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Abstract 16 

Isolation valves are crucial components of water distribution systems for separating pipe 17 

segments from the network for repair or maintenance purpose. This paper looks at the impacts 18 

of isolation valves failure on the three indictors including number of valves that are needed to 19 

isolate a distribution system segment, the size of distribution system segments and the shortfall 20 

in meeting demands during failure. A network with various isolation valve configurations in 21 

terms of the density of valves is used as a case study. The results obtained from the case study 22 

show that the failure of an isolation valve has substantially varying impacts on system 23 

performance during a shutdown. The density of valves in the network determines impacts of 24 

inoperable valves on a shutdown. Generally speaking, a higher density of isolation valves leads 25 

to the less impact of valve failure. Finally, several conclusions drawn from the critical valve 26 

analysis in this study could be applied to guide the isolation valve maintenance and 27 

management.  28 

Keywords: water distribution system, isolation valves, failure, criticality analysis 29 

Introduction 30 

Background 31 

Failures of water mains caused by pipe breaks regularly occur in drinking water distribution 32 

systems. Isolation valves prevent the effects of individual events from spreading throughout 33 

the system. Instead the incidents can be isolated to small distribution system segments (Walski, 34 

1993) which can minimize their impact. Thus, isolation valves are critical for minimizing the 35 
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adverse impacts of pipe breaks and repairs. There are general guidelines for valve placement 36 

in a water distribution system such as valve spacing (GLUMB, 1992). Such guidance has been 37 

available since the early days of drinking water distribution systems. For example, Folwell 38 

(1917) wrote “These [valves] can be placed any desired distance apart but one on each line at 39 

each corner or at intervals of 500 to 750 feet apart where blocks are longer than this…” It may 40 

be better to discuss valving in terms of the number of valves at each intersection rather than 41 

spacing (Walski, 2002), though there is no globally accepted value for the “right” number of 42 

valves at an intersection. 43 

With the exception of a few papers (Trietsch and Vreeburg, 2006; Blokker et al., 2011), the 44 

impact of the failure of valves is generally not considered. Valves can fail for a variety of 45 

reasons when they are needed to be closed. This could be due to a broken valve stem or other 46 

mechanical problem (e.g. rounded operating nut), inability to locate the valve (e.g. cover paved 47 

over), or inability to turn/reach the valves due to an obstruction (e.g. a blocked valve box). 48 

Baird (2011) reported that one estimate indicated that, in American utilities, as many as 40% 49 

of distribution system valves are inoperable if they are not tested and repaired/replaced every 50 

five years. Therefore, there is a need to analyze the impacts of valve failures for informed 51 

decision making on operational and planning problems of water distribution networks. 52 

This paper investigates the impact of valve failures on system performance represented by 53 

several indicators of isolation success. It shows how the impacts depend on the initial density 54 

of valves. The paper is organized as follows. First, the valve-related literature is reviewed in 55 

the next sub-section. Second, the assessment process and the evaluation indicators are 56 



 4 / 27 
 

introduced in the method section. Moreover, a case study is performed based on the indicators 57 

developed in the previous section. Finally, conclusions are drawn.  58 

Literature review 59 

Valving has not received a great deal of attention in the research literature in the field of water 60 

distribution system design, compared to such topics as pipe sizing, tank sizing/siting or pump 61 

scheduling. Of course, water system operators had been employing this concept of using valves 62 

to isolate breaks ever since the development of the first systems, as illustrated in previous 63 

studies (Walski, 1994; Walski et al., 2006). Rosenthal et al. (2002), Creaco et al. (2010), 64 

Giustolisi et al.(2008), Jun et al. (2007), Kao and Li (2007), Trietsch and Vreeburg (2006) and 65 

Zhuang et al. (2013) investigated methods to analyze shutdowns with valving. However, few 66 

attempts have been made to assess how the water distribution system performance such as 67 

reliability is affected by valve failures.  68 

Early research into reliability simulated shutdowns by removing individual pipes from a 69 

network model without regard for the location of valves. However, the concept of a distribution 70 

systems segment defined by valves, which was described by Walski (1993), can be used to 71 

study the impact of valve failures. Walski (1993) defined a segment as “the smallest portion of 72 

a water distribution system that can be isolated by closing valves”. The ‘N Valves’ 73 

configuration is a valve layout fashion where the number of valves is equal to the linked pipes 74 

at a junction, and ‘N-1 Valves’ is a fashion of valving one less than the linked pipes (Walski et 75 

al., 2006), as shown in Figure 1. Several researchers including Jun and Loganathan (2007), 76 

Giustolisi and Savic (2010), Alvisi et al. (2011) and researchers from Bentley Systems (2016) 77 
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developed methods to automatically identify distribution system segments.  78 

Valve failure impact is normally assessed based on failure performance in consideration of 79 

failure probability (Jun et al., 2007; Blokker et al., 2011). However, assigning a likelihood to 80 

valve failure, can be very difficult for many water distribution systems due to lack of 81 

knowledge and data in practice. In this paper, the focus of this study is shifted from 82 

understanding the valve failure to understanding the consequence and impact of such a failure 83 

should it occur, no matter how big or small its likelihood is.  84 

A number of indicators can be used in relation to the valve placement problem. Deb et al. (2006) 85 

developed criteria for valve locations based on system reliability. They concluded 86 

“improvements in the distribution system reliability to minimize customer interruptions can be 87 

achieved by increasing the reliability of valves and by adding new valves in critical locations.” 88 

Walski (2011) presented an approach to determine the best number of valves in a system based 89 

on economic considerations. KWR carried out a series of studies regarding the valve reliability 90 

analysis using performance indicators, e.g. Customer Minutes Lost (CML), which is defined 91 

as the average time of the year when the customer cannot receive any water (Trietsch and 92 

Mesman, 2004; Trietsch and Vreeburg, 2005; Trietsch and Vreeburg, 2006; Blokker et al., 93 

2011). Their methodology identified critical valves based on CML. However, there are few 94 

studies to use hydraulic performance related metrics, which allow for analyzing the direct 95 

impact (i.e. in the failure area) and the indirect impact (i.e. other areas where demand/pressure 96 

shortfalls are caused by the isolation) at the same time. This paper employs system property 97 

metrics and hydraulic performance related metrics including: 1) the operability of the isolation 98 
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of an incident area (i.e., the number of isolation valves); 2) the surrogate indictor of a failure 99 

impact (i.e., segment length); and 3) the impact on pressure dependent water supply based on 100 

the hydraulic simulation. These indicators are then used to identify the critical valves. 101 

Methods  102 

Identifying critical isolation valves  103 

Critical isolation valve identification aims to find out which failing valve would result in the 104 

most significant impact on the network. Failed valve refers to a normally open isolation valve 105 

being inoperable when needed to separate part of the network where an accidental event occurs 106 

(e.g. pipe breaks). When a valve fails, in order to be still able to isolate the incident area, the 107 

nearest downstream or upstream isolation valves are operated instead to substitute the failed 108 

isolation valve. The procedure to identify critical isolation valves is described here: 109 

Step 1. A valve failure scenario is set up via an assumption that a specific isolation valve is 110 

failing in the network. The failing isolation valve cannot be closed when required. Failing 111 

isolation valves are analyzed one by one in each failure scenario in this study. A base case 112 

scenario with all isolation valves in operation is also considered to compare with the failing 113 

isolation valve scenarios(Creaco et al., 2012).  114 

Step 2. Several indicators (described below) are calculated for each isolation segment, first 115 

assuming all valves are operable.  116 

Step 3. Then each valve is failing. This results in the two segments that were connected by the 117 

valve being merged into a single new, larger segment. The indicators are then calculated. A 118 
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comparison is made between the indicators with and without the valve in service.  119 

Evaluation indicators 120 

Due to isolation valves closure, a set of independent segments, not connected to any source, is 121 

set up. The effect of isolation valves on the system performance is reflected by the impacted 122 

segments (Mugume et al., 2015). The importance of any valve is determined not by the value 123 

of an indicator but by the change in the value when the valve shifts from operable to inoperable. 124 

The indicators are adopted in this study including  125 

1. Number of isolation elements needed to successfully isolate a segment,  126 

2. Segment length and  127 

3. System supply shortfall (i.e. demand not satisfied), both instantaneously and over an 128 

extended time.  129 

The first two indicators are the property related metrics representing the characteristics of the 130 

segments that are assessed, and the third is an indicator of hydraulic performance. The 131 

definitions of the indicators are as follows, 132 

Number of isolation elements is the number of valves that are used to isolate a segment. In the 133 

model, isolation elements could include a variety of valves, such as isolation valve, pressure 134 

reducing valve, flow control valve, etc. Note that the flow/pressure control devices cannot 135 

function as the isolation devices in reality, but they are usually accompanied by isolation valves 136 

(e.g. gate valves and butterfly valves) for maintenance/repair use. In the model, the isolation 137 

valves around the control devices are not explicitly included, so the control devices could be 138 

allowed to serve as the boundary of the segment. The indicator of number of isolation elements 139 
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can represent the complexity of closing valves when isolating an incident area. The more valves 140 

are needed to close, the more time one spends on locating and operating and the greater the 141 

likelihood that one or more of the valves will be inoperable. Ideally only two valves should be 142 

required but four is usually considered an acceptable number. 143 

Segment length represents the total length of pipes in a segment. The segment length indicator 144 

can be related to the number of customers out of service, assuming customers are relatively 145 

evenly distributed, and also gives an indication of likelihood that any segment will need to be 146 

shut down due to a pipe break. The larger the segment length (assuming a uniform break rate 147 

per km per year) is, the greater the likelihood it will need to be shut down.  148 

System demand shortfall is the difference between total demand and total water actually 149 

supplied for all demand nodes during a segment shutdown. System demand shortfall results 150 

give an indication of the system hydraulic performance in terms of the amount of demand met 151 

when the shutdown of a segment occurs.  152 

System demand shortfall includes: 1) demands at nodes that are not connected to the source 153 

plus 2) the amount of water not supplied due to inadequate pressure. Pressure dependent 154 

demand (PDD) analysis has an ability of quantifying the system performance when an 155 

abnormal event occurs. Therefore, the PDD method applied to the critical valve 156 

identification/regulation and pipe design is recommended by many researchers (Tucciarelli et 157 

al., 1999; Wu and Walski, 2006; Giustolisi et al., 2008; Creaco et al., 2010). With PDD, a 158 

continuous relationship between demand met and pressure is used, and the supply becomes a 159 

constant below the minimum pressure or above the pressure threshold. Supply is deemed to be 160 
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independent of nodal pressure when above the threshold (Giustolisi et al., 2008). The 161 

relationship between supply and pressure used in this study is a power function, and some 162 

alternative formulations can be found in Wagner et al. (1988), Fujiwara and Ganesharajah 163 

(1993) and Tucciarelli et al. (1999). The mathematical expression used here (Wu et al., 2009; 164 

BentleySystems, 2016) is given in Equation 1. 165 
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where iH  is the calculated pressure at node i ; riQ  is the requested demand or reference 167 

demand at node i ; 
s
iQ  is the calculated demand (actual supply) at node i ; riH  is the 168 

reference pressure that is deemed to supply full requested/reference demand; tH  is the 169 

pressure threshold above which the supply is independent of nodal pressure;  is the 170 

exponent of pressure demand relationship. For this formulation of the relationship between 171 

pressure and demand, Equation 1 provides more flexible uses for a PDD analysis than that in 172 

Wagner et al. (1988). For example, leakage and fire flow could continuously increase when the 173 

actual pressure exceeds the reference pressure ( riH ). Also, the reference pressure and the 174 

pressure threshold ( tH ) could be set equally, i.e. ri tH H , which is consistent with the 175 

formulation in Wagner et al. (1988). 176 

Steady state and extended period simulations (EPS) are used to calculate the system demand 177 

shortfall. Steady state runs are useful for identifying the results of outages which are not 178 

particularly long (e.g. less than an hour). With extended period simulation runs, the effects of 179 
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the shutdown on tanks draining (or filling) are determined. EPS runs are much more likely to 180 

have nodes that become disconnected such that the hydraulic calculations will not balance. The 181 

analyses based on connectivity only and steady state runs are snapshots which give shortfall in 182 

flow units (e.g. liter per second), while the EPS runs calculate shortfall in volume units (e.g. 183 

cubic meter).  184 

In this study, segmentation and PDD methods are implemented using Bentley WaterGEMS 185 

software (Jun and Loganathan, 2007; Wu et al., 2009). The alternative software tools include 186 

KWR OptiValves, Innovyze InfoWorks, etc. The Criticality module calculates the basic 187 

indicators’ values for all segments. In some cases, the systems become so disconnected because 188 

of valve closures that the hydraulic equations cannot be solved and independent manual 189 

calculations are implemented for calculating shortfall. 190 

Case study 191 

The case study network consists of 279 pipes and 188 junctions, where the total pipe length is 192 

21 km and the diameter ranging from 101 mm to 203 mm. There are two pumps feeding water 193 

to the network from the lower elevation reservoir at the northeast side of the system and a tank 194 

located at the southwest side, as shown in Figure 2. The pump controls are determined by tank 195 

water level. In the model the demands are loaded at mid-pipe rather than at cross junctions 196 

because the customers are located along a pipe, not at junctions and that difference is important 197 

in the valve segmentation calculations. The demand pattern shown in Figure 3 is consistent for 198 

all demand nodes in extended period simulation runs.  199 

In this network layout, only isolation valves are used as isolation elements, and four 200 
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configurations of isolation valves are set up according to gradually decreased density of 201 

isolation valves, as shown in Table 1. Other than N Valves and N-1 Valves fashions introduced 202 

previously, Limited Valves and Scarce Valves fashions subsequently reduce valves on the basis 203 

of the N-1 Valves. For the valve configurations, the valve elimination is based on the prior, 204 

more valves configuration. For example, N-1 Valves is transformed into Limited Valves by the 205 

reduction of a few valves. The missing valves usually tend to be the valve placed on the 206 

upstream pipe (i.e. the pipe where water most commonly flows to the node). 207 

In Equation 1, the exponent of the function is set to 0.5. The pressure threshold is set to 20 m, 208 

above which the demand is fully met. riH  is set to the same value with the pressure threshold 209 

( tH ). 210 

Results  211 

This section shows the impact of a single valve failure on the three indicators described above. 212 

Number of isolation elements 213 

Figure 4 shows the results of the number of isolation elements with and without a valve failure. 214 

The black columns represent the number of isolation elements when the isolation valves are in 215 

operation, while grey column heights are the total number of isolation elements when one 216 

isolation valve is out of service. For the N Valves configuration, most pipe segments can be 217 

isolated by two valves in the all isolation valves operating case. When one of the isolation 218 

valves is failing, the number of isolation elements will increase to three for “T” shape 219 

intersections or four for the cross junctions (see Figure 4a). For the N-1 Valves configuration, 220 

the greatest increase in the number of isolation elements is 2, while the increase is 5 for the 221 
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Scarce Valves configuration. The isolation elements indicator changes fairly largely for 222 

different valve configurations and the greatest value of the indicator corresponds to different 223 

failed valve scenarios, which indicates that the critical isolation valve identified by the isolation 224 

elements indictor is highly related to valve layout and network topology.  225 

In Figure 4, the number of isolation elements increases (grey column height minus black 226 

column height) with the decrease in density of valves. The density of valves initially impacts 227 

the number of valves that need to be operated when all are operating, but the more significant 228 

problem is that as the density of valves decreases and a valve fails, the number of extra valves 229 

that must be operated increases. In this sense, having an inoperable isolation valve is equivalent 230 

to making the isolation valve configuration sparser. The network with reduced valves requires 231 

operation of more valves to isolate an incident area, which implies longer valve operating time 232 

and more valve failure risk.  233 

The total height of the column in Figure 4 corresponds to the number of isolation valves needed 234 

for isolation when the targeted isolation valve fails. The maximum height in Figure 4d is 10. 235 

Investigation of the location of this 10-valve segment shows that it lies at the right of the 236 

network, linking the nearest segment to the tank, of which the other end extends into the meshed 237 

network (Seg-1 in Figure 5). This result is primarily contributed to 7 isolation valves by the 238 

meshed network that has lots of alternative paths. Therefore, it is inferred that the need for 239 

more isolation valves tends to occur in highly meshed networks with a scarce valve 240 

configuration.  241 

The indicators statistics are calculated to investigate the changes of isolation elements for a 242 
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specific valve configuration and also to compare various isolation valve configurations. A 243 

summary of average numbers of isolation elements is shown in Table 2. If one of the valves 244 

fails, the isolation element count will increase in comparison with the count in operable 245 

scenarios. It is worth noting that on average more than one valve is needed to compensate for 246 

a single failed valve. The sparser the density of valves is, the more compensation valves are 247 

needed. The extra compensation valves reaches up to 104% for the Scarce Valves configuration.  248 

Segment length 249 

Figure 6 shows the results of the segment length indicator in the isolation valve operable (black 250 

column) and inoperable (grey column) states. The smaller segment length is chosen as a 251 

representative between the two segments that the target valve links when the valve is in the 252 

operable state, since a larger difference of this indicator could be shown before and after the 253 

valve failure. The segment length, when the valve is inoperable, is combined by the two 254 

segments that are linked by the failing valve. For most valve failure scenarios, segment length 255 

has an obvious change in all valve configurations. The greatest increase is derived from the 256 

valve failure at the round circle network (Seg-2 in Figure 5). In some way we cannot emphasize 257 

that the valves in that area are really critical, because it is located near the boundary of the 258 

network and does not impact any downstream segments, and the outskirt area usually has 259 

sparser users distributed along the pipes.  260 

As can be seen in Figure 6a, the N Valves configuration has very small segment lengths when 261 

all valves are operating, and these segments usually appear at junctions, that is a cross junction 262 

is surrounded by four isolation valves in each incident pipe. If there are four valves at a cross, 263 

there are usually no customers connected in that segment. The segment around the junction 264 



 14 / 27 
 

implies the lower failure ratio due to the shorter pipe length. In addition, from the point of view 265 

of the uniformity of segment length for linking segments, N-1 Valves and Limited Valves 266 

configurations show a good tradeoff that they don’t have valve redundancy, such as the N 267 

Valves configuration ubiquitously has very small segments (the black columns in Figure 6a), 268 

nor as significant impact as the Scarce Valves configuration (the grey columns in Figure 6d).  269 

Table 3 shows the statistical results of average segment length before and after an isolation 270 

valve fails. The segment length, in valve operable and inoperable states and the changes 271 

between them, increases with the decrease in the density of valves. The segment lengths exhibit 272 

considerable increases for all configurations (the relative changes of segment length are shown 273 

in the brackets in Table 3). In particular, in the N valves configuration, the segment length 274 

increases by about 4 times for a majority of failing valves.  275 

System supply shortfall 276 

Figure 7 shows the system supply shortfalls when the isolation valves are operating or failing. 277 

For all valve configurations, the supply shortfalls exhibit significant increase before and after 278 

one of the isolation valves fails. In the N valve configuration (Figure 7a), a number of supply 279 

shortfalls in the failure scenarios (i.e. black columns) are equal to zero, which indicates the 280 

isolated segments do not include any demands, nor induce the pressure drop below the 281 

prescribed pressure threshold (i.e. below 20 m) due to network shutdown.  282 

In Figure 7d, there is a valve failure scenario which shows a far greater shortfall value than 283 

other failure scenarios. This isolation valve (i.e. Valve 79) is laid on the mains which links the 284 

tank and the reservoir, and in the Scarce Valves scenario this valve becomes the only existing 285 
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isolation valve for a long distance in that route. This segment of mains links two inlets of a 286 

large area of the network (that linking to Seg-4 in Figure 5, roughly one third of the network). 287 

If the isolation valve is failing, isolation of the new segment of mains puts all of the water users 288 

in the right bottom portion of network out of service. This isolation valve is critical in this case. 289 

In contrast, this valve also exists in the other three valve configurations but its failure does not 290 

have as large of an effect, and thus it implies that the criticality of an isolation valve is highly 291 

dependent on the valve layout.  292 

The isolation valves with the great values of shortfall (Valve 43, 44, and 167 in Figure 7a, 293 

Valve 37 and 38 in Figure 7b, Valve 31 and 32 in Figure 7c) are consistently associated with 294 

a segment which includes a single link that connects an independent network to the mains ( the 295 

network linking to Seg-3 in Figure 5). These valves will result in a complete outage for a large 296 

portion of the network when one of them is failing. Therefore, it implies that the valves in the 297 

segment containing the inlet of a large, branched network are critical.  298 

The shortfall values before and after one of the valves fails are shown in Table 4. Similarly, 299 

the results of shortfall in supply increase with the decrease in the density of valves. The 300 

changes of shortfall take on several times larger than the shortfall when all of the valves are 301 

operable. It demonstrates that segment shutdown when one valve fails could result in a much 302 

more significant impact than that of the operating valves (3~4 times larger in this case). The 303 

percentages in Tables 4 represent the percent of system demand that is not met. 304 

Extended period simulation analysis 305 

The segment isolated for a long period can be simulated in EPS. It is assumed that the period 306 
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of restoration or maintenance lasts for 24 hours in this study. Figure 8 demonstrates the results 307 

of the system supply shortfall indicator in EPS runs. In general, only a few valves can lead to 308 

a large shortfall. These valves which cause serious shortfalls appear to aggregate in 309 

approximately the same ranges for all configurations. Therefore, the shortfall values in this 310 

case are divided into 4 “ranges” with thresholds of 1,200 m3, 600 m3, and 200 m3 (i.e. dashed 311 

line shown in Figure 8), which correspond to 72%, 36%, 12% of total supply, respectively. 312 

There are three valves leading to excess of 1200 m3 in all four valve configurations. The 313 

shortfall values in the second range all concentrate between 600 m3 and 800 m3 except the 314 

Scarce Valves configuration. The shortfalls in the third range also have approximately similar 315 

values. Overall, we find strong correlations among the four valve configurations.  316 

The locations of the isolation valves in the three most important zones are plotted in Figure 317 

9a, of which the system supply shortfalls are larger than 200 m3 (see in Figure 8). The isolation 318 

valves (Valve-41, Valve-164, Valve-72) in Zone 1 in Figure 9a surround the pump station, and 319 

the detailed structure of Zone 1 is shown in Figure 9b. The valves in Zone 2 in Figure 9a are 320 

located in close proximity to the segment that is the only way linking between the pump station 321 

and tank, termed as key segment (shown in Figure 9c). Water users to the east of that segment 322 

can be supplied if the segment is shut down, but to the west, users will only be supplied until 323 

the tank drains. The supplied amount is equal to the initial volume of the tank. The third zone 324 

valves in Figure 9a are concentrated around a key segment that links the water source and a 325 

branched network with a single supply. The shortfall corresponds to the demand in the areas. 326 

In general, valves whose failure prevents the main pump station from supplying water are the 327 

most critical. When the main pump station cannot supply water, the remainder of the system 328 
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must be fed from the tank which has a finite capacity which is exhausted in a 24 hour period. 329 

A larger tank or a faster repair would reduce that impact. 330 

As the configuration of valves becomes sparse, the segments are enlarged. Thus more isolation 331 

valves become critical in order to isolate the important segments from the location needing to 332 

be shut down, according to Figures 8 and 9.  333 

The critical isolation valves are usually associated with key segments. The isolation valves 334 

(Valve-153 and Valve-157 in Figure 9c) that are placed on the key segments correspond to the 335 

black columns in Figure 8a. It indicates there is a significant impact on the demand shortfall 336 

once this valve is closed. Moreover, another type of isolation valve that can induce the 337 

enormously incremental shortfall if it fails is located in the proximity of the key segment (e.g. 338 

Valve-35, Valve-36, Valve-37, and Valve-152 in Figure 9c). 339 

Table 5 summarizes the supply shortfall in EPS runs. In general, there is an ascending trend 340 

of the impact on shortfalls with the decrease in the number of valves. The less the number of 341 

valves, the greater the degree of shortfall (i.e., the greater the percent of shortfall change). The 342 

Limited Valves configuration has a lower shortfall value than the N-1 Valves configuration in 343 

the valve operable state, due to some extreme values (see Figure 8) derived from the special 344 

position of valves. The volumes of shortfall in EPS are converted into mean flow rates in the 345 

24 hours horizon, allowing for a comparison with the results in the steady state. For the valve 346 

operable state, the EPS produces the moderate increase in the shortfall in comparison to that 347 

of the steady state simulation (Table 4), but for the valve inoperable state, the EPS exhibits a 348 

more significant impact on supply shortfall. That is because the tank that is drained within the 349 
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EPS enhances the influence of valve closure and also exacerbates the impact of valve failure.  350 

Discussion 351 

While increasing the number of valves leads to a more reliable system, not all valves are of 352 

equal importance. Failure of a valve adjacent to a pump station, tank, major transmission pipe 353 

or the beginning of a branched (i.e. tree shaped) portion of the system can have much greater 354 

impact than failure of a pipe in a highly looped portion of the system away from major facilities. 355 

While valves on hydrant laterals  are not included in this study, it is easy to see that those 356 

valves are especially important when they are located on major transmission pipes such that 357 

failure of a small valve can impact a major component of the system. 358 

Identification of valves whose failure can have serious consequences can help water utilities 359 

prioritize valve maintenance work. Identification of key valves not only indicates where 360 

additional valves may be required during design but also where maintenance activity should be 361 

focused. 362 

The three indicators used for a valve criticality analysis are introduced in this paper. The 363 

indicator of system supply shortfall is principally recommended because this indicator can 364 

directly reflect the impact of how much water cannot be supplied in the isolated area. Moreover, 365 

this indicator also takes into account the impact of the supply shortfall due to inducing more 366 

head loss. However, the indicators of segment length and number of isolation valves are two 367 

good surrogate measures when a well calibrated hydraulic model is not available or the massive 368 

hydraulic simulations are infeasible in large water network systems, e.g., in the valve reliability 369 

assessment and valve optimization placement. Also, the segment length indicator takes the 370 
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advantage of data accessibility over the indicators associated with impacted customer survey. 371 

The latter two approximately evaluate the impact of the failed valves on the system 372 

performance but are more straightforward and easy to use. The schedule of valve maintenance 373 

work could be also based on the priority with respect to different indicator results in the 374 

criticality analysis.  375 

Conclusions  376 

This paper presents a failure impact analysis method that can identify the most critical valves 377 

using a set of indicators in water distribution systems. In the method, one isolation valve in a 378 

network is assumed to fail in a failure scenario. Based on the valve failure scenarios, the 379 

performance of segments (or overall network) is examined by a set of three indicators which 380 

are the number of isolation valves needed for shutdown, segment length and system supply 381 

shortfall (for both an instantaneous and extended period). Using these indictors, it is possible 382 

to determine which isolation valves are most critical throughout the network. The case study is 383 

applied in a realistic water distribution network with four different valve configurations in 384 

terms of the density of valves. We can draw the following general conclusions in this study: 385 

1) As more isolation valves are included in a system, the impact of the failure of any one valve 386 

becomes less severe. Specially, the three indicators consistently increase (i.e. performance 387 

becomes worse) with the decrease in the valve density.   388 

2) Critical valves are often associated with key segments, i.e. the ones containing sources or 389 

linking a large portion of the network with a single inlet. In multiple source systems, tanks play 390 

a key role of minimizing the impact of segment outage at least for a short time period of outage.  391 
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3) The critical valves are strongly associated with network topology and valve layout. Isolation 392 

valve number is inherently crucial for water network management, and the proper placement 393 

of valves is able to mitigate the impact of incidents to a great extent.  394 

4) The failure of some valves only affects a small area while the failure of others can have 395 

system-wide implications. 396 

The number of valves is closely related to cost, both of valve construction and valve 397 

maintenance. Minimizing the number of valves, however, has a substantial effect on the 398 

indicators. There exists a tradeoff between cost and benefit of valve placement (Creaco et al., 399 

2010). The future work is suggested to investigate how the impact of valve failure, and also the 400 

combination of multiple valve failures, is related to the cost of valve placement.   401 
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Table 1. The number of isolation valves and segments in various valve configurations  477 

Configuration Number of isolation valves Number of segments 
N Valves 183 157 

N-1 Valves 130 104 
Limited Valves 112 86 
Scarce Valves 91 65 

  478 



 24 / 27 
 

Table 2. Average number of isolation elements 479 

Valve 
configuration 

Average number of 
isolation elements when 

valves are operable  

Average number of 
isolation elements when 

one valve is out of service  

Incremental 
number of 

isolation elements  
N valves 2.0 

2.3 
2.5 
2.7 

3.1 
3.8 
4.4 
5.5 

1.1 (55%)a 
1.5 (65%) a 
1.9 (76%) a 
2.8 (104%) a 

N-1 valves 
Limited valves 
Scarce valves 

a Relative change of incremental number of isolation elements = the incremental number of 480 
isolation elements / the average number of isolation elements when valves are operable  481 
 482 
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Table 3. Average segment lengths 483 

Valve 
configuration 

Average segment 
length when valves are 

operable (m) 

Segment length when 
one valve is out of 

service (m) 

Segment length 
change (m) 

N valves 12.6 
33.3 
39.4 
60.3 

61.1 
105.0 
129.1 
188.0 

48.5 (385%)a 
71.7 (215%) a 
89.7 (228%) a 

127.7 (218%) a 

N-1 valves 
Limited valves 
Scarce valves 

a Relative change of segment length = change length / segment length in the valve operating 484 
state 485 
 486 

  487 
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Table 4. Average system supply shortfalls in steady state 488 

Valve 
configuration 

Shortfall when valves 
are operable  

Shortfall when one valve 
is out of service  Shortfall change 

(L/s) (%) (L/s) (%) (L/s) (%) 
N valves 0.09 0.5 0.35 1.8 0.26 1.3 

N-1 valves 0.17 0.9 0.58 3.0 0.41 2.1 
Limited valves 0.21 1.1 0.72 3.7 0.51 2.6 
Scarce valves 0.32 1.7 0.99 5.1 0.67 3.4 

 489 

 490 

  491 
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Table 5. Average system supply shortfalls in EPS 492 

 Shortfall when valves 
are operable  

Shortfall when one 
valve is out of service  Shortfall change 

 (m3) (L/s) (%) (m3) (L/s) (%) (m3) (L/s) (%) 

N valves 16 0.19 1.0 73 0.84 4.4 57 0.65 3.4 
N-1 valves 21 0.24 1.3 105 1.22 6.3 84 0.98 5.0 

Limited valves 20 0.23 1.2 119 1.38 7.2 99 1.15 6.0 
Scarce valves 38 0.44 2.3 182 2.11 10.9 144 1.67 8.6 

 493 

 494 

 495 
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Figure 1. Valving approaches  

Figure 2. The schematic of the case network and the four valve configurations 

considered: a) N Valves; b) N-1 Valves; c) Limited Valves; and d) Scarce Valves.  

Figure 3. Hourly demand pattern for the case network 

Figure 4. Number of isolation elements before and after one valve failed 

Figure 5. The most significantly impacted segments. Seg-1 is the segment that includes 

the most isolation valves; Seg-2 is the longest segment (scaled in the model); Seg-4 and 

Seg-3 correspond to the segments with first largest shortfall and second largest shortfall 

in the steady state simulation, respectively. 

Figure 6. Segment length variation before and after one valve failed 

Figure 7. System supply shortfalls before and after one valve failed in steady state 

Figure 8. System supply shortfalls before and after one valve failed in EPS 

Figure 9. Location of critical isolation valves in extended period simulation 
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