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ABSTRACT

Proteins that recognize and bind specific sites in
DNA are essential for regulation of numerous biolo-
gical functions. Such proteins often require a
negative supercoiled DNA topology to function cor-
rectly. In current research, short linear DNA is often
used to study DNA–protein interactions. Although
linear DNA can easily be modified, for capture on a
surface, its relaxed topology does not accurately
resemble the natural situation in which DNA is gen-
erally negatively supercoiled. Moreover, specific
binding sequences are flanked by large stretches
of non-target sequence in vivo. Here, we present a
straightforward method for capturing negatively
supercoiled plasmid DNA on a streptavidin
surface. It relies on the formation of a temporary
parallel triplex, using a triple helix forming oligo-
nucleotide containing locked nucleic acid nucleo-
tides. All materials required for this method are
commercially available. Lac repressor binding to
its operator was used as model system. Although
the dissociation constants for both the linear and
plasmid-based operator are in the range of 4 nM,
the association and dissociation rates of Lac re-
pressor binding to the plasmid-based operator are
�18 times slower than on a linear fragment. This
difference underscores the importance of using a
physiologically relevant DNA topology for studying
DNA–protein interactions.

INTRODUCTION

Proteins that recognize and bind specific sites in DNA are
essential for controlling a wide range of biological func-
tions at the level of DNA replication (1,2), regulation of
gene expression (3), homologous recombination (4) and

various other processes. In turn, proteins involved in
such processes often require a negative supercoiled
(nSC) DNA topology to function correctly (5). Recently,
it was also shown that an nSC DNA topology is also
required for the specific DNA binding of Cascade, a
protein complex involved in the prokaryotic CRISPR-
Cas immune system (6). Given the importance of DNA
topology, it is not surprising that a lot of effort is made to
maintain a correct DNA topology in vivo (7,8).
Proteins that bind specific sites in DNA also face the

challenge of finding their specific binding site amongst
megabases of non-target DNA. A combination of 1D dif-
fusion (sliding) along the DNA and 3D diffusion
(hopping) in the cytoplasm (9) can lead to more rapid
targeting, according to the facilitated diffusion model
(10–12). Intersegmental transfer can also play a role;
however, this is only relevant for proteins containing
two distinct DNA binding sites such as for instance the
Lac repressor and Cre recombinase (13,14).
DNA–protein interactions can be studied using a

variety of techniques, amongst others single-molecule
techniques such as total internal reflection fluorescent
microscopy (15) and surface plasmon resonance (SPR)
(16). Especially in SPR experiments, short linear target
DNA is often used to study the kinetics of DNA–
protein interactions. Short linear target DNA is conveni-
ent for SPR analysis because the 30 or 50 ends are easily
biotinylated, which allows for stable capturing on a
streptavidin surface. However, such linear targets do not
accurately mimic the natural situation, in which an nSC
DNA topology prevails and where non-target DNA is
much more abundant than specific binding sites. This
might give rise to distortions in the data.
In that respect, attaching nSC plasmid DNA, contain-

ing a specific binding site, would be more appropriate to
use in SPR experiments. The lack of 30 or 50 ends,
however, makes it not straightforward to attach plasmid
DNA to a surface. In the present study, we aimed to create
an irreversible topological link between an nSC plasmid
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and a biotinylated triplex-forming oligonucleotide
(TFOs), which results in a padlock-modified plasmid, or
catenane, that can be captured on a surface. The produc-
tion of padlock-modified plasmids has previously been
described for sequence specific labelling double-stranded
DNA (17–19), to form such a complex with a good yield, a
stable triple helix must be formed.
DNA triplex formation requires stretches of homo-

purines (A, G) in one strand and homo-pyrimidines
(C, T) on the opposite strand of the double-stranded
target DNA (20). Generally, two classes of triplexes can
be distinguished, according to the orientation and com-
position of the third strand: pyrimidine-rich third
strands bind parallel to the purine strand of the duplex
and form T·AT and C+·GC triplets; alternatively, purine-
rich third strands bind antiparallel to the purine strand of
the duplex and form G·GC, A·AT and T·AT triplets (in
A·BC, BC indicates the natural base pair and A the third
strand) (21). Parallel triplexes only form at low pH
because protonation of the third strand cytosine (C+) is
required, whereas formation of anti-parallel triplexes is
pH independent. Previous studies involving padlock-
modified plasmids have mostly relied on the formation
of very stable antiparallel triplexes, formed in the
presence of a DNA intercalator that is not commercially
available (19). However, incorporation of locked nucleic
acids (LNA’s) in the pyrimidine third strand of parallel
triplexes improves triplex stability and can alleviate the
requirement for a low pH to some extent (22).
Here, we present a facile method for capturing of

plasmid DNA on a streptavidin surface. A DNA triplex
is formed by adding an LNA-modified pyrimidine-rich
biotinylated TFO, which is subsequently self-ligated to
create a padlock-modified plasmid, or catenane. The Lac
repressor has been mutated to exist as a dimer (not a
tetramer) that interacts with only one DNA binding site
(operator). Plasmids with and without specific Lac repres-
sor operator sequences are used as a model to demonstrate
the relevance of this approach in SPR experiments. We
observed different binding kinetics to the supercoiled
plasmid-based operator compared with a short linear
operator. This approach therefore represents a helpful
tool to study protein–DNA interactions using a DNA sub-
strate with a physiologically relevant topology.

MATERIALS AND METHODS

Oligonucleotides

All oligonucleotides used in this study, except for TFO2.0,
were obtained from Sigma and ordered without any special
requirements. TFO2.0 was ordered from Eurogentec, and
was purified by polyacrylamide gel electrophoresis the
manufacturer. Details on all oligonucleotides and their se-
quences are given in Table 1.

Cloning of Lac repressor coding sequence

The first 331 residues of the coding sequence of Lac
repressor, hence excluding the C-terminal tetramerization
domain (residues 340–357), were amplified by poly-
merase chain reaction (PCR) from a pCDF-1b plasmid. T
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The coding sequence was amplified in 3� 100 ml PCR,
containing 15 ng of template DNA, 0.2mM of each
deoxyribonucleotide (dNTP), 0.2mM of primers
BG3874 and BG3917 (containing a HRV3C site and an
8� His-tag), 1�Buffer high fidelity (HF) and 3 Units
Phusion II (Finnzymes). The PCR program was as
follows: 30 s at 98�C, 5 cycles of 10 s at 98�C, 20 s at
60�C, 60 s at 72�C, 25 cycles of 10 s at 98�C, 20 s at
70�C, 60 s at 72�C, followed by 5min at 72�C after the
last cycle. Purified PCR product and destination vector,
pWUR533, were subsequently digested with NcoI and
SacI restriction enzymes. Both fragments were ligated
together, and the resulting plasmid (pWUR533_LacI)
was transformed to the Escherichia coli strain XL1-blue
for plasmid propagation.

Expression of recombinant Lac repressor

The pWUR533_LacI plasmid was transformed to E. coli
BL21(DE3) pSJS1244 for protein expression. Fresh
LB medium, containing ampicillin (final concentration:
100 mg/ml) and spectinomycin (final concentration:
50 mg/ml), was inoculated with 1% overnight culture.
Protein expression was induced 3 h later by adding isopro-
pyl-b-D-thiogalactopyranoside to a final concentration of
1mM. After another 3 h, cells were harvested by centrifu-
gation. Cell pellets were either processed immediately or
stored at �20�C until further processing.

Purification of recombinant Lac repressor

Cell pellets were resuspended in 150mMNaCl and
10mM4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES) (pH 7.4) and subsequently lysed using a
French press. Clarified cell free extract was passed
through a 0.45 mm filter before incubation with HIS-
Select� Nickel affinity gel (Sigma-Aldrich), which was
equilibrated with water (3ml) and 3 column volumes
wash buffer [50mM sodium phosphate buffer (pH 8.0)
with 0.3M sodium chloride and 5mM imidazole]. After
incubation, the column material was washed three times
with four column volumes wash buffer. Bound protein
was eluted in fractions of 2 column volumes using
elution buffer [50mM sodium phosphate buffer (pH 8.0)
with 0.3M sodium chloride and 250mM imidazole].
Eluted protein was further purified on a Superdex 200
column (GE Heathcare), using 150mMNaCl and
10mM HEPES (pH 7.4) as running buffer; peak fractions
corresponding to the dimer protein were collected and
used for SPR and microscale thermophoresis (MST)
measurements.

Insertion of a Triple Helix Site in pUC19

A purine-rich Triple Helix Site (THS, 19 bp), required for
triple helix formation, was inserted between the ampicillin
resistance gene and the origin of replication in a pUC19
vector. To do so, 25 ng plasmid was amplified in 50 ml
using 0.2mM dNTPs each, 125 ng of primers BG3534
and BG3535, 1� Buffer HF and 1 Unit Phusion II
(Finnzymes). The PCR program was as follows: 90 s at
98�C, 18 cycles of 10 s at 98�C, 30 s at 58�C, 80 s at
72�C, followed by 7min at 72�C after the last cycle.

After PCR, 10 units of DpnI (Fermentas) was added
directly to the PCR reaction mixture, for degradation of
template DNA, and left at 37�C for 2 h. The resulting
plasmid (pUC19_THS) was transformed to chemical com-
petent E. coli DH5a. Insertion of the THS was confirmed
by restriction analysis (using DraI) and sequencing
(GATC, Constance, Germany) using primer BG3554.

Removal of lac operator sequences

The two lac operator sequences in pUC19_THS, operator
1 (AATTGTGAGCGGATAACAATT) and operator
3 (GGCAGTGAGCGCAACGCAATT), were removed
to yield two plasmids. The pPAD-�O3 plasmid only
contains operator 1, whereas pPAD-�O1�O3 contains
no operator at all. The operator sequences were
removed by PCR amplification of the whole plasmid,
except for the operator region, using primers BG3963
and BG3964 for �O3, and BG3962 and BG3963 for
�O1�O3. Plasmid, 35 ng, was amplified in 100ml using
0.2mMdNTPs each, 0.2mM of each primer, 1�Buffer
HF and 1 Unit Phusion II (Finnzymes). The PCR
program was as follows: 60 s at 98�C, 5 cycles of 10 s at
98�C, 10 s at 60�C, 1min at 72�C, followed by 25 cycles of
10 s at 98�C, 10 s at 70�C, 1min at 72�C followed by 7min
at 72�C after the last cycle. Purified PCR product was
digested with 10 units of DpnI and NcoI and left at
37�C for 2 h. Fragments were ligated and transformed to
electro competent E. coli XL1-blue cells. Successful
removal of the operator sequences was confirmed by
sequencing (GATC, Constance, Germany) using the
standard M13-F primer.

Padlock formation

For padlock formation, approximately 50 nM plasmid
(use of more plasmid should be prevented, as this could
result in lower yields because of molecular crowding) was
mixed with 1 mM TFO2.0, acid buffer (20mM MgCl2 and
20mM ammonium acetate pH 5) was added to a total
volume of 10 ml; low pH is needed to protonate cytosine
on the third strand (18,21), which is required in this
approach. Plasmid and TFO were heated to 80�C and
cooled down to 20�C at a rate of �1�C/min in a
G-Storm GS1 thermocycler (start at 80�C for 30 s, then
step-wise decrease to 20�C, in 350 subsequent steps in
which the temperature drops with 0.17�C and stays
stable for 8 s). When at 20�C, 2 mM closing probe
(BG3812) was added, followed by 1.5ml 10�T4 DNA
ligase buffer (Fermentas), 1 ml of a 5mM adenosine tri-
phosphate solution and 5 Units (1 ml) of T4 DNA ligase
(Fermentas). The mixture was incubated overnight at
room temperature. Padlock-modified plasmids were
purified from a 0.8% agarose gel (Fermentas Kit) to
remove excess TFO and closing probe, before capturing
them on a Biacore Streptavidin Chip (SA Chip). To yield
enough padlock-modified plasmid for capture, padlock
formation was routinely performed in three parallel reac-
tions, only to be pooled during the gel purification
procedure.
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SPR measurements

Experiments were performed in a Biacore 3000 system
(BIACORE, Uppsala, Sweden) at a constant temperature
of 25�C, using 10mM HEPES at pH 7.4, and 150mM
NaCl as running buffer. Padlock-modified plasmids were
captured on an SA chip at a flow of 5 ml/min, pPAD-�O3
to a response of 140RU and pPAD-�O1�O3 to a
response of 80RU. An empty channel served as reference
surface. For the padlock-modified plasmids, kinetic meas-
urements were performed by injecting 20 ml Lac repressor
at a flow of 10 ml/min, using the kinject command,
followed by a 5-min dissociation phase. In total, seven
concentrations (2650, 883, 294, 98, 33, 11 and 4 nM)
were injected twice.
Linear Operator 1 (O1) DNA, prepared by hybridizing

BG4162 and BG4163, was captured on another SA chip to
334 RU. Kinetic measurements were performed by inject-
ing 90 ml Lac repressor at a flow of 90 ml/min, using the
kinject command, followed by a 5-min dissociation phase.
An empty channel served as reference surface. In total, six
concentrations (577, 192, 64, 21, 7 and 2 nM) were injected
twice. Data were processed using Scrubber (BioLogic
Software, Campbell, Australia), and double referenced
data were analysed using BIAevaluation software
provided with the Biacore.

MST

Plasmids for MST measurements were purified from
100ml of overnight cultures, using a Jetstar 2.0
maxiprep kit (Genomed). The obtained pellet was re-sus-
pended in 50 ml milli-Q water; DNA concentrations were
calculated from gel, by comparing peak intensities of
linearized plasmid and the 3000 bp band of a marker
(1 kb, Fermentas). Purified Lac repressor was labelled
using a protein labelling kit, L003 MonolithTM

(NanoTemper. München, Germany). MST measurements
were performed in standard capillaries on a Monolith
NT.115 machine, using 5% LASER power and 40%
light-emitting diode (LED) power. DNA concentrations
were varied while keeping the protein concentration
constant at 25 nM. Protein was diluted to 50 nM in
buffer (20mM HEPES at pH 7.4, 300mM NaCl,) and
subsequently mixed in a 1:1 ratio with dilutions of DNA
(in milli-Q). Data were analysed using the software
provided with the Monolith NT.115 (NanoTemper.
München, Germany).

RESULTS

Strategy and design

In the present study, we aimed to develop a method for
capturing plasmid DNA, which would allow the use of
DNA with a physiologically relevant topology in SPR
experiments, and in other experiments that require target
immobilisation. To allow the approach to be generally
applicable, it should be straightforward and easily achiev-
able with general molecular biological techniques and
commercially available reagents. A general outline of the
method is shown in Figure 1A. A newly designed target

site for triple helix formation was inserted in our plasmid
of interest. We have adopted a parallel triplex design
(Figure 1B) for two main reasons. First, it does not
require stabilizing molecules that are not commercially
available (19); for stabilisation of the triplex, and to alle-
viate the requirement for a very low pH for triplex forma-
tion, the triplex-forming part of the TFO contains
alternating LNA Thymine and DNA Cytosine (22).
Second, and inherently related to a parallel triplex, arte-
facts arising from the presence of a triplex are possibly
avoided, at least at neutral pH, because parallel triplexes
only form at low pH and are generally expected to dissoci-
ate at neutral pH. After addition of the closing probe, the
TFO is circularized, and a topological bond is introduced
between the circular TFO and the plasmid. At this stage,
the triple helical structure could be disrupted, as it is not
required for plasmid capture anymore. In additional ex-
periments, padlock-modified plasmids were digested with
DraI. The plasmids contain two DraI sites, one of which
overlaps with the THS (Figure 1B). One of these sites is
not accessible if a triplex is formed, and hence the plasmid
will only be linearized. The results suggest that in 40–50%
of the analysed padlock-modified plasmids, the triplex is
not fully dissociated at neutral pH (Supplementary
Methods and Figure 2), most likely due to the length of
the triplex and because the TFO is heavily modified. The
THS is located between the ampicillin resistance gene and
the origin of replication; hence, is it located at great
distance of the operator sequence, and therefore we
expect the triplex not to intervene with Lac repressor
binding. However, the triplex could be shortened, should
the presence of the triplex intervene with the study of
other binding events.

Binding affinity of Lac repressor

After padlock-modified plasmids were captured on a SA
SPR chip, we performed subsequent measurements
showing that Lac repressor specifically interacts with
these immobilized plasmids. This confirms that the pro-
duction and capture of padlock-modified plasmids was
successful. Double referenced SPR data of Lac repressor
binding to both padlock-modified plasmids was fitted with
a simple 1:1 binding model (Figure 2A), yielding an
overall dissociation constant (KD) of 337 nM for pPAD-
�O1�O3 (not containing an operator) and 155 nM for
pPAD-�O3 (containing operator 1) (Figure 2B). Fits
shown in Figure 2A nicely follow the association and equi-
librium phase, fits shown in Figure 2B are not matching
the data as nicely, although this is to be expected
(discussed later in the text). In addition, MST measure-
ments, using the same plasmids, yield dissociation con-
stants in the same range as SPR measurements; 147 nM
for pPAD-�O1�O3, and 188 nM for pPAD-�O3
(Table 2, Supplementary information).

Double referenced data of Lac repressor binding to
linear O1 DNA was fitted with a 1:1 model that takes
mass transport limitation into account (23) and resulted
in a dissociation constant of 3.9 nM (Figure 2C), whereas
a dissociation constant of 4.5 nM was obtained using MST
(Table 2, Supplementary information). The association
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rate constant (ka) as well as the dissociation constant (KD)
are well in range with values determined earlier (24)
(Table 2). Despite the high flow rate used during SPR
measurements, mass transport effects are to be expected
because of the high association rate of Lac repressor (9);
together with the somewhat high ligand density, this
feature could account for the deviation between fit and
actual data. Affinity data, together with all association
rate constants (ka) and dissociation rate constants (kd),
are presented in Table 2. These values show that different
methods yield similar affinities and that there are differ-
ences in the affinity of Lac repressor binding to both
padlock-modified plasmids; this is to be expected
because one of these plasmids contains a specific binding
site.

Heterogeneous binding kinetics of Lac repressor

Kinetic parameters for the interaction of Lac repressor
with the plasmid-based operator were derived by fitting
the binding curves of pPAD-�O3 with a model that
assumes a heterogeneous ligand (plasmid), and that the
analyte (A, Lac repressor) can bind independently to
two ligand sites, specifically to the operator (C) and
non-specifically to the rest of the plasmid (B) (Figure 1C):

A+B
ka1

 ��!

kd1
AB ð1aÞ

A+C
ka2

 ��!

kd2
AC ð1bÞ

The kinetic parameters for the non-target interaction
(ka1=1.55� 105/M/s and kd1=0.052/s) were derived
from the interaction of Lac repressor with the pPAD-
�O1�O3 plasmid and are considered to be similar for
both plasmids. Hence, these values were taken into
account during fitting of the data, yielding a dissociation
constant of 4.0 nM for the interaction of Lac repressor
with the plasmid-based operator. Fits according to the
heterogeneous model are shown in Figure 2D. This fit is
much better than the fit with a 1:1 binding model as shown
in Figure 2B. The association and dissociation rate con-
stants for the specific interaction of Lac repressor with the
plasmid-based operator (ka2=6.81� 104/M/s and
kd2=2.74� 10�4/s) are �18 times slower in comparison
with those obtained for the interaction with linear O1
DNA while the dissociation constants are equal (Table 2).

DISCUSSION

In this work, we present a straightforward approach to
capture plasmid DNA on a streptavidin surface, and we
demonstrate its usefulness by characterizing the inter-
action between Lac repressor and plasmid DNA. Our
strategy requires the insertion of a target site for triple

Figure 1. Padlock-modified plasmids. (A) General procedure to prepare a padlock-modified plasmid. The triplex (dashed lines) only exists at low pH
and dissociates at neutral pH. B indicates a biotin dT, 50P indicates a 50 Phosphate. (B) The THS that is inserted in the vector forms a parallel triplex
together with TFO2.0. Regular Watson–Crick base pairs are indicated by ‘dash’, triplex bonds (Hoogsteen interactions) are indicated by ‘dot’. The
DraI site is highligted by a box, ‘z’ indicates LNA thymine, ‘x’ indicates biotin dT. (C) Two interactions take place on pPAD-�O3, a non-specific
interaction with plasmid DNA (marked by ka1 and kd1) and a specific interaction with the operator sequence (marked by ka2 and kd2).
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helix formation in the plasmid of interest. Next to a pUC
plasmid, this insertion can be performed in many other
commercially available vectors, which also contain the
targeted region (see Table 1). Further steps are also easy
to implement, making our design a generally applicable
method for plasmid capture.

Short linear target DNA is often used to study DNA–
protein interactions. However, this does not accurately
reflect the natural configuration of DNA because DNA
topology as well as non-target DNA are important
factors contributing to binding affinity. Moreover, DNA
topology has a direct influence on the interaction between
DNA and many DNA–binding proteins, as exemplified by
the supercoiling-dependent DNA binding of Cascade (6).
This is also demonstrated by the binding of DnaA to the
origin of replication (oriC) on the E. coli genome: this
complex is more stable if oriC has an nSC topology
(1,2). In addition, it has been shown that promoters can
be stimulated or inhibited by increased negative supercoil-
ing (3), most likely related to the binding efficiency of the
RNA polymerase complex.

Here, we have selected the E. coli Lac repressor as a
model system because this protein and the three operators
it can bind are well studied (25–27). It has been shown that
supercoiling has an effect on the dissociation of Lac
repressor-operator complexes (28,29) and on Lac repres-
sor-mediated DNA looping (30); however, the proteins
used in these studies were all naturally occurring
tetramers.

Specifically, the interaction of Lac repressor with O1
has been studied in great detail, and remarkably high
association rates have been reported based on equilibrium
methods, spanning the range between 1� 108� 1� 1010/
M/s (31,32). It is, however, more relevant to compare our
results to those obtained in a previous SPR analysis of this
interaction (24), in which the following kinetic parameters
were determined, a ka of 1.8� 106/M/s, a kd of
3.4� 10�4/s and a KD of 0.2 nM. In the latter study, the
dissociation constant was also determined using an elec-
trophoretic mobility shift assay: a KD of 4.2 nM. This
number is well in range with the values we find, using
SPR (3.9 nM and 4.0 nM) and MST (4.5 nM). The major
difference between both studies is that Bondeson et al. (24)
used a wild-type (tetrameric) Lac repressor, which can
bind two operators at the same time, whereas we used a
mutated (dimeric) Lac repressor that can bind only one

Figure 2. SPR data and fits. Double referenced data of replicate injec-
tions (black) and fits to it (red). (A) 1:1 fit to pPAD-�O1�O3, (B) 1:1
fit to pPAD-�O3, (C) 1:1 fit with mass transfer limitation to linear O1
DNA, (D) Heterogeneous fit to pPAD-�O3, assuming fixed values for
ka1 and kd1. Resulting values for the dissociation constants and kinetic
rate constants are summarized in Table 2.

Table 2. Kinetic parameters for the interaction of Lac repressor with the various DNA targets, including those found by Bondeson et al. (24)

Target DNA SPR MST Electrophoretic
mobility
shift assay

Fit model ka1 (�105/M/s) kd1 (�10�2/s) KD1 (nM) ka2 (�104/M/s) kd2 (�10�4/s) KD2 (nM) KD (nM) KD (nM)
Linear O1 DNA 1:1 Mass

transfer
12 0.48 3.9 4.5

pPAD-�O1�O3 1:1 1.55 5.2 337 147
pPAD-�O3 1:1 1.09 1.7 155 188
pPAD-�O3 Heterogeneous 1.55 5.2 337 6.8 2.7 4.0

Linear O1
DNA (24)

n.a. 18 0.034 0.2 4.2

Values in bold refer to interactions with operator DNA, and values in Italics indicate those that were fixed during fitting with the heterogeneous
model.
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operator at the same time. In general, the presence of
multiple binding sites is disadvantageous for SPR
analysis; it could give rise to avidity effects and substantial
rebinding, which results in a higher apparent affinity (33).
This explains why our dissociation rate from the linear O1
DNA (4.8� 10�3/s) is substantially higher, and hence
results in a lower affinity (3.9 nM).

The affinities for interaction with the captured plasmids
are considerably lower when compared with the linear
target DNA, but Lac repressor still binds with nanomolar
affinity to the plasmids. Binding curves of both captured
plasmids were initially fitted to a 1:1 binding model. A
comparison of these 1:1 fits already shows differences
between both plasmids; association rates are in the same
range, but the dissociation from the pPAD-�O3 plasmid
appears to be three times slower. The higher affinity inter-
action with the pPAD-�O3 plasmid is in line with the fact
that a specific binding site (operator 1) is present on this
plasmid. Affinity values obtained using MST are in the
same nanomolar range. They do not follow the trend
that the affinity for pPAD-�O3 is higher than for
pPAD-�O1�O3. For MST to be accurate, it is essential
that the DNA concentrations are precisely known;
however, in the course of this project, it has proven diffi-
cult to accurately measure concentrations of highly
concentrated, and hence viscous DNA preparations. We
believe this to be the origin of the discrepancy between
these values.

Although previously fitted with a 1:1 binding model,
binding of Lac repressor to the pPAD-�O3 plasmid
should actually be considered as a heterogeneous event.
Lac repressor can independently bind to either non-target
DNA or operator DNA. We fitted the pPAD-�O3
binding data with a model for heterogeneous binding to
obtain the kinetic parameters for the secondary, specific,
interaction. To do so, we assumed the kinetic parameters
for the non-target interaction to be similar for both
plasmids and used these as known variables for ka1 and
kd1. As such, we found a KD2 of 4.0 nM for the interaction
between Lac repressor and its plasmid-based operator.
This is remarkably close to the values we found using
SPR (3.9 nM) and MST (4.5 nM) (Table 2).
Interestingly, the actual kinetics are widely different for
the interactions of Lac repressor with the plasmid
operator and linear O1 DNA. Both the association and
dissociation rates are �18 times slower for binding to the
plasmid operator, indicating that the presence of negative
supercoiling and non-target DNA has a considerable
effect on the actual kinetics of binding.

CONCLUSION

In the work presented here, we demonstrate the feasibility
and usefulness of a newly developed plasmid capture
approach, by applying it for the characterization of Lac
repressor binding. To our knowledge, this is the first time
that SPR has been used to determine the affinity and
kinetic parameters of the interaction between a protein
and its specific target sequence that is located on a super-
coiled plasmid. We believe this to be a versatile approach

that could be useful in SPR, single molecule and other
experiments to expand the range of substrates for DNA–
protein interactions beyond the use of short linear target
DNA. In addition, the biotin in TFO2.0 could be replaced
by other functionalities, such as fluorophores and thus will
enable studies requiring plasmid visualization. The use of
padlock-modified plasmids provides a useful addition to
the molecular biology toolbox, and may be used to
uncover properties of supercoiling-dependent proteins,
that could not be studied before.

SUPPLEMENTARY DATA
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Supplementary Figures 1 and 2 and Supplementary
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