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Abstract 18	

Resource-based trade-offs occur when investment in one fitness-related trait diverts energy 19	

away from other traits. The extent to which such trade-offs are shaped by limits on the rate of 20	

conversion of energy ingested in food (e.g. carbohydrates) into chemical energy (ATP) by 21	

oxidative metabolism rather than by the amount of food ingested in the first place is, 22	

however, unclear. Here we tested whether the ATP required for mounting an immune 23	

response will lead to a trade-off with ATP available for physical activity in mosquitofish 24	

(Gambusia holbrooki). To this end, we challenged fish either with lipopolysaccharide (LPS) 25	

from E. coli or with Sheep Red Blood Cells (SRBC), and measured oxygen consumption at 26	

rest and during swimming at maximum speed. Relative to saline-injected controls, only LPS-27	

injected fish showed a significantly greater resting metabolic rate two days post-challenge 28	

and significantly higher maximal metabolic rates two and seven days post-challenge. This 29	

resulted in a significantly greater metabolic scope two days post-challenge, with LPS-fish 30	

transiently overcompensating by increasing maximal ATP production more than would be 31	

required for swimming in the absence of an immune challenge. LPS-challenged fish therefore 32	

increased their production of ATP to compensate physiologically for the energetic 33	

requirements of immune functioning. This response would avoid ATP shortages and allow 34	

fish to engage in an aerobically-challenging activity (swimming) even when simultaneously 35	

mounting an immune response. Nevertheless, relative to controls, both LPS- and SRBC-fish 36	

displayed reduced body mass gain one week post-injection, and LPS-fish actually lost mass. 37	

The concomitant increase in metabolic scope and reduced body mass gain of LPS-challenged 38	

fish indicates that immune-associated trade-offs are not likely to be shaped by limited 39	

oxidative metabolic capacities, but may instead result from limitations in the acquisition, 40	

assimilation or efficient use of resources. 41	
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Introduction  44	

Pathogens can represent intense selection pressures for their hosts [1, 2].  Despite this, the 45	

evolution of host resistance through the activation of a protective immune response may be 46	

constrained by the energetic costs of immune functioning and trade-offs with other fitness-47	

related traits [3-6]. A growing number of studies have provided evidence of costly immune 48	

responses to inert antigens, with immune-challenged individuals showing increased 49	

nutritional intake [7, 8] and body mass loss [9, 10] compared to controls. Because hosts 50	

usually have access to limited resources, the energy allocated to fuel immune responses may 51	

be diverted away from other fitness-related functions, such as growth, reproduction and 52	

maintenance [3]. Accordingly, immune challenges have been shown to be associated with 53	

reduced locomotor performance [11, 12] and lowered investments in reproduction and growth 54	

[13, 14]. However, while energetic constrains are often assumed to mediate life history trade-55	

offs [3], the physiological processes by which this might occur still remain to be elucidated. 56	

 57	

Previous studies quantifying the energetic cost of immunity have focused on measuring 58	

changes in basal metabolic rates following immune challenge [9, 15, 16]. Basal (or resting 59	

when measured under less restrictive circumstances) metabolic rates reflect the rate of ATP 60	

hydrolysis required to maintain cellular processes during physical inactivity [17]. For 61	

instance, vaccinated rainbow trout (Oncorhynchus mykiss) displayed higher routine metabolic 62	

rates, which in fish can be indicative of basal metabolism, than controls [18], with rates 63	

increasing by ~20% 223° days post-vaccination [19]. Similarly, four species of insects 64	

(Tenebrio molitor, Acheta domesticus, Cotinis nitida and Periplaneta americana) showed an 65	

increase in metabolic rate by up to 28% following the induction of an encapsulation response 66	

[20]. Cutrera et al [21] reported that tuco-tucos (Ctenomys talarum) experimentally-67	

challenged with Sheep Red Blood Cells (SRBC) experienced a 20-35% increase in metabolic 68	
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rate, which was equivalent to a 15% increase in daily energetic expenditure. Martin et al. [22] 69	

and Eraud et al. [23] found that the increase in basal metabolic rate displayed by collared 70	

doves (Streptopelia decaocto) and house sparrows (Passer domesticus) following injections 71	

with inert antigens was of a magnitude similar to that required to produce half an egg per day 72	

and to maintain an optimal body temperature at an ambient temperature 1-2°C below thermo-73	

neutrality, respectively. While immune responses have thus been shown to increase the 74	

resting metabolic rate, it remains to be determined whether such immune-triggered increase 75	

in ATP use at rest means that less ATP is available for engaging in other aerobically-76	

challenging activities. 77	

 78	

The level of energy that an individual can allocate to fitness-related activities such as  79	

reproduction, foraging and engaging in behavioural interactions, can be estimated by the 80	

aerobic metabolic scope [24-26]. The aerobic metabolic scope is defined as the difference 81	

between the maximal metabolic rate, which reflects maximal mitochondrial flux [24], and the 82	

resting metabolic rate, and therefore represents the metabolic capacity to engage in 83	

aerobically-challenging activities [27]. Metabolic scopes may decline either when there is an 84	

increase in the resting metabolic rate or when there is a decrease in the maximal metabolic 85	

rate. Hence, if metabolic maintenance costs increase, the resultant reduction in metabolic 86	

scope can create an allocation trade-off [28]. Decreases in the amount of energy available to 87	

other activities may, however, be counterbalanced physiologically though an increase in the 88	

capacities of mitochondrial metabolic pathways [26, 29, 30]. While such compensatory 89	

responses may abolish ATP shortages, trade-offs may still persist if investment in multiple 90	

aerobically-challenging activities depletes storages of ingested chemical energy with 91	

detrimental consequences for body condition.  92	

 93	
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Here we examined the energetic basis of immune-associated resource allocation trade-offs in 94	

wild-caught, female mosquitofish (Gambusia holbrooki). Individuals were challenged either 95	

with lipopolysaccharides (LPS) isolated from Escherichia coli or with Sheep Red Blood Cells 96	

(SRBC) to investigate how differences in the type of immune response elicited may constrain 97	

energetic investments in other functions [21, 31-33]. Although fish are thought to be less 98	

sensitive to endotoxins such as LPS than other vertebrates [34-36], LPS-challenges in fish in 99	

vivo and in vitro nevertheless induced a strong inflammatory response [37, 38], and increased 100	

the production of cytokines and acute phase proteins, as well as stimulated T and B 101	

lymphocytes, macrophages and complement systems [25]. For example, the expression of 102	

cytokines in a monocyte-macrophage lineage of rainbow trout was detectable 6h after 103	

exposure to E. coli LPS and increased over 24h [29, 32]. LPS also induces antibody 104	

production, which  in the brown trout (Salmo trutta) was detectable on day 14 post-injection 105	

[39]. However, antigen-binding and antibody-secreting cells were detected in the spleen and 106	

kidney of these fish as early as 2 and 4 days after injection, with peaks reached between day 107	

14 and 18 post-injection [40]. SRBC, on the other hand, induced a non-pathogenic T and B-108	

cell dependent antibody response [31]. Brown trout immunized with SRBC displayed 109	

detectable levels of antigen-binding and antibody-secreting cells on day 6 post-injection, with 110	

levels peaking on day 12 [40]. Levels of antibody-producing cells were detectable as early as 111	

day 5 and peaked on day 10 in the Mozambique tilapia (Oreochromis mossambicus) [41]. 112	

 113	

First, we predicted that if immune responses were energetically costly, then immune-114	

challenged individuals would exhibit higher resting metabolic rates than controls. Second, we 115	

tested whether limits on ATP production and the amount of ATP available can give rise to 116	

immune-associated trade-offs. We predicted that, if this were the case, immune-challenged 117	

individuals should experience a reduction in metabolic scope relative to controls. Conversely, 118	
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if immune-associated trade-offs are shaped by a limited availability of ingested energetic 119	

resources, then immune activation should instead be associated with a reduction in body 120	

mass. 121	

 122	

Material and methods 123	

STUDY ANIMALS 124	

Wild invasive mosquitofish were captured in July 2011 from natural ponds on private land 125	

near Perpignan (42.698°N, 2.895°E) in southern France, with permission from local 126	

landowners. Animals were immediately brought back to the laboratory at the Station 127	

d’Ecologie Expérimentale du CNRS in Moulis (Ariège, France), where they were housed in 128	

large containers (100 fish at approximately 1 fish/L), with a mixture of water from their 129	

capture sites and aged tap water. The females used in this study were house individually (in 130	

300×250×200 mm tanks) so that we could follow individuals. Females were habituated to 131	

their individual tanks for two weeks before the start of the experiment. At the time of capture, 132	

water temperature at the sites of capture varied between 28-30oC; fish were therefore kept at 133	

30oC in the laboratory throughout the habituation and experimentation phases. Because 134	

female mosquitofish store sperm and will be mated immediately upon reaching maturity [19], 135	

we categorized females based on the shape and distension of their abdomen to ensure that all 136	

individuals used were at a similar early stage of pregnancy [for detailed methods see 42] [26].  137	

Fish were fed to satiety with commercial fish flakes once per day. Food was withheld 24 h 138	

prior to immune-treatment and prior to all measurements of metabolic rates. This ensured that 139	

fish were in a post-absorptive state and therefore fit the requirement for basal metabolic rate 140	

measurement (i.e., calm, motionless and post-absorptive). 141	

 142	

  143	
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IMMUNE CHALLENGE 144	

After approximately two weeks in captivity, females were randomly assigned to experimental 145	

or control groups (experimental LPS-injected: N=10; experimental SRBC-injected: N=9; 146	

controls: N=10). Individuals were challenged with an intra-peritoneal injection of LPS 147	

(Sigma; St. Louis, USA; L4005; 10µg/g fish at 1g/L [43]) or SRBC (Sigma R3378; 20µg/g 148	

fish at 1g/L [41, 44]) for experimental treatments, and 0.01mL of saline solution (PBS) for 149	

controls. Prior to injection, all fish were lightly anesthetized in a clove oil solution, and after 150	

injection animals were placed immediately in aged tap-water where they recovered within 1-2 151	

minutes. We recorded total body length using callipers (Mitutoyo, Kawasaki, Kanagawa, 152	

Japan; precision: ±0.05 mm) at the start of the experiment, and we measured body mass at the 153	

time of injection (hereafter: initial mass) and again after 7 days (~168 hours) using an 154	

electronic balance (Ohaus, Brooklyn, NY, USA; precision: ±0.01 g). 155	

 156	

OXYGEN CONSUMPTION 157	

In fish, the immune response to LPS is known to occur within hours of injection and last for 158	

at least 2 weeks [29, 32, 39]. On the other hand, antibody responses to SRBC can become 159	

detectable 5-6 post-immune challenge and peak 10-12 day post-injection [40, 41]. 160	

Consequently, we measured resting and maximal metabolic rates at 24h, 48h and 168h (7 161	

days) post-challenge in LPS-exposed individuals and control fish, and at 7 days only in 162	

SRBC-exposed ones.  Oxygen consumption is a commonly-used, indirect measure of 163	

metabolic rates [45]. Oxygen consumption was measured according to published methods 164	

[42] with a fibre-optic oxygen system (Fibox 3, Presens, Regensburg, Germany) monitoring 165	

sensor spots (Presens, Germany) attached to the insides of respirometers according to the 166	

manufacturers’ instructions. For resting oxygen consumption measurements, we allowed fish 167	

to rest in a cylindrical glass respirometer (245 ml volume) placed into a darkened tank for 45-168	
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60 minutes.  We then sealed the respirometer, making sure not to disturb the fish, and let the 169	

fish rest for a further 10-15 minutes before recording the decrease in oxygen over a 7-10 170	

minute period or until a steady rate of oxygen decrease was established; we followed the 171	

decrease in oxygen levels within the respirometer in real-time.  172	

 173	

Maximal rates of oxygen consumption were determined in a cylindrical glass respirometer 174	

(415 ml) placed on a magnetic stirrer [42]. A magnetic stirbar within the respirometer created 175	

water flow that could be adjusted with the control on the magnetic stirrer.  Turbulence and 176	

eddies within the respirometer were minimised by a central column suspended from the lid.  177	

Fish were placed into the respirometer and the speed was ramped up slowly until fish swam 178	

steadily, but occasionally had to struggle to maintain their position in the water column, i.e. 179	

fish occasionally went backwards in the water column and had to engage in burst swimming 180	

to regain their position, indicating near maximal swimming speeds.  Oxygen consumption 181	

was measured during 6-8 minutes of swimming at that speed.  Rates of oxygen consumption 182	

(in µmol g-1 min-1) were determined as the slope of the decrease in oxygen content divided by 183	

the fish body mass and multiplied by the volume of the container [45]. We calculated 184	

exercise-induced metabolic scope as the difference between resting and swimming oxygen 185	

consumption.  186	

 187	

STATISTICAL ANALYSES 188	

All statistical analyses were performed using SAS software version 9.3 (SAS Inc., Cary, NC). 189	

When required, data were log10-transformed before analyses to fulfil assumptions of 190	

normality and homoscedascity. Because metabolic rates are generally influenced by body 191	

mass (Hill et al 2012), we initially tested such an association using a general linear model 192	

with a normal error structure and by specifying initial mass as an explanatory term. We then 193	
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tested whether resting and maximal metabolic rates, and metabolic scopes of LPS-injected 194	

fish differed from those of controls using multivariate general linear mixed models with 195	

treatment (LPS or PBS), time and their interaction, and with initial mass as fixed effects, and 196	

with individual as the random effect; for each time point, differences between LPS-197	

challenged and control fish were contrasted within the same model using the “estimate” 198	

statement. Non-significant interactions were removed from final models. To examine how 199	

SRBC-injected fish differed in their resting and maximal metabolic rates and in their 200	

metabolic scope relative to controls and to LPS-fish, we conducted general linear models 201	

with treatment (SRBC, LPS or PBS) and initial mass as fixed effects; between-treatment 202	

differences were contrasted within the models using the “estimate” statement. Treatment 203	

effects on changes in body mass over the course of the experiment were conducted using a 204	

general linear model with the difference in body mass between 0 and 7 days post-injection as 205	

the dependent variable and with treatment and initial mass as fixed effects; between-treatment 206	

differences were contrasted using the “estimate” statement. 207	

 208	

Results 209	

EFFECTS OF IMMUNE TREATMENT ON RESTING AND MAXIMAL METABOLIC 210	

RATES 211	

Resting and maximal rates of oxygen consumption and the metabolic scope were all 212	

significantly associated with body mass, regardless of the treatment (GLM; resting metabolic 213	

rate: F1,67=9.77, p=0.0026, maximal metabolic rate: F1,67=45.01, p<0.0001, metabolic scope: 214	

F1,67=26.6, p<0.0001). First, we investigated the metabolic cost of an immune response to 215	

LPS. LPS-injected fish displayed higher resting and maximal rates of oxygen consumption 216	

than saline-injected controls over the course of the experiment (GLMM; resting rates of 217	

oxygen consumption: treatment: F1,38=8.8, p=0.005, time: F2,38=1.2, p=0.319; initial mass: 218	
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F1,38=9.32, p=0.004; maximal rates of oxygen consumption: treatment: F1,38=6.14, p=0.018, 219	

time: F2,38=1.1, p=0.334, initial mass: F1,38=13.7, p<0.001; Table 1; Fig. 1a, b). Separate 220	

analyses of each time point revealed significant between-treatment differences in resting 221	

metabolic rates 24 h post-challenge and in maximal metabolic rate 48 h and 7 days post-222	

challenge (resting metabolic rate: 24 h: t36=2.41, p=0.021; 48 h: t36=1.22, p=0.230; 7 days: 223	

t36=1.97, p=0.057; maximal metabolic rate: 24h: t36=0.02, p=0.986; 48h: t36=2.88, p=0.007; 7 224	

days: t36=1.90, p=0.066). 225	

 226	

Table 1: Metabolic measures for immune-challenged (with LPS or SBRC) and control 227	

(saline-injected) mosquitofish. We provide raw means (in µmol/min/g) and standard 228	

deviations for resting and maximal metabolic rates and for metabolic scopes at 24h, 48h and 229	

7 days post-challenge with LPS, and at 7 days post-challenge with SRBC. 230	

Time post-treatment Metabolic measure Treatment 

  Control LPS SRBC 

24h Resting 0.163 ± 0.053 0.293 ± 0.174  
 Maximum 0.831 ± 0.147 0.932 ± 0.255  
 Scope 0.668 ± 0.147 0.640 ± 0.224  
48h Resting 0.202 ± 0.060 0.282 ± 0.083  
 Maximum 0.692 ± 0.124 1.038 ± 0.198  
 Scope 0.490 ± 0.110 0.756 ± 0.207  
7 days Resting 0.205 ± 0.078 0.322 ± 0.150 0.209 ± 0.082 

 Maximum 0.809 ± 0.133 1.196 ± 0.675 1.696 ± 0.786 
 Scope 0.605 ± 0.127 0.874 ± 0.579 1.488 ± 0.750 

 231	

  232	

Fig. 1: Resting (a) and maximal (b) rates of oxygen consumption and metabolic scope (c) of 233	

LPS-injected and PBS (control) fish 24h, 48h and 168h (7 days) after treatment. Values show 234	

predicted means (in µmol/min/g) with standard errors (* indicates p<0.05). 235	

 236	
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Second, we examined the metabolic cost of an immune response to SRBC and compared the 237	

metabolic rates of SRBC- and LPS-fish. Resting rates of oxygen consumption 7 days post-238	

injection differed significantly between treatments (GLM, treatment: F2,25=5.6, p<0.010, 239	

initial mass: F1,25=4.9, p=0.036; Table 1; Fig. 2a, b). However, between-treatment tests 240	

revealed that differences were significant between LPS and SRBC-fish only (t=3.17, 241	

p=0.004), with SRBC-fish displaying resting rates of oxygen consumption that were 50% 242	

lower than LPS-injected ones, but not between SRBC-fish and saline-injected controls (t=1.4, 243	

p=0.171). Treatment did not affect maximal rates of oxygen consumption 7 days post-244	

injection (GLM, treatment: F2,25=0.5, p=0.600, initial mass: F1,25=8.3, p=0.008), with no 245	

significant difference detected between SRBC-fish and either LPS-fish or controls (p>0.1). 246	

 247	

Fig. 2: Resting (a) and maximal (b) rates of oxygen consumption and metabolic scope (c) of 248	

SRBC-, LPS- and PBS-injected (control) fish 7 days after treatment. Values show predicted 249	

means (in µmol/min/g) with standard errors (** indicates p<0.01). 250	

 251	

EFFECTS OF IMMUNE TREATMENT ON METABOLIC SCOPES AND BODY MASS  252	

LPS-injected fish displayed a significantly greater metabolic scope over the course of the 253	

experiment than sham-injected controls (GLMM, treatment: F1,36=1.44, p=0.238, time: 254	

F2,36=0.8, p=0.460, treatment × time: F2,36=3.3, p=0.050, initial mass: F1,36=4.7, p=0.037; 255	

Table 1; Fig. 1c). Separate analyses of each time point revealed a significant difference 256	

between LPS-challenged and control fish 48h after treatment (24h: t36=-1.01, p=0.321; 48h: 257	

t36=2.32, p=0.026; 7 days: t36=1.04, p=0.306). Although SBRC-injected fish displayed higher 258	

metabolic scopes than controls 7 days post-injection, the effect of treatment on metabolic 259	

scopes at that time point was not significant (GLM, treatment: F2,25=0.8, p=0.443, initial 260	

mass: F1,25=5.7, p=0.025; Table 1; Fig. 2c), with no significant differences detected in any of 261	
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the pairwise comparisons (all p>0.1). There was a significant effect of treatment on mass 262	

change over the course of the experiment (GLM, treatment: F2,25=7.3, p=0.003, initial mass: 263	

F1,25=5.0, p=0.034; Fig. 3), with mass change differing significantly between LPS- and 264	

control fish (t=-3.7, p=0.001) and between SRBC- and control fish (t=2.8, p=0.010). LPS-fish 265	

lost on average over 4% of their body mass over the 7 days of the experiment (initial 266	

mass=0.73±0.21g; final mass=0.70±0.18g), but SRBC and control-fish increased their body 267	

mass by 5% and 8%, respectively (SRBC: initial mass=0.42±0.14g, final mass=0.44±0.17g; 268	

control: initial mass=0.90±0.24g, final mass=0.97±0.21g). 269	

 270	

Fig. 3: Mass change between the day of the injection (day 0) and 7 days after injection. 271	

Values show predicted means (in g) with standard errors (** indicates p≤0.01 and *** 272	

indicates p≤0.001). 273	

 274	

Discussion 275	

Our results show that experimental challenges with an inert antigen can give rise to changes 276	

in resting and maximal metabolic rates, with measurable consequences for metabolic scopes 277	

and hence the overall amount of ATP available to aerobically-challenging activities other 278	

than those at rest. Resting and maximal metabolic rates and the metabolic scope were 279	

significantly increased relative to controls in LPS-challenged fish only. Furthermore, 280	

immune-challenged fish gained significantly less body mass over the course of the 281	

experiment than controls, with LPS-fish actually losing body mass. Our results indicate that 282	

oxidative metabolic capacities can be increased in immune-challenged individuals, such that 283	

these individuals actually produce more ATP than would be needed for engaging in 284	

aerobically-challenging activities in the absence of an immune challenge. 285	

 286	



14	
	

The higher resting metabolic rate displayed by LPS-challenged individuals relative to 287	

controls corroborates the existence of an energetic cost associated with the immune response 288	

to LPS. LPS are immunogenic molecules found in the cell wall of gram-negative bacteria that 289	

can rapidly trigger a strong inflammatory response without causing infection [46]. In 290	

endotherms, injections with E. coli LPS are commonly used to assess the acute phase 291	

response, which occurs within hours of challenge and includes changes in body temperature 292	

(e.g., fever) and the expression of sickness behaviours [47-50]. Responses to LPS have been 293	

indirectly shown to be costly. For example, LPS-challenged individuals displayed decreased 294	

food intake, activity and growth, and exhibited reduced reproductive output [14, 15, 49, 51-295	

53]. Furthermore, direct energetic costs of LPS injections have been demonstrated as a 10 and 296	

20% increase in the resting metabolic rates of zebra finch and rats, respectively [15, 54]. In 297	

fish, LPS has been shown to induce a depletion of liver glycogen levels in yearling coho 298	

salmon (O. kisutch) and rainbow trout [55], and it is likely to be a potent agent of anorexia in 299	

gold fish (Carassius auratus auratus) [56]. Our results verify the metabolic cost of a 300	

response to LPS in fish, which can be maintained over the course of a week, but is higher 24h 301	

than 7 days post-challenge.  302	

 303	

On the other hand, the lack of significant difference in resting metabolic rates between 304	

SRBC-treated and control fish suggests either that the cost of immunity to SRBC is 305	

negligible or that it becomes detectable later than 7 days post-challenge. SRBC is a T cell-306	

dependent antigen commonly used to assay humoral immune responses, and anti-SRBC 307	

antibodies reach a peak 10 and 12 days after injection in brown trout and Mozambique 308	

tilapia, respectively [40, 41]. SRBC-injections were previously found to produce a 8.5% 309	

increase in the basal metabolic rate of collared doves 7 days after challenge [23], yet they did 310	

not affect body mass and molting in house sparrows (Passer domesticus) [57]. Similarly, 311	
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SRBC-injected greenfinches (Carduelis chloris) were shown to exhibit reduced activity, but 312	

no mass loss, 4 and 8 days post-challenge [58], suggesting that SRBC induces only a mild 313	

sickness response. While the metabolic costs and consequences of the immune response 314	

mounted by mosquitofish against SRBC still remain to be determined, the fact that SRBC-315	

fish gained significantly less mass over the course of the experiment than controls suggests 316	

that a challenge with SRBC induces measurable energetic costs the first week post-injection.  317	

 318	

Immune-challenged mosquitofish did not display a decreased metabolic scope relative to 319	

saline-injected controls, indicating that immune functioning did not give rise to a trade-off at 320	

the level of ATP production and use. In fact, not only were metabolic scopes not decreased in 321	

LPS-injected fish, but they were actually greater than those of controls, indicating that 322	

individuals actually boosted their levels of energy available to physical activity. This increase 323	

in metabolic scope was significant only at 48h post-injection in LPS-fish, indicating that this 324	

process is not immediate and may only be transitory. One explanation for such 325	

overcompensation is that immune-challenged fish require more ATP to sustain swimming 326	

than saline-injected controls. LPS has indeed been shown to decrease the efficiency of 327	

carbohydrate catabolism by skeletal muscles, that is the ratio between ATP use and power 328	

output, giving rise to greater oxygen consumption during activity, and to stimulate muscle 329	

wasting leading to muscle dysfunction [59-61]. In fish, white skeletal muscle is mostly 330	

anaerobic and used primarily in burst swimming, while red skeletal muscle is aerobic and 331	

involved in sustained swimming speed [62]. Gilthead seabream (Sparus aurata) challenged 332	

with LPS displayed strong transcriptomic responses in their white and red skeletal muscles 333	

24h and 72h post-injection [11]. Protein synthesis and carbohydrate catabolism were strongly 334	

increased in white muscle 24h post-LPS administration, which suggested in part that LPS 335	

may initially stimulate energy production through glycolysis; these patterns were, however, 336	
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reversed at 72h possibly indicating muscle atrophy. Genes involved in aerobic metabolism 337	

and protein synthesis, on the other hand, were up-regulated 72h post-challenge in red muscle 338	

[11]. Similar increases in carbohydrate metabolism were observed in the fast muscle fibres of 339	

rainbow trout following challenge with LPS [63]. Whether the increased aerobic metabolism 340	

that we detected in mosquitofish 48h post-immune challenge with LPS, allowed fish to swim 341	

at an equivalent speed or faster than control fish was not explored in this study. The capacity 342	

to increased aerobic metabolism may be positively selected for if it facilitates parallel 343	

increases in two or more concurrent, aerobically-demanding activities, such as immunity and 344	

locomotion, that maximize survival and hence residual reproductive values [64, 65]. Future 345	

work is required to better understand the consequence of immune-associated increases in 346	

metabolic scope on locomotor performance (e.g., swim speed and duration) as well as its 347	

evolutionary significance for individual fitness. 348	

 349	

While immune functioning did not give rise to a trade-off in terms of metabolic scope, the 350	

lowered relative body mass of immune-challenged fish at the end of the experiment suggests 351	

that limited acquired food resources, or that impaired food assimilation or mitochondrial use 352	

of those resources [66], may instead drive trade-offs between immunity and other aerobic 353	

traits. For e.g., inflammatory responses have indeed been found to cause mitochondrial 354	

dysfunction [67] and a lower efficiency of mitochondria as a result of proton leak, for 355	

example, would mean that greater amounts of substrate and ultimately food or energy 356	

reserves) have to be oxidised to achieve a given ATP output [66]. Fish that were challenged 357	

with LPS- or SRBC- both exhibited reduced body mass gain relative to controls over the 1 358	

week duration of the experiment, with LPS-fish actually loosing mass and SBC-fish gaining 359	

>4 times less mass than controls. Divergence in mass change between SRBC- and LPS-fish is 360	

likely to stem, in part, from LPS-induced adaptive anorexia, which may have prevented a 361	
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compensation of the energetic costs of immunity through greater food intake [56]. Anorexia 362	

is, indeed, a host defence mechanism against bacterial infections [68] and a typical 363	

component of the sickness response to LPS [15, 51], but not SRBC [57, 58].  364	

  365	

Our data show that plasticity in oxidative metabolism is at least a short term response to an 366	

immune challenge that can increase the fitness of individuals by maintaining locomotor 367	

performance, reproductive activity, and similar aerobically-demanding functions. The 368	

benefits of such upregulated ATP production, however, are expected to diminish with muscle 369	

loss and as body condition decreases below critical levels. 370	

 371	
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