]

 [

 set memoKnownPatchesList knownPatchesList

 ask one-of patches with

[flowerpatchid = one-of memoKnownPatchesList]

 [set result list pxcor pycor]

]

]

"known flowerpatch (recruitment)": similar to "known flowerpatch (individual)", but now, a

location in any patch that was detected by any bee can become the new destination. Again, the

probability of a flower patch to be chosen is proportional to its size:

if SearchMode = "known flowerpatch (recruitment)"

 [

 let memoKnownPatchesList []

 ask patchstatistics

 [

 if totalDetections > 0

 [set memoKnownPatchesList fput who memoKnownPatchesList]

]

 ifelse empty? memoKnownPatchesList

 [set result []]

 [

 let theChosenPatch one-of memoKnownPatchesList

 ask one-of patches with [flowerpatchid = theChosenPatch

 [set result list pxcor pycor]]]

"furthest location (individual)": the bee chooses the location with furthest distance from the

colony it has ever been as its new destination:

if SearchMode = "furthest location (individual)"
 [set result furthestLocationList]

"random location": the bee chooses random location within a distance of

MaxForagingRange_m from the colony that does not belong to a lake or the borders:

if SearchMode = "random location"

 [

 ask one-of patches with

 [patchColor != LakeColor and

 distancexy Col_X Col_Y * Scaling < MaxForagingRange_m and

 originalColor != BorderColor]

 [

set result list pxcor pycor

]

]

"visited NLpatch (recruitment)": the new destination of a bee is randomly chosen from any

location (i.e. Netlogo patch) that was ever visited by any bee and is not placed in a lake. (Note

that bees can cross lakes while they are in flightPhase 1 or 3). If no such location exists, then

the location of the hive (colony) is defined as the new destination:

if SearchMode = "visited NLpatch (recruitment)"

 [

 ifelse count patches

 with [visits > 0 and patchColor != LakeColor] > 0

 [ask one-of patches

 with [visits > 0 and patchColor != LakeColor]

 [set result list pxcor pycor]]

 [set result list Col_X Col_Y]

]

"last location (individual)": the bee returns to the location where it had stopped its previous

scouting trip to return to the colony and resumes searching from there:

if SearchMode = "last location (individual)"

 [set result lastLocationList]

If no destination has been chosen, the bee switches to the search mode (flightPhase 2),

otherwise, flightPhase is set to 1 and the bee heads out to its field destination:

ifelse empty? result

 [

 set color white

 set flightPhase 2

]

 [

 set color green

 set flightPhase 1

]

If SearchMode is set to "mixed strategy (individual)" or "mixed strategy (recruitment)", then

the search mode is randomly chosen in the procedure MoveBeesProc from a list with

whenever a new field destination of a bee is determined:

ask bees

 [...

 if SearchMode = "mixed strategy (individual)"

 [

 set MixedStratInd true

 set SearchMode one-of

 ["colony" "known flowerpatch (individual)" "furthest

 location (individual)" "last location (individual)"]

]

 if SearchMode = "mixed strategy (recruitment)"

 [

 set MixedStratCol true

 set SearchMode one-of

 ["colony" "visited NLpatch (recruitment)" "known

 flowerpatch (recruitment)" "furthest location

 (individual)" "last location (individual)"]

]

The variables MixedStratInd and MixedStratCol are required to finally set SearchMode back

to its initial "mixed strategy" choice:

if MixedStratInd = true

 [set SearchMode "mixed strategy (individual)"]

if MixedStratCol = true

 [set SearchMode "mixed strategy (recruitment)"]

II. A module for creating and modifying a landscape of flowering

patches.

If no input file for a forage map is provided, then the color (orignalColor) of all grid cells

(Netlogo patches) is set to grey. The user can then define flower patches with the help of the

"Artificial landscape creator". Flower patches can either be drawn with the mouse directly on

the map, after a colour and a brush size was chosen from SetColour and BrushSize.

Alternatively, the user can define (circular) flower patches by their size (SetRadius_m), their

distance (SetDistanceToCentre_m), and their direction (SetDirection_deg) from the colony.

Both methods of creating patches can be combined and also be used, if a forage map was

uploaded. After all patches are created or modified, the setup process has to be repeated by

pressing the "Update" button. Note that the borders are identical with the borders of the

Netlogo world, if no crop map was imported.

III. Define food flow and create inputfile for BEEHAVE colony model

The Landscape module can also be used to create an input file (NameOutfile) for the

BEEHAVE colony model. By pressing the "Analyse & Outfile" button, the crop map is

imported and analysed as described above and the bees explore the landscape as defined by in

the interfaces' "Search mode" options. At the end of the run, the results are written in a file

(NameOutfile). This file contains information on size, location, nectar and pollen availability

and detection probabilities of each identified flower patch. As nectar and pollen availability

can change with the season, all information are provided for each day of the year, hence, the

file consists of N flower patches x 365 + 1 (header) lines. The 15 columns of the file are:

1. day: the day of year (1..365)

2. id: the id of a flower patch (0.. N-1 flower patches within MaxForagingRange_m)

3. oldPatchID: the original id (who) of a flower patch (i.e. the number shown in the map

of the interface) (identical with id, unless flower patches are removed due to a limiting

MaxForagingRange_m)

4. patchType: information for the user about the crop or flowers in the patch (e.g. "OSR"

or "RedPatch")

5. distance_m: closest distance [m] of the patch to the hive (colony)

6. xcor: distance [m] on x-axis to the hive (colony)

7. ycor: distance [m] on y-axis to the hive (colony)

8. size_sqm: size of the flower patch [m
2
]

9. quantityPollen_g: amount of pollen [g] offered at the patch today

10. concentration: sugar (sucrose) concentration [mol/l] of the nectar

11. quantityNectar_l: amount of nectar [l] offered at the patch today

12. calculatedDetectionProb_per_trip: the probability that a scout finds the flower patch

during a single scouting trip, calculated on the basis of size and distance of the patch

13. modelledDetectionProb_per_trip: the probability that a scout finds the flower patch

during a single scouting trip as an output of the simulation run

14. nectarGathering_s: handling time [s] for nectar, i.e. the time a bee has to spent in a

patch to fill its crop

15. pollenGathering_s: handling time [s] for pollen, i.e. the time a bee has to spent in a

patch collect a pollen load

Data on patch type, quantity of nectar [ml/ m
2
] and pollen [g/ m

2
], handling times [s], nectar

concentration [mol/l] have to be provided by the user (interface: "Definition of flower

patches"). Flower patches only offer nectar and pollen during a certain period of the year,

defined by Start_(patchtype) and Stop_(patchtype).

IV. Display of foraging activities, modelled in BEEHAVE

The output file NameOutfile can now be used as an input file for the BEEHAVE colony

model. BEEHAVE also offers the options, to write the nectar and pollen visits of all patches

for each day of one year into a file (default name: "Input_1-2_Foraging.txt"). This file can

then be uploaded by the Landscape module (interface: "Show foraging data") to display either

the nectar and/or pollen visits on the map for each day of a year. Various buttons allow the

user to move forwards or backwards through the dataset, to show a specific date or to run a

slide show.

REFERENCES

Becher, M. A., Grimm, V., Thorbek, P., Horn, J., Kennedy, P. J., & Osborne, J. L. (2014).

BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore

multifactorial causes of colony failure. Journal of Applied Ecology, 51(2), 470-482.

Biesmeijer, J. C., & Seeley, T. D. (2005). The use of waggle dance information by honey bees

throughout their foraging careers. Behavioral Ecology and Sociobiology, 59(1), 133-142.

von Frisch, K. (1967). The dance language and orientation of bees. Cambridge, MA: Harvard

University Press.

Giurfa, M., Vorobyev, M., Kevan, P., & Menzel, R. (1996) Detection of coloured stimuli by

honeybees: minimum visual angles and receptor specific contrasts. Journal of

Comparative Physiology A, 178, 699-709.

Grüter, C., & Farina, W. M. (2009). The honeybee waggle dance: can we follow the steps?.

Trends in Ecology & Evolution, 24(5), 242-247.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J.,

Grand, T., Heinz, S.K., Huse, G., Huth, A., Jepsen, J.U., Jørgensen, C., Mooij, W.M.,

Müller, B., Pe’er, G., Piou, C., Railsback, S.F., Robbins, A.M., Robbins, M.M.,

Rossmanith, E., Rüger, N., Strand, E., Souissi, S., Stillman, R.A., Vabø, R., Visser, U. &

DeAngelis DL (2006) A standard protocol for describing individual-based and agent-

based models. Ecological Modelling, 198, 115-126.

Grimm, V., Berger, U., DeAngelis, D.L., Polhill, G., Giske, J. & Railsback, S. F. 2010 The

ODD protocol: a review and first update. Ecological Modelling, 221, 2760-2768.

Heran, H., & Lindauer, M. (1963). Windkompensation und Seitenwindkorrektur der Bienen

beim Flug über Wasser. Zeitschrift für vergleichende Physiologie, 47(1), 39-55.

Pahl, M., Zhu, H., Tautz, J., & Zhang, S. (2011). Large scale homing in honeybees. PLoS

One, 6(5), e19669.Pyke, G. H. (1984). Optimal foraging theory: a critical review. Annual

review of ecology and systematics, 523-575.

Reinhard, J., & Srinivasan, M. V. (2009) The role of scents in honey bee foraging and

recruitment. In: Jarau, S., & Hrncir, M. (eds) Food exploitation by social insects.

Ecological, behavioral, and theoretical approaches. CRC Press, Boca Raton, pp 165–182.

Riley, J. R., Reynolds, D. R., Smith, A. D., Edwards, A. S., Osborne, J. L., Williams, I. H., &

McCartney, H. A. (1999) Compensation for wind drift by bumble-bees. Nature, 400, 126-

126.

Riley, J. R., Greggers, U., Smith, A. D., Reynolds, D. R., & Menzel, R. (2005) The flight

paths of honeybees recruited by the waggle dance. Nature, 435, 205-207.

Seeley, T. D. (1983). Division of labor between scouts and recruits in honeybee foraging.

Behavioral ecology and sociobiology, 12(3), 253-259.

Towne, W. F., & Gould, J. L. (1988). The spatial precision of the honey bees' dance

communication. Journal of Insect Behavior, 1(2), 129-155.

Weidenmüller, A., & Seeley, T. D. (1999). Imprecision in waggle dances of the honeybee

(Apis mellifera) for nearby food sources: error or adaptation? Behavioral Ecology and

Sociobiology, 46(3), 190-199.

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected

Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

Wright, G. A., & Schiestl, F. P. (2009) The evolution of floral scent: the influence of olfactory

learning by insect pollinators on the honest signalling of floral rewards. Functional

Ecology, 23, 841-851.

