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Abstract

Inhibition of no-longer relevant go responses supports flexible and goal-directed behavior. 

The present study explored if the interaction between going and stopping is influenced by 

monetary incentives. Subjects (N = 108) performed a selective stop-change task, which 

required them to stop and change a go response if a valid signal occurred, but to execute the 

planned go response if invalid signals or no signals occurred. There were two incentive 

groups: the punishment group lost points for unsuccessful valid-signal trials, whereas the 

reward group gained points for successful valid-signal trials. There was also a control group 

that could not win or lose points on any trials. We found that, compared with the control 

group, incentives encouraged subjects to slow down on no-signal trials, suggesting proactive 

control adjustments. Furthermore, latencies of valid change responses were shorter in the 

incentive groups than in the control group, suggesting improvements in executing an 

alternative response. However, incentives did not modulate stop latency or the interaction 

between going and stopping on valid-signal trials much. Finally, Bayesian analyses indicated 

that there was no difference between the reward and punishment groups. These findings are 

inconsistent with the idea that reward and punishment have distinct effects on stop 

performance. 

Keywords: response inhibition, dual tasking, incentive motivation, task prioritization
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Response inhibition is a hallmark of executive control, and receives a great deal of attention 

across disciplines (Verbruggen & Logan, 2008a). Cognitive psychologists and neuroscientists 

have explored the cognitive and neural mechanisms of response inhibition, developmental 

scientists have studied the ‘rise and fall’ of inhibitory control capacities across the life span, 

and clinical researchers have examined correlations between individual differences in 

response inhibition and behaviors such as substance abuse, overeating, and risk taking. A 

popular task to study response inhibition is the stop-signal task. In this task, subjects are 

instructed to respond quickly to a go stimulus (the go component of the task), but to withhold 

their response when a stop signal occurs after a variable stop-signal delay (the stop 

component of the task). On stop-signal trials, performance can be modeled as an independent 

race between a go process, triggered by the presentation of a go stimulus, and a stop process, 

triggered by the presentation of the stop signal (Logan & Cowan, 1984); go responses are 

successfully inhibited when the stop process finishes before the go process (signal-inhibit), 

but are incorrectly executed when the go process finishes before the stop process (signal-

respond; Figure 1). Thus, successful stop performance requires a ‘reactive’ system that 

quickly detects signals and activates the appropriate stop response. However, optimal 

performance in response-inhibition tasks also requires ‘proactive’ control to find a balance 

between competing task demands (i.e. responding quickly vs. stopping; Aron, 2011; 

Verbruggen & Logan, 2009a). In the present study, we examined how task balance and the 

race between going and stopping are influenced by monetary incentives in a selective stop-

change task. 

Many studies have shown that going and stopping are independent for most of their 

durations in standard stop-signal and stop-change tasks (e.g., Logan, 1981; Logan & Burkell, 

1986; Verbruggen, Schneider, & Logan, 2008; Yamaguchi, Logan, & Bissett, 2012). For 



4

example, the independent horse-race model predicts that mean signal-respond RT should be 

shorter than mean no-signal RT because the former only represents the mean of those 

responses that were fast enough to escape inhibition, whereas the latter represents the mean 

of all go responses (Figure 1). This prediction has been confirmed by many stop-signal 

studies (Verbruggen & Logan, 2009b). Studies using stop-change tasks have provided further 

support for the independence assumption. In stop-change tasks, subjects are instructed to 

cancel the originally planned go response and execute an alternative ‘change’ response when 

a signal occurs. Experimental, computational, and neuro-imaging work suggests that subjects 

first inhibit the original go response followed by the execution of the alternative change 

response, and that similar (neural) stopping mechanisms are involved in simple stop tasks and 

stop-change tasks (Boecker et al., 2013; Camalier et al., 2007; Elchlepp & Verbruggen, 2016; 

Jha et al., 2015; Verbruggen, Schneider, et al., 2008). Importantly, in stop-change tasks, 

stopping is also not influenced by go processing in the primary task (Logan & Burkell, 1986) 

or by the selection and execution of the change response (Verbruggen, Schneider, et al., 

2008), which is consistent with the independent race model.

These stop-signal and stop-change findings are intriguing because most research on 

multitasking indicates that central-processing capacity1 is limited, resulting in a performance 

decrement when two stimuli associated with different tasks (or task components) are 

presented in rapid succession (Pashler, 1994). In other words, there is usually dependence 

when two or more tasks overlap. In standard stop-signal and stop-change tasks, stop and go 

processes do not seem to share capacity in this way (i.e. there is independence).

1. ‘Processing capacity’ can be formalized as a measure of the rate of processing. A process has 
limited capacity if its rate decreases as more processes enter the race (see e.g. Logan, van Zandt, 
Verbruggen, & Wagenmakers, 2014). This could be due to competition between stimulus and response 
representations (Verbruggen & Logan, 2015).



5

Figure 1: The independent race in a stop-change task. When the stop and go process are independent, 
only the fastest responses escape inhibition (Logan & Cowan, 1984). Consequently, signal-respond 
Go1-RT should be shorter than no-signal Go1-RT: The former reflects the mean of the fastest 
responses that escaped inhibition (i.e. the responses on the left of the vertical dotted line), whereas the 
latter reflects the mean of the whole Go1-RT distribution. See Verbruggen and Logan (2015) for an 
elaborate discussion. CSD = change-signal delay; SSRT = stop-signal reaction time, which is the 
covert latency of the stop process.

A different picture emerges when multiple stop signals are introduced. In selective 

stop-signal tasks, different signals are presented and subjects must stop if one of them occurs 

(valid signal), but not if the others occur (invalid signals). Thus, this task introduces a 

decisional component to the stop-signal task; as such, it may provide a richer model of action 

control than standard stop-signal or stop-change tasks. Bissett and Logan (2014) found that 

signal-respond RT was sometimes longer than no-signal RT in selective stop-signal tasks, 

suggesting that selecting the appropriate response to the signal interacts with ongoing go 

processes (violating the assumptions of the independence race model)2. 

The ‘dependence’ conclusion was further supported by a recent study that used a 

selective stop-change task to examine the interaction between going and stopping on signal 

2. Stop-signal and stop-change studies that have used only one signal indicate that simply presenting a 
signal does not slow RTs (i.e. signal-respond RT is shorter than no-signal RT in most studies).
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trials (Verbruggen & Logan, 2015). In the primary task, subjects responded to a go stimulus 

(Go1 response). On some trials, a signal occurred. When the signal was valid, subjects had to 

stop the Go1 response and replace it with another response (Go2 or change response). When 

the signal was invalid, subjects had to execute the planned Go1 response (they had to ignore 

the signal). Signal validity was indicated by a cue at the beginning of a trial. For many 

subjects, latencies of Go1 responses on no-signal trials (no-signal Go1-RT) were shorter than 

Go1 latencies on valid-signal trials on which response inhibition failed (signal-respond Go1-

RT) and Go1 latencies on invalid-signal trials (invalid-signal Go1-RT). This RT pattern was 

similar to the pattern observed in selective stop tasks in which subjects did not have to 

execute a secondary response (Bissett & Logan, 2014). However, these findings are 

inconsistent with the independent race model, which assumes that going and stopping are 

independent for most of their durations (Figure 1; Logan & Cowan, 1984). Instead, they 

suggest that the decision to stop interfered with go processing. In other words, going and 

stopping are dependent and have to share limited central processing capacity in selective stop 

tasks (Verbruggen & Logan, 2015). 

The level of dependence (or interaction) between going and stopping may be 

influenced by response strategies. In this context, a strategy is defined as “an optional 

organization of cognitive resources or abilities that is designed to achieve some goal in some 

task environment” (Logan, 1985, p. 194). Several strategies can be used to perform a task, 

and which strategy is used at a particular moment can be influenced by voluntary decisions 

(e.g. subjects may determine their strategy at the beginning of a block; see e.g. Strayer & 

Kramer, 1994) and task-related or environmental factors (e.g. positive or negative outcomes, 

or the relative frequency of certain events). For example, Bissett & Logan (2014) found that 

signal-respond Go1-RT did not differ much from no-signal Go1-RT when most signals were 
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invalid, but it was shorter when most signals were valid. This finding suggests that stopping 

was prioritized more when most signals were valid: When stopping is fully prioritized, the 

stop process is not influenced much by processing in the go task; hence, only the fastest trials 

can escape inhibition, as predicted by the independent race model (see Figure 1). Research on 

dual-tasking provides further support for the idea that task prioritization can be influenced by 

strategic and environmental factors. When two stimuli are presented in rapid succession, 

prioritizing the first task leads to serial processing (i.e. central processing in the Go2 task only 

starts when central processing in the Go1 task is finished). This is often the most 

advantageous processing mode because it reduces response competition (Logan & Gordon, 

2001; Meyer & Kieras, 1997). But in some situations, overall task performance may benefit 

from prioritizing both tasks more equally (Miller, Ulrich, & Rolke, 2009). For example, the 

likelihood of equal task prioritization (i.e. central processing in the Go1 and Go2 tasks occurs 

simultaneously) increases when there are more short delays than long delays (Miller et al., 

2009). 

The present study

In the present study, we examined if the balance or competition between going and 

stopping in selective stop tasks could be influenced by monetary incentives. Previous work 

indicates that incentive motivation can influence performance in standard stop-signal tasks 

(for a general review on motivation and cognition, see Braver et al., 2014). The influence of 

incentives on performance depends on how they are delivered or manipulated. In some 

studies, reward for successful stops was delivered in a block-based fashion (i.e. subjects were 

informed at the beginning of a block or run of trials that successful stop performance would 

be rewarded; see e.g. Greenhouse & Wessel, 2013; Leotti & Wager, 2010). This incentive 

manipulation enhanced stop performance on stop-signal trials, but slowed responding on no-
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signal trials. We observed similar findings in two pilot studies that are reported in 

Supplementary Materials3: when successful withhold/change performance (in a hybrid 

version of the go/no-go and stop-change paradigm; Pilot Experiment 1) or stop performance 

(in a standard stop-signal paradigm; Pilot Experiment 2) were incentivized, go responses in 

the primary task were slower (despite a strict response deadline) but performance on signal 

trials was (numerically) improved. Combined, these studies indicate that subjects trade speed 

in the go task (e.g. by increasing response thresholds or adjusting attentional settings) for 

success in the stop task when successful stop performance is rewarded in a block-based (or 

experiment-based) fashion. Note that when go performance is rewarded, response latencies or 

accuracy on no-signal trials tend to decrease and stopping is impaired (Pessoa & Padmala, 

2010). Thus, rewards can change the balance between going and stopping in both directions.

Incentives can influence stop performance in other ways as well. In a series of studies, 

Boehler and colleagues (e.g. Boehler, Hopf, Stoppel, & Krebs, 2012; Boehler, Schevernels, 

Hopf, Stoppel, & Krebs, 2014) showed reward-related information at the moment of the stop 

signal presentation (i.e. the color of the stop signal indicated whether subjects would receive 

an extra reward for successful stop performance or not). They found that SSRT was shorter 

and that key regions of the neural inhibitory control network were activated more on reward 

trials than on non-reward trials (for a review, see Krebs, Hopf, & Boehler, 2016). These 

findings cannot be attributed to a simple trade off between going quickly and stopping 

because the reward signal is presented after the presentation of the go stimulus. Of course, 

global attentional and response settings could be influenced by the occasional delivery of 

reward; thus, even in the studies of Boehler and colleagues, proactive control or task settings 

3. These pilot studies were designed to examine the effect of reward and punishment on reactive 
control. We found strong effects of incentives on response slowing in the primary go task, but only 
weak effects on measures of reactive control. Therefore, we decided to examine the effect of 
incentives on response-strategy selection and task prioritization in the present study.
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could be modulated by reward (Schevernels et al., 2015). Furthermore, a study of Rosell-

Negre et al (2014) indicates that incentives can influence strategy adjustments after signal 

trials. In sum, previous studies indicate that performance on stop-signal trials in standard stop 

tasks (i.e. with only one signal) improves when incentives for successful stopping are 

provided, which could be due to preactivation of the stopping network, control adjustments, 

or both. 

In the present study, we examined if incentives could change the balance between 

going and stopping and the degree of dependence or capacity sharing in selective stop 

situations. We explained the incentive structure at the beginning of the experiment and it 

remained the same throughout the whole experiment. Furthermore, we incentivized stopping 

only. Based on previous studies, we predicted that this incentive scheme would encourage 

subjects to make proactive strategy adjustments at the beginning of the task (cf. Strayer & 

Kramer, 1994). Such adjustments could influence responding on no-signal trials as subjects 

trade speed in the go task for success in the stop task (see above). Furthermore, we predicted 

that incentives would influence the interaction between going and stopping on valid-signal 

trials: when stopping is prioritized (due to the incentives for stopping), it will not be 

influenced much by going (i.e. independence); by contrast, when go and stop processing are 

prioritized more equally on signal trials, stopping will be influenced by ongoing go processes 

(i.e. dependence). 

We included two incentive conditions, namely a reward condition and a punishment 

condition. Previous work suggests that reward and punishment can have distinct effects on go 

and stop performance (Guitart-Masip et al., 2012; Verbruggen, Best, Bowditch, Stevens, & 

McLaren, 2014). Furthermore, reward and punishment schemes may influence strategy 

selection differently. For example, Braver, Paxton, Locke, and Barch (2009) found that a 
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reward scheme encouraged a proactive control mode, whereas a punishment scheme 

encouraged a more reactive control mode. 

Even though we were mostly interested in strategy selection (i.e. how is a task 

performed) and the balance between going and stopping, we also wanted to explore the 

effects of incentives on reactive control measures (as previous studies, as mentioned above, 

found effects of incentives on both proactive and reactive control). Therefore, we used a 

selective stop-change task (instead of a selective stop task) because it provides us with two 

measures of ‘reactive’ action control on valid signal trials: the latency of the stop response 

(stop-signal reaction time or SSRT) and the latency of the change response (see also 

Verbruggen & Logan, 2015). As noted above, the underlying response inhibition mechanisms 

in stop and stop-change tasks are very similar. However, SSRT can only be estimated when 

the assumptions of the race model are met, whereas the latency of the change response is 

measured directly. In other words, the stop-change task provides an index of reactive action 

control even when the assumptions of the independence race model are violated (and we 

expected such violations, especially in the control condition).

Experiment

In the primary task, subjects responded to a letter (Go1 response). On some trials, a 

signal appeared on the left or right of the go stimulus (Figure 2). When the signal was valid, 

subjects had to stop their planned Go1 response and respond to the location of the signal 

instead (Go2 or change response). When the signal was invalid, subjects had to ignore it and 

execute the planned Go1 response. Signal validity was indicated by a visual cue at the 

beginning of a trial (Figure 2). There were three groups. The punishment group lost points for 

unsuccessful valid-signal trials. The reward group gained points for successful valid-signal 

trials. Finally, the control group could not win or lose points on any trials.
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Incentives may encourage subjects to make proactive strategy adjustments (see 

above). Such adjustments often influence responding on no-signal trials as subjects trade 

speed in the go task for success in the stop task (Aron, 2011; Verbruggen & Logan, 2009a). 

Therefore, in a first analysis, we examined how Go1-RTs on no-signal trials changed over 

time in the three groups. We predicted that incentives on valid-signal trials would encourage 

subjects to slow down (i.e. alter their speed/accuracy trade-off). Note that we focused on 

Go1-RTs only to get a ‘pure’ measure of proactive control adjustments; after all, stop-change 

performance on successful valid-signal trials is influenced by both proactive and reactive 

control processes. We used a similar analysis approach in our previous studies that examined 

proactive inhibitory control (e.g. Elchlepp, Lavric, Chambers, & Verbruggen, 2016; 

Verbruggen & Logan, 2009a). 

In a second analysis, we compared Go1-RTs on no-signal and failed valid-signal trials 

to examine the interaction between going and stopping on signal trials. We predicted that the 

‘no-signal Go1-RT minus signal-respond Go1-RT’ difference would be larger in the incentive 

conditions than in the control condition. When stopping is prioritized on valid-signal trials, 

stopping is not influenced much by going; consequently, signal-respond Go1-RT should be 

shorter than no-signal Go1-RT (Bissett & Logan, 2014; Logan & Cowan, 1984; Figure 1). By 

contrast, when go and stop processing are prioritized more equally on signal trials, stopping 

is influenced by ongoing go processes; consequently, the difference between signal-respond 

and no-signal Go1-RT should become smaller or even reverse (Bissett & Logan, 2014; 

Verbruggen & Logan, 2015). For completeness, we also analyzed invalid-signal Go1-RT. 

In a third analysis, we analyzed change (Go2) performance and explored the 

correlation between response slowing and improvements in change performance. We also 

analyzed stop-signal latencies of subjects for which the assumptions of the independent race 
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model were not violated. Finally, we report an exploratory analysis of sequential effects in the 

three conditions. 

Figure 2: Examples of the three trial types in the selective stop-change task. The top panel shows the 
sequence of events on no-signal trials (NS). The middle panel shows the sequence of events on 
invalid-signal trials (IVS), and the bottom panel shows the sequence of events on valid-signal trials 
(VS). Signal validity was indicated by the cue (the centrally presented chequerboard) at the beginning 
of the trial. The arrows under the letters indicate the correct response. CSD = change-signal delay. See 
the Method section for further details. 

Method

Subjects. 108 volunteers (36 per condition) from the University of Exeter participated 

for monetary compensation (£5) or partial course credit. The number of subjects was 

determined in advance, based on a power calculation for the main effects of interest. As 

indicated above, effects of reward on strategy selection and task prioritization could be tested 

by comparing RTs for the different trial types. In our previous study, the RTs correlated 

strongly (e.g. the correlation between no-signal Go1-RT and invalid-signal Go1-RT was 
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r(191) = .93, p < .001; Verbruggen & Logan, 2015). Therefore, a power calculation indicated 

that the present experiment was sufficiently powered (.80) to detect between-within factor 

interactions with a small effect size. Note that for completeness, we also analyzed change-

RTs and SSRTs in the three conditions. However, we could only detect (very) large effects in 

these analyses (with power = .80), so these ‘reactive’ control results should be interpreted 

with caution. 

P(correct) on valid-signal trials was close to .50 for most subjects in Verbruggen and 

Logan (2015). Therefore, we had decided (before data collection had started) to replace 

subjects for which p(correct) > .70 or p(correct) < .30 in the present study. Three subjects 

(Control: 1; Punishment: 2) were replaced. We used the integration method to estimate SSRT 

(see below); therefore, we used a more lenient exclusion criterion than the one used for the 

mean SSRT estimation method (e.g. Verbruggen, Logan, & Stevens, 2008). 

Apparatus, stimuli and procedure. The experiment was run on a 21.5-inch iMac 

using Psychtoolbox (Brainard, 1997). The Go1 stimuli were the letters ‘U’ and ‘D’ (size: 

approximately 2 x 4 mm). Subjects responded to them by pressing the ‘up’ (U) and 

‘down’ (D) arrow keys of a standard keyboard with their right middle finger. The Go1 stimuli 

were centrally presented in a black font (Courier) on a light grey background (RGB = 175 

175 175). There were four stop-change signals (chequerboards; size: 12 x 12 mm), which 

varied along two dimensions: the number of squares inside the board (3x3 or 9x9), and the 

color (red: RGB = 255 0 0, or blue: RGB = 0 0 255). Signals appeared approximately 4 cm 

on the left or right of the Go1 stimulus. Subjects responded to the location of valid signals 

(Go2 or change response) by pressing the corresponding arrow key with their right index (left 

arrow) or right ring (right arrow) finger.
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All trials started with the presentation of a signal cue (one of the chequerboards) in 

the center of the screen for 500 ms (Figure 2). This cue indicated the valid signal, which 

could change on every trial. The cue was replaced by a black fixation cross for 500 ms, after 

which a letter (the Go1 stimulus) appeared. Subjects had to decide whether the letter was ‘U’ 

or ‘D’. The letter remained on the screen for 1,500 ms, regardless of RT (a similar maximum 

RT has been used in previous stop-signal studies). 

On 1/3 of the trials, a signal was presented on the left or right of the letter after a 

variable delay. When the signal matched the cue (valid signal), subjects had to withhold the 

Go1 (up/down) response and respond to the location of the signal instead (Go2 response; left/

right). When the signal did not match the cue (invalid signal), subjects had to ignore it and 

execute the planned Go1 response. Consistent with our previous research (Verbruggen & 

Logan, 2015), the location of the signals was randomized and the 4 signals occurred with 

equal probability in random order. Thus, only 25% of the signal trials–or 8.33% of all trials–

were valid-signal trials, and trial types were fully randomized. The change-signal delay 

(CSD) was initially set at 250 ms and continuously adjusted according to a tracking 

procedure to obtain a probability of successful valid-change performance of .50. Each time a 

subject responded to the Go1 stimulus or failed to execute the correct Go2 response on a 

valid-signal trial, CSD decreased by 50 ms. When subjects successfully replaced the Go1 

response on a valid-signal trial, CSD increased by 50 ms. Subjects were informed about this 

tracking procedure and they were told not to wait for a change signal to occur. CSD for 

invalid-signal trials was yoked to the valid-signal CSD. 

At the end of each trial, we presented feedback for 750 ms. On no-signal and invalid-

signal trials, we presented ‘correct’, ‘incorrect’, or ‘too slow’ (in case subjects did not 

respond before the end of the trial). The feedback message on valid-signal trials differed 
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between groups. In the punishment group, we presented: ‘change: correct’ when subjects 

successfully replaced the Go1 response, or ‘change: incorrect. You lose 40 points’ when 

subjects executed the Go1 (up/down) response or executed an incorrect Go2 (left/right) 

response. In the reward group, we presented ‘change: correct. You win 40 points’ for 

successful valid-signal trials, or ‘change: incorrect’ for unsuccessful valid-signal trials. In the 

control group, we presented ‘change: correct’ or ‘change: incorrect’ for successful and 

unsuccessful valid-signal trials, respectively. The next trial started after a further 500 ms. 

Subjects in the punishment and reward groups were informed at the beginning of the 

experiment that the points would be converted into money (100 points = £0.1) at the end of 

the experiment, but only if overall performance on no-signal and invalid-signal trials was also 

satisfactory (i.e. if they responded correctly and in time on the majority of trials). The start 

balance was 2,500 points in the Punishment group, and 0 points in the Reward group. There 

were 64 valid-signal trials in the experiment. Due to the tracking procedure, both groups 

ended with approximately 1,250 points (£1.25).

The experiment consisted of 768 trials in total. Subjects received a break after every 

64 trials. During the break, we presented subjects’ mean no-signal Go1-RT, the number of 

incorrect and missed no-signal responses, and the percentage of correctly replaced responses 

on valid-signal trials. Subjects had to pause for 15 seconds.

Analyses

All data processing and analyses were completed using R. All data files and R scripts 

are deposited on the Open Research Exeter data repository (http://hdl.handle.net/

10871/24540)

Descriptive and inferential statistics appear in Tables 1-5 and Figure 3. We also 

calculated Bayes factors for all main effects and interaction contrasts in the ANOVA designs, 
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and present an overview of these analyses in Supplementary Materials. Part (first half vs. 

second half of the experiment) was included in the analyses because go performance may 

gradually change over time in the incentive conditions (Leotti & Wager, 2010). Furthermore, 

reward and punishment can influence learning in response-inhibition tasks (Guitart-Masip et 

al., 2012; but see also Krebs et al., 2016, for a discussion of reward and practice effects). 

For the reasons discussed above, we focused primarily on Go1-RTs in the analyses 

reported below. For completeness, we analyzed latency of the stop response (SSRT) and the 

change response on successful valid-signal trials as performance on these trials could be 

influenced by changes in reactive control, proactive control, or both. We calculated SSRT 

using the integration method (Verbruggen et al., 2013). To account for response slowing, we 

calculated SSRT for each part separately, and then took the average (as recommended in 

Verbruggen et al., 2013). The independent race model assumes that stopping and going are 

independent for most of their durations. This assumption should not be taken lightly because 

SSRT cannot be reliably estimated when it is violated. Therefore, we compared signal-

respond Go1-RT with no-signal Go1-RT for each subject and part, and excluded subjects 

when signal-respond Go1-RT was longer than no-signal Go1-RT in Part 1, Part 2, or both. We 

had to exclude 46 subjects in total. The number of subjects per group appears in Table 4.  

We also performed an exploratory sequential analysis in which we compared no-

signal performance on trials that followed a correct no-signal trial, a correct invalid-signal 

trial, an unsuccessful (signal-respond) valid-signal trial, or a successful (signal-inhibit) valid-

signal trial. There were not enough incorrect no-signal and invalid-signal trials to explore 

how Go1 errors influenced subsequent performance. For similar reasons, we could not 

explore how sequential effects influenced performance on invalid and valid signal trials. 

Measurements of post-signal slowing can be contaminated by global fluctuations in 
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performance over the course of an experiment (Nelson, Boucher, Logan, Palmeri, & Schall, 

2010). For example, when RTs gradually become longer in a block, probability of stopping 

will temporarily decrease (as the tracking procedure may need some time to catch up). This 

will also influence the measurement of post-signal slowing because trials that follow a 

successful stop are more likely to come from slower parts of the block or experiment than 

trials that follow an unsuccessful stop. There is a solution for this problem: post-signal 

slowing can be quantified as the RT difference between the post-signal trial and the last 

preceding no-signal trial (Nelson et al., 2010; see Dutilh et al., 2012 for a similar solution to 

control for global fluctuations in post-error paradigms). For example, when a no-signal trial 

(trial n) was preceded by another no-signal trial (trial n-1), the RT difference is ‘RT trial n’ 

minus ‘RT trial n-1’. If trial n-1 was an invalid-signal trial but trial n-2 was a no-signal trial, 

the RT difference is ‘RT trial n’ minus ‘RT trial n-2’. 

Finally, we report the descriptive and inferential statistics for the accuracy data of the 

go task in Appendix A. The accuracy data for the change task appear in Table 3. Note that we 

used a tracking procedure to determine the change-signal delay (like most stop-signal and 

stop-change studies; see Verbruggen, Chambers, & Logan, 2013). This procedure typically 

results in a p(respond|signal) ≈ .50, and compensates for individual or group differences in go 

or stop latencies. Therefore, incentives were not expected to influence probability of 

executing the primary task response on valid-signal trials. However, they could influence the 

latency of the change response and SSRT. 
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Results

No-signal Go1-RT.  No-signal Go1-RT increased substantially from the first half to 

the second half of the experiment in the punishment group (Part 1: M = 746 ms; Part 2: M = 

830 ms; difference: p < .001, BF = 739) and reward group (Part 1: M = 774 ms; Part 2: M = 

868 ms; difference: p < .001, BF = 169), but not in the control group (Part 1: M = 737 ms; 

Part 2: M = 760 ms; difference: p = .214, BF = 0.374). The Group by Part interaction was 

significant, p = .020 (Table 1). None of the other between-group differences was statistically 

significant after correction for multiple comparisons (Table 2). 

No-signal RTs were generally long (considering the simplicity of the primary up/

down task). This suggests that dual-task demands (i.e. updating and maintaining the relevant 

signal rule in working memory and monitoring for the signal) and response-strategy 

adjustments influenced performance in all groups, including the control group (Verbruggen & 

Logan, 2009a). However, the Group by Part interaction indicates that incentives encouraged 

subjects to slow down even more throughout the experiment. 
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Table 1: Overview of the Analyses of Variance. Latencies were analyzed by means of mixed 
ANOVAs with group (control, punishment, reward) as a between-subjects factor, and part (first half. 
vs. second half of the experiment) as within-subjects factor. For the ‘invalid-signal vs. no-signal’ and 
‘signal-respond vs. no-signal’ analyses, we also included trial type as a within-subjects factor. For the 
sequential analysis, we analysed the Go1-RT difference between trials as a function of the properties 
of the previous trial (correct no-signal, correct invalid signal, unsuccessful valid signal, or successful 
valid signal trial). p’s < .05 are in bold. 
Analysis
No-signal Go1-RT

Signal-respond vs. no-signal Go1-RT

Invalid-signal vs. no-signal Go1-RT

change-RT

Go1-RT difference (sequential analysis)

Group
Part
Group by Part

Group
Part
Trial Type
Group by Part
Group by Trial Type
Part by Trial Type
Group:Part:Trial Type

Group
Part
Trial Type
Group by Part
Group by Trial Type
Part by Trial Type
Group:Part:Trial Type

Group
Part
Group by Part

Group
Properties previous trial
Group by Previous trial

df1

2
1
2

2
1
1
2
2
1
2

2
1
1
2
2
1
2

2
1
2

2
3
6

df2

105
105
105

105
105
105
105
105
105
105

105
105
105
105
105
105
105

105
105
105

105
315
315

SS1

190054
242421
54819

347529
333233
183236
79230
1327
12088
2851

389550
222712
847767
96683

70
50348
1011

264002
257662
3886

3025
194837
14623

SS2

7118477
704151
704151

12729865
1180176
297773
1180176
297773
175807
175807

14400830
1237161
176208
1237161
176208
80366
80366

2094082
315288
315288

244491
575693
575693

F

1.402
36.149
4.087

1.433
29.648
64.612
3.525
0.234
7.219
0.851

1.420
18.902
505.174
4.103
0.021
65.780
0.661

6.619
85.809
0.647

0.650
35.536
1.333

p

.251
< .001
.020

.243
< .001
< .001
.033
.792
.008
.430

.246
< .001
< .001
.019
.979

< .001
.519

.002
< .001
.526

.524
< .001
.242

η2
gen

.024

.030

.007

.024

.023

.013

.005

.000

.001

.000

.024

.014

.051

.006

.000

.003

.000

.099

.097

.002

0.004
0.192
0.018
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Table 2: Overview of planned comparisons to explore the Group by Part interaction for the latencies 
in the primary task (first and second set of comparisons), the main effect of group for latencies of the 
change response and stop response on valid signal-trials (the third set and fourth of comparisons), and 
the main effect of ‘previous trial properties’ in the sequential analysis (fifth set of comparisons). p’s 
< .05 after Holm-Bonferroni correction for multiple comparisons are in bold. 

Note: The Bayes factor (BF) is an odds ratio: It is the probability of the data under one hypothesis 
relative to that under another. Evidence categories for Bayes Factor: BF < .33 = Substantial evidence 
for H0 ; 1/3–1 = Anecdotal evidence for H0; 1 = No evidence; 1–3 = Anecdotal evidence for HA; 3–10 
= Substantial evidence for HA; BF > 10 = strong to decisive evidence for HA. H0 = no difference 
between the trial types; HA = a difference between the trial types. We calculated the Bayes factors with 
the BayesFactor package in R, using the default prior (0.707). For the SSRT analysis, we excluded 
subjects whose signal-respond RT was longer than their no-signal RT

Comparison

No-signal Go1-RT: 
Within-group differences

No-signal Go1-RT: 
Between-group differences

Change-RT: 
Between-group differences

SSRT: 
Between-group differences

No-signal RT difference:
Property of previous trial

Control: Part 1 vs. Part 2
Punish: Part 1 vs. Part 2
Reward: Part 1 vs. Part 2

P1: Control vs. Punish
P1: Control vs. Reward
P1: Punish vs. Reward
P2: Control vs. Punish
P2: Control vs. Reward
P2: Punish vs. Reward

Control vs. Punish
Control vs. Reward
Punish vs. Reward

Control vs. Punish
Control vs. Reward
Punish vs. Reward

No-signal vs. invalid
No-signal vs. signal-respond
No-signal vs. signal-inhibit
Invalid vs. signal-respond
Invalid vs. signal-inhibit
Signal-respond vs. signal-inhibit

diff

-22
-84
-95

-9
-36
-27
-71
-109
-38

67
79
12

19
31
11

-39
-57
-45
-17
-5
12

lower 
CI

-58
-119
-140

-81
-109
-100
-172
-214
-149

18
31
-31

-19
-3
-22

-45
-70
-57
-29
-17
0

upper 
CI

13
-48
-49

62
36
46
31
-3
73

117
128
55

58
65
44

-33
-44
-32
-5
7
24

df

35
35
35

70
70
70
70
70
70

70
70
70

37
40
41

107
107
107
107
107
107

t

-1.267
-4.788
-4.244

-0.258
-1.003
-0.741
-1.392
-2.059
-0.681

2.73
3.271
0.561

1.023
1.806
0.678

-13.191
-8.641
-7.210
-2.765
-0.861
1.925

p

.214

.001

.001

.797

.319

.461

.168

.043

.498

.008

.002

.576

.313

.078

.502

< .001
< .001
< .001
.007
.391
.057

BF

0.374
739.642
169.169

0.25
0.374
0.308
0.556
1.462
0.297

5.458
19.885
0.278

0.471
1.093
0.362

1.14 x 1021

1.19 x 1011

1.08 x 108

3.916
0.153
0.630

g

0.126
0.434
0.467

0.06
0.234
0.173
0.325
0.48
0.159

0.636
0.763
0.131

0.321
0.549
0.203

2.300
1.553
1.294
0.403
0.129
0.199
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Signal-respond vs. no-signal Go1-RTs. The independent race model assumes 

independence between going and stopping, so mean signal-respond RT (i.e. RTs for trials on 

which a valid signal was presented but subjects executed the up/down Go1 response instead 

of the left/right Go2 response) should be shorter than mean no-signal RT (see Figure 1). The 

model does not make any further assumptions about whether the executed response should be 

‘match’ the stimulus (i.e. up for ‘U’ and down for ‘D’) or not. Therefore, we included all 

executed Go1 responses for this analysis (including trials when subjects pressed ‘up’ for D 

and down for ‘U’; see also Verbruggen & Logan, 2015). Note that we have repeated the 

analysis after exclusion of non-matching responses, but this did not alter the main findings 

(see Supplementary Materials). 

Descriptive statistics appear in Table 3. Consistent with the independent race model, 

signal-respond Go1-RT was on average 41 ms shorter than no-signal Go1-RT (main effect of 

trial type: p < .001). However, Figure S1 in Supplementary Materials shows that the 

independence assumption was violated for approximately 25-30% of the subjects in each 

group. In other words, for these subjects, we observed dependence or competition between 

going and stopping. This is consistent with our previous research (Verbruggen & Logan, 

2015) and the findings of Bissett and Logan (2014). Importantly, the Go1-RT difference was 

similar in the three groups (Control: 39 ms, Punishment: 39 ms, Reward: 46 ms; interaction 

Group by Trial Type: p = .792). This conclusion was further supported by the Bayesian 

analyses (Supplementary Materials). Thus, incentives did not influence the dependence 

between going and stopping (or task prioritization) on valid-signal trials. After all, the 

difference between signal-respond RTs and no-signal RTs should have been larger when 

stopping was prioritized more. 
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The significant interaction between Part and Trial Type (p = .008; Table 1) indicates 

that the signal-respond/no-signal difference increased throughout the experiment (Part 1 = 31 

ms; Part 2 = 52 ms). The Group by Part interaction (p = .033) was the only significant Group-

related effect, and provides further support for the idea that RTs generally increased 

throughout the experiment in the incentive conditions. 

Table 3. Overview of performance on valid-signal trials: Probability of responding on a valid-signal 
trial [p(respond)], average valid change-signal delay (CSD), average reaction time for Go1 responses 
on signal-respond trials (signal-respond Go1-RT), the difference between signal-respond Go1-RT and 
no-signal Go1-RT (both correct and incorrect responses were included when mean no-signal RT was 
calculated), and average reaction time for correct Go2 responses (Change-RT), as a function of part 
(first vs. second half of the experiment) and group (control, punishment, reward). 

Note: Change-RT corresponds to the time interval between the presentation of the valid signal and the 
left/right key press. Mean probability of not executing any response on valid signal trials was .02 (SD 
= .13).

Invalid-signal vs. no-signal Go1-RTs. Go1-RTs were generally longer on invalid-

signal trials (875 ms) than on no-signal trials (786 ms), which is consistent with previous 

research (Bissett & Logan, 2014; Verbruggen & Logan, 2015). The significant interaction 

between Trial Type and Part (p < .001; Table 2) indicates that this difference decreased 

throughout the experiment (Part 1: 110 ms; Part 2: 67 ms). Importantly, the Go1-RT 

difference was similar in the three groups (Control: 87 ms; Punishment: 89 ms; Reward: 89 

ms; Group by Trial Type interaction: p = .979), and was observed for all subjects (Figure S1). 

The outcomes of the Bayesian analysis and the ANOVA were consistent. Thus, the ‘invalid-

Independent 
variables

Part 1

Part 2

Control
Punish
Reward

Control
Punish
Reward

P(respond)

M

0.386
0.402
0.367

0.496
0.469
0.452

sd

0.102
0.097
0.124

0.100
0.070
0.072

CSD

M

380
388
431

449
544
606

sd

135
141
149

234
265
273

Signal-respond 
Go1-RT

M

703
723
742

717
776
809

sd

136
152
177

171
200
212

No-signal Go1-
RT minus signal-
respond Go1-RT

M

35
23
34

42
54
59

sd

69
75
76

57
62
63

Change-RT

M

693
631
624

634
562
544

sd

131
99
99

113
101
96



23

signal vs. no-signal’ comparison indicates that incentives did not influence how subjects 

processed invalid signals. The corresponding RT distributions (see Supplementary Materials) 

further supported this conclusion.

Figure 3: Latencies of correct Go1 responses as a function of Part (first half or second half of the 
experiment), Group (Control, Punishment, and Reward), and Trial Type (no signal vs. invalid signal). 
Error bars indicate 95% confidence intervals. 
 

Performance on valid-signal trials. Change-RT (the latency of correct Go2 

responses) was measured directly, so violations of the independence assumption (Verbruggen 

& Logan, 2015) and strategic slowing (Verbruggen et al., 2013) were not a concern. As can 

be seen in Tables 2 and 3, change-RTs were longer in the control group than in the 

punishment (difference = 67 ms; p = .008, BF = 5.458) and reward (difference = 79 ms; p = .
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002, BF = 19.885) groups. There was no difference between the incentive conditions (p = .

576; BF = 0.278). Thus, incentives reduced the latency of change responses. Change-RT 

decreased with practice but the Group by Part analysis was not significant (Table 1), 

indicating that incentives did not enhance practice effects (for a similar finding in a simple 

stop task, see Boehler et al., 2014; see also Krebs et al., 2016).  

The no-signal RT analyses indicate that incentives encouraged subjects to slow down 

the primary-task response throughout the experiment (i.e. they made extra proactive control 

adjustments). We tested whether these adjustments influenced change-RTs. We correlated 

response-slowing in the primary go task (i.e. no-signal RT Part 2 minus no-signal RT Part 1) 

with stop-change performance (i.e. change-RT Part 2 minus change-RT Part 1). We found a 

negative correlation: when Go1-RT increased throughout the experiment, change-RT 

decreased, r(107) = -.43, p < .001. Interestingly, this negative correlation was observed in 

each group (Figure 4). Thus, proactive control adjustments influenced performance on valid-

signal trials, even when no extrinsic incentives were provided. 

Figure 4: Correlation between the response slowing on no-signal trials (no-signal Go1-RT: Part 2 
minus Part 1) and improvements in change-RT on valid-signal trials (change-RT: Part 2 minus Part 1). 
A negative correlation indicates that subjects who slow more over time show greater improvements in 
change-RT.
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As can be seen in Table 4, there were small numerical SSRT differences between the 

groups. However, these differences were not statistically significant, and the Bayes factors 

were inconclusive (Table 2). It could be argued that no SSRT differences were observed 

because the sample size was further reduced compared with the change-RT analyses. 

Therefore, we also analyzed change-RT after exclusion of those subjects for which the 

independence assumption of the race model was violated. There were still large change-RT 

differences between the incentive groups and the control group (Appendix B). In other words, 

the change-RT pattern was not influenced much by the exclusion of subjects whose signal-

respond RT was longer than their no-signal RT. 

Table 4. Overview of the number of subjects and stop performance on valid-signal trials after 
exclusion of subjects whose signal-respond RT was longer than their no-signal Go1-RT (see Analysis 
section for further details): Probability of responding on a valid-signal trial [p(respond)], average 
valid change-signal delay (CSD), stop-signal reaction time (SSRT). 

Note: for this subset of subjects, mean probability of not executing any response on valid signal trials 
was .04 (SD = .05).

We found no reliable effects of reward and punishment on SSRT in this experiment. 

In Pilot Experiment 2 (see Supplementary Materials), in which we used a stop-signal task 

with only one signal, we also found no reliable effects of reward and punishment on SSRT 

after correction for multiple comparisons, and the Bayesian analyses were inconclusive. 

However, we observed some numerical trends that were consistent with the trends observed 

here and differences observed in previous studies (e.g. Boehler et al., 2012; Greenhouse & 

Wessel, 2013). Therefore, we combined the results of the main experiment and the pilot 

experiment by calculating meta-analytic Bayes factors for multiple t tests (Rouder & Morey, 

Group

Control
Punish
Reward

N

19
20
23

P(respond)
M
.41
.40
.39

sd
.11
.08
.10

CSD
M

486
568
567

sd
206
201
212

SSRT
M

269
249
238

sd
76
69
59
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2011). This meta-analysis revealed that reward had some beneficial effect on SSRT (BFmeta for 

Reward vs. Control = 5.11). The punishment vs. control comparison was still inconclusive 

(BFmeta = 0.65), whereas the reward vs. punishment comparison provided substantial support 

for the null hypothesis (BFmeta = 0.14). In sum, we can conclude that the incentives (and 

reward in particular) can have a beneficial effect on stop latencies, but large sample sizes are 

required to detect these differences. Because SSRT has to be estimated, it may be a noisier 

measure than go latencies, which can be measured directly. 

Sequential effect of signal presentation. The results of the experiment suggest that 

reward and punishment influenced response strategies. In a final, exploratory, analysis, we 

tested if incentives also influenced post-change-signal performance. In standard stop-signal 

tasks, response latencies are often slower after stop-signal trials than after no-stop-signal 

trials (Bissett & Logan, 2011, 2012; Nelson et al., 2010; Rieger & Gauggel, 1999; 

Verbruggen, Logan, Liefooghe, & Vandierendonck, 2008; see also Verbruggen & Logan, 

2008c, for a similar observation in a stop-change task with only one signal). Bissett and 

Logan (2011) contrasted several accounts of post-stop-signal slowing, and found most 

support for a strategic adjustment account that proposes that stop-signal presentation 

encourages subjects to shift priority from the go task to the stop task. Such a shift produces 

longer response latencies after a signal trial and can reduce SSRT when the stop-signal 

modality remains the same (Bissett & Logan, 2012; for similar improvements in stop 

latencies in continuous variants of the stop-signal task, see Morein-Zamir, Chua, Franks, 

Nagelkerke, Kingstone, 2007, & Verbruggen & McLaren, 2016). Findings of Rosell-Negre et 

al (2014) indicate that incentives can influence strategy adjustments after signal trials. 

Therefore, we also compared no-signal performance on trials that followed a correct no-

signal trial, a correct invalid-signal trial, an unsuccessful (signal-respond) valid-signal, or a 
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successful (signal-inhibit) valid-signal trial. As discussed in the Analysis section, post-

change-signal slowing was quantified as the RT difference between the post-signal trial and 

the last preceding no-signal trial. Positive scores indicate that subjects are slower than on the 

previous no-signal trial; negative scores indicate that they were faster. 

The descriptive statistics appear in Table 5. A univariate analysis revealed that 

properties of the previous trial influenced no-signal RT, but there was no main effect of group 

(control, reward, or punishment) or a Group by Trial Type interaction (Table 1). In other 

words, incentives did not modulate sequential effects in our study. This conclusion was 

further supported by Bayesian ANOVA (see Supplementary Materials). To explore the main 

effect of trial type in more detail, we performed a series of post-hoc tests. These appear in 

Table 2. As can be seen, no-signal RTs were generally longer after both valid and invalid 

signal trials than after no-signal trials (see also Table 5). There was no difference between 

trials that followed invalid-signal trials, unsuccessful valid-signal trials, or valid-signal trials. 

In other words, stop-signal presentation generally slowed responding on the subsequent trial, 

which seems consistent with the strategic adjustment account of Bissett and Logan (2011). 

Note that previous studies have also shown that the slowing is more pronounced when 

features of the previous trial are repeated (e.g. Verbruggen, Logan, et al., 2008); 

unfortunately, we could not test this here because the number of valid signal trials was too 

low.  

Table 5. No-signal RT difference as a function of the previous trial and group.

Group

Control
Punish
Reward

No-signal

M
-13
-14
-12

sd
12
10
11

Invalid-signal

M
22
30
27

sd
25
21
24

Signal-respond
(unsuccessful valid)

M
57
43
30

sd
67
52
64

Signal-inhibit
(successful valid)

M
27
40
28

sd
57
50
66
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General Discussion

Incentives induce general slowing but do not influence the competition between going 

and stopping on signal trials

No-signal Go1-RTs increased more throughout the experiment in the reward and 

punishment groups than in the control group. The slowing in both groups can be attributed to 

extra ‘proactive inhibitory control’ adjustments. When subjects expect a stop signal, they 

monitor the environment and selectively attend to stop-signal features (e.g. Elchlepp et al. 

2016), and down-regulate attentional resources in the go task (e.g. Langford, Krebs, Talsma, 

Woldorff, & Boehler, in press). Furthermore, proactive inhibitory control can involve 

adjustments of response-selection thresholds and suppression of motor output to trade speed 

in the go task for success in the stop task (e.g. Aron, 2011; Verbruggen & Logan, 2009a). The 

findings of the present study indicate that providing monetary incentives encouraged subjects 

to make such strategic adjustments4 (i.e. subjects in the incentive conditions approached the 

task differently).

Second, we explored if incentives influenced the dependence between going and 

stopping on valid-signal trials. Bissett and Logan (2014) found that the ‘no-signal minus 

signal-respond’ RT difference increased when the proportion of valid signals increased. Thus, 

the higher proportion of valid signals encouraged subjects to prioritize stopping (i.e. stopping 

was less influenced by processing in the primary go task). We expected that incentives on 

valid signal trials would have a similar effect. To our surprise, they didn’t: Average signal-

respond Go1-RT was shorter than no-signal Go1-RT in the three groups, but there were no 

statistically significant Group by Trial Type differences (note that this study was sufficiently 

4. In previous studies, we fitted the diffusion model or the linear ballistic accumulator model to our data to 
determine which processing parameters were adjusted when subjects expected a stop signal to occur (Jahfari et 
al., 2012; Logan et al., 2014; Verbruggen & Logan, 2009a). In this study, we could not fit such a model to the 
no-signal data of the individual subjects because the number of trials was relatively low and some subjects did 
not make any errors (which caused further problems for the fitting).



29

powered to detect small-effect sized interactions; see Supplementary Materials). Furthermore, 

we found that signal-respond Go1-RT was longer than no-signal Go1-RT for a similar subset 

of subjects in all groups (Figure S1). Finally, we observed similar ‘no-signal vs. invalid-

signal’ Go1-RT differences in the three groups. Combined, these findings indicate that signal 

processing was not influenced by reward or punishment.

It is possible that the high proportion of invalid-signal trials discouraged subjects 

from prioritizing the stop task on signal trials (Bissett & Logan, 2014). However, this did not 

discourage them from generally slowing down their Go1 responses, as indicated by the no-

signal trial analyses. In other words, our incentive manipulation encouraged subjects to 

change attentional and/or response settings in the primary go task, but they could not change 

the level of competition between going and stopping on signal trials. Slowing of all Go1 

responses may be the ‘default’ strategy when stopping is incentivized or when subjects expect 

a signal in the near future (e.g. when a traffic sign informs car drivers that they are near a 

school or playground, they slow down; they do not wait until they see children crossing the 

road to adjust their driving). Future proactive inhibitory control studies should further explore 

which factors influence strategy selection (including the optimality of various response 

strategies; see e.g. Miller et al., 2009). 

Alternative explanations for the response slowing

We propose that slowing on no-signal trials reflects proactive control adjustments. 

It is unlikely that the Go1-RT group differences reflected increased dual-task demands. After 

all, accuracy on no-signal trials should also be influenced by dual-task demands. As can be 

seen in the Appendix, go accuracy was similar for all groups. 

The slowing could also be due to the retrieval of stimulus-stop associations. Several 

studies have indicated that responding on no-signal trials is slowed when stimuli or stimulus 



30

features of previous stop trials are repeated (e.g. Bissett & Logan, 2011; Rieger & Gauggel, 

1999; Verbruggen, Logan, et al., 2008; Verbruggen & Logan, 2008b). This stimulus-specific 

slowing has been attributed to the retrieval of stimulus-stop associations: a go stimulus 

becomes associated with a ‘stop’ representation on a stop trial; when it is repeated on a 

following no-signal trial, the stop representation is activated via memory retrieval, and this 

will suppress the go response or interfere with responding (Verbruggen, Best, et al., 2014; 

Verbruggen & Logan, 2008b). On valid signal trials, the retrieval of such associations would 

improve stop performance. Guitart-Massip and colleagues (2012) demonstrated that 

associative learning in response-inhibition tasks could be influenced by incentives. Thus, in 

the incentive conditions, the retrieval of stimulus-stop or signal-stop associations could have 

had a bigger impact on performance than in the control condition.

As mentioned in the sequential analysis section, we could not examine the 

contribution of stimulus-signal associations directly. Nevertheless, we think that it is unlikely 

that incentive-induced changes in associative mechanisms can account for group differences 

in response slowing on no-signal trials. Subjects only had to stop and change their response 

on a very small proportion of the trials (i.e. 8.3% of all trials). Thus, the go stimuli should 

have become associated with going rather than stopping (hence, Go1-RTs should have 

decreased throughout the experiment; instead, they increased). It seems also unlikely that 

altered performance on signal trials was influenced much by incentive-induced changes in 

memory retrieval or associative learning. The signal mapping changed constantly; 

consequently, the signal of the previous valid signal was repeated only on a small minority of 

the signal trials. Furthermore, the signal-respond Go1-RT data are inconsistent with a 

memory-retrieval account. After all, this account makes the same prediction as the task 

prioritization account: when the stop response is strongly activated, only the fastest trials can 
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escape inhibition. We already explained above that our data were inconsistent with this idea. 

Finally, we found that the difference between no-signal and invalid-signal trials decreased 

throughout the experiment. An associative account predicts the opposite. 

Another alternative account for our findings is that the response slowing is due to a 

gradual build-up of slowing caused by ‘reactive’ control adjustments after the presentation of 

a signal (see e.g. Bissett & Logan, 2011). Separating the proactive control account and the 

‘build-up’ account is difficult in the present study because the incentive manipulation was 

block-based. However, it seems unlikely that the slowing is entirely due to post-change-

signal adjustments. In the sequential analysis, we found that responding was slowed down 

after the presentation of an invalid or valid change signal, but this slowing was comparable 

for the three groups. Thus, a post-change-slowing account cannot explain the group 

differences observed in the main analyses. 

In sum, the group differences cannot easily be explained by a pure memory-retrieval 

account or a post-change-signal adjustment account. We cannot rule out some minor 

contribution of associative or memory-retrieval mechanisms and post-change-signal 

adjustments, but it seems that the slowing on no-signal and signal trials is primarily due to 

strategy adjustments and competition between decisional processes in the go and stop tasks. 

Effect of incentives on change latencies

The change-RT analysis showed that stop-change performance was better in the 

reward and punishment groups than in the control group. This improvement could be due to 

proactive control adjustments (see above). Incentives could also have had a more direct effect 

on reactive control. Previous work suggests that incentives can increase activity in the 

reactive inhibitory control network (Boehler et al., 2014). However, our Go1-RT analysis 

suggests that the decision to stop or not was not influenced much by incentives (i.e. we 
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observed similar differences between no-signal Go1-RTs and signal-respond & invalid-signal 

Go1-RTs in all three groups). This conclusion is further supported by the SSRT analysis. 

There were no statistically significant SSRT group differences (and the Bayes factors were 

inconclusive), but there were large change-RT differences. In stop-change tasks, subjects first 

stop their Go1 response and then execute the change response on valid-signal trials 

(Verbruggen, Schneider, et al., 2008). Our findings indicate that monetary incentives did not 

modulate the stop process much, but they did influence the selection and/or execution of the 

change response. 

The absence of a reliable effect on SSRT is inconsistent with previous studies (e.g. 

Greenhouse & Wessel, 2013; see also Boehler et al., 2012, 2014). Maybe this is due to the 

nature of the task, as most other studies have used stop-signal tasks in which only one signal 

could occur. Furthermore, in our SSRT analysis we had to exclude many subjects for which 

the assumptions of the independent race model were violated (and as a consequence of the 

lower N, the study could only detect large between-subject differences5). Consistent with this 

idea, we found effects of reward in the combined analysis. Therefore, the absence of a 

statistically significant effect on SSRT in the main experiment should be treated with caution. 

Note that this does not undermine our main conclusion, namely that incentives in our task 

encouraged response slowing but did not influence the dependence between going and 

stopping. 

Reward and punishment have similar effects on stop-change performance

Previous research suggests that reward and punishment may have distinct effects on 

learning in response-inhibition tasks. For example, subjects learn cue-go/no-go contingencies 

faster when correct go responses are rewarded and incorrect no-go responses are punished, 

5. The study was designed to detect within-between subjects interactions (see Method section). 
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than the other way around (Guitart-Masip et al., 2011; 2012). This could be due to a hard-

wired link between reward/punishment and go/stop, respectively (Guitart-Masip et al., 2011, 

2012; Verbruggen, Best, et al., 2014). In the present study, performance in the reward and 

punishment groups was very similar and Bayesian analyses provided support for the null 

hypothesis (see also the Bayesian meta-analysis in Footnote 3). We observed very similar 

results in two pilot studies in which we observed differences between the control group and 

the reward and punishment groups, but no differences between the two incentive groups (see 

Supplementary Materials). 

Differences in design could potentially explain the apparent inconsistency between 

our study and the studies of Guitart-Massip and colleagues (2011, 2012). In their work, cues 

presented at the beginning of the trial indicated the combination of the go/no-go requirement 

and the outcome (reward/punishment). Thus, Guitart-Massip and colleagues used a very 

direct mapping between action and incentive type. In our study, there were no separate cues 

at the beginning of a trial, and there was no direct mapping between individual signals (i.e. 

the chequerboards), stopping, and reward/punishment because the signal rules changed 

constantly. (Note that we changed the rules because our previous work suggests that stopping 

and going compete more when the demands on the rule-based system are high; Verbruggen & 

Logan, 2015). In other words, the mapping was indirect in our study, which could explain 

why we did not observe a difference between reward and punishment. 

It is also possible that we did not observe any differences because the effect of local 

incentives may depend on global incentives. Previous studies suggest that a match between 

global incentives (e.g. avoiding losing a bonus or obtaining a bonus) and local incentives 

(e.g. points deducted for incorrect responses or points awarded for correct responses) 

encourages flexible behavior, whereas a mismatch encourages behavioral inflexibility 
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(Maddox & Markman, 2010). In our experiments, there was a match between the global and 

local incentives in both the Reward group (subjects had to win a bonus and they could win 

points on every successful valid-signal trial) and the Punishment group (subjects had to avoid 

losing a £2.5 bonus and they could lose points on every unsuccessful valid-signal trial). This 

could explain why reward and punishment had a similar effect on flexible stop-change 

performance. Related to this idea, subjects in the punishment condition started with a bonus, 

so they could not lose their own money. Consequently, the main task goal could have been 

similar in both groups, namely trying to maximizing the bonus by accurate performance.  

Finally, it could be argued that both conditions involved some reward and 

punishment. In the punishment condition, subjects were punished for unsuccessful trials, but 

preventing a loss on successful trials might have been rewarding. In the reward group, 

subjects received a reward for successful trials, but the absence of a reward on unsuccessful 

trials could have been perceived as a negative event (see e.g. Verbruggen, Chambers, 

Lawrence, & McLaren, in press). Thus, it could be argued that both the punishment and 

reward groups contained some elements of reward (i.e. getting extra points or avoiding losing 

points) and punishment (i.e. losing points or not receiving extra points).

The present study cannot distinguish between these various accounts. Therefore, 

future research is required to test how different reward and punishment schemes can 

influence performance in the stop task and other cognitive paradigms.  

Conclusions

The present study showed that providing monetary incentives influenced both 

proactive slowing and reactive control (i.e. execution of a non-dominant, secondary response) 

in a selective stop-change task. By contrast, task prioritization or the competition between 
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going and stopping after a signal was presented was not influenced much by incentives. 

Furthermore, we found no effect of the type of (local) incentive. 
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Appendix A

Table A1. Overview of Go1 accuracy on no-signal trials and invalid-signal trials: probability of an 
accurate Go1 response [p(correct)] and probability of a missed Go1 response [p(miss)] as a function 
of Part (first half or second half of the experiment), Group (Control, Punishment, and Reward), and 
Trial Type (no signal vs. invalid signal). 

Note: Consistent with our previous research (Verbruggen & Logan, 2009a, 2015), we distinguished 
between incorrect responses (i.e. subjects executed an incorrect response within the response interval) 
and missed responses (i.e. subjects did not execute any response within the response interval). The 
probability of a missed go response was generally very low, and therefore not further analyzed.

Table A2: Overview of the Analyses of Variance. Go Accuracy was analyzed by means of mixed 
ANOVAs with Group (Control, Punishment, Reward) as a between-subjects factor, and Part (first half. 
vs. second half of the experiment) as within-subjects factor. For the ‘Invalid-signal vs. no-signal’ 
analysis, we also included Trial Type as a within-subjects factor. P’s < .05 are in bold. 

Part 1

Part 2

Control:

Punish:

Reward:

Control:

Punish:

Reward:

no signal
invalid signal
no signal
invalid signal
no signal
invalid signal

no signal
invalid signal
no signal
invalid signal
no signal
invalid signal

P(correct)
M

0.972
0.925
0.976
0.934
0.975
0.932

0.972
0.956
0.982
0.955
0.984
0.970

sd

0.025
0.062
0.021
0.054
0.021
0.054

0.028
0.035
0.019
0.046
0.014
0.030

P(miss)
M

0.011
0.030
0.011
0.019
0.012
0.034

0.012
0.020
0.019
0.025
0.013
0.034

sd

0.010
0.028
0.013
0.026
0.023
0.039

0.014
0.024
0.032
0.034
0.019
0.041

No-signal: p(correct)

Invalid-signal vs. no-signal: p(correct)

Group
Part
Group by Part

Group
Part
Trial Type
Group by Part
Group by Trial Type
Part by Trial Type
Group:Part:Trial Type

df1

2
1
2

2
1
1
2
2
1
2

df2

105
105
105

105
105
105
105
105
105
105

SS1

0.003
0.001
0.001

0.006
0.033
0.108
0.002
0.001
0.016
0.001

SS2

0.081
0.020
0.020

0.331
0.092
0.107
0.092
0.107
0.056
0.056

F

1.830
7.950
1.857

0.972
37.252
105.463
1.181
0.298
29.827
1.283

p

0.165
0.006
0.161

0.382
0.000
0.000
0.311
0.743
0.000
0.282

η2
gen

0.027
0.015
0.007

0.010
0.053
0.155
0.004
0.001
0.026
0.002



44

Appendix B 

Table B1: Overview of Group comparisons for change-RT after exclusion of subjects whose signal-
respond RT was longer than their no-signal RT. P’s < .05 after correct for multiple comparisons are in 
bold. 

Comparison

Control vs. Punish
Control vs. Reward
Punish vs. Reward

diff

92
86
-5

lower 
CI
27
25
-54

upper 
CI
156
148
43

df

37
40
41

t

2.887
2.833
0.220

p

.006

.007

.827

BF

6.980
6.375
0.307

g

0.906
0.862
0.066
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Supplementary Materials

Additional Results Main Experiment

Signal-respond vs. no-signal Go1-RTs. As mentioned in the main manuscript, the 

independent race model does not make any assumptions about whether the executed response 

on signal-respond trials should ‘match’ the stimulus (i.e. up for ‘U’ and down for ‘D’) or not. 

Therefore, we included all executed Go1 responses in the analysis reported in the main 

manuscript. However, we have also repeated the analysis after exclusion of non-matching 

responses. The results are shown in Tables S1 and S2. As can be seen, inclusion of these trials 

did not alter the main findings. 

Table S1. Average reaction time for Go1 responses on signal-respond trials (signal-respond Go1-RT) 
and the difference between signal-respond Go1-RT and no-signal Go1-RT as a function of part (first 
vs. second half of the experiment) and group (control, punishment, reward). 

Table S2: Latencies were analyzed by means of mixed ANOVAs with group (control, punishment, 
reward) as a between-subjects factor, part (first half. vs. second half of the experiment) and trial type 
(signal-respond vs. no-signal) as within-subjects factor. p’s < .05 are in bold. 

Independent variables

Part 1

Part 2

Control
Punish
Reward

Control
Punish
Reward

Signal-respond Go1-RT

M

697
721
740

713
774
810

sd

136
151
175

171
200
210

No-signal Go1-RT minus 
signal-respond Go1-RT
M

41
26
34

47
56
59

sd

75
72
78

55
61
64

Variable
Group
Part
Trial Type
Group by Part
Group by Trial Type
Part by Trial Type
Group:Part:Trial Type

df1
2
1
1
2
2
1
2

df2
105
105
105
105
105
105
105

SS1
369459
346527
206691
79527
449

11587
2831

SS2
12648646
1185005
306227
1185005
306227
177128
177128

F
1.533
30.705
70.871
3.523
0.077
6.868
0.839

p
.221

< .001
< .001
.033
.926
.010
.435

η2
gen

0.025
0.024
0.014
0.006
0.000
0.001
0.000
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Individual data. As discussed in the main manuscript, the independent race model 

predicts that signal-respond Go1-RT should be shorter than no-signal Go1-RT (i.e. signal-

respond Go1-RT minus no-signal Go1-RT should be smaller than 0). As can be seen in Figure 

S1, signal-respond Go1-RT was numerically longer than no-signal Go1-RT for a subset of the 

subjects in each group (approximately 25-30% of the subjects).

Control Punishment Reward

N  =  9

N  =  27N  =  0

N  =  10

N  =  26N  =  0

N  =  11

N  =  25N  =  0
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N  =  27N  =  0

N  =  8

N  =  28N  =  0
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Figure S1. Numerical difference scores for all subjects in the incentive groups for each part. The 
numbers in the graph indicate the number of subjects per quadrant (unlike previous work, we used the 
observed numerical values to determine the number of subjects in each group; see Bissett & Logan, 
2014, and Verbruggen & Logan, 2015, for a more elaborate discussion).

Go1-RT and change-RT distributions. The independent race model predicts that 

signal–respond and no-signal distributions have a common minimum, but later diverge (see 

Verbruggen & Logan, 2015). The average Go1 distributions, shown in Figure S2, are 
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consistent with this prediction, although it should be noted that violations of the 

independence assumption are observed for individual subjects (Figure S1). 

Control Punishment Reward
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Figure S2. Percentile averages for signal–respond trials, no-signal trials, and invalid-signal trials for 
each group. For this graph, we included incorrectly executed go responses – e.g. when subjects 
pressed the ‘up’ key instead of the ‘down’ key.

The difference between the no-signal and invalid-signal distributions is consistent 

with our previous research, and suggests dependence between going and stopping (see 

Verbruggen & Logan, 2015, for a detailed discussion). Note that the no-signal and invalid 

signal distributions should overlap for percentiles 10-50, but then diverge substantially if 

subjects stopped all responses when signals occur. Inspection of the figure indicates that even 

the fastest go responses, which occurred approximately 150–200 ms after the presentation of 

the signal, were influenced by the presentation of invalid signals. 
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Figure S3 shows the average distributions of change latencies on successful valid-

signal trials (i.e. trials on which subjects correctly suppressed the up/down response and 

responded to the location of the signal instead). As can be seen, the change-RT distribution of 

the Control group is shifted to the right. In other words, incentives primarily influenced the 

mean of the change-RT distribution, rather than the shape of it. 
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Figure S3. Percentile averages for successful valid-change trials.
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Bayesian ANOVA. For the RT analyses, we also calculated Bayes factors for all main 

effects and interaction contrasts in the ANOVA designs (Rouder, Morey, Speckman, 

Province, 2012). We calculated the Bayes factors with the BayesFactor package in R, using 

the default prior (Morey & Rouder, 2015). We computed Bayes factors for all possible 

combinations of fixed factors and interactions, against the null hypothesis that all effects are 

0. To reduce the number of model comparisons, interactions were only allowed if all 

constituent sub-effects were also included (see Morey & Rouder, 2015). 

The outcome of the Bayesian analyses are presented in Tables S3-6. The models are 

rank-ordered based on the Bayes factors, and the favored model is on top of the list. Note that 

‘subject’ was included as a factor for all models, but this factor is not added to the model 

descriptions in the tables to reduce the amount of text. 

As can be seen, the Bayesian analyses are largely consistent with the ANOVAs 

reported in the main manuscript. The favored models in Tables S3-S5 included the Part by 

Group interaction, which provides further support for the idea that RT increased more 

throughout the experiment in the incentive groups than in the control group. Furthermore, the 

favored models in Tables S4 and S5 did not include the Group by Trial Type interactions, 

providing further support for the conclusions that incentives did not influence the difference 

between no-signal trials and signal trials. In other words, incentives did not influence task 

prioritization or the degree of parallel processing. They also did not influence sequential 

effects (Table S6). 
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Table S3: No-signal Go1-RT Bayes analysis. 

Table S4: Signal-respond vs. no-signal Go1-RT Bayes analysis. 

Note: trial = trial type (signal-respond vs. no-signal). 

Model

part + group + part:group
part 
part + group
group

Bayes factor

250041
184675
101370

0.51

Confidence 
interval
±6.9%
±0.86%
±1.73%
±0.97%

Model

group + part + group:part + trial 
group + part + group:part + trial + part:trial 
group + part + group:part + trial + group:trial 
part + trial 
group + part + trial 
group + part + group:part + trial + group:trial + part:trial 
part + trial + part:trial 
group + part + trial + part:trial 
group + part + group:part + trial + group:trial + part:trial + 
group:part:trial 
group + part + trial + group:trial 
group + part + trial + group:trial + part:trial 
group + part + group:part 
part 
group + part 
trial 
group + trial 
group + trial + group:trial 
group 

Bayes factor

1.07E+17
4.47E+16
5.28E+15
4.69E+15
2.89E+15
2.36E+15
1.99E+15
1.23E+15
2.83E+14

1.52E+14
5.54E+13
8.65E+10
7.79E+09
4.49E+09
5.89E+04
3.32E+04
1.68E+03
5.48E-01

Confidence 
interval
±5.31%
±3.63%
±3.01%
±2.36%
±4.95%
±4.98%
±4.09%
±4.88%
±8.13%

±4.15%
±2.56%
±1.95%
±1.95%
±2.31%
±1.39%
±2.99%
±2.52%
±1.61%
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Table S5: Invalid-signal vs. no-signal Go1-RT Bayes analysis. 

Note: trial = trial type (invalid-signal vs. no-signal). 

Table S6: Sequential no-signal Go1-RT Bayes analysis. 

Note: previous trial = a correct no-signal trial, a correct invalid-signal trial, a successful (signal-
inhibit) valid-signal trial, or an unsuccessful (signal-respond) valid-signal trial.

Model

part + trial + part:trial + group + part:group 
part + trial + group + part:group 
part + trial + part:trial + group + part:group + trial:group 
part + trial + part:trial + group + part:group + trial:group + 
part:trial:group
part + trial + part:trial 
part + trial + part:trial + group 
part + trial + group + part:group + trial:group 
part + trial 
part + trial + group 
part + trial + part:trial + group + trial:group 
part + trial + group + trial:group 
trial 
trial + group 
trial + group + trial:group 
part + group + part:group 
part 
part + group 
group 

Bayes factor

9.88E+35
5.37E+34
4.69E+34
4.96E+33

4.12E+33
2.43E+33
2.20E+33
2.78E+32
1.75E+32
1.15E+32
7.39E+30
5.64E+24
3.50E+24
1.57E+23
5.82E+05
7.14E+04
6.65E+04
5.32E-01

Confidence 
interval
±5.76%
±7.27%
±5.23%
±8.8%

±1.85%
±6.36%
±3.59%
±4.85%
±9.57%
±4.6%
±6.24%
±0.75%
±3.1%
±4.19%
±3.47%
±0.81%
±42.85%
±1.23%

Model

previous trial
previous trial + group 
previous trial + group + previous trial:group
group

Bayes factor

1.26E+18
7.95E+16
7.41E+15

0.054

Confidence 
interval
±0.59%
±0.92%
±1.11%
±0.53%
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Two Pilot Experiments 

In two pilot behavioral experiments, we examined the effects of reward and 

punishment on performance in two other variants of the stop-signal task. The tasks were 

optimized for ERP purposes (initially we were planning a series of ERP studies to examine 

the effects of reward and punishment on ‘reactive’ attentional and response-related processes 

on signal trials). Note that sensitivity analyses showed that these experiments could only 

detect large between-group differences. 

In both experiments, there were three groups: a punishment group, a reward group, 

and a control group. In Pilot Experiment 1 (N = 72; 24 subjects per group), we used a hybrid 

version of a go/no-go task and a stop-change task (as used in Elchlepp & Verbruggen, 2016); 

in Pilot Experiment 2, we used a stop-signal task (N = 108; 36 subjects per group). All 

signals were valid and we used a very strict response-deadline procedure to discourage 

proactive slowing. 

A detailed overview of the experiments, methods, results, and all raw data and 

analysis scripts are deposited in the Open Research Exeter data repository (http://

hdl.handle.net/10871/18924). In both experiments, punishment and reward influenced 

measures of reactive and proactive control (despite the strict response deadline on no-signal 

trials). Importantly, Bayesian analyses indicated that there were no differences between the 

Reward and Punishment groups, which is consistent with the results reported in the main 

manuscript. 
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