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Abstract

Eddy covariance (EC) continues to provide invaluable insights into the dynamics of Earth’s surface processes. How-

ever, despite its many strengths, spatial replication of EC at the ecosystem scale is rare. High equipment costs are

likely to be partially responsible. This contributes to the low sampling, and even lower replication, of ecoregions in

Africa, Oceania (excluding Australia) and South America. The level of replication matters as it directly affects statisti-

cal power. While the ergodicity of turbulence and temporal replication allow an EC tower to provide statistically

robust flux estimates for its footprint, these principles do not extend to larger ecosystem scales. Despite the challenge

of spatially replicating EC, it is clearly of interest to be able to use EC to provide statistically robust flux estimates for

larger areas. We ask: How much spatial replication of EC is required for statistical confidence in our flux estimates of

an ecosystem? We provide the reader with tools to estimate the number of EC towers needed to achieve a given sta-

tistical power. We show that for a typical ecosystem, around four EC towers are needed to have 95% statistical confi-

dence that the annual flux of an ecosystem is nonzero. Furthermore, if the true flux is small relative to instrument

noise and spatial variability, the number of towers needed can rise dramatically. We discuss approaches for improv-

ing statistical power and describe one solution: an inexpensive EC system that could help by making spatial replica-

tion more affordable. However, we note that diverting limited resources from other key measurements in order to

allow spatial replication may not be optimal, and a balance needs to be struck. While individual EC towers are well

suited to providing fluxes from the flux footprint, we emphasize that spatial replication is essential for statistically

robust fluxes if a wider ecosystem is being studied.
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Introduction

The eddy covariance (EC) technique provides one of

the most direct measures of energy and mass exchanges

between the land surface and the atmosphere (Baldoc-

chi, 2008, 2014). A major strength of EC is its unique

ability to provide a time series of spatially integrated

flux estimates at the footprint scale. In recent decades,

EC has become the de facto approach for estimating

land–atmosphere fluxes of terrestrial ecosystems. Col-

laboration between researchers has resulted in global

networks (Baldocchi et al., 2001; Baldocchi, 2008, 2014),

and these have provided numerous invaluable

advances in our understanding of – for example –
ecosystem dynamics (Lasslop et al., 2010; Migliavacca

et al., 2011; Raczka et al., 2013; Stoy et al., 2013).

Notwithstanding these valuable contributions, we con-

test that the statistical power of EC studies could be

improved if the current lack of spatial replication was

addressed.

It is perhaps useful at this early stage to consider

replication in the context of EC studies. If for a moment,

we consider a typical scenario: an EC tower sited in a

field containing a common crop. For the sake of argu-

ment, let us assume that the field is uniformly man-

aged, perfectly flat and extends over a much larger area

than the flux footprint; that is, it is ideally suited to EC.

This scenario presents at least three distinct units for

which a researcher may wish to report fluxes: (i) the

footprint, (ii) the field, and (iii) the wider ecosystem. In

this example, the specification of the ‘ecosystem’ would

include surrounding areas with the same crop type and

environmental conditions, and would likely be much

larger than either the footprint or field. In reporting a

flux for any of these units, researchers must account for
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measurement error; however, it is only for the two lar-

ger units that spatial replication is needed. Notwith-

standing the time-varying nature of the footprint

(Vesala et al., 2008), ergodicity and the temporal repli-

cation of EC allow researchers to provide statistically

robust flux measurement for the footprint using a sin-

gle tower (Hollinger et al., 2004; Schmidt et al., 2012). In

contrast, EC studies reporting fluxes for the field, or

wider ecosystem, must use independent spatial repli-

cates to account for any spatial variability in the flux

(Hurlbert, 1984, 2004). The use of a single EC tower to

report a flux for a region that extends beyond the mea-

surement area, that is the flux footprint, would be to

risk statistical misrepresentation through temporal

pseudoreplication (Hurlbert, 1984). Such an approach

contains the implicit assumption that the spatial vari-

ability – and thus the sampling variability – is negligi-

ble. A look at the literature will reveal that this

assumption is common and individual EC systems are

routinely employed to represent the ecosystem in

which they are situated, and not just their flux foot-

print, as noted by Oren et al. (2006).

Theoretically, the uncertainty associated with EC

sampling variability could be eliminated if a flat, spa-

tially homogenous surface (including fluxes), with

atmospheric and environmental conditions that exhibit

stationarity, can be found (Hurlbert, 1984). However,

EC studies rarely – if ever –satisfy these basic theoreti-

cal assumptions (Finnigan et al., 2003; Aubinet &

Feigenwinter, 2010), and it is even rarer for studies to

empirically demonstrate spatial homogeneity of fluxes

(Peltola et al., 2015).

Assumptions of flux homogeneity tend to rely on a

qualitative and/or quantitative assessment of the spa-

tial variability in some visible properties of the vegeta-

tion. However, this assumption ignores many difficult

to measure factors known to vary spatially and influ-

ence C fluxes (Peukert et al., 2013; Glendell et al., 2014;

Mbufong et al., 2014). It also ignores the evidence from

both chamber and EC studies which have observed

intra-ecosystem spatial variability of fluxes (Katul et al.,

1999; Bubier et al., 2003; Oren et al., 2006; Riveros-Iregui

& McGlynn, 2009; Peltola et al., 2015).

The role of spatial variability at many sites and/or

ecosystems is largely unknown as such a small propor-

tion of studies undertake spatial replication; however,

one study demonstrated that, for an apparently uni-

form pine plantation, spatial variability can contribute

~50% of the total uncertainty in annual net ecosystem

exchange (NEE; Oren et al., 2006). Thus, in addition to

any measurement error, the uncertainty due to spatial

sampling variability must also be included in the total

uncertainty on the flux from an ecosystem (Smith, 2009;

Davis et al., 2010; Post et al., 2015).

We explore the issue of EC’s statistical power by ask-

ing the following:

1. Why is spatial replication rare in EC studies?

2. Where is the lack of spatial replication most acute?

3. How much spatial replication is required to be statis-

tically rigorous?

4. How can we improve the statistical power of EC

studies?

5. Could inexpensive, albeit, less accurate EC systems

improve statistical power?

We then describe an inexpensive EC system that can,

in some circumstances, provide a cost-effective solution

to improving the statistical power of EC studies. Finally,

we consider some issues and risks involved in seeking to

improve spatial replication and statistical power.

Why is spatial replication rare in EC studies?

EC measurements are rarely replicated: of the 130 stud-

ies published in 2015 using CO2 EC data – search via

the Web of Knowledge (http://wok.mimas.ac.uk/),

terms ‘eddy covariance AND carbon dioxide’ – 21% were

based on data from ad hoc networks such as FLUXNET,

27% of studies used at least two towers (though not

necessarily on the same surface type) and 52% used just

one EC tower. Only 3% of studies initiated intrasite EC

replication of a surface type.

It is instructive to consider the factors contributing to

the continuing lack of spatially replicated EC: Firstly,

the theoretical basis for EC was laid down in the early

20th century, decades before the first EC carbon dioxide

flux measurements in the 1970s (Desjardins, 1974; Bal-

docchi, 2003). EC remained at the cutting edge of what

is technologically and logistically feasible for many dec-

ades (Desjardins & Lemon, 1974; Bingham, 1978; Ohtaki

& Matsui, 1982), and it was not until 1990 when the first

annual study commenced (Wofsy et al., 1993). Sec-

ondly, EC developed from the fields of fluid dynamics

and micrometeorology where the focus is more on the

nature of atmospheric structures: the variability of

ecosystem processes being of secondary import.

In recent years, EC has been more widely adopted.

Refinements in instrumentation and user-friendly sup-

port tools have facilitated the collection of multi-annual

time series by researchers from a wide range of envi-

ronmental science backgrounds. Today, the limited spa-

tial replication of EC can no longer be attributed to the

small number of specialists who have the knowledge

and/or access to instrumentation required by EC. We

propose that the current lack of spatial replication may

arise from three further factors:

1. Inertia: Many fields of science are slow to improve on

well-established protocols (Collins, 1985). The recent
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debate surrounding the (mis-)use of P-values provides

an example of the inertia that can perpetuate certain

methods despite improvements being demonstrated

(Nuzzo, 2014).

2. Effort: EC requires a considerable logistical effort.

This effort is multiplied when the ecosystem is

remote, in a hostile environment, has a tall canopy

or involves challenging data analysis. However, as

evidenced by the existing studies, if the benefits are

perceived to be sufficient, researchers can (and will)

undertake logistically complex projects. Thus, partic-

ularly in ecosystems amenable to EC, effort may not

be the factor limiting spatial replication.

3. Cost: EC equipment is expensive, and cost can be a fac-

tor limiting the spatial replication of EC (Gong et al.,

2015; Post et al., 2015). The gross domestic product

(GDP) of a country correlates with the site years of EC

data that country produces (Fig. 1). The very fact that

very few published EC studies use replication may act

as an impediment to any researcher seeking additional

funds to adequately replicate EC. Researchers may

struggle to find the precedents in the peer-reviewed lit-

erature illustrating the need to spatially replicate EC.

Where is the lack of spatial replication most acute?

Schimel et al. (2015) highlights the mismatch between

the global distribution of EC towers and the latitudinal

peak in land surface productivity in the tropics. These

results are confirmed when we consider how the net-

work of EC towers samples the Earth’s >800 ecoregions

(Olson et al., 2001). Despite the classification of ecore-

gions remaining a very broad, globally only 23% are

sampled by EC measurements (Table 1). The ecore-

gions are particularly poorly sampled in some regions:

Africa 9%, Oceania (excluding Australia) 5% and South

America 12%. At the country level, wealthy countries,

with a higher per capita gross domestic product (GDP),

are able to sample a higher proportion of their ecore-

gions and do so with more replication (Fig. 1).

How much spatial replication is required to be

statistically rigorous?

The relationship between statistical power, replication
and effect size

When comparing fluxes from different ecosystems, sta-

tistical power provides a useful metric of our ability to

measure differences. Statistical power is the probability

of correctly rejecting a null hypothesis; for example H0,

there is no difference in the fluxes from the two ecosystems.

Aiming for a statistical power ≥0.95 implies we are will-

ing to accept a 5% chance of a type II error, that is we

will not measure a difference when, in fact, a difference

exists.

Statistical power is a function of the number of inde-

pendent replicates and the effect size (Fig. 2). Effect size

Fig. 1 The percentage of ecoregions that are instrumented versus gross domestic product (GDP) for each of the 65 countries with at least

one complete year of FLUXNET data. The size of the points indicates the total number of site years for each country. The mean number

of sites per instrumented ecoregion is indicated by the colour of the point.[Colour figure can be viewed at wileyonlinelibrary.com]
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is the magnitude of the difference in mean fluxes from

two ecosystems, relative to the total measurement

uncertainty (Eqn 1). A large effect size implies a rela-

tively large difference in the mean fluxes compared to a

relatively small total uncertainty; that is, differences

should be readily observable. For large effect sizes,

comparatively few systems are needed: above an effect

size of six, just two independent replicates per surface

are adequate to achieve a statistical power of 0.95. More

towers are needed as the effect size drops, and for a

moderate effect size of three, at least four replicates are

required. By the time the effect size drops to ≤1.7, the
number of replicates has risen to be >10. Thus,

researchers should pay careful attention to the mini-

mum expected effect size as a key parameter when

planning EC studies.

Estimating effect size

Effect size can be estimated in a number of different

ways. We use the Cohen’s d (Eqn 1).

d ¼ f1 � f2
rp

; ð1Þ

where d is the effect size, f1 is the mean flux from

ecosystem 1, f2 is the mean flux from ecosystem 2 and

rp is the pooled standard deviation for the total uncer-

tainty from both ecosystems (Eqn 2). The total uncer-

tainty for an ecosystem combines both the

measurement uncertainty and the uncertainty due to

sampling variability.

rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð Þr21 þ n2 � 1ð Þr22

n1 þ n2 � 2

s
; ð2Þ

where n1 is the sample size for ecosystem 1, n2 is the

sample size for ecosystem 2, r1 is the standard devia-

tion of the total uncertainty from ecosystem 1 and r2 is

the standard deviation of the total uncertainty from

ecosystem 2.

Table 1 The total number of ecoregions per continent, the

eddy covariance (EC) site years per continent, the total num-

ber of ecoregions sampled by EC and the percentage of a con-

tinent’s ecoregions sampled

Continent

Ecoregions

(#)

Site years

(#)

Sampled

(#)

Sampled

(%)

Africa 126 151 11 9

Asia 276 1208 53 19

Australia 40 208 15 38

Europe 54 2033 30 56

North America 190 2627 68 36

Oceania* 38 26 2 5

South America 118 342 14 12

Antarctica 7 0 1 14

Total 849 6595 194 n/a

*Oceania excluding Australia.

Fig. 2 The statistical power, that is the probability of correctly rejecting the null hypothesis, H0, as a function of the effect size and the

number of eddy covariance towers per ecosystem, where H0: there is no difference in the flux from the two ecosystems. The effect size

is taken to be Cohen’s d, see Eqn 1. [Colour figure can be viewed at wileyonlinelibrary.com]
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When considering if an ecosystem’s flux is signifi-

cantly different from a specific value, Eqn 1 becomes:

d ¼ f � F

r
; ð3Þ

where f is the mean flux for the ecosystem, r is the stan-

dard deviation for the total uncertainty from the

ecosystem and F is the comparison flux value.

Typical effect sizes for EC studies

Due to the lack of replicated EC studies, the sampling

variability for most ecosystems remains unknown.

From Eqns 1–3, it is clear that without estimates of

sampling variability, we cannot calculate the effect size.

However, we can estimate a best case (i.e. maximum

effect size) based just on measurement error, that is

under the assumption that spatial sampling variability

is zero. For example, let us consider the case where we

are trying to determine whether the mean annual flux

from a typical ecosystem is significantly different from

zero. We shall take our mean measured flux, f , to be the

mean annual uptake for the FLUXNET sites, that is

156 gC m�2 yr�1 (Baldocchi, 2014). Assuming the site

is ideally suited to EC, the measurement error is

approximately �50 gC m�2 yr�1 (Baldocchi, 2003).

Therefore, using Eqn 3, we calculate the effect size,

d = 3.1. Alternatively, for a nonideal site, our annual

measurement error increases to around

�200 gC m�2 yr�1, and d drops to 0.78.

How many towers are needed?

The commonly used formulae for estimating sample

sizes are not suitable for sample sizes below 30. Instead,

under the assumption of a normal distribution in the

fluxes, an iterative algorithm based on T-scores should

be used. In lieu of a simple equation, Fig. 3 can be used

to estimate the minimum required number of towers

(generated using the sampsizepwr function from MAT-

LAB R2015b). We set the significance value to be 1 minus

the statistical power, that is if the statistical power is

0.95, the significance value will be 0.05. To determine

the number of towers required, you should follow these

steps:

Step 1: Determine the appropriate reference panel of

Fig. 3. If you wish to test whether the flux from a given

surface is significantly different from zero, then use

Fig. 3 Panel a, otherwise, if you are contrasting fluxes

from two ecosystems, use Fig. 3 Panel b.

Step 2: Estimate your minimum expected effect size

using Eqns 1 or 3, as appropriate.

Step 3: Decide on an appropriate statistical power. A

value of 0.95 is often used in ecological studies,

although it should be noted that this value is somewhat

arbitrary.

At a typical ideal site – with an effect size of 3.1 –
we need at least four EC replicates to achieve our

chosen statistical power of 0.95. If the site were non-

ideal – with an effect size of 0.78 – then the same four

towers would only give us a statistical power of ~0.2.
That is, 80% of the time we would fail to detect the

genuinely nonzero flux. To have 95% confidence that

our nonideal site is a sink, we would need 24 towers.

Finally, we note that chamber flux studies have indi-

cated that the magnitude of fluxes may not be nor-

mally distributed (Riveros-Iregui & McGlynn, 2009).

In this situation, nonparametric statistics will be

required.

Fig. 3 The minimum number of replicated eddy covariance

towers per ecosystem as a function of the effect size and statisti-

cal power desired. Panel a shows the replicates needed for test-

ing whether a surface is significantly different from zero.

Panel b shows the replicates for testing differences between sur-

faces. [Colour figure can be viewed at wileyonlinelibrary.com]
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How can we improve the statistical power of EC

studies?

We can improve the statistical power by either increas-

ing the effect size or increasing the replication used in

the study (Fig. 2).

Increasing effect size

It would be illogical to prioritize effect size – and thus

site selection – at the expense of the scientific and/or

societal import of a research question. Therefore, to

maximize effect size, we must consider how we analyse

the data. While the diversity of ecosystem responses

precludes a universal approach to maximizing effect

size, identifying effects in processes with simpler

dependencies is more likely to be successful. For exam-

ple, at an old growth forest site with a near-neutral car-

bon balance, considering gross fluxes (i.e. GPP,

respiration) may be more successful than considering

NEE.

Increasing spatial replication

At least two EC towers are required to have any statisti-

cal power for areas larger than the flux footprint. The

number of independent spatial replicates required

increases for effect sizes below six. To increase spatial

replication, we could broaden definitions of our ecosys-

tem to encompass more existing EC systems or use

more EC systems to sample the ecosystem. An analysis

of current EC sampling of ecoregions (Table 1 and

Fig. 1) demonstrates that even these very broad cate-

gories result in poor replication for many ecosystems.

Therefore, while it might be appropriate to broaden

definitions for certain studies, the loss in specificity in

an ecosystem’s definition is likely to erode our ability

to address scientifically and socially meaningful ques-

tions. Additionally, if the resulting fluxes have greater

flux variability, the overall result may actually decrease

effect size.

Therefore, to improve replication in a specific ecosys-

tem, we must either (i) relocate existing towers, (ii)

increase investment, or (iii) reduce the cost of deploy-

ing EC. Relocating existing EC systems will improve

replication for a few ecosystems at the expense of elimi-

nating measurements in many other ecosystems.

Increased financial support for widespread EC replica-

tion only seems likely if the underlying problem can be

more clearly demonstrated to be critical to societal

well-being.

An alternative approach is to ignore categorical clas-

sifications (i.e. discrete ecosystems) and instead use a

numerical quantification of each site’s characteristics on

a gradient (e.g. Emanuel et al., 2006; Stoy et al., 2006;

Baldocchi, 2008). Using this approach, statistically sig-

nificant correlations between fluxes and quantifiable

site properties can be found (Baldocchi, 2008; Whelan

et al., 2015). Only certain research questions are amen-

able to this type of experimental design, and it does not

allow researchers to test whether a particular ecosystem

is a carbon sink, nor can it indicate whether the fluxes

from two ecosystems are different from each other.

Could inexpensive, less accurate EC systems

improve statistical power?

When cost is not an issue, it will always be preferable

to have the most accurate EC system possible. It is,

however, likely that most researchers would welcome a

system that only cost 5% of a conventional system, if it

maintained 95% of the accuracy. However, these same

researchers are unlikely to be enthusiastic about a sys-

tem that delivers 5% of the accuracy, but still costs 95%

of the traditional system. In this section, we quantify

these cost-accuracy trade-offs with the aim of maximiz-

ing statistical power for a given amount of funding.

As the absolute error of an EC system depends on

many factors, we employ a normalized measurement

uncertainty when comparing the trade-off between

accuracy and cost of a nominal EC system. As a refer-

ence, standard errors of the mean from this hypotheti-

cal conventional tower are normalized to have a value

of ‘1’ (Fig. 4). We could match this accuracy using mea-

surements from two EC towers which have uncertain-

ties 40% higher or four EC towers that have

uncertainties 100% higher (Fig. 4). The number of EC

systems we can afford is inversely related to the cost of

each EC system: the less accurate systems would need

to cost <50% and 25% of a conventional EC system,

respectively. Fixed costs, such as towers, data storage

and personnel time will become increasingly more sig-

nificant for lower cost systems, although some savings

will be obtained through economies of scale for these

costs. However, as these costs are variable, they cannot

be included in a meaningful comparison.

As a second example, we may wish to improve the

overall standard error by 40%; this can be achieved by

replacing a single conventional EC system with three

conventional systems or five systems with 35% higher

uncertainty (Fig. 4). In this case, the less accurate sys-

tems would have to be <60% of the cost of a conven-

tional system to make economic sense.

If we again consider the typical Fluxnet site (i.e.

156 � 50 gC m�2 yr�1), we showed that we needed

four standard towers to have 95% confidence that this

flux was nonzero. If we used EC systems with 50%

more noise (i.e. 156 � 75 gC m�2 yr�1), we would

© 2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd., doi: 10.1111/gcb.13547
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need six EC systems, and the cost of these systems

should be ≤67% of a normal EC system to be economi-

cal.

Cost and accuracy requirements

The preceding analysis indicates that the trade-off

between cost and accuracy is complex, but that an inex-

pensive system would be useful in a number of situa-

tions if it were around ≤67% of the cost, while having

an increase in measurement error of ≤50%. Compared

to commonly used EC instrumentation, off-the-shelf

alternatives exist that can deliver these cost saving for

the anemometer and datalogger, with a minimal

increase in errors. Therefore, we focus on the most

expensive component of the system, for which an off-

the-shelf solution does not currently exist: the CO2 and

H2O infrared gas analyser (IRGA).

Inexpensive CO2 and H2O sensors

The inexpensive CO2 and H2O sensor for our EC sys-

tem is based on a Vaisala GMP343 CO2 sensor

(hereafter referred to as the GMP343) and a Honey-

well HIH-4000 relative humidity (RH) sensor (here-

after referred to as the HIH-4000). The GMP343 IRGA

is environmentally sealed to IP67 levels and uses

<1 W of power. We used the 0–2000 ppm diffusion

IRGA which had a quoted accuracy of �5 ppm +2%
of the reading and a frequency response equivalence

of 0.74 Hz. The GMP343 costs an order of magnitude

less than the current state-of-the-art CO2 EC sensor.

For water vapour measurements, we employ an HIH-

4000 capacitive sensing chip with an accuracy of

�3.5% relative humidity, a typical response time of 5-

s in slow-moving air and a power draw of ~1 mW.

The sensor costs <£20 and is resistant to wetting, dust

and oils.

Inexpensive EC system configuration

Two inexpensive systems are tested: one with just a

GMP343 (system #1) and a second with a GMP343 and

a HIH-4000 (system #2). For each system, the sensors

are housed in an aluminium enclosure to improve wet-

weather performance and reduce the effects of

Fig. 4 Standard error of the mean for a homogeneous surface as a function of the number of eddy covariance (EC) towers and the mea-

surement uncertainty of a single tower. The standard error and the measurement uncertainty have both been normalized such that a

value of 1.0 represents a standard system. Indicated on the figure are options for preserving the standard error (using less accurate EC

systems), and improving the standard measurement error by 40%. [Colour figure can be viewed at wileyonlinelibrary.com]

© 2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd., doi: 10.1111/gcb.13547
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temperature fluctuations (Clement et al., 2009). The

enclosure is flushed by an axial fan every ~0.1 s. Fur-

ther details of the sensors are available in Appendix S1

and the enclosure in Appendix S2.

A LI-COR LI-7500 (hereafter referred to as the LI-

7500) provides the corroborating flux measurements.

The LI-7500 is placed in an enclosure with an internal

volume (excluding the sensor) of 0.4 litres, which is

flushed every 0.1 s by an axial fan (Clement et al.,

2009). The inexpensive sensors and the LI-7500 share

the same Campbell Scientific CSAT3 anemometer and

are all recorded by a Campbell Scientific CR5000 data-

logger. Details of the LI-7500 setup are provided in

Appendix S3.

Fluxes were calculated for 30-min periods using

EDIRE (version 1.5.0.50). The overall correction applied

was the following: 18% for the LI-7500 CO2 flux,

42% for the LI-7500 LE flux, 52–55% for the

GMP343 CO2 flux and 133% for the HIH-4000 LE

flux (Fig. 5). Full details of this processing routine

are given in Appendix S4, with the frequency

response corrections described in Appendix S5 and

the cospectral model in Appendix S6.

Corroborating the inexpensive EC fluxes

Corrected fluxes for the low-cost systems show good

agreement with the LI-7500 control. The two GMP343

systems have regression slopes of 1.03 and 0.98 (Fig. 5),

that is a disagreement in the overall CO2 flux magnitude

of between 2% and 3%. There is strong agreement

between the GMP343- and LI-7500-based fluxes, with the

coefficient of determination, R2, ranging from 0.72 to 0.86.

The lower R2 for the second system is attributed to the

lower autumn fluxes when this system was added. The

slope of the Honeywell HIH-4000 and the LI-7500 is 1.06,

equating to a 6% bias in the flux magnitude. The HIH-

4000 and LI-7500 LE fluxes have a R2 of 0.89. Strong

visual agreement between conventional and low-cost

fluxes is evident in time series plots (Fig. 6).

The magnitude of flux loss, and therefore the applied

frequency correction, increases significantly with stabil-

ity and wind speed (Fig. S7). We therefore expect any

biases in flux frequency corrections for the low-cost EC

system to become larger at high wind speeds: we do

not find evidence of wind speed dependence on the

median residuals between the LI-7500 and low-cost sys-

tem’s fluxes (Fig. S8). The corrected fluxes from the

Fig. 5 Scatter plots of the half-hourly corrected fluxes. Panel a, the GMP343 #1 CO2 vs. the LI-7500 CO2; Panel b, the GMP343 #2 CO2

vs. the LI-7500 CO2; Panel c, the GMP343 #2 CO2 vs. the GMP343 #1 CO2; and Panel d, the HIH-4000 LE flux vs. the LI-7500 LE flux.

1 : 1 lines are shown for reference.
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low-cost system are free from bias even with large fre-

quency correction factors. Instead, when high wind

speeds necessitate larger frequency corrections, the

spread of the residual flux quantiles increases, confirm-

ing expectations that large correction factors amplify

the noise inherent in the raw fluxes.

The measurement error of the inexpensive system

The uncertainty of the flux measurements is assessed

using a self-referential approach that is performed sep-

arately for each system (Hollinger & Richardson, 2005).

These estimates of random errors suggest that the low-

cost system has 37% higher uncertainty for CO2 fluxes

and 20% higher uncertainty for LE fluxes. See

Appendix S9 for further details.

The relative cost of the inexpensive system

Our custom GMP343 and HIH-4000 enclosures cost

between ~15% and 25% of a conventional CO2 and H2O

IRGA. Therefore, for many situations where statistical

power needs improvement, the reduced accuracy of the

inexpensive system is more than offset by the higher

replication afforded by the cost savings.

A trial deployment of seven EC systems

In a further trial of the inexpensive system, three inex-

pensive (GMP343/HIH-4000) systems were installed

alongside four conventional systems in an agricultural

field near Dumfries, United Kingdom. The inexpensive

systems were installed at 4.5 m. The conventional sys-

tems included a closed path LI-COR LI-7000 (at 11 m),

two enclosed LI-7500 systems (at 4.5 m) and a Camp-

bell Scientific IRGASON (at 2.5 m). The inexpensive

and conventional systems provided qualitatively simi-

lar performance (Fig. 7).

The Hollinger uncertainty estimates suggest that the

mean MAD (mean absolute deviation) for CO2 was 3.7

for the conventional systems (excluding the IRGASON,

which due to poor wet-weather performance had a

MAD of 5.2) and 4.9 for the inexpensive systems (See

Appendix S10 for details). For the LE, the mean MAD

was 7.4 for the conventional systems (excluding the

IRGASON, which due to poor wet-weather perfor-

mance had a MAD of 26) and 7.7 for the inexpensive

systems. For this deployment, the inexpensive systems

had random uncertainties that were ~32% higher for

CO2 and ~4% higher for LE, relative to the conventional

systems (again excluding the IRGASON). These MAD

values indicate we are well within the ≤ 67% accuracy

requirement for inexpensive systems to be useful.

The colocation of multiple EC systems in this manner

means we do not need to rely on the Hollinger

approach to estimate random errors; instead, we can

pair EC systems and calculate the differences for every

half-hourly period. While the MADs remain similar for

CO2, the MADs for LE increase by 126% for the conven-

tional systems and 155% for the inexpensive systems. It

can be shown that this increase is due to the filtering

applied as part of the Hollinger approach. Therefore, at

Fig. 6 A 2-week selection of half-hourly corrected CO2 and LE fluxes. The LI-7500 is shown as dots, the GMP343 #1 is shown with a

dashed line and GMP343 #2/HIH-4000 is shown with solid grey line.
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our site, the Hollinger approach dramatically underesti-

mates the actual random error of LE measurements.

Other considerations

Which came first: the chicken or the egg?

In this study, our metaphorical ‘chickens’ and ‘eggs’

are replaced with ‘spatial replicates’ and ‘uncertainties’.

Without independent spatial replication, we cannot

estimate the sampling variability for an ecosystem and

thus total uncertainty. Without total uncertainty, we

cannot estimate effect size. Finally, without effect size,

we cannot accurately estimate the number of replicates

we need. Therefore, until more studies have indepen-

dently replicated EC measurements, indicative effect

sizes are unknown and it would be prudent to use the

minimum likely effect size.

Nonreplicated EC studies are still vital

This study considers the specific case of contrasting dif-

ferent ecosystems: the conclusions of this study are not

intended to relate to studies considering fluxes from

specific EC footprints. Many research questions focus

on temporal changes, drivers and processes and do not

attempt to apply results to a wider domain and thus do

not require spatial replication. Watershed-scale hydro-

logical studies, for example, provide a clear example of

valuable experimental designs that have limited spatial

replication (Ice & Stednick, 2004; Nippgen et al., 2016).

Also, certain ecosystems (e.g. a small field) may be too

small to be replicated with EC. Therefore, we emphasize

that not all EC studies would necessarily benefit from

replication. Similarly, funding constraints may mean an

ecosystem could be measured with very limited replica-

tion, or not measured at all. Even if the replication

needed for high statistical power across the wider

ecosystem cannot be achieved, the information gained

from the flux footprint time series can be invaluable.

The risks associated with improving statistical power

There is a risk that a focus on improving statistical

power using greater independent spatial replication

may have unintended negative consequences. The

additional effort required for replication may mean that

important ecosystem, or ancillary data, may be

neglected. Furthermore, inexpensive EC system we

describe requires larger frequency corrections, and con-

sequently, greater care must be taken in the processing

of fluxes to avoid large systematic biases. It is likely that

a minimum deployment period may be required to

allow proper characterization of the site’s turbulent

Fig. 7 A sample 7-day period of CO2 (NEE), latent energy (LE) and sensible heat (H) fluxes. Red solid lines indicate the mean of the

four conventional fluxes, and the blue lines indicate the mean of the three inexpensive systems. The ranges of the conventional systems

are indicated with a red band, and the range of the inexpensive systems is indicated by a blue band. [Colour figure can be viewed at

wileyonlinelibrary.com]
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characteristics, thus making low-cost systems less

attractive for very short-term deployments. Until these

inexpensive systems have been widely tested, we rec-

ommend that at least one conventional system be avail-

able for direct comparison.

Conclusions

Only 3% of the EC studies of CO2 fluxes published in

2015 incorporated ecosystem replication into their

experimental design. Over half the studies published in

2015 relied on a single EC system and therefore lack the

statistical power to extend their findings beyond their

flux footprint. These studies are still invaluable, but

researchers need to pay close attention to how results

are presented. For example, a single tower located in a

managed forest plantation cannot provide a statistically

robust answer to the question: What is the carbon seques-

tration potential of this managed forest plantation? Instead,

the single tower can address the question: What is the

carbon flux of the managed forest plantation in the flux foot-

print?

When the goal of an EC study is to compare ecosys-

tems, or demonstrate a particular ecosystem to be a

sink or source, we argue that multiple towers are

needed. For these purposes, a minimum of two EC tow-

ers are required, but for low effect sizes, this number

can be far higher. Due to a lack of replicated EC studies,

typical effect sizes for different ecosystems are not well

known, and so, we recommend researchers use a con-

servative estimate of effect size when determining the

level of spatial replication needed.

We describe and test an inexpensive EC analyser for

CO2 and H2O fluxes that can help improve spatial repli-

cation and thus statistical power. Finally, while greater

replication is needed, there are also risks associated

with such a move, and spatial replication should not be

prioritized at the expense of other scientific considera-

tions.
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