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Abstract. We report a novel approach for the fabrication of micro- and nano-scale

graphene devices via the in-situ plasma functionalization and in-situ lithographic

patterning of large-area graphene directly on CVD catalytic metal (Cu) substrates.

This enables us to create graphene-based devices in their entirety prior to any transfer

processes, simplifying very significantly the device fabrication process and potentially

opening up the route to the use of a wider range of target substrates. We demonstrate

the capabilities of our technique via the fabrication of a flexible, transparent,

graphene/graphene oxide humidity sensor that outperforms a conventional commercial

sensor.
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1. Introduction

Graphene has attracted huge interest in recent years due to its potential for delivering

novel and high-performance electronic and optoelectronic devices. Progress in the

production of large-area mono- and few-layer graphene by chemical vapor deposition

(CVD) techniques has brought the practical realization of graphene devices closer to

reality. However, the efficient and cost-effective production of graphene devices is

still held back by conventional approaches to device fabrication. These involve several

process steps including graphene film transfer, ex-situ lithographic patterning and metal

contact deposition; processes that are time consuming, not always reproducible and

potentially deleterious to the properties of the CVD-graphene layer [1, 2, 3, 4, 5, 6, 7].

In this paper we demonstrate a new and attractive approach to the fabrication of micro-

and nano-scale graphene devices that combines the in-situ plasma functionalization
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and in-situ lithographic patterning of large-area CVD graphene directly on copper

substrates, allowing for the fabrication of devices in their entirety prior to any transfer

steps. We demonstrate our technique by producing, entirely in-situ on Cu foils,

a graphene/graphene-oxide based humidity sensor that outperforms a conventional

commercial sensor.

Significant progress has been made in recent times towards controlling the

electronic, optical and mechanical properties of graphene via functionalization with a

number of chemicals including fluorine [8, 9, 10, 11, 12], chlorine [13, 14], ferric chloride

[15, 16, 17], and, as used in this paper, oxygen [18, 19] having all successfully been

demonstrated. The attachment of oxygen radicals during plasma exposure progressively

transforms graphene’s band structure, creating a bandgap [18, 19, 20] and producing

insulating graphene oxide (GO) [21, 22, 23, 24]. GO-based devices have widespread

and important applications, including, for example, non-volatile memories [25, 26],

memristors [27], supercapacitors [28], gas sensors [29], and humidity sensors [30, 31].

The plasma oxidation method for the production of graphene oxide is advantageous

over liquid-phase fabrication, since it does not contaminate samples with by-products

of (wet) chemical reactions [19, 20, 23]. It is also scalable, environment-friendly and

involves fewer stages as compared to conventional wet-chemical methods [32, 33, 34].

Patterned graphene/graphene oxide structures and devices can also be created using

plasma modification of graphene combined with lithographic processing. Here we report

on a novel, large-area-compatible method for the in-situ, pre-transfer, fabrication of such

graphene/graphene-oxide devices on CVD (catalytic) Cu foils. In this way complex

micro- and nano-scale GO device structures can be reliably fabricated in fewer steps

than via conventional approaches and, importantly, be readily transferred onto a range

of target surfaces including rigid and flexible substrates and possibly even textiles.

Device fabrication via plasma oxidation post-transfer (the conventional approach) would

be more limiting in the choice of target substrates, since many substrates would be

damaged/degraded by the plasma bombardment process.

2. Results and discussion

Graphene films used in this study were grown using a commercial cold-wall nanoCVD

system in which catalytic metal foils are resistively heated inside a CVD chamber [35].

Selective heating of only a small area of the CVD chamber and keeping the wall

temperature below 100◦ C reduces both the chamber contamination by growth products

and the energy consumption (cf. conventional CVD systems). The cold-wall CVD

growth also benefits from faster heating and cooling rates, shorter growth times, and

reduced gas usage [36, 37]. (A comprehensive description of the CVD growth of our

samples, together with the post-growth characterization data, is included in the Methods

Section and Supplementary Material).

Our as-grown CVD films consist of monolayer graphene crystals which are less than

1 µm in size, with grain boundaries formed between individual domains. Some isolated
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Figure 1. (Colour online) High-resolution XPS C1s spectra of (a) unoxidized CVD

graphene film and (b) after 20s of plasma modification. Effect of plasma treatment time

on (c) total concentration of sp2 and oxygen and (d) individual chemical composition of

oxygen functional groups.(Green background indicates results after thermal annealing

in Ar atmosphere).

multilayer patches are also present in our samples, but cover an insignificant part (less

than 1%) of the whole film. Continuity of the films was confirmed by SEM imaging (see

Supplementary Material (Figure S1)).

Graphene films on Cu foils were treated with oxygen plasma using a commercial

reactive ion etching system. Samples were placed approximately 15 cm away from

the plasma stream to avoid the graphene layer being damaged by UV radiation and

high-energy ions [24]; oxygen radicals arrive at the graphene site energetically relaxed

as confirmed by the (plasma) power-dependent Raman measurements provided in the

Supplementary Material (Figure S4).

Results of the XPS measurements performed on the functionalized samples (while

still on Cu foils) are presented in Figure 1. Treatment times in the range of 0-20 s

were used to achieve differing levels of oxygen modification. Figure 1(a) shows the

high-resolution XPS C1s spectra of un-oxidized CVD graphene film on a Cu foil.

Deconvolution of the spectra showed two major peaks at 284.4 eV and 284.8 eV,

corresponding to C-C (sp2) and C-C (sp3) bonding and three shoulder peaks at 285.4

eV, 286.5 eV and 288.3 eV related to C-O (epoxide), C=O (carbonyl) and O-C=O

(carboxyl) bonds, respectively [24, 38, 39]. The sp3 and oxygen contributions in the as-
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grown sample can be attributed to the presence of grain boundaries in the graphene film

with reactive edge sites which attracts residual oxygen contaminants from the ambient

air exposure, as reported previously [40, 41]. After oxygen plasma treatment, the relative

peak intensity of oxygen functional groups increased with time (Figure 1(b), also see

Supplementary Material), indicating successful incorporation of oxygen species on the

graphene surface. The increase in plasma treatment time also resulted in the increase in

the sp3/defect peak and an associated decrease in sp2 peak intensity. As oxygen radicals

react with the graphene film, the sp2 symmetry is destroyed and more sp3 sites emerge;

this corresponds to the increased level of oxygenated functional groups. The overall

concentration of oxygen present on the graphene surface increased to approximately 26

at.% after 20 s of oxygen plasma exposure (as shown in Figure 1(c), note saturation of

oxygen uptake by the graphene film after around 10 s of oxidation). A closer inspection of

individual functional species (summarized in Figure 1(d)) reveals a reduction of epoxide

groups and a small increase in carbonyl and carboxyl functional groups between 10

and 20 s exposure. Here, the increase in C=O and O-C=O groups indicates the rise

in plasma-induced edge sites (damaging) in the graphene film as result of prolonged

exposure to the oxygen plasma radicals.

Although, oxygen functional groups are relatively stable at room temperature, they

can be in principle removed at elevated temperatures. Thermal reduction techniques,

in either vacuum or Ar atmosphere, were employed previously to effectively remove

oxygen groups from the graphene surface [20, 21, 42, 43]. In order to investigate

the effect of thermal treatment on the chemical composition of our plasma-oxidized

graphene films, we subjected them to temperature annealing at 220◦ C in Ar for 60

min. The deconvoluted XPS C1s spectra for a graphene film oxidized for 20s and then

thermal annealed in this way is shown in Supplementary Material (Figure S2), with the

results summarized in Figure 1(d). A significant decrease in the relative intensity of

all oxygenated groups is seen. This reduction is accompanied by a partial recovery of

sp2 cluster concentration (see Figure 1(c)), demonstrating that our plasma processing

approach is essentially reversible.

Structural changes in the graphene backbone upon plasma treatment were also

investigated using Raman spectroscopy, with the results presented in Figure 2 (note

that to exclude Cu photoluminescence background from the Raman signal, the graphene

films were transferred onto Si/SiO2 substrate for the Raman studies and that the Raman

spectrum was normalised to the intensity of the Si peak). In Figure 2(a) we plot the

Raman spectrum evolution against plasma exposure time. We see a continuous increase

of the D peak intensity (ID) with exposure time (since the XPS studies showed effective

saturation of oxidation after 10 s of plasma exposure, we limited our Raman studies to

this range), accompanied by a simultaneous decrease of the G (IG) and 2D (I2D) peaks.

The ID/IG ratio is plotted in Figure 2(b) and shows a monotonic increase with increasing

plasma exposure time; this is an indication of the breaking of the symmetry of graphene

sp2 bonds due to the attachment of oxygen species, as well as an indication of the

formation of defects caused by the plasma [18, 19, 21, 22, 23, 24, 32, 33, 34, 38, 39]. The
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Figure 2. (Colour online) (a) Evolution of the CVD graphene Raman spectra upon

functionalization by O2 plasma and after thermal annealing in Ar. (b) Raman D-to-

G peak intensity (ID/IG) ratio and average distance between sp2 clusters (Ld) as a

function of plasma exposure time. (Green background indicates results after thermal

annealing in Ar atmosphere).

average inter-defect distance, Ld, can be estimated using the Tuinstra-Koenig relation

[44, 45], L2
d (nm

2) = 4.3×103

E
4

L(eV
4)
[IG/ID], where EL is the laser photon energy measured in

eV. The results of applying this equation to our Raman data are plotted in Figure 2(b);

Ld decreases, from around 17 nm to around 8 nm, with increasing treatment time,

reflecting an increase in defect density during plasma functionalization.

Turning back to Figure 2(a), one can notice emergence of D′ and D + D′ peaks

(located at around 1600 cm−1 and 2940 cm−1) after 5 s of plasma exposure and the

merging of D′ and G peaks after 10s. At the end of plasma oxidation (i.e. after 10 s in

this case) the intensity of the 2D peak is reduced (compared to the pristine film) and

the D peak possesses the highest intensity among all Raman peaks. The same trend

in Raman spectrum evolution was observed for structural changes of graphene in wet

chemical graphene-oxide fabrication [46, 47, 48, 49] and other plasma oxidation studies

[18, 19, 21, 22, 23, 24, 32, 33, 34, 38, 39]. This further confirms gradual transformation

of graphene into graphene oxide by oxygen plasma treatment.

As previously discussed, thermal annealing of plasma-treated graphene in an inert

atmosphere partially restores sp2 bond symmetry by removing some of the oxygen

functionalities which distort the graphene lattice [20, 21, 42, 43]. This process is

evident in both XPS and Raman results - the ID/IG ratio reduces by approximately 25%

after thermal annealing (Figure 2(b)), again, demonstrating that our plasma processing

approach is essentially reversible.

In the above we have shown that our blanket CVD graphene films can be

successfully transformed, in-situ on Cu catalytic substrates, into graphene oxide using

plasma oxidation. We now demonstrate, via the use of lithographic patterning, that we

can selectively oxidize micro- and nano-scale regions of the CVD-grown graphene films.
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Figure 3. (Colour online) Schematic representation of selective modification of as-

grown CVD graphene: (a) to (b) - resist (PMMA) coating; (b) to (c) - e-beam

lithography on Cu; (c) to (d) - plasma oxidation (on Cu) using RIE system; (d) to (e)

- copper etching in ammonium persulfate solution; (e) to (f) - graphene transfer onto

the target substrate.

Furthermore, we show that this can also be carried out in-situ directly on the (catalytic)

Cu substrate and in such a way that complete graphene/graphene oxide structures and

devices can be fabricated on CVD catalytic metal foils, prior to transfer to a particular

target substrate. Our approach is thus compatible with large-area production techniques

and provides a simple but very effective in-situ method for creating graphene/GO

devices for a range of applications such as non-volatile memories [25, 26], field-effect

transistors [50], humidity sensors [30, 31], and even artificial skin [35]. It should be

noted that the size-limiting factor of the present work was simply the size of the heating

stage of the particular (research-laboratory-scale) CVD growth chamber that we used,

which yielded samples of around 16 cm2. However, when combined with wafer-scale [51]

or roll-to-roll processing [52, 53, 54], our technique is scalable right up to the meter size

range.

First, to illustrate the flexibility and resolution capabilities of the technique, we

selectively modify a graphene film to create a micro-scale (80-by-80 µm) graphene oxide

“G logo” pattern. Next, we use plasma oxidation to treat an array of 100 µm square-

shaped regions (separated by 100 µm gaps) in a continuous graphene film to study

capabilities of the O2 plasma oxidation method for larger-scale processing. Finally we

produce a graphene/graphene oxide humidity sensor using our selective in-situ plasma

oxidation approach.

Our fabrication process is illustrated in Figure 3 and consists of the following

stages: (1) a 200 nm thick layer of positive e-beam resist (PMMA) is spin coated

onto graphene film on copper foil, as grown by the CVD method; (2) the area to be

functionalized is exposed by e-beam and subsequently developed, leaving the unmasked



7

10μm 

(a) (b)ID/IG

Figure 4. (Colour online) (a) Map of the Raman D-to-G peaks intensities ratio of the

selectively oxidized area of continuous CVD graphene film after the transfer onto Si

substrate. (b) SEM image showing change of conductivity in the region exposed to O2

plasma. Multilayer patches (small dark regions) as well as graphene wrinkles (black

lines) and PMMA residues (white debris) can be also in the image.

regions of the graphene film exposed; (3) the sample is subjected to an oxygen plasma

for functionalization; (4) the copper substrate is etched away from the underside using

0.25 M ammonium persulphate solution; (5) the PMMA-graphene stack is cleaned

multiple times in de-ionized water and then transferred onto the target substrate; (6)

finally, the PMMA mask is removed using acetone and the sample is cleaned with

isopropyl alcohol.

We use optical, Raman and SEM imaging to examine quality of the patterned

plasma oxidized structures (see Figure 4). Raman mapping (with 1 µm step size) of

the ID/IG ratio was used to visualize the plasma-exposed area. The D and G peaks

at each map position were fitted with Lorentzians and the relative intensities were

extracted (see Supplementary Material). Figure 4(a) shows the ID/IG map for the “G

logo” pattern; we notice a striking contrast between the selectively oxidized regions

and those that were protected from the plasma. The high resolution of the “G logo”

pattern also suggests that a nano-scale degree of control over the plasma oxidation can

be achieved with suitably lithographically defined patterns. Indeed, we confirmed such

nano-scale patterning capabilities by creating simple, square-shaped window arrays of

submicron length and performing Raman measurements on the subsequently plasma

oxidized sample (see Supplementary Material, Figure S5). The oxidized “G logo”

pattern of Figure 4(a) can also be clearly seen via SEM imaging, as shown in Figure 4(b),

the darker color indicating the change of the plasma exposed area from a semi-metallic to

semiconductor state [18, 21, 22, 23, 24, 32, 38, 19, 55]. The resulting graphene/graphene

oxide structure is of a high quality with no damage such as holes or cracking, as evidenced

by the SEM and Raman images. Note also that microscope images (not shown here) of

the oxidized areas shows a higher optical transparency of the plasma-exposed regions.

The bandgap which is created in graphene due to plasma oxidation was reported to
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Figure 5. (Colour online) (a) Responses of both sensors upon periodically changing

humidity and (b)-(c) zoomed-in rise and fall times of one period (indicated with green

and brown rectangles in panel a). (d) Responses of both sensors upon breathing

onto devices and (e) responses to the two breaths in quick succession. Schematic

representation of the PFGGO humidity sensor is also shown.

be around 2 eV [18, 19, 20, 55] and, thus, oxidation increases film transparency for

visible light (a higher visible spectrum transmittance is advantageous for fabricating

transparent optoelectronic devices in which visibility of device elements is undesirable).

Next, we demonstrate the direct in-situ device fabrication capabilities of our

selective plasma oxidation technique. Since graphene oxide films produced by

wet chemistry methods have been shown to possess good properties for sensing

environmental humidity [30, 31], it might be expected that plasma oxidized GO

materials are also sensitive to humidity. We therefore produced a plasma functionalized

graphene/graphene oxide (PFGGO) humidity sensor by selectively oxidizing an array

100 µm square-shaped regions (separated by 100 µm gaps) in a continuous 1 cm by 1 cm

CVD graphene film (while still on the catalytic Cu metal foil). Such an arrangement

mimics in a rudimentary way the inter-digitated electrode configuration commonly used

in humidity sensing [30, 31]. We transferred the patterned graphene/graphene oxide film

to a flexible plastic substrate and, finally, added electrical contacts (using silver paste -

see schematic of Figure 5) to complete the device. We compared the performance of our

directly fabricated PFGGO humidity sensor to a Honeywell HIH-4000-003 calibrated

commercial humidity sensor.

The experimental set-up used for the measurements is shown in the Supplementary

Material. Both sensors were placed in an environmental chamber within an electrical
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probe station. The analogue output voltage of the commercial sensor was recorded

using a Agilent multimeter, while the change in the resistance of the PFGGO sensor was

monitored using an LCR bridge. Responses of both devices upon periodically changing

the humidity are shown in Figure 5(a); it is clear that the response of PFGGO device

follows exactly the humidity variations inside the chamber. The rise and fall times of

the PFGGO sensor are also at least as fast as those of the commercial sensor, as we can

see in Figures 5(b)-5(c) and where we have “zoomed-in” on a single period of the sensor

outputs shown within the green and brown rectangles in Figure 5(a). However, the real

response time of both sensors is masked in Figures 5(a)-5(c) by the slowly varying nature

of the humidity changes in the environmental chamber. To gain a better indication of

the speed of response of the PFGGO sensor we therefore subjected it to a faster change

in humidity by breathing on the device. Results of these measurements are presented

in Figures 5(d)-5(e) and from which it is clear that the PFGGO sensor was capable of

detecting the humidity changes induced by individual breaths during a rapid succession

of breaths.

The observed behaviour of the PFGGO sensor can be explained by the interaction of

water molecules with the oxygen functionalities of the plasma treated graphene. Water

molecules can bind to the introduced oxygen groups to form hydrogen bonds, resulting

in the doping of the graphene film [56, 57]. Such bonding is known to be stronger than

Van der Waals physical absorption of water onto the graphene surface and thus provides

higher sensitivity to a change in humidity compared to bare graphene films.

3. Conclusion

In conclusion we have developed a novel technique for the fabrication of graphene-based

devices using in-situ plasma functionalization and in-situ lithographic patterning of

graphene directly on (catalytic) CVD metal foil (Cu) substrates. We have proven the

concept via the selective plasma oxidation of CVD-graphene so as to produce micro-

and nano-scale graphene/graphene oxide structures and devices that can be transferred

in their entirety to a wide range of target substrates (including flexibles, and perhaps

even textiles). The structural, chemical, morphological and optical properties of such

structures and devices were studied using Raman and X-ray photoelectron spectroscopy

and optical and (scanning) electron microscopy. Such studies confirmed the efficacy

of the in-situ plasma functionalization approach, the capability for the production of

nanoscale functionalized features and the high-quality (uniform, defect-free) nature of

the resultant structures and devices. A flexible and transparent graphene/graphene-

oxide humidity sensor fabricated using this new approach showed characteristics (in

particular a response time) superior to those of a conventional commercial humidity

sensor. Although we have concentrated here on oxygen plasma functionalization, our

approach is generic and can undoubtedly be applied in the case of functionalization by

other chemical species, leading to a wide range of electronic and optoelectronic devices

that could be fabricated using our approach.
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4. Methods

The CVD-graphene samples were grown using a commercial cold-wall nanoCVD system

(supplied by Moorfield Nanotechnology Ltd.) using a “high-pressure” growth recipe

provided in Supplementary Material (Table ST1). The growth included two stages, at

the first stage graphene nuclei were formed and at the second stage the CH4 proportion

was increased to promote formation of a continuous graphene film. After the growth

(and, where relevant, in-situ functionalization and patterning), the Cu foil was etched

using 0.25 M ammonium persulfate solution (APS) and graphene films were transferred

onto the target substrates using PMMA.

Plasma functionalization of graphene was conducted using commercial reactive ion

etching system RIE 80 by JLS Designs Ltd. Mild plasma conditions were used to

minimise plasma damage to the graphene backbone: power - 5 W; O2 flow - 20 sccm;

chamber pressure - 30 mT; gas stabilization time - 30 s; treatment duration - 0-20 s;

pump out time - 30 s.

The surface chemistry of all graphene films was analyzed using a Kratos AXIS

Nova-165 photoelectron spectrometer equipped with a monochromic Al-Kα x-ray source

(1486.6 eV). All measurements were performed under a high vacuum of 3 × 10−9 mbar

at room temperature. The high-resolution XPS C1s spectra (see Figure S2 in

Supplementary Material) were collected with a spot size of approx. 400 µm and a

pass energy of 20 eV. Each high-resolution scan collected is an average of 15 scans

taken using an energy step of 0.15 eV and a dwell time of 100 ms. In order to identify

the chemical composition of species bonded to the graphene film, high-resolution C1s

spectra were fitted with mixed Gaussian-Lorentzian functions after performing Shirley

background subtraction. The chemical nature of all fitted peaks were identified by their

relative shift in binding energy with respect to the C-C (sp2) peak. A quantification

scaling was performed, where all spectra were normalized with respect to the intensity

of unoxidized C1s peak.

Raman measurements were performed using a Renishaw Raman RM1000 and

Horiba Xplora systems fitted with 532 nm excitation sources and air-cooled charge-

coupled detectors. Raman signals were collected by focusing the laser onto the sample

to a spot size of approx 1.0 µm to approx 1.5 µm at less than 2 mW of power

to avoid laser induced damage. Lorentzian peak fitting (as shown in Figure S3 in

Supplementary Material) was performed to precisely determine the positions, full-width

at half maximum (FWHM), and intensities of the Raman peaks in the ID/IG mapping

of the “G logo” (see main text). For each map position the scan was fitted for D, G

and D′ peaks with a multiple Lorentzian and the peak parameters were extracted. The

stage was scanned in (roughly) 1 µm steps over the area of the “G logo”.

Humidity measurements were performed using a probe station with environmental

chamber and against commercial humidity sensor HIH-4000-03 by Honeywell. Humidity

inside the probe station chamber was varied in a periodic manner and responses of

the commercial sensor and our PFGGO sensor were recorded simultaneously. The
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commercial humidity sensor was powered using a Keithley 2400 meter (DC voltage,

5 V) while our PFGGO sensor was connected to a Rohde & Schwarz HM8118 LCR

bridge (500 Hz, 0.5 V). The experimental set-up (probe station with environmental

chamber) is shown in Figure S6 in the Supplementary Material.
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