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Abstract

This paper studies sliding-mode control of a class of multibody underactuated systems with discontinuous
friction presenting on the unactuated configuration variable with consideration of parametric uncertain-
ties. Global motion for this class system including sticking, stick-slip, and slip regimes are analyzed, and
their corresponding equilibria are identified. Our control objective is to avoid the sticking and stick-slip
regimes while track a desired velocity in the slip regime. The proposed sliding-mode controllers are robust
to parametric uncertainties, and their stabilities are proved by using the Lyapunov direct method. Two
examples, a mass-spring-damping system and a drill-string system, are used to demonstrate the validity
of the proposed controllers.
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1. Introduction

Underactuation is a special attribute of the system with fewer independent control inputs than the
degrees of freedom (DOF) to be controlled. It causes the control issues which cannot be solved by
traditional control theory. The literature for control of underactuation is vast, and most of the systems
with such an attribute are mechanical. In the early 90’s, the research on control of underactuation
originally started from the interest on nonholonomic manipulator (Oriolo and Nakamura, 1991). Later
on, extensive underactuated systems were studied, such as mobile robot (Yue et al., 2010), underwater
vehicle (Egeland et al., 1996), surface vessel (Ghommam et al., 2010), biped walking robot (Hu et al.,
2010), and so on. In the late 90’s, the classification and control of a class of underactuated systems were of
great interest to many researchers (Spong, 1996; Reyhanoglu et al., 1999). For example, the classification
was systematically studied by Olfati-Saber (2001), and a detailed review of underactuated systems and
their control methods were done by Liu and Yu (2013). However, most of the studies up to date were on
the 2-DOF systems or with a limited number of DOF (Li et al., 2009; She et al., 2012), and less attention
has been paid to multi-DOF systems (Ashrafiuon and Erwin, 2008), although they are important in many
practical applications (Gosselin et al., 2008; Liu, 2014). On the other hand, friction was not considered
as a major factor in most of the previous studies, despite it is ubiquitous in mechanical systems. In some
applications, friction is the main source causing undesired oscillations (Olsson and Åström, 2001; Liu,
2014), and understanding system dynamics under such an effect becomes essential. Therefore, this paper
is devoted to study a class of multibody underactuated systems with discontinuous friction, and propose
control strategies for such a special class system using sliding-mode.
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Recently, sliding-mode control of underactuated systems has attracted considerable attention, e.g.
satellite (Ashrafiuon and Erwin, 2005), surface vessel (Fahimi, 2007; Ashrafiuon et al., 2008), biped robot
(Nikkhah et al., 2007), overhead crane (Almutairi and Zribi, 2009), ball and beam system (Almutairi
and Zribi, 2010), wheeled inverted pendulum (Huang et al., 2010; Xu and Özgüner, 2008), networked
control system (Liu et al., 2016), and so on. Particularly, sliding-mode control of a class of underactuated
systems is of greater interest to many researchers. For example, Wang et al. (2004) studied a hierarchical
sliding-mode control method with two levels of sliding surface for a class of second-order underactu-
ated systems with consideration of external disturbances. Hao et al. (2008) developed an incremental
sliding-mode control strategy with multi-level of sliding surface for a class of underactuated systems with
mismatched uncertainties. Parametric uncertainties and external disturbances have been considered by
Xu and Özgüner (2008) using sliding-mode control. The proposed controller could globally stabilize the
systems which do not satisfy the Brockett’s necessary conditions (Brockett, 1983) but must be strict
in a cascade form. Sankaranarayanan and Mahindrakar (2009) studied a sliding-mode controller for a
class of underactuated systems with parametric uncertainties by proposing a switching surface design. It
should be noted that the friction in these studies was simplified as a damping resistant force which was
proportional to velocity. Discontinuous friction model was only used by Martinez and Alvarez (2008) and
Martinez et al. (2008) for a class of second-order underactuated systems. Therefore, we could conclude
that most of the sliding-mode controllers were developed for second-order underactuated systems consid-
ering simplified friction model. Furthermore, discontinuous friction model may lead to unavailability of
global stabilization, so a careful control design for a valid desired equilibrium is crucial. In this paper, we
will consider the condition when global stabilization is unavailable for a class of multibody underactuated
systems due to discontinuous friction.

This paper studies sliding-mode control of a class of multibody underactuated systems with parametric
uncertainties and considering discontinuous friction on unactuated variable. The first contribution of this
paper is to analyze the global motion regimes and their corresponding equilibria for this type system. We
have found that the motion of these systems could be divided into three regimes while most of the current
studies only has one (e.g. Ashrafiuon and Erwin, 2008). The second contribution of this paper is that two
new smooth functions for reducing chattering effect have been proposed. Although Liu (2014) has studied
the proposed sliding-mode controllers using an underactuated drill-string system, this paper is devoted to
generalize these controllers to a class of this type systems. Particularly, discontinues friction models and
system stability, which have not been included in Liu (2014), will be studied in this paper. Furthermore,
a typical mass-spring-damping system, which is a generalized mathematical model representing a number
of mechanical systems, e.g. servo system (Olsson and Åström, 2001), will also be considered in this paper.

The rest of this paper is organized as follows. In Section 2, dynamics of a class of underactuated
mechanical systems is introduced, and the friction model adopted in this paper is studied. In Section 3,
three motion regimes are identified and their corresponding equilibria are analyzed. In Section 4, three
sliding-mode controllers are studied and their stabilities are proved by using the Lyapunov direct method.
Simulation results are given in Section 5 using a mass-spring-damping system and a drill-string system in
order to validate the effectiveness and robustness of the proposed controllers. Finally, some conclusions
are drawn in Section 6.
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2. Dynamics of a class of underactuated mechanical systems

Consider a single-input and multi-output mechanical system represented by

Dq̈ + Cq̇ + Kq + F = U, (1)

where q = [q1, q2, q3, ..., qn−1, qn]T ∈ ℜn×1 is state vector, D = diag(d1, d2, d3, ..., dn−1, dn)
∈ ℜn×n is inertia matrix, C ∈ ℜn×n is the damping matrix given by

C =



c1 −c1 0 · · · 0 0 0
−c1 c1 + c2 −c2 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · −cn−2 cn−2 + cn−1 −cn−1

0 0 0 · · · 0 −cn−1 cn−1


,

K ∈ ℜn×n is the stiffness matrix given by

K =



k1 −k1 0 · · · 0 0 0
−k1 k1 + k2 −k2 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · −kn−2 kn−2 + kn−1 −kn−1

0 0 0 · · · 0 −kn−1 kn−1


,

where di, ci, and ki (i = 1, 2, 3, · · · ) are constant, F = [0, 0, · · · , f ]T ∈ ℜn×1 is friction vector,
U = [u, 0, · · · , 0]T ∈ ℜn×1 is the vector for external control input, and f is the discontinuous friction
on nth configuration variable, qn given by

f =


fr if | q̇n| < ζ and |fr| ≤ fs,

fssgn(fr) if | q̇n| < ζ and |fr| > fs,

µdΛ sgn(q̇n) if | q̇n| ≥ ζ,

(2)

where fr is a reaction force given by

fr = cn−1(q̇n−1 − q̇n) + kn−1(qn−1 − qn),

ζ is a small positive constant, fs = µsΛ is static friction, µs is static friction coefficient, Λ is the force
depending on the weight of nth body of the system, and µd is the sliding friction coefficient given by

µd = µc + (µs − µc)e−γ|q̇n|/vf ,

where µc is Coulomb friction coefficient, 0 < γ < 1 is the constant defining velocity decreasing rate for
f , and vf is a velocity constant.

Based on the discontinuous friction model, the following three phases for the motion of nth body are
considered.

• Sticking phase (|q̇n| < ζ and |fr| ≤ fs): the velocity q̇n is less than the small positive constant ζ,
and the reaction force fr is less or equals to the static friction fs. In the sticking phase, the nth

body is considered as stationary.
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Figure 1: Friction models: (a) Coulomb friction; (b) viscous damping friction; (c) Stribeck friction; (d) seven-parameter
friction.

• Stick-to-slip transition phase (|q̇n| < ζ and |fr| > fs): the velocity q̇n is still less than the constant
ζ, but the reaction force fr is greater than the static friction fs. So the nth body just begins to
move from stationary.

• Slip phase (|q̇n| ≥ ζ): the velocity q̇n is equal or greater than the constant ζ, and the calculation of
friction force includes the sliding friction coefficient µd and the weight-related force Λ.

It is known that various friction models shown in Fig. 1 were used for different application scenarios.
The Coulomb friction (Fig. 1(a)) is the simplest friction model providing the first approximation of
universal friction contact which has been applied to the transmission of a ball and beam system (Márton,
2008), the microrobotic platform (Vartholomeos and Papadopoulos, 2005), and the vibro-impact moling
system (Ho et al., 2011). In these applications, friction does not play a major role in system dynamics. In
the presence of thin lubricant, viscous damping friction (Fig. 1(b)) which takes into account the viscosity
of lubricated contact was frequently employed, e.g. the cart-pole system (Muskinja and Tovornik, 2006),
the snake robot (Liljebäck et al., 2011), and the bipedal robot (Hamed and Grizzle, 2014). When the
lubricant becomes thicker and the contacting bodies are completely separated, the Stribeck friction (Fig.
1(c)) and the seven-parameter friction (Fig. 1(d)) (Armstrong-Hélouvry, 1994) will be used in order to
interpret the friction at low velocity, e.g. the capsule system (Liu et al. (2013)), the crane system (Fang
et al., 2012), and the mass-spring-damping system (Martinez and Alvarez, 2008). The seven-parameter
friction model has some nonlinear characteristics, e.g. frictional memory, which are not required in this
paper. The friction model adopted in this paper combines the Coulomb and the Stribeck friction models
which could sufficiently describe the motion transition between the sticking and slip regimes.

Fig. 2(a) depicts the discontinuous friction model adopted in this paper. Comparing to the models in
Fig. 1, it has an extra region (−ζ, ζ) which represents the sticking phase and the stick-to-slip transition
phase. In some practical engineering systems, e.g. downhole drilling, ground moling, the motion of these
systems at very low speed can be approximately considered as stationary. From the numerical simulation
point of view, taking such an approximation is necessary as the velocity from the slip to sticking phase
may not equal to zero exactly. An example, the stick-slip oscillations of a drill-string system (Liu, 2014),
is presented in Fig. 2(b). As can be seen from the figure, drill bit is stuck, q̇n = 0, at the beginning due
to | fr| < µsΛ. When reaction force is greater than frictional torque, |fr| > µsΛ, drill bit starts to rotate
and the friction on drill bit is f = µsΛ sgn(fr) at this occasion. After a short while, bit speed increases
drastically, and then reduces rapidly afterwards. Once bit speed falls in the region, | q̇n| < ζ, drill bit is
considered as stationary, so it is stuck again. Since the stick-slip motion may induce harmful oscillations
to the entire system, this paper will focus on suppressing such motion by using sliding-mode control.

It is worth noting that the inertia matrix D in Eq. (1) is diagonal, and both the damping matrix
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Figure 2: (a) Discontinuous friction in Eq. (2). (b) Stick-slip behaviour of a drill-string system (Liu, 2014).

C and the stiffness matrix K are symmetric. This configuration represents a class of flat multibody
underactuated systems (Liu and Yu, 2013), and their configuration variables are coupled by damping
and stiffness forces in a chain form. In particular, control input is only applied to the first configuration
variable, and the friction model (2) acts on the last one. Relevant applications could be the flexible servo
system and the drill-string system for downhole oil and gas exploration. Control of a long drill-string
which could run for a few kilometers deep is only controllable through applying control torque to the
rotary table on the surface, while drill bit encounters notable frictions in borehole. Hence, maintaining
a desired rotary speed and avoiding the stick-slip oscillations for such a long structure become crucial
for safety and economical purposes. Readers could refer to (Liu, 2014; Lopez-Martinez et al., 2010;
Canudas-de-Wit et al., 2008) for more details.

3. Motion regimes and equilibria

Let Γ be a switching manifold
Γ := {q ∈ ℜn×1 : q̇n = 0} (3)

and Γ̃ be an attractive region

Γ̃ := {q ∈ Γ : | cn−1q̇n−1 + kn−1(qn−1 − qn)| < µsΛ} (4)

which is a subset of Γ. Due to the presence of discontinuous friction (2), three motion regimes of the
system, when control input is constant, can be identified as

• Sticking regime: for ∀t > ts, q ∈ Γ̃, where ts is the time when system trajectory reaches Γ̃ and stays
in the region thereafter;

• Stick-slip regime: system trajectory enters and leaves Γ̃ repeatedly;

• Slip regime: system has an asymptotically stable equilibrium x̄p.

In order to obtain the equilibrium in slip regime x̄p, let us define a new state

x = [q̇1, q1 − q2, q̇2, q2 − q3, · · · , q̇n−1, qn−1 − qn, q̇n]T

= [x1, x2, x3, x4, · · · , x2n−3, x2n−2, x2n−1]T ,
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and the underactuated system (1) can be rewritten as

ẋ1 = 1
d1

[ u − c1(x1 − x3) − k1x2],
ẋ2 = x1 − x3,

ẋ3 = 1
d2

[c1(x1 − x3) − c2(x3 − x5) + k1x2 − k2x4],
ẋ4 = x3 − x5,

...
...

ẋ2n−3 = 1
dn−1

[ cn−2(x2n−5 − x2n−3) − cn−1(x2n−3 − x2n−1) + kn−2x2n−4 − kn−1x2n−2],
ẋ2n−2 = x2n−3 − x2n−1,

ẋ2n−1 = 1
dn

[ cn−1(x2n−3 − x2n−1) + kn−1x2n−2 − f ],

(5)

The following propositions are given.

Proposition 1. When the system moves in a constant speed xc, where | xc| ≥ ζ, it has an asymptotically
stable equilibrium

x̄p = [xc, uc

k1
, xc, uc

k2
, · · · , xc, uc

kn−1
, xc]T ,

where uc = f(xc) is constant.
Proof. Since the system moves in a constant speed | xc| ≥ ζ, it gives

[ẋ1, ẋ2, ..., ẋ2n−1]T = [0, 0, ..., 0]T ,

and we obtain uc = f(xc) from Eq. (5). Now, let us define a Lyapunov function

V̄ = 1
2 [d1(x1 − xc)2 + k1(x2 − uc

k1
)2 + d2(x3 − xc)2 + k2(x4 − uc

k2
)2 · · ·

+ dn−1(x2n−3 − xc)2 + kn−1(x2n−2 − uc

kn−1
)2 + dn(x2n−1 − xc)2],

(6)

and its time derivative can be written as
˙̄V = d1(x1 − xc)ẋ1 + k1(x2 − uc

k1
)ẋ2 + d2(x3 − xc)ẋ3 + k2(x4 − uc

k2
)ẋ4 · · ·

+ dn−1(x2n−3 − xc)ẋ2n−3 + kn−1(x2n−2 − uc

kn−1
)ẋ2n−2 + dn(x2n−1 − xc)ẋ2n−1.

(7)

Substituting ẋ in Eq. (7) using Eq. (5) gives

˙̄V = (x1 − xc)[uc − c1(x1 − x3) − k1x2] + k1(x2 − uc

k1
)(x1 − x3)

+ (x3 − xc)[c1(x1 − x3) − c2(x3 − x5) + k1x2 − k2x4]
+ k2(x4 − uc

k2
)(x3 − x5) · · · + kn−1(x2n−2 − uc

kn−1
)(x2n−3 − x2n−1)

+ (x2n−1 − xc)[ cn−1(x2n−3 − x2n−1) + kn−1x2n−2 − uc]

(8)

Simplifying Eq. (8) by removing brackets in the equation gives

˙̄V = −c1x2
1 + 2c1x1x3 − c1x2

3 − c2x2
3 + 2c2x3x5 − c2x2

5 · · ·
− cn−1x2

2n−3 + 2cn−1x2n−3x2n−1 − cn−1x2
2n−1

= −c1(x1 − x3)2 − c2(x3 − x5)2 · · · − cn−1(x2n−3 − x2n−1)2,

(9)

Therefore ˙̄V ≤ 0. Let G be the set of all points in slip regime where ˙̄V = 0, and D be the largest invariant
set in G. Since ˙̄V = 0 only for x = x̄p, the set D can be expressed as

D := {x ∈ ℜ(2n−1)×1 : | x = x̄p}. (10)

By using the LaSalle’s Invariance Principle (LaSalle, 1968), every solution starting from slip regime
approaches D as t → ∞. Therefore, the equilibrium x̄p is asymptotically stable.
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Remark 1. It is worth noting that if xc = 0, the system is in sticking regime which has an asymptotically
stable equilibrium

x̄s = [0, uc

k1
, 0, uc

k2
, · · · , 0, uc

kn−1
, 0]T

due to uc ≤ µsΛ. If xc ̸= 0, uc = [µc + (µs − µc)e−γ|xc|/vf ]Λ sgn(xc), so the existence of xc depends on
uc and Λ.

Proposition 2. Consider the attractive region Γ̃ in (4), for a constant control input uc, if xc ̸= 0, the
equilibrium x̄ exists when x̄ ̸∈ Γ̃ and selection of the desired equilibrium x̄d for control purpose should be
far away from the boundary of Γ̃.

Proof. For the switching manifold (3), system trajectory will have a sliding mode when x2n−1ẋ2n−1 < 0
leading to x2n−1 → 0 as t → ∞. In the case x2n−1 < 0, f = µdΛsgn(x2n−1) < 0. Since reaction force is
less than friction force in sliding mode, i.e. |fr| < |f |, we have

| cn−1(x2n−3 − x2n−1) + kn−1x2n−2| < −f,

which is a subset of

M− := {x ∈ ℜ(2n−1)×1 : | cn−1x2n−3 + kn−1x2n−2| < cn−1|x2n−1| − f}. (11)

In the case x2n−1 > 0, f = µdΛ, and the set for sliding mode is a subset of

M+ := {x ∈ ℜ(2n−1)×1 : | cn−1x2n−3 + kn−1x2n−2| < cn−1|x2n−1| + f}. (12)

Combining (11) and (12), the sliding mode x2n−1ẋ2n−1 < 0 can be guaranteed in the set

M := {x ∈ ℜ(2n−1)×1 : | cn−1x2n−3 + kn−1x2n−2| < cn−1|x2n−1| + [µc + (µs − µc)e− γ
vf

|x2n−1|]Λ} (13)

Since Γ ⊂ M, system trajectory will be within attractive region Γ̃ once it hits switching manifold Γ.
Thereafter, either of the following two cases may happen: system trajectory (1) asymptotically converges
to x̄ at where xc = 0; or (2) enters and leaves Γ̃ repeatedly in stick-slip regime. Hence, selection of
the desired equilibrium x̄d should be far away from the boundary of Γ̃ for ensuring that control input is
sufficiently large to avoid switching manifold Γ.

Remark 2. It should be noted that the underactuated systems studied by Ashrafiuon and Erwin (2008)
have one motion regime and global stabilization is available, while the systems considered in this paper
have three motion regimes and only local stabilization within slip regime is possible. The control design
proposed in this paper is for tracking the desired equilibrium x̄d in slip regime, while sticking and stick-slip
regimes should be avoided.

4. Sliding-mode controller design

The control goal is to avoid sticking and stick-slip regimes, and force the system to track the desired
constant velocity xd in slip regime. This could be achieved by introducing a sliding surface along which
system trajectory enters sliding regime, and then our control goal could be satisfied. Let us define a
sliding surface as

s = (x1 − xd) + λ

∫ t

0
(x1 − xd) dτ + λ

∫ t

0
(x1 − x2n−1) dτ, (14)

where λ is a positive constant selected by designer, and the time derivative of the sliding surface can be
written as

ṡ = ẋ1 + λ (x1 − xd) + λ (x1 − x2n−1). (15)
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It is worth noting that, when system trajectory is on the sliding surface s = 0, control target x1 → xd

can be guaranteed by the first term in Eq. (14), and the second and third terms may ensure x2n−1 → xd.
Thereafter, the rest of variables asymptotically converge to the desired equilibrium which will be proved
by Proposition 3 given below.

Next, substituting ẋ1 in Eq. (15) using Eq. (5) gives

ṡ = 1
d1

[ u − c1(x1 − x3) − k1x2] + λ (x1 − xd) + λ (x1 − x2n−1). (16)

The ideal controller without any parametric uncertainty can be derived by equating ṡ = 0 as

ũ = c1(x1 − x3) + k1x2 − d1λ (x1 − xd) − d1λ (x1 − x2n−1). (17)

Define a sliding-mode controller as
u = ue + us, (18)

where ue is an equivalent control, and us is a switching control of the sliding-mode controller. Equivalent
control could be obtained from Eq. (17) as

ue = ĉ1(x1 − x3) + k̂1x2 − d̂1λ (x1 − xd) − d̂1λ (x1 − x2n−1), (19)

where “ˆ” indicates estimated system parameter, and switching control is given by

uI
s = −σsgn(s), (20)

where σ is the reaching control gain associated with the upper bounds of uncertainties, and the discon-
tinuous sign function can be written as

sgn(s) =


1 if s > 0,

0 if s = 0,

−1 if s < 0.

Now the following theorem is given.

Theorem 1. If the upper bounds of the estimated system parameters are known as

| ĉ1 − c1| ≤ ∆c, | k̂1 − k1| ≤ ∆k, | d̂1 − d1| ≤ ∆d,

and the switching control gain is chosen as

σ = ∆c| x1 − x3| + ∆k| x2| + ∆dλ | x1 − xd| + ∆dλ | x1 − x2n−1| + η, (21)

where η is a positive constant, by applying the sliding-mode control (18)-(20), any trajectory of the system
could reach and stay thereafter on the manifold s = 0 in finite time.

Proof. Let choose a Lyapunov function
V1 = 1

2 d1s2, (22)

and the time derivative of V1 can be written as

V̇1 = d1sṡ. (23)

Substituting ṡ in Eq. (23) using Eq. (16) gives

V̇1 = s[ u − c1(x1 − x3) − k1x2 + d1λ (x1 − xd) + d1λ (x1 − x2n−1)]. (24)
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Applying the sliding-mode controller (18), Eq. (24) becomes

V̇1 = s[(ĉ1 − c1)(x1 − x3) + (k̂1 − k1)x2

+(d1 − d̂1)λ (x1 − xd) + (d1 − d̂1)λ (x1 − x2n−1) − σsgn(s)].
(25)

Since the switching control gain is chosen as Eq. (21), the time derivative of V1 can be rewritten as

V̇1 = s[(ĉ1 − c1)(x1 − x3) + (k̂1 − k1)x2

+(d1 − d̂1)λ (x1 − xd) + (d1 − d̂1)λ (x1 − x2n−1)
−∆c| x1 − x3| sgn(s) − ∆k| x2| sgn(s)
−∆dλ |x1 − xd| sgn(s) − ∆dλ | x1 − x2n−1| sgn(s) − η sgn(s)]

≤ −η |s| ≤ 0.

(26)

Therefore, by applying the sliding-mode controller (18)-(20) with the reaching control gain (21), system
trajectory could reach and stay thereafter on the manifold s = 0 in finite time.

Proposition 3. Once system trajectory stays on the manifold s = 0, system state will asymptotically
converge to the desired equilibrium

x̄d = [xd, h̄d

k1
, xd, h̄d

k2
, · · · , xd, h̄d

kn−1
, xd]T ,

where h̄d = [ µc + (µs − µc)e−γ|xd|/vf ]Λ sgn(xd).

Proof. Applying the desired equilibrium x̄d to the Lyapunov function V̄ in Eq. (6) gives

V̄d = 1
2 [d1(x1 − xd)2 + k1(x2 − h̄d

k1
)2 + d2(x3 − xd)2 + k2(x4 − h̄d

k2
)2 · · ·

+ dn−1(x2n−3 − xd)2 + kn−1(x2n−2 − h̄d

kn−1
)2 + dn(x2n−1 − xd)2],

(27)

and its time derivative is written as

˙̄Vd = d1(x1 − xd)ẋ1 + k1(x2 − h̄d

k1
)ẋ2 + d2(x3 − xd)ẋ3 + k2(x4 − h̄d

k2
)ẋ4 · · ·

+ dn−1(x2n−3 − xd)ẋ2n−3 + kn−1(x2n−2 − h̄d

kn−1
)ẋ2n−2 + dn(x2n−1 − xd)ẋ2n−1.

(28)

Since system trajectory is on the sliding surface s = 0, the equivalent control equals to the ideal control
in Eq. (17). Applying Eq. (5) and (17) to Eq. (28), it gives

˙̄Vd = −c1(x1 − x3)2 − c2(x3 − x5)2 · · · − cn−1(x2n−3 − x2n−1)2 ≤ 0, (29)

where ˙̄Vd = 0 only for x = x̄d. So, the desired equilibrium x̄d is asymptotically stable once system
trajectory stays on the sliding surface s = 0.

Remark 3. When system trajectory approaches to the manifold s = 0, it is switched around the manifold
due to the discontinuous sign function which could lead to high-frequency chattering on control input and
thereby on system state.

In order to overcome this issue, the following theorem is proposed.

Theorem 2. If the modified switching control

uII
s = −σ

s

|s| + δ
− κs (30)

is applied, where δ and κ are small positive constants selected by designer, the tracking errors of the
system are asymptotically bounded.
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Proof. Applying the modified switching control (30), the time derivative of the Lyapunov function (23)
becomes

V̇2 = s[(ĉ1 − c1)(x1 − x3) + (k̂1 − k1)x2 + (d1 − d̂1)λ (x1 − xd)
+(d1 − d̂1)λ (x1 − x2n−1) − ∆c| x1 − x3| s

|s|+δ − ∆k| x2| s
|s|+δ

−∆dλ |x1 − xd| s
|s|+δ − ∆dλ | x1 − x2n−1| s

|s|+δ − η s
|s|+δ − κs]

≤ |s(ĉ1 − c1)(x1 − x3)| + |s(k̂1 − k1)x2| + |s(d1 − d̂1)λ (x1 − xd)|
+|s(d1 − d̂1)λ (x1 − x2n−1)| − ∆c| x1 − x3| s2

|s|+δ − ∆k| x2| s2

|s|+δ

−∆dλ |x1 − xd| s2

|s|+δ − ∆dλ | x1 − x2n−1| s2

|s|+δ − η s2

|s|+δ − κs2

≤ |(ĉ1 − c1)(x1 − x3)| |s|(|s|+δ)
|s|+δ + |(k̂1 − k1)x2| |s|(|s|+δ)

|s|+δ

+|(d1 − d̂1)λ (x1 − xd)| |s|(|s|+δ)
|s|+δ + |(d1 − d̂1)λ (x1 − x2n−1)| |s|(|s|+δ)

|s|+δ

−∆c| x1 − x3| s2

|s|+δ − ∆k| x2| s2

|s|+δ − ∆dλ |x1 − xd| s2

|s|+δ

−∆dλ | x1 − x2n−1| s2

|s|+δ − η s2

|s|+δ − κs2

≤ δ[ |(ĉ1 − c1)(x1 − x3)| + |(k̂1 − k1)x2| + |(d1 − d̂1)λ (x1 − xd)|
+|(d1 − d̂1)λ (x1 − x2n−1)| ] |s|

|s|+δ − κs2

≤ δ[ |(ĉ1 − c1)(x1 − x3)| + |(k̂1 − k1)x2| + |(d1 − d̂1)λ (x1 − xd)|
+|(d1 − d̂1)λ (x1 − x2n−1)| ] − κs2.

This implies that for the set V = {s : ∥s∥ ≤
√

∥δΘ∥/κ}, it follows that V̇2 < 0, ∀s ∈ V c, where V c is the
complement of V, and Θ is given by

Θ = |(ĉ1 − c1)(x1 − x3)| + |(k̂1 − k1)x2| + |(d1 − d̂1)λ (x1 − xd)|
+|(d1 − d̂1)λ (x1 − x2n−1)|.

This means that the sliding surface does not tend to zero any more, but is bounded as ∥s∥ ≤
√

∥δΘ∥/κ, so
the tracking errors of the system become asymptotically bounded. However, there should be a compromise
between a little deterioration of the tracking errors and a large reduction of chattering.

Remark 4. The parameter δ can be selected as small as possible such that δ → 0 leading to ∥s∥ → 0 so
x → x̄d. However, if the parameter δ is too small, the continuous function s

|s|+δ becomes discontinuous
so that chattering will be introduced to system again.

Since the modified switching control (30) is only asymptotically bounded, not asymptotically conver-
gent, the following switching control is proposed.

Theorem 3. If the switching control is chosen as

uIII
s = − ∆c|x1−x3|s

|s|+δ1 exp(−δ2
∫

|x1−x3| dt)
− ∆k|x2|s

|s|+δ1 exp(−δ2
∫

|x2| dt)

− ∆dλ|x1−xd|s
|s|+δ1 exp(−δ2

∫
λ|x1−xd| dt)

− ∆dλ|x1−x2n−1|s
|s|+δ1 exp(−δ2

∫
λ|x1−x2n−1| dt)

− κs,
(31)

where δ1 and δ2 are small positive constants selected by designer, system trajectory will reach sliding
surface asymptotically, and system state will asymptotically converge to the desired equilibrium x̄d.

Proof. In order to prove the stability of the switching control uIII
s (31), a new Lyapunov function is

defined as

V3 = 1
2 d1s2 + ∆c

δ1
δ2

exp(−δ2
∫

| x1 − x3| dt) + ∆k
δ1
δ2

exp(−δ2
∫

| x2| dt)
+∆d

δ1
δ2

exp(−δ2
∫

λ| x1 − xd| dt) + ∆d
δ1
δ2

exp(−δ2
∫

λ| x1 − x2n−1| dt).
(32)

From the strict definition of the Lyapunov function, the new function (32) is positive definite, but not a
legitimate Lyapunov function, since ∀t ≥ 0, V3(0) ̸= 0. So the following additional state is introduced.

z = [ z1, z2, z3, z4 ]T ,
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where
z1 =

√
2∆c

δ1
δ2

exp(−δ2
∫

| x1 − x3| dt)

z2 =
√

2∆k
δ1
δ2

exp(−δ2
∫

| x2| dt)

z3 =
√

2∆d
δ1
δ2

exp(−δ2
∫

λ| x1 − xd| dt)

z4 =
√

2∆d
δ1
δ2

exp(−δ2
∫

λ| x1 − x2n−1| dt).

Then Eq. (32) becomes

V3 = 1
2 d1s2 + 1

2 zT z = 1
2 d1s2 + 1

2

4∑
i=1

z2
i . (33)

As t → ∞, zi is exponentially convergent to zero leading to V3 → 0 when s = 0. Hence, Eq. (33) is a
legitimate Lyapunov function with state variables [ s, zT ]T , and the time derivative of V3 is given as

V̇3 = d1sṡ − ∆c δ1| x1 − x3| exp(−δ2
∫

| x1 − x3| dt)) − ∆k δ1| x2| exp(−δ2
∫

| x2| dt)
−∆d δ1λ| x1 − xd| exp(−δ2

∫
λ| x1 − xd| dt)

−∆d δ1λ| x1 − x2n−1| exp(−δ2
∫

λ| x1 − x2n−1| dt).
(34)

Applying the sliding-mode control (18) using the equivalent control (19) and the new switching control
(31), Eq. (34) becomes

V̇3 = s[(ĉ1 − c1)(x1 − x3) + (k̂1 − k1) x2 + (d1 − d̂1)λ (x1 − xd)
+(d1 − d̂1)λ (x1 − x2n−1) − ∆c|x1−x3|s

|s|+δ1 exp(−δ2
∫

|x1−x3| dt)
− ∆k|x2|s

|s|+δ1 exp(−δ2
∫

|x2| dt)

− ∆dλ|x1−xd|s
|s|+δ1 exp(−δ2

∫
λ|x1−xd| dt)

− ∆dλ|x1−x2n−1|s
|s|+δ1 exp(−δ2

∫
λ|x1−x2n−1| dt)

− κs]

−∆c δ1| x1 − x3| exp(−δ2
∫

| x1 − x3| dt)) − ∆k δ1| x2| exp(−δ2
∫

| x2| dt)
−∆d δ1λ| x1 − xd| exp(−δ2

∫
λ| x1 − xd| dt)

−∆d δ1λ| x1 − x2n−1| exp(−δ2
∫

λ| x1 − x2n−1| dt)
≤ |(ĉ1 − c1)(x1 − x3)s| + |(k̂1 − k1) x2s| + |(d1 − d̂1)λ (x1 − xd)s|

+|(d1 − d̂1)λ (x1 − x2n−1)s| − ∆c|x1−x3|s2

|s|+δ1 exp(−δ2
∫

|x1−x3| dt)
− ∆k|x2|s2

|s|+δ1 exp(−δ2
∫

|x2| dt)

− ∆dλ|x1−xd|s2

|s|+δ1 exp(−δ2
∫

λ|x1−xd| dt)
− ∆dλ|x1−x2n−1|s2

|s|+δ1 exp(−δ2
∫

λ|x1−x2n−1| dt)
− κs2

−∆c δ1| x1 − x3| exp(−δ2
∫

| x1 − x3| dt)) − ∆k δ1| x2| exp(−δ2
∫

| x2| dt)
−∆d δ1λ| x1 − xd| exp(−δ2

∫
λ| x1 − xd| dt)

−∆d δ1λ| x1 − x2n−1| exp(−δ2
∫

λ| x1 − x2n−1| dt)
≤ |(ĉ1 − c1) δ1(x1 − x3)| exp(−δ2

∫
| x1 − x3| dt) + |(k̂1 − k1) δ1x2| exp(−δ2

∫
| x2| dt)

+|(d1 − d̂1)λ δ1(x1 − xd)| exp(−δ2
∫

λ| x1 − xd| dt)
+|(d1 − d̂1)λ δ1(x1 − x2n−1)| exp(−δ2

∫
λ| x1 − x2n−1| dt)

−∆c δ1| x1 − x3| exp(−δ2
∫

| x1 − x3| dt)) − Mk δ1| x2| exp(−δ2
∫

| x2| dt)
−∆d δ1λ| x1 − xd| exp(−δ2

∫
λ| x1 − xd| dt)

−∆d δ1λ| x1 − x2n−1| exp(−δ2
∫

λ| x1 − x2n−1| dt) − κs2

≤ −κs2 ≤ 0.

Therefore, using the new switching control (31), any system trajectory could reach and stay thereafter
on the manifold s = 0 asymptotically. According to Proposition 3, system state will eventually converges
to the desired equilibrium x̄d asymptotically.

Remark 5. The parameter δ1 can be selected according to the selection of δ in Remark 4, and the
parameter δ2 determines the decay rate of the exponential function exp(·) in Eq. (31), so it should be
chosen relatively smaller for avoiding chattering effect.
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5. Simulation studies

In order to validate the proposed controllers, two underactuated mechanical systems, a mass-spring-
damping system and a drill-string system are used for simulation studies. Both of the systems could be
extended from 2-DOF to multi-DOF with discontinuous friction acting on the nth body, and the control
objective for them is to track a desired velocity for all the configuration variables in the presence of
parametric uncertainties.

5.1. The mass-spring-damping system

m1 m2 m3

u

q1 q2 q3

f

k1 k2

c1 c2

Figure 3: A mass-spring-damping system

Consider the system shown in Figure 3, which consists of three masses, m1, m2, and m3 connected
by the springs k1, k2 and the dampers c1, c2. A control force u is applied to the first mass, m1 and the
third mass, m3 is subjected to a discontinuous friction f given by

f =


fr if | q̇3| < ζ and |fr| ≤ fs,

µsm3g sgn(fr) if | q̇3| < ζ and |fr| > fs,

µdm3g sgn(q̇3) if | q̇3| ≥ ζ,

where g = 9.8 m/s2 is the acceleration due to gravity. The displacements of the masses m1, m2, and m3

are q1, q2, and q3, respectively. The equations of motion for the mass-spring-damping system are written
as 

m1q̈1 + c1q̇1 − c1q̇2 + k1q1 − k1q2 = u,

m2q̈2 − c1q̇1 + (c1 + c2) q̇2 − c2q̇3 − k1q1 + (k1 + k2) q2 − k2q3 = 0,

m3q̈3 − c2q̇2 + c2q̇3 − k2q2 + k2q3 + f = 0,

(35)

where the model parameters are given as m1 = 1 kg, m2 = 1 kg, m3 = 0.5 kg, k1 = 0.5 N/m, k2 = 0.5
N/m, c1 = 0.1 Ns/m, and c2 = 0.1 Ns/m, and the physical parameters for the discontinuous friction f are
ζ = 10−6 m/s, µs = 0.3, µc = 0.1, γ = 0.8, and vf = 1 m/s. The estimated model parameters used for
the controllers are m̂1 = 1.1 kg, k̂1 = 0.8 N/m, and ĉ1 = 0.2 Ns/m, and their upper bounds were chosen
as ∆m1 = 0.2 kg, ∆k1 = 0.4 N/m, and ∆c1 = 0.2 Ns/m. The control parameters, δ = 0.01, δ1 = 0.01,
and δ2 = 10−5 were used in numerical simulations.

The simulation results for tracking a desired speed q̇d = 2 m/sec are shown in Fig. 4. It can be seen
from the figure that the third mass m3 has stick-slip motion initially and the system is stabilized to the
desired speed after the control is switched on at t = 30 seconds. However, the discontinuous sign function
in Theorem 1 results in chattering effect on the first mass m1 as shown in Fig. 4(a). A blow-up window
clearly shows the chattering on q̇1 when system trajectory approaches to the sliding surface s = 0. The
control inputs from the proposed controllers are compared in Fig. 5, where the chattering control input
by Theorem 1 can be clearly observed. Comparing the rates of convergence of the proposed controllers,
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Figure 4: Time histories of mass velocities, q̇1 (solid lines), q̇2 (dash lines), and q̇3 (short dash lines) by using (a) Theorem
1, (b) Theorem 2, and (c) Theorem 3. The control is switched on at t = 30 seconds.

time histories of the sliding surfaces are shown in Fig. 6. As can be seen from the figure, Theorem 2 has
the fastest rate of convergence, while Theorem 1 is the slowest one.

According to Theorem 2, the modified switching control uII
s is asymptotically bounded and the

bounded surface may be affected by the constant δ due to ∥s∥ ≤
√

∥δΘ∥/κ. The simulation results
with different δ are presented in Fig. 7, where the desired speed was chosen as q̇d = 5 m/sec and the
rest of parameters were kept the same as before. It can be seen from Fig. 7(a) that, as δ increases, the
overshoot of q̇3 becomes larger and its settling time gets longer. It can be observed from Fig. 7(b) that
when δ is greater, the bounded surface becomes more obvious. The bounded convergence could also be
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Figure 5: Time histories of control inputs by using Theorem 1 (solid line), Theorem 2 (dash line), and Theorem 3 (short
dash line)
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Figure 6: Time histories of sliding surfaces by using Theorem 1 (solid line), Theorem 2 (dash line), and Theorem 3 (short
dash line)

observed from Fig. 7(c), where the blow-up window clearly shows that the trajectory for δ = 20 does not
approach to the desired equilibrium asymptotically.

Figure 7: Time histories of (a) mass velocity q̇3, (b) sliding surfaces s, and (c) system trajectories on the phase plane (q1-q3,
q̇3) by using Theorem 2 with δ = 0.01 (solid line), δ = 1 (dash line), and δ = 20 (dot line).

5.2. The drill-string system

A simplified drill-string system is shown in Fig. 8 which comprises a rotary table, a drill pipe, a
drill collar, and a drill bit. The drill-string is a 4-DOF underactuated system, but could be extended to
multi-DOF depending on the length of the drill pipe. The equations of motion are written as

Jtϕ̈t + cpϕ̇t − cpϕ̇1 + kpϕt − kpϕ1 = u,

J1ϕ̈1 − cpϕ̇t + (cp + cr)ϕ̇1 − crϕ̇r − kpϕt + (kp + kr)ϕ1 − krϕr = 0,

Jrϕ̈r − crϕ̇1 + (cr + cb)ϕ̇r − cbϕ̇b − krϕ1 + (kr + kb)ϕr − kbϕb = 0,

Jbϕ̈b − cbϕ̇r + cbϕ̇b − kbϕr + kbϕb + Tb = 0,

(36)

where Ji (i = t, 1, r, b) is the disk inertia, ci (i = p, r, b) is the torsional damping, ki (i = p, r, b) is the
torsional stiffness, and Tb is the frictional torque when drill bit contacts with borehole given by

Tb =


τr if |ϕ̇b| < ζ and |τr| ≤ τs,

τssgn(τr) if |ϕ̇b| < ζ and |τr| > τs,

µdRbWob sgn(ϕ̇b) if |ϕ̇b| ≥ ζ.

(37)
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Drill pipe
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Drill bit

Jt

Jb
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ft
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k , cb b

Jr

J1 f1

fr

Figure 8: A drill-string system

where the reaction torque τr = cb(ϕ̇r − ϕ̇b) + kb(ϕr − ϕb), the static friction torque τs = µsRbWob,
Rb is the bit radius, and Wob is the weight-on-bit. The system parameters used in the simulation are
given in Table 1. The estimated model parameters used in the proposed controllers are Ĵt = 800 kgm2,
ĉp = 120 Nms/rad, and k̂p = 630 Nm/rad, and their upper bounds were chosen as ∆jt = 150 kgm2,
∆cp = 40 Nms/rad, and ∆kp = 100 Nm/rad. The control parameters, δ = 0.01, δ1 = 0.01, and δ2 = 10−5

were used in numerical simulations.

Parameter Value
Jt 910 kg m2

J1 2800 kg m2

Jr 750 kg m2

Jb 450 kg m2

cp 150 N m s/rad
cr 190 N m s/rad
cb 180 N m s/rad
kp 700 N m/rad
kr 1080 N m/rad
kb 910 N m/rad
µs 0.8
µc 0.45
Wob 30 kN
Rb 0.15 m
γ 0.85
vf 1 rad/s
ζ 10−6 rad/s

Table 1: Model parameters of the drill-string
Time histories of the angular velocities of the rotary table and the drill bit by using the proposed

controllers for tracking a desired angular velocity ϕ̇d = 3 rad/sec are presented in Fig. 9. As can
be seen from the figure, the system undergoes stick-slip motion when no control is applied. Once the
controller is switched on at t = 33 seconds, the angular velocities of the rotary table and the drill bit
asymptotically converge to the desired angular velocity. A further comparison of the proposed controllers
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Figure 9: Time histories of the angular velocities of the rotary table, ϕ̇t (solid lines) and the drill bit ϕ̇b (short dash lines)
by using (a) Theorem 1, (b) Theorem 2, and (c) Theorem 3 which the control is switched on at t = 33 seconds.

is made by using the blow-up windows at where the system has been stabilized. It is seen from the
blow-up window in Fig. 9(a) Theorem 1 leads to chattering on the rotary table due to the discontinuous
switching function. The blow-up windows in Fig. 9(b) and (c) demonstrate that the tracking errors of
Theorem 2 is asymptotically bounded, while Theorem 3 provides a better accuracy of tracking. The
control torques generated by the proposed controllers are compared in Fig. 10, where large amplitude
of chattering by Theorem 1 could be observed and the chattering inputs have been significantly reduced
by the other two controllers. Fig. 11 shows drill-string trajectories on the phase plane (ϕt − ϕb, ϕ̇b).
It can be seen from the figure that the system experiences stick-slip motion at the beginning and these
trajectories asymptotically converge to the desired equilibrium when the controllers are switched on.
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Figure 10: Time histories of control torques by using Theorem 1 (solid line), Theorem 2 (dash line), and Theorem 3 (short
dash line)
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Figure 11: Trajectories of the drill-string on the phase plane (ϕt − ϕb, ϕ̇b) by using Theorem 1 (solid line), Theorem 2 (dash
line), and Theorem 3 (short dash line)

6. Conclusions

Stabilization of a class of underactuated systems with discontinuous friction was studied in this paper.
This class system has multi-DOF, but only one control input, and the presence of discontinuous friction on
unactuated configuration variable leads to the fact that global stabilization is not available. Global motion
regimes for this class system, including sticking, stick-slip, and slip were analyzed, and their corresponding
equilibria were identified. The control objective was to avoid sticking and stick-slip regimes while tracking
a desired equilibrium in slip regime with parametric uncertainties. Three sliding-mode controllers were
studied, and their stabilities were proved by using the Lyapunov direct method, which ensures that any
system trajectory could reach and stay thereafter on the sliding surface where the desired equilibrium is
asymptotically stable. Our first proposed controller was based on the traditional switching control using
discontinuous sign function which could induce chattering phenomenon to system. To overcome this issue,
a modified switching controller was studied using a continuous function. Although system trajectory may
not go to the designed sliding surface anymore, it is asymptotically bounded and control performance still
can be achieved. In order to address this problem, the third switching controller was studied to guarantee
asymptotical convergence for the system. Simulation results for the mass-spring-damping system and the
drill-string system were given to validate the effectiveness of the proposed controllers.
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