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Abstract 

Dietary supplementation with inorganic nitrate (NO3
-) has been shown to lower the 

oxygen (O2) cost of submaximal exercise and to improve performance during 

continuous endurance exercise. The objectives of this thesis were: 1) to improve 

understanding of the supplementation procedures in which NO3
- is most likely to 

benefit exercise physiology and performance, and 2) to explore the ergogenic potential 

of dietary NO3
- in intermittent exercise. Recreationally-active adult participants 

volunteered to participate in the original investigations presented in this thesis.  These 

participants underwent various oral NO3
- supplementation regimes and subsequently 

provided venous blood samples for the determination of plasma nitrate concentration 

([NO3
-]) and plasma nitrite concentration ([NO2

-]), and completed different exercise 

tests to assess the potential for NO3
- supplementation to improve physiological 

responses during exercise and exercise performance. Chapter 4: Following the 

ingestion of 70, 140 and 280 mL concentrated NO3
--rich beetroot juice (BR: containing 

4.2, 8.4 and 16.8 mmol NO3
-, respectively) plasma [NO2

-] increased dose-dependently, 

with peak changes occurring at ~2-3 h post ingestion. The O2 cost of submaximal 

exercise and exercise tolerance were also influenced dose-dependently 2.5 h post acute 

BR ingestion when compared to a NO3
--depleted placebo (PL). Specifically, 8.4 mmol 

and 16.8 mmol lowered the O2 cost of moderate-intensity exercise by 1.7% (P = 0.06) 

and 3.0% (P < 0.05), respectively. Exercise tolerance during severe-intensity exercise 

was significantly improved after ingestion of 8.4 mmol (+14%; P < 0.05), with no 

further improvement evident following ingestion of 16.8 mmol (+12%; P < 0.05). 4.2 

mmol NO3
- did not significantly lower the O2 cost of submaximal exercise or improve 

exercise tolerance. Chapter 5: Plasma [NO2
-] was dose-dependently elevated 2 h and 

after 7 days and ~4 weeks of supplementation with 3 mmol and 6 mmol NO3
-. 

Compared to pre-supplementation baseline, and PL, moderate-intensity exercise O2 

uptake ( O2) was not lowered with a low dose of dietary NO3
- (3 mmol NO3

-) acutely 

(2 h) or after ingesting it daily up to ~4 weeks. In contrast, ingestion of 6 mmol NO3
- 

significantly lowered submaximal exercise O2 by 3% after 2 h (P = 0.06), 7 days and 

~4 weeks (both P < 0.05) of supplementation. Another interesting observation was that 

the reduction in submaximal exercise O2 after ~4 weeks of supplementation with 6 

mmol NO3
- was preserved 24 h after consumption of the final NO3

- dose despite plasma 

[NO2
-] having returned to baseline. Chapter 6: In recreational team sport players, 28 

mmol dietary NO3
- administered over ~30 h improved performance in the Yo-Yo 
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Intermittent Recovery Level 1 (Yo-Yo IR1) test (a test that mimics the high-intensity 

intermittent exercise bouts typical of team sport games) by 4.2%, compared to PL 

(NO3
-: 1704 m vs. PL: 1636 m). The decline (or ‘utilisation’) of plasma [NO2

-] from 

pre-exercise to post-exercise was greater with BR compared to PL, and the magnitude 

of this decline in plasma [NO2
-] was positively correlated with the improvement in Yo-

Yo IR1 performance.  Chapter 7: Supplementation with dietary NO3
- for 3-5 days (8.2 

mmol NO3
- per day) significantly improved performance during 24 x 6-s all-out 

cycling sprints interspersed with 24 s recovery, but not during 7 x 30-s all-out sprints 

interspersed with 240 s of recovery or 6 x 60-s self-paced maximal efforts interspersed 

with 60 s of recovery, in a group of recreational team sport players.  

 

The novel findings presented in this thesis suggest that the supplementation procedure, 

in particular the NO3
- dose administered, should be carefully considered by individuals 

wishing to elicit ergogenic effects following dietary NO3
- supplementation. 

Specifically, the findings suggest that a low dose (≤4.2 mmol) of NO3
- is not sufficient 

to acutely improve exercise tolerance, and that submaximal exercise O2 is not lowered 

following acute or prolonged (~30 day) supplementation with a low NO3
- dose. In 

contrast, results show that higher doses (6-8.4 mmol) of NO3
- might be sufficient to 

acutely lower the O2 cost of submaximal exercise and improve exercise tolerance. The 

present thesis also provides evidence to indicate that dietary NO3
- might hold potential 

as an ergogenic aid for individuals participating in intermittent exercise involving brief 

bouts of high-intensity exercise interspersed with short recovery periods, such as team 

sport players.  These findings are of importance as they will help inform 

supplementation procedures in future studies assessing the ergogenic efficacy of NO3
- 

supplementation. Moreover, they suggest that NO3
- supplementation has the potential 

to improve performance during intermittent exercise as well as continuous endurance 

exercise. 
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Chapter 1: Introduction 

Nitric oxide (NO), or nitrogen monoxide, was first identified as a clear, colorless gas 

by Joseph Priestly over 200 years ago. For much of the time since, this free radical has 

primarily been known as an air pollutant that contributes to the depletion of our planet’s 

ozone layer. This all changed in the 1980’s. NO was not only found to be synthesised 

by the human body from the amino acid L-arginine, but it was also identified as the 

endothelium derived relaxing factor (EDRF) responsible for vasodilation. These 

observations established NO as a mammalian physiological signalling molecule, a 

finding that was later deemed so important it earned the discoverers Robert F. 

Furchgott, Louis J. Ignarro and Ferid Murad the Nobel Prize in Physiology or Medicine 

in 1998. Indeed, in the years that followed these initial discoveries, researchers started 

exploring the role of NO in other physiological processes. Over 100,000 scientific 

papers later, we now know that NO is one of the most widespread signalling molecules 

in the human body with effects not exclusive to vascular control but also integral to 

neurotransmission, reproduction, host defence response, muscle contractility and 

mitochondrial respiration, to mention a few. Research to understand the production, 

regulation and biological functions of NO continues today.  

 

Soon after endogenous NO production was discovered, it also became clear that the 

anions, nitrate (NO3
-) and nitrite (NO2

-), which had previously only been considered as 

toxic constituents of our diet, were also endogenously produced as oxidation products 

of NO. Initially, scientific interest was primarily focused on these anions as markers of 

NO production, with the belief that they were stable and biologically inert. However, 

in 1994, within a decade of the L-arginine: NO pathway discovery, it was found that 

NO3
- and NO2

- can actually undergo a serial reduction to yield NO, meaning that they 

are, in fact, acting as storage pools for NO production. Interestingly, this alternative 

pathway ensures that NO production can continue across a wide range of physiological 

conditions by enabling NO synthesis in hypoxic and acidic environments in which 

NOS activity may be reduced. Despite the exciting prospect that NO bioavailability 

could be ‘boosted’ through this pathway by ingesting dietary NO3
-, over 10 years 

elapsed before the influence of NO3
- supplementation on physiological functions in 

humans was studied. A series of momentous observations followed that have caused a 

paradigm shift in our understanding of the role of NO3
- in human physiology, and 
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highlighted its potential as not only a therapeutic aid but also an ergogenic aid (i.e. an 

aid used for the purpose of enhancing sports performance).   

 

The first of these discoveries came in 2006 when a research group at the Karolinska 

Institute, Sweden, showed that 3 days of dietary supplementation with pharmacological 

sodium NO3
- (NaNO3) significantly lowered resting blood pressure in healthy 

normotensive adults (Larsen et al. 2006). This important observation has potential 

implications for preventing and treating cardiovascular disease and has began to 

explain, in part, the well known therapeutic effects associated with a diet rich in green 

leafy vegetables (Joshipura et al. 1999; Joshipura et al. 2001). However, this was not 

the only impressive effect that accompanied NaNO3 supplementation. One year later 

the same research group published a paper to show that 3 days of dietary NO3
- 

supplementation (0.1 mmol NO3
- kg-1∙d-1) again with a NO3

- salt, lowered the O2 cost 

of submaximal cycle exercise (Larsen et al. 2007). Considering that no physical, 

nutritional or pharmacological intervention was known to consistently alter the O2 cost 

of cycle exercise, this finding was remarkable.  Spotting the potential importance of 

this finding for the improvement of endurance exercise performance, Professor. 

Jones’s team at the University of Exeter, UK, attempted to replicate the findings of the 

Karolinska group but this time using natural NO3
- rich beetroot juice as the source of 

NO3
-. They found that 3-6 days of beetroot juice supplementation (500 mL containing 

~5.1 mmol NO3
- per day) reduced the O2 cost of submaximal exercise (see Figure 1.1), 

but that it could also improve exercise tolerance during high-intensity exercise in 

recreationally-active subjects (Bailey et al. 2009). Research to further explore the 

ergogenic potential of NO3
- increased and studies demonstrated performance 

improvements in a cycling time trial in moderately-trained athletes after the ingestion 

of beetroot juice (Lansley et al. 2011a; Cermak et al. 2012a)
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Figure 1.1:  The group mean pulmonary O2 uptake ( O2) response following 5 days of NO3
- 

rich beetroot juice (closed circles) or placebo (open circles) supplementation during a step 

increment to a moderate-intensity work rate. Note that the O2 cost of submaximal exercise was 

significantly reduced following beetroot supplementation. (From Bailey et al., 2009).   

 

The fact that a natural vegetable juice could improve endurance exercise performance 

did not go unnoticed by the media, with headlines such as “Beetroot juice: The drink 

of champions” and “Beetroot juice may help beet your best” becoming a regular 

occurrence. Unsurprisingly, the use of dietary NO3
- as an ergogenic aid also soared, 

with both elite and non-elite endurance athletes wishing to benefit from the potential 

boost in performance afforded by an increase in NO bioavailability. While research at 

this point had established that the ingestion of 5-8 mmol dietary NO3
- daily for 3-15 

days, or a single acute bolus of an equivalent dose could lower the O2 cost of 

submaximal exercise and improve exercise performance, the optimal supplementation 

strategy for these effects were unknown. As with all nutritional and pharmaceutical 

aids, optimising the supplementation regime in terms of the timing of consumption and 

the dose and duration of supplementation, could have significant influence on the 

effects afforded by the supplement and would therefore be vital in recognising the true 

potential of this natural and readily available ergogenic aid.   

Sport events are not limited to continuous exercise in which participants are required 

to cover a pre-determined distance in the shortest amount of time possible (e.g. a 
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cycling time trial). Some of the world’s most popular sports, including Association 

Football, Rugby Union/League, Hockey and Basketball all require participants to 

repeatedly perform bouts of high-intensity exercise, interspersed with recovery periods. 

Training interventions for the majority of athletes also regularly involve exercise of an 

intermittent nature (i.e. high intensity interval training). While the early evidence that 

NO3
- could improve exercise efficiency (i.e. lower the O2 required for a given work 

rate) naturally led to the exploration of NO3
- as an ergogenic aid for individuals 

participating in continuous endurance events, the effects of NO3
- supplementation on 

intermittent exercise had not been explored. Interestingly, recent evidence from rodent 

experiments found that dietary NO3
- supplementation appears to selectively improve 

contractile function (Hernández et al. 2012) and blood flow (Ferguson et al. 2013a) in 

type II ‘fast-twitch’ muscle.  Considering the recruitment of these fibres is greater 

during high-intensity intermittent exercise than continuous sub-maximal endurance 

exercise, the ergogenic effects of dietary NO3
- may extend to this type of exercise. If 

this is the case, then dietary NO3
- can not only be considered as an ergogenic aid for 

endurance athletes, but also team sport players or for others completing intermittent 

exercise during training.   

 

The purpose of this thesis was to establish the influence of different supplementation 

strategies, in particular with regard to different doses of NO3
-, on the physiological 

responses of dietary NO3
- supplementation and to examine the potential of dietary NO3

- 

supplementation to improve performance during intermittent exercise. The following 

review of literature develops the rationale for the investigation of dose-response 

relationships of dietary NO3
- and the influence of dietary NO3

- on intermittent exercise 

performance in light of existing knowledge at the conception of this thesis. 
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Chapter 2: Literature Review 

 

Nitric oxide  

The ubiquitous free-radical gas, nitric oxide (NO), is one of the most researched 

molecules in physiology and medicine. This key cellular signalling molecule is known 

to play a critical role in a range of physiological processes including: vasodilation 

(Moncada and Higgs 1993), mitochondrial function (Brown and Cooper 1994), 

neurotransmission (Garthwaite 2008), glucose and calcium (Ca2+) homeostasis (Hart 

and Dulhunty 2000; Viner et al. 2000; Merry et al. 2010)  and skeletal muscle fatigue 

(Percival et al. 2010). Due to its high reactivity, NO has a short half-life (0.1 s) in vivo 

(Kelm and Schrader 1990), and as such the ability to continually produce NO is of vital 

importance for the integrity of numerous physiological processes. Indeed, decreased 

NO bioavailability has been associated with several cardiovascular diseases 

(Förstermann 2010) and metabolic syndrome (Huang 2009). In the human body, two 

NO producing pathways have been described: the NO synthase (NOS)-dependent 

pathway and the NOS-independent nitrate (NO3
-)-nitrite (NO2

-)-NO pathway.  

 

The NOS-dependent pathway 

The production of NO via the NOS-dependent pathway was first discovered in the late 

1980’s (Moncada et al. 1989). Three NOS isoforms are currently identified which 

produce NO in different locations throughout the body. These include: type I (neuronal 

NOS; nNOS), type II (inducible NOS; iNOS) and type III (endothelial NOS; eNOS) 

(Moncada and Higgs 1993; Stamler and Meissner 2001). These heme-containing 

enzymes catalyse a complex five-electron oxidation of one of the basic guanidine 

nitrogen groups of the amino acid L-arginine, to yield NO and L-citrulline (Stamler and 

Meissner 2001). This complex reaction requires molecular oxygen (O2) and several 

cofactors including nicotinamide adenine dinucleotide phosphate (NADPH), flavin 

mononucleotide (FMN), tetrahydrobiopterin (BH4) haem and calmodulin (Alderton et 

al. 2001). Rapidly following its synthesis, NO is oxidised to NO3
- by oxyhemoglobin 

and to NO2
- in the plasma via a reaction catalysed by the plasma protein ceruloplasmin 

(Dejam et al. 2005; Shiva et al. 2006). It is now widely acknowledged that impaired 

NO production from the NOS-dependent pathway is associated with a reduced exercise 

tolerance in humans (Lauer et al. 2008)  

NO3
--NO2

--NO pathway 
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This alternative pathway was discovered more recently (Benjamin et al. 1994; 

Lundberg et al. 1994) and involves the serial reduction of NO3
- to NO2

- and further to 

NO and other nitrogen oxides. These observations were very surprising because NO3
- 

and NO2
- had previously been considered as merely inert oxidation end-products of NO 

production via the NOS pathway (Moncada and Higgs 1993). It is now acknowledged 

that these anions serve as a storage pool for NOS-independent NO production, thereby 

supplementing the NO produced via the classic NOS-dependent pathway (Lundberg et 

al. 2004; Bryan 2006; Lundberg and Weitzberg 2009; van Faassen et al. 2009). Of 

particular interest is the fact that this pathway cannot only utilise endogenously 

produced NO3
-, but can also be fuelled by exogenous inorganic NO3

- from the diet. The 

serial reduction of NO3
- to yield NO involves an intricate inter-organ metabolic 

pathway.  

 

Enterosalivary circulation 

After ingestion, 100% of inorganic NO3
- is absorbed from the upper gastrointestinal 

tract into the systemic circulation within ~60 min (Lundberg and Weitzberg 2009) 

where it mixes with endogenously derived NO3
-. The relatively stable NO3

- anion has 

a long half-life of 5-8 h in plasma (Tannenbaum et al. 1979; Wagner et al. 1983). Up to 

60% of the NO3
- is excreted in urine (Wagner et al. 1983; Lundberg and Govoni 2004) 

but ~25% is actively absorbed by the salivary glands and thus enters the enterosalivary 

circulation, where it is concentrated up to 20-fold in saliva  (Lundberg and Govoni 

2004; Govoni et al. 2008; Figure 2.1.). The protein sialin has recently been identified 

as the major transporter of inorganic NO3
- in salivary glands (Qin et al. 2012).  

 

In the oral cavity, facultative anaerobic bacteria located on the dorsal surface of the 

tongue reduce ~20% of salivary NO3
- (~5 % of the ingested intake) to NO2

- by acting 

as an alternative electron acceptor to gain adenosine-5’-triphosphate in the absence of 

O2 (Duncan et al. 1995). Following the ingestion of a NO3
- load, salivary [NO2

-] can 

rise to 1-2 mM (Lundberg and Govoni 2004). When swallowed a portion of this NO2
- 

is reduced to NO in the acidic environment of the stomach (Benjamin et al. 1994; 

Lundberg et al. 2004), a reaction which is greatly enhanced in the presence of vitamin 

C and polyphenols (Weitzberg and Lundberg 1998; Gago et al. 2007). However, some 

NO2
- escapes and is rapidly and efficiently absorbed to increase circulating plasma 
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[NO2
-] (Webb et al. 2008). Here it has a half-life of 1-5 min (Lundberg and Weitzberg 

2005) and can be reduced to NO under appropriate conditions. It is important to note 

that the rise in plasma [NO2
-] following oral NO3

- intake is attenuated following the use 

of antibacterial mouthwash (Govoni et al. 2008) and by spitting (Webb et al. 2008), 

highlighting the importance of this enterosalivary circulation for the reduction of NO3
- 

to NO2
-.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. The enterosalivary circulation of nitrate. Nitrate (NO3
-) is represented by the green 

arrows and nitrite (NO2
-) by the red arrows (redrawn from Lundberg et al., 2011).  

 

NO synthesis from NO2
- 

The final step of the NO3
--NO2

--NO pathway is achieved by a simple one-electron 

reduction of NO2
- to yield NO. This reaction is catalysed by a number of NO2

- 
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reductases including deoxyhaemoglobin (Cosby et al. 2003), deoxymyoglobin (Shiva 

et al. 2007a), xanthine oxidase (Zhang et al. 1998), aldehyde oxidase (Li et al. 2008), 

cytochrome P-450 (Kozlov et al. 2003), and the mitochondrial electron transfer 

complexes (Kozlov et al. 1999). It is important to note that unlike NO production from 

the classic NOS pathway, this reduction reaction is greatly enhanced by conditions of 

hypoxia (Castello et al. 2006) and acidosis (Modin et al. 2001). As such, NO production 

from the NO3
--NO2

--NO pathway may serve as a backup system to ensure NO 

generation when the O2-dependant NOSs may be dysfunctional (Figure 2.2).   

Importantly, skeletal muscle is likely to experience conditions of low O2 tension and 

pH during contraction (Richardson et al. 1995), implying that the NO3
--NO2

--NO 

pathway may be of particular importance during exercise.  

 

 

 

 

Figure 2.2. A schematic presentation of the two parallel pathways for mammalian nitric oxide 

(NO) synthesis.  Left: The L-arginine NO pathway. Right: The nitrate (NO3
-) – nitrite (NO2

-) – 

NO pathway. Hb, haemoglobin; Mb, myoglobin (redrawn from Jones et al. 2014) 

 

It is important to note, however, that while a greater circulating plasma [NO2
-] 

following NO3
- intake would be expected to increase NO production and associated 



Chapter 2: Literature Review 

 

9 

physiological signalling, NO2
- itself may influence physiological processes 

independent of its reduction to NO via modifications to haem groups by nitrosylation, 

and protein thiols by S-nitrosation (Bryan et al. 2005).  

 

Dietary inorganic NO3
- and NO2

- intake  

Vegetables are the main source of dietary NO3
- in the human diet and can account for 

80-85% of daily NO3
- intake (Ysart et al. 1999). Within the vegetable family, green 

leafy vegetables such as lettuce, spinach and beetroot are especially rich in NO3
-, 

containing up to ~400 mg NO3
- per 100 g of fresh weight produce (Wang et al., 2000). 

Other sources of NO3
- include cured meats, where it is added as a preservative, and 

drinking water (Hord et al. 2009). Estimates on NO3
- intake from food are ~31-185 

mg/day in Europe and ~40-100 mg/day in the United States (Hord et al. 2009), whereas 

reported International estimates of daily NO3
- ingestion are ~53-350 mg/day 

(Pennington 1998). This variability in NO3
- intake may result from, but is not limited 

to, a variation in the number of servings, the species of vegetables consumed, fertilizer 

application, growth conditions as well as storage and transport conditions (Hord et al. 

2009). Unlike NO3
-, the content of NO2

- in food is very low with the highest 

concentrations of NO2
- found in processed and cured meats (0-0.89 mg per 100 g) 

where NO2
- is added as a preservative to prevent the growth of Clostridium botulinus 

and to enhance taste and appearance (Hord et al. 2009). In contrast, the NO2
- content of 

vegetables is lower with average concentrations of < 10 mg NO2
- per kg, and maximal 

concentrations rarely exceeding 100 mg per kg (Pennington 1998; Santamaria 2006; 

Sušin et al. 2006; Hord et al. 2009). Due to the low NO2
- content in foods, the average 

intake of NO2
- is considerably lower than that of NO3

-, with daily intake estimates of 0 

to 20 mg (Pennington 1998).  

 

 

Historical health concerns of NO3
- ingestion 

NO3
- and NO2

- have long been considered as toxic constituents of the diet due to their 

supposed association with the development of gastric cancer and methemoglobinemia 

in infants (‘blue baby syndrome’) (McKnight et al. 1999). As a result, the acceptable 

daily intake (ADI) of NO3
- is set by the World Health Organization (WHO) at 3.7 mg 

NO3
-/kg body mass (i.e. 4.2 – 4.7 mmol NO3

- for a 70-80 kg human) (WHO, 2002). 
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Given that NO3
- is relatively inert, the harmful effects of NO3

- ingestion are believed to 

be mediated by its reduction to NO2
-. The proposed carcinogenic effect of NO3

- and 

NO2
- originated from the observation of NO2

--dependent in vivo formation of N-

nitrosamines (a class of carcinogenic substance) in some rodents following ingestion of 

NO2
- (Mirvish 1975). Indeed, a small increase in the number of incidences of 

lymphoma in rats after chronic NO2
- ingestion has been observed (Newberne et al., 

1976), although it must be acknowledged that the doses of NO2
- administered in this 

study were supra-physiological.  In comparison, methemoglobinemia results from the 

NO2
- mediated oxidation of ferric (Fe2+) iron in oxyhaemoglobin that renders the 

haemoglobin molecule unable to bind O2, potentially leading to cellular hypoxia (Fan 

and Steinberg 1996; McKnight et al. 1999). This concern was first raised in 1945 when 

babies younger than 6 months old developed methemoglobinemia following ingestion 

of well-water containing high concentrations of NO3
- (Comly, 1945).  

 

Since these early reports, however, there has been a lack of evidence to confirm a link 

between NO3
- intake and any harmful effects in humans. Indeed, epidemiological 

studies have failed to provide evidence that a high intake of NO3
- is related to an 

increased risk of cancer (Forman et al. 1985; Beresford 1985; Gangolli et al. 1994) and 

WHO have stated recently that ‘there is inadequate evidence in humans for the 

carcinogenicity of nitrate in food’ (WHO, 2010). The role of NO3
- on the incidence of 

methemoglobinemia has also been questioned. In 1999, Avery argued that the early 

reported cases of methemoglobinemia following well-water ingestion in babies 

(Comly, 1945) were likely due to bacterial contamination (Avery 1999). In addition, 

there has also been a lack of evidence to demonstrate the presence of 

methemoglobinemia following human NO3
- or NO2

- exposure (Cornblath and 

Hartmann 1948; Kortboyer et al. 1997; Dejam et al. 2007).  

 

Instead of harmful effects, there is now a growing body of evidence indicating the 

therapeutic potential of NO3
- consumption (Webb et al. 2008; Raat et al. 2009; 

Lundberg et al. 2010; Bailey et al. 2012). For example, NO3
- consumption, and the NO3

-

-NO2
--NO pathway, have been shown to have positive effects on ischeamia reperfusion 

injury (Raat et al. 2009), blood pressure (BP) regulation (Webb et al. 2008), platelet 

aggregation (Richardson et al. 2002) and the physiological response to exercise (Bailey 

et al. 2012). Due to these observations, there are now calls from the research community 
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for a re-evaluation of the ADI (Hord et al. 2009; Kapil et al. 2010). Importantly, the 

current ADI can be exceeded by just one portion of spinach (Hord et al. 2009), and 

individuals who follow the influential Dietary Approach to Stop Hypertension (DASH) 

diet, which has been shown to reduce BP, will consume approximately 1200 mg NO3
- 

every day; exceeding the current ADI by ~550% (Hord et al. 2009).  

 
 

NO3
- salts and beetroot juice 

Pharmaceutical NO3
- salts, such as sodium NO3

- (NaNO3) and potassium NO3
- (KNO3), 

administered in solution or via capsules, have been used extensively as a convenient 

means to administer NO3
- in human experimental studies (Larsen et al. 2007; Kapil et 

al. 2010; Bescós et al. 2011). However, other researchers have opted to administer NO3
- 

in the form of beetroot juice (BR), which is naturally rich in dietary NO3
-. Along with 

NO3
-, beetroot contains other compounds that may influence human metabolism. For 

instance, betaine has been used in the treatment of cardiovascular disease (Borsook and 

Borsook 1951; Van Zandt and Borsook 1951), and has been shown to elicit 

improvements in muscle strength, power and endurance (Hoffman et al. 2009). In 

addition, beetroot is rich in the polyphenols, quercetin and resveratrol, which have been 

linked to mitochondrial biogenesis and an associated increase in aerobic capacity 

(Lagouge et al. 2006; Davis et al. 2009; Ganio et al. 2010). Beetroot may also provide 

protection against exercise-induced oxidative stress (Kanner et al. 2001) and act to limit 

the formation of potentially harmful nitrogenous compounds (Santamaria 2006), due to 

its high antioxidant and polyphenol content (Shepherd et al. 2015). The potential of 

these ingredients to interfere with the interpretation of nitrate effects during 

experimental studies, led to the development of a NO3
--depleted beetroot juice which 

is identical in colour, taste, smell and texture (Lansley et al. 2011b).  This allowed for 

the effects of NO3
- to be isolated from those of the other potential ‘active’ ingredients 

in BR, and also provided a means to carry out a genuinely double-blind placebo 

controlled experimental study.  

 

Plasma NO3
- and NO2

- concentrations 

In general, human plasma NO3
- and NO2

- levels at rest range from between 20-40 uM 

and 50-300 nM, respectively (Kelm 1999; Rassaf et al. 2004; Lundberg and Govoni 

2004; Larsen et al. 2007; Bailey et al. 2009). However, there are exceptions, with some 
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studies reporting plasma NO2
- concentrations in the μM range (Bescós et al. 2011).  The 

variation between individuals and studies is likely a function of differences in 

nutritional intake, fitness status, health and the measurement technique used to 

determine the concentration of these NO metabolites. Indeed, regular exercise has been 

shown to result in higher circulating levels of NO3
- (Jungersten et al. 1997; Lewis et al. 

1999; Green et al. 2004), whilst diseases with endothelial dysfunction result in low 

plasma NO3
- and NO2

- levels (Kleinbongard et al. 2006). Many different methods are 

available for the determination of NO2
- concentration in plasma, including ozone based 

chemiluminescence, high performance liquid chromatography and colorimetric assays 

(e.g. Greiss reaction) (Tsikas 2005). Whilst ozone based chemiluminescence is 

considered the gold standard technique and is widely used due to its high sensitivity 

and ability to detect nM concentrations of NO2
-, the Griess reaction lacks sensitivity 

and is unable to accurately determine concentrations below the μM range (Tsikas 2005). 

Consideration of the participant cohort and method used to determine plasma NO2
- must 

therefore be given when comparing plasma [NO2
-] and [NO3

-] data between studies.  

 

Previous research has consistently reported a significant rise in plasma [NO3
-] and 

[NO2
-] following dietary supplementation with NO3

-, administered in the form of 

NaNO3, KNO3 and BR (e.g. Webb et al. 2008; Bailey et al. 2009; Kapil et al. 2010; 

Bescós et al. 2011). Specifically, Webb et al., (2008) found that the peak elevation in 

plasma [NO3
-] and [NO2

-] occurred 1-2 h and 2-3 h, respectively, post ingestion of 500 

mL BR (containing ~45 mmol NO3
-). The same research group later found that the 

acute ingestion of three different doses of KNO3 resulted in a dose-dependent elevation 

in plasma [NO3
-] and [NO2

-], with peak elevations occurring at similar time points post 

consumption (Kapil et al., 2010). Consistent with their half-life in the human systemic 

circulation, plasma [NO3
-] and [NO2

-] returned to baseline by 24 h post consumption in 

these studies (Webb et al. 2008; Kapil et al. 2010). Importantly, the time at which 

plasma [NO2
-] peaked after NO3

- ingestion in these studies has informed the timing of 

NO3
- ingestion in the majority of subsequent NO3

- supplementation studies. 

Specifically, physiological assessments in these studies have been made 2-3 h post NO3
- 

ingestion to coincide with the peak rise in plasma [NO2
-] (and therefore presumably 

NO bioavailability) (Bailey et al. 2009; Vanhatalo et al. 2010; Bescós et al. 2011; 

Lansley et al. 2011b). However, the pharmacokinetic response to different doses of BR 

has not been characterised. With the use of BR in both basic research and an applied 
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sports setting increasing, the time-to-peak plasma [NO2
-] following different doses of 

BR will provide crucial information to guide the optimal timing of BR ingestion.   

  

Importantly, a number of research groups have also shown that the rise in plasma [NO2
-

] after acute ingestion of NO3
- can be maintained (neither increased nor decreased) after 

daily consumption of NO3
- for up to 15 days (Larsen et al. 2007; Bailey et al. 2009; 

Vanhatalo et al. 2010). Interestingly, it has also been reported that maximal exhaustive 

exercise can result in both an increase (Rassaf et al. 2004; Allen et al. 2010) but more 

frequently a reduction in circulating plasma [NO2
-] (Larsen et al. 2010; Dreißigacker et 

al. 2010; Bescós et al. 2011),  implying that NO2
- may be serving as an NO substrate 

during exercise, particularly at high intensities. However, the kinetics of plasma [NO2
-

] during intermittent exercise, which involves the repeated rapid transition from low- 

to high- exercise intensity, has not been determined.  

 

The remainder of this review will summarise the established influence of an increase 

in plasma [NO2
-] (and therefore presumably NO bioavailability) following dietary NO3

- 

supplementation on a number of different physiological processes, along with their 

potential underlying mechanisms. In addition, this review will highlight intermittent 

exercise as a condition where NO3
- supplementation may be particularly beneficial for 

exercise performance enhancement.  

 

 

Established effects of dietary NO3
- supplementation 

Blood pressure 

A diet rich in fruit and vegetables lowers the risk of morbidity and mortality from 

cardiovascular disease (Joshipura et al. 2001), a finding that may partly be attributed to 

the lowering of BP that accompanies such diets (Appel et al. 1997). In particular, the 

greatest protective effect is found in those diets with the highest consumption of green 

leafy vegetables (Joshipura et al. 2001) suggesting that NO3
- may be particularly 

important for these health benefits.  

 

There are now numerous reports demonstrating that dietary NO3
- can significantly 

reduce resting BP after acute (Webb et al. 2008; Kapil et al. 2010; Vanhatalo et al. 
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2010) and chronic (3-15 days) supplementation (Larsen et al., 2007, 2010; Bailey et al., 

2009, 2010; Vanhatalo et al., 2010). This suggests that dietary inorganic NO3
- may 

provide an effective approach for improving BP and vascular health. Importantly, 

Webb and colleagues from the William Harvey Research Institute, London, have 

carefully characterised the reduction in BP over 24 h following the ingestion of BR. 

They found that acute BR ingestion (~45 mmol NO3
-) reduced systolic (by ~10.4 

mmHg) and diastolic (by ~8.1 mmHg) BP and mean arterial pressure (MAP; by ~8 

mmHg) at 2.5 to 3 h after BR intake, and that this reduction was closely related to the 

peak rise in plasma [NO2
-] (Webb et al. 2008). The same group later reported that the 

rise in plasma [NO2
-] and the reduction in BP following consumption of three different 

doses (4, 13 and 24 mmol) of KNO3 were dose-dependent, with the largest reduction in 

systolic and diastolic BP being 9 and 6 mmHg, respectively (Kapil et al. 2010). By 24 

h these changes in BP had returned to baseline values (Webb et al. 2008; Kapil et al. 

2010). The kinetics of these changes in BP following NO3
- ingestion provide valuable 

information to inform the use of inorganic NO3
- as an effective approach for improving 

BP and vascular health.  

 

The BP lowering effects of NO3
- supplementation are likely mediated by its reduction 

to NO2
- and further to NO (Ignarro et al., 1987), although NO2

- itself may also confer 

direct vasodilatory effects (Alzawahra et al. 2008). It is well documented that an 

increase in NO bioavailability can stimulate smooth muscle relaxation via stimulating 

the release of cyclic guanosine monophosphate (cGMP) (Ignarro et al. 1987). 

Considering the presence of polyphenols and vitamin C in BR (see under 

‘Pharmaceutical NO3
- salts and beetroot juice’ for further details) and the ability for 

these antioxidants to enhance the reduction of NO2
- to NO (Lundberg et al. 2010), it is 

possible that the dose-response relationship between changes in BP following BR 

ingestion is different to that following NO3
- salt ingestion. Future studies characterising 

the dose-response relationship between BR intake and BP lowering over 24 h will 

therefore provide important information on the optimal dose of BR for lowering BP.  

While this has not previously been possible due to the large volumes of BR required to 

administered large doses of dietary NO3
- (i.e. 1 L of non-concentrated BR contains only 

~10.2 mmol NO3
-), the advent of concentrated BR (~70 mL contains 4.1 mmol NO3

-) 

now permits the dose-response relationship between BR and BP to be examined.   
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O2 cost of submaximal exercise 

As well as important haemodynamic effects, dietary NO3
- supplementation has 

beneficial effects upon the physiological responses to submaximal exercise (e.g. Larsen 

et al. 2007; Bailey et al. 2009; Lansley et al. 2011b; Muggeridge et al. 2013). Following 

the onset of submaximal exercise performed below the gas exchange threshold (GET; 

analogous with the lactate threshold) (Jones and Poole 2005) O2 uptake ( O2) rises 

exponentially and reaches a ‘steady state’ after 120-180 s. This steady state O2 

represents the metabolic cost of exercise and has long been considered to be 

independent of age, health and aerobic fitness, as well as unaffected by known physical 

(e.g. exercise training), nutritional and pharmaceutical agents (Jones and Poole 2005). 

Remarkably, however, in 2007, Larsen and colleagues reported that supplementation 

with NaNO3 (0.1 mmol NO3
- kg-1∙d-1) for 3 days significantly increased plasma [NO2

-] 

and reduced the O2 cost of submaximal cycling in a group of healthy untrained 

volunteers (Larsen et al. 2007). These findings were later corroborated by Bailey et al., 

(2009) who reported a reduction in the steady-state O2 during moderate-intensity cycle 

exercise following 4-6 days of supplementation with BR (0.5 L·d-1 or 5.5 mmol·d-1 of 

NO3
-; Bailey et al. 2009). The lowering of submaximal exercise O2 following dietary 

NO3
- supplementation has important implications for athletes because a high exercise 

efficiency (i.e. a low O2 for a given power output) is a key determinant of exercise 

performance (Jones and Burnley 2009). Moreover, for senescent populations, or 

individuals with metabolic, respiratory or cardiovascular diseases, a reduction in the O2 

cost of daily activities might significantly improve functional capacity and quality of 

life.  

 

Since these early reports, many studies have investigated the influence of dietary NO3
- 

supplementation on the O2 cost of submaximal exercise (Table 1). Although not in all 

studies (Breese et al. 2013; Kelly et al. 2014), supplementation with 5-26 mmol NO3
- 

daily for 3-15 days in healthy, recreationally active or moderately trained participants, 

has been shown to significantly lower the O2 cost of submaximal exercise in walking 

(Lansley et al. 2011b), running (Lansley et al. 2011b; Porcelli et al. 2014), double-

legged knee-extensor exercise (Bailey et al. 2010), and cycling at various intensities 

(Vanhatalo et al. 2010; Cermak et al. 2012a; Thompson et al. 2014; Whitfield et al. 

2016). In addition, a reduction in O2 has also been evident in the same participant 

cohort when supplementation is continued for 15 days (Vanhatalo et al. 2010). 
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Importantly, a similar lowering of moderate intensity O2 has been reported acutely, 1 

h following NaNO3
- ingestion (~0.033 mmol.per kg-1 body mass; Larsen et al. 2010) 

and 1.5-3 h following BR ingestion (~5-8 mmol of NO3
-; Vanhatalo et al. 2010; 

Muggeridge et al. 2014; Muggeridge et al. 2013; Thompson et al. 2014) suggesting that 

chronic supplementation is not required to achieve this effect. In contrast to these 

results, studies have reported no significant reductions in the O2 cost of submaximal 

exercise following acute (Bescós et al. 2011; Peacock et al. 2012; Boorsma et al. 2014; 

Sandbakk et al. 2015) or chronic (Christensen et al. 2013) administration of NO3
- in 

highly trained/elite endurance athletes (i.e. O2peak ≥ 60 ml.kg-1.min-1). There is one 

exception, however, with Peeling et al., (2015) recently observing a reduction in steady-

state O2 during laboratory kayaking in a group of National and International level 

kayak athletes. The reason for the between-study discrepancies in the effect of NO3
- 

supplementation on submaximal exercise O2 is unclear, but intra-study differences in 

the supplementation regime (i.e. dose and timing of ingestion), exercise modality and 

the participant population investigated (trained vs. untrained) might be responsible. 
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Table 2.1. The effects of dietary NO3
- supplementation on the O2 cost of submaximal exercise.  

 
Author Participants O2peak  

(ml.kg-1.min-1) 

Supplementation regime Exercise 

Mode 

Protocol NO indices Change in the O2 cost 

of submaximal 

exercise 

Larsen et al., (2007) 9 healthy well-

trained males  

 

55 ± 4  

 

3 days NaNO3 supplementation 

(0.1 mmol ∙ kg-1 ∙ day-1) 

Cycling 5 min exercise bouts at 

WRs equivalent to 45, 60, 

70, 80, 85 and 100% 
O2peak 

↑ plasma [NO3
-]  

↑ plasma [NO2
-] 

↓ O2 over 4 lowest 

WRs 

Bailey et al., (2009) 8 recreationally 

active males 

49 ± 5  6 days of NO3
- rich BR 

supplementation (~5.6 mmol 

NO3
- ∙ day-1) 

Cycling 4 x MI (80% GET) 

exercise bouts completed 

on days 4-6 of 

supplementation 

↑ plasma [NO2
-] 

 

↓ O2 during MI 

exercise bouts 

Bailey et al., (2010) 7 recreationally 

active males 

Not available 6 days of NO3
- rich BR 

supplementation (~5.1 mmol 
NO3

- ∙ day-1)  

Two-legged 

knee-
extensor 

exercise 

6 x LI (15% MVC iEMG 

signal) exercise bouts 
completed on days 4-6 of 

supplementation 

↑ plasma [NO2
-] 

 

↓ O2 during LI 

exercise bouts 

Vanhatalo et al., (2010) 8 recreationally 
active males and 

females 

47 ± 8 Acute (2.5 h prior to exercise), 5 
d and 15 d of NO3

- rich BR 

supplementation (~5.2 mmol 

NO3
- ∙ day-1) 

Cycling 2 x MI (90% GET) 
exercise bouts after 2.5 h, 5 

d and 15 d of 

supplementation 

↑ plasma [NO2
-] at all time 

points 

 

↓ O2 during MI 
exercise bouts at all 

time points.  

Larsen et al., (2010) 7 healthy 
recreationally 

active males and 

females 

Not available Acute (1 h prior to exercise) 
ingestion of 0.1 mmol kg-1 of 

NaNO3.  

Cycling  5 min LI (~84 W) exercise 
bout.  

 

 

↑ plasma [NO2
-] 

↑ plasma [NO2
-] 

↑ plasma cGMP 

 

 

↓ O2 during LI 
exercise bouts 

Larsen et al., (2011) 13 recreationally 

active males and 
females 

Not available 3 days NaNO3 (0.1 mmol kg-1 

∙day-1) supplementation 

Cycling Exercise bout at WRs 

equivalent to 50% O2peak  
 

↑ plasma [NO3
-]  

↑ plasma [NO2
-] 

 

↓ O2 during exercise 

bouts 

Lansley et al., (2011) 9 recreationally 

active males 

55 ± 7 6 days of NO3
- rich BR 

supplementation (~5.1 mmol 
NO3

- ∙day-1) 

Walking/ 

running 

2 x 6 min walking bouts (4 

km.h-1), and 4 MI running 
bouts (80% GET) on days 

4 and 5 of 

supplementation.  

↑ plasma [NO2
-] 

 

↓ O2 during walking 

and running exercise 
bouts 

Bescos et al., (2011) 11 male cyclists 
and triathletes 

65 ± 6 Acute (3 h prior to exercise) 
ingestion of NaNO3 (10 mg kg-1 

∙day-1) 

Cycling 6 min at WRs equivalent to 
2, 2.5, 3 and 3.5 W∙kg-1  

↑ plasma [NO2
-] 

 
↔ O2 during 
exercise bouts at all 

intensities.  

Cermak et al., (2012) 13 trained male 
cyclists or 

triathletes 

58 ± 2 6 days NO3
- rich BR 

supplementation (8 mmol NO3
- 

∙day-1) 

Cycling 30 min bouts at WRs 
corresponding to 45% and 

65% maximum power 

output achieved during an 
incremental test to 

exhaustion.  

↑ plasma [NO3
-] ↓ O2 during exercise 

bouts at both 

intensities.  
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Peacock et al., (2012) 10 highly trained 

male skiers  

70 ± 5 Acute (2.5 h prior to exercise) 

ingestion of KNO3 (9.9 mmol 
NO3

-) 

Running 5 min running bouts at 10 

km∙h-1 and 14 km∙h-1.  

↑ plasma [NO2
-] 

 

↔ O2 during 

exercise bouts at both 
intensities. 

Muggeridge et al., (2013) 8 trained male 

kayakers  

49 ± 6 Acute (2.5 h prior to exercise) 

ingestion of NO3
- rich BR (4.2 

mmol NO3
-) 

Kayaking   15 min at WR equivalent 

to 60% of maximal WR 

attained during a maximal 
graded kayaking test.  

↑ plasma [NO3
-]  

↑ plasma [NO2
-] 

↓ O2 during exercise 

bout 

Christensen et al., (2013) 10 elite male 

cyclists 

72 ± 4 6 days NO3
- rich BR 

supplmentation (8 mmol NO3
-

∙day-1) 

Cycling 3 x 6 min at WR equivalent 

to 70% peak power output 
achieved during maximal 

graded exercise test.  

↑ plasma NOx (nitrate + 

nitrite)  
 

↔ O2 during 

exercise bouts 

Breese et al., (2013) 9 recreationally 

active males and 
females 

Males: 48 ± 6 

Females: 46 ± 9  

6 days of NO3
- rich BR 

supplementation(8 mmol NO3
- 

∙day-1)  

Cycling 3 x 4 min MI (90% GET) 

exercise bouts on days 4-6 
of supplementation.  

↑ plasma [NO2
-] 

 

↔ O2 during 

exercise bouts 

Kelly et al., (2014) 12 recreationally 

active males 

58 ± 6 6 days NO3
- rich BR 

supplementation (8.4 mmol NO3
- 

∙day-1) 

Cycling 2 x 5 min MI (80% GET) 

exercise bouts on days 3-6 
of supplementation 

↑ plasma [NO3
-]  

↑ plasma [NO2
-] 

 

↔ O2 during 

exercise bouts 

Thompson et al., (2014) 16 recreationally 

active males 

47± 6 Acute (90 min before exercise) 

ingestion of NO3
- rich BR (5 

mmol NO3
-).  

Cycling 2 x 20 min exercise bouts 

at WRs equivalent to 50 

and 70% O2peak 

↑ plasma [NO2
-] 

 

Trend for ↓ O2 

during exercise bout at 

50% O2peak (P = 
0.110) 

Muggeridge et al., (2014) 9 male trained 

cyclists 

53 ± 4 Acute (2.5 h prior to exercise) 

ingestion of NO3
- rich gel (~8.1 

mmol NO3
-) 

Cycling 10 min at WR equivalent 

to 60% during maximal 
graded exercise test. 

↑ plasma [NO3
-]  

↑ plasma [NO2
-] 

 

Trend for ↓ O2 (P = 

0.086) 

Porcelli et al., (2014) 8 untrained males 

 

7 moderately 

trained males 

 
6 highly trained 

males 

 

Untrained: 28 - 44  

 

Moderately 

trained: 46-57 

 
Highly trained: 

64-82 

6 days NaNO3 supplementation  

(8.4 mmol NO3
- ∙day-1).  

Running 4 x 6 min MI (80% GET) All groups:  

↑ plasma [NO3
-]  

↑ plasma [NO2
-] 

 

Note: the increase in 
plasma [NO3

-] & [NO2
-] 

was lower in the highly 

trained individuals. 

Untrained: ↓ O2 

during exercise bouts 

 

Moderately trained: ↓ 

O2 during exercise 
bouts 

 

Highly trained: ↔ 
O2 during exercise 

bouts 

Sandbakk et al., (2015) 9 male elite cross-

country skiers 

69 ± 6 Acute (2.5 h prior to exercise) of 

KNO3 (9.9 mmol NO3
-) 

Running 2 x 5 min exercise bouts at 

10 km∙h-1 and 14 km∙h-1 

↑ plasma [NO3
-]  

↑ plasma [NO2
-] 

 

↔ O2 during 

exercise bouts 

Boorsma et al., (2016) 8 male elite 1500 

m runners 

80 ± 5 Acute (2.5 h prior to exercise) 

ingestion of NO3
- rich BR (19.5 

mmol NO3
-)  

 

8 days NO3
- rich BR 

supplementation (days 1 & 8 

subjects consumed 19.5 mmol 

Running 5-7 min exercise bouts at 

WRs equivalent to 50, 65 
and 80% O2peak 

↑ plasma [NO2
-]  

 

↔ O2 during 

exercise bouts at all 
intensities.  
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NO3
- ∙day-1 and on day 2-7 

subjects consumed 13 mmol NO3
-

∙day-1) 

Whitefield et al., (2016) 10 healthy, 

recreationally 

active males 

50 ± 1 7 days NO3
- rich BR 

supplementation (26 mmol NO3
- 

∙day-1) 

Cycling 10 min exercise bouts at 

WRs equivalent to 50 and 

70% O2peak 

↑ plasma [NO3
-]  

↑ plasma [NO2
-] 

 

↔ O2 at 50% O2peak 

 

↓ O2 at 70% O2peak 

 

↑, significant increase; ↓, significant reduction; ↔, no significant difference; NaNO3, sodium nitrate; KNO3, potassium nitrate; [NO3
-]︎, nitrate concentration; [NO2

-], nitrite concentration; O2, oxygen uptake; WRs, 

work rates; MI, moderate-intensity; cGMP, cyclic guanosine monophosphate; GET, gas exchange threshold; BR, beetroot juice; ∆; O2peak, peak oxygen uptake
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Mechanistic bases for reduced O2 cost of submaximal exercise 

A lower O2 cost of submaximal exercise following NO3
- administration might be a 

function of: 1) an inhibition of mitochondrial adenosine triphosphate (ATP) production, 

which would mandate a compensatory increase in anaerobic energy yield; 2) improved 

coupling between ATP hydrolysis and muscle force production (i.e. a lower ATP cost 

of force production); 3) an increase in the mitochondrial P/O ratio (i.e. a lower O2 cost 

of mitochondrial ATP resynthesis); or 4) some combination of these candidate 

mechanisms.  

 

In previous studies (Larsen et al. 2007; Bailey et al. 2009; Vanhatalo et al. 2010; 

Lansley et al. 2011b), the reduced O2 cost of submaximal exercise following dietary 

NO3
- supplementation was not accompanied by an elevated blood [lactate], which 

suggests no compensatory elevation in anaerobic metabolism. However, it is 

acknowledged that blood [lactate] represents a very indirect and incomplete assessment 

of muscle anaerobic energy turnover and therefore, this potential mechanism could not 

be excluded based on these findings. In light of this, Bailey et al., (2010) investigated 

the first two of the potential aforementioned mechanisms using calibrated 31P-magnetic 

resonance spectroscopy (31P-MRS) (Bailey et al. 2010). 31P-MRS enables the in vivo 

assessment of the absolute muscle concentration changes in phosphocreatine ([PCr]), 

inorganic phosphate ([Pi]) and adenosine diphosphate ([ADP]), as well as pH. 

Therefore, this technique provided an estimation of changes in total ATP turnover rate 

and the proportional contribution from PCr hydrolysis, glycolysis and oxidative 

phosphorylation (Lanza et al. 2006; Layec et al. 2009; Bailey et al. 2010).  

 

During low-intensity knee-extensor exercise, 4-6 days of BR supplementation resulted 

in a reduction in the steady-state amplitude of muscle [PCr] degradation and [Pi] and 

ADP accumulation, with no change observed in pH (Bailey et al. 2010). Additional 

calculations revealed that estimated total ATP turnover rate was significantly reduced 

as a consequence of reduced estimated ATP turnover rates from PCr hydrolysis and 

oxidative phosphorylation (Bailey et al. 2010; Figure 2.3). These data suggest that NO3
- 

supplementation improved coupling between ATP hydrolysis and skeletal muscle force 

production. Based on existing models of respiratory control, the observed changes in 

[ADP], [Pi] and [PCr] following NO3
- administration would reduce the stimuli for 
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increased oxidative phosphorylation (Bose et al. 2003; Brown, 1992; Chance & 

Williams., 1955; Mahler, 1985), and therefore may explain the reduction in the O2 cost 

of submaximal exercise after NO3
- supplementation (Bailey et al. 2010). Furthermore, 

the fact that NO3
- supplementation lowered ATP turnover rate through PCr hydrolysis, 

but did not alter ATP turnover rate from anaerobic glycolysis (Figure 2.3) suggests that 

the reduced O2 cost of muscle contraction is not a function of an elevated anaerobic 

energy turnover.  

 

 

 

 

 

 

 

 

 

Figure 2.3. The group mean ATP resynthesis rate averaged over an entire bout of low-intensity 

knee-extension exercise following BR (white bars) and PL (grey bars) supplementation. The 

figure shows the total ATP turnover (ATPTotal) and ATP derived from oxidative 

phosphorylation (ATPOx), PCr (ATPPCr) and glycolysis (ATPGly). Note the significant reduction 

in ATP derived from oxidative phosphorylation and PCr, but not from glycolysis. (From Bailey 

et al. 2010) 

 

An increase in the mitochondrial P/O ratio following NO3
- supplementation also has 

the potential to lower the O2 cost of submaximal exercise. The P/O ratio is a classical 

measure of mitochondrial oxidative phosphorylation efficiency, and is quantified as the 

amount of O2 consumed per ADP phosphorylation to ATP (Hinkle 2005). A number of 

factors including proton leak (Rolfe et al. 1994), proton slip (Groen et al. 1990), 

energetic cost of metabolite transport (Klingenberg 1970) and physiological uncoupling 

(Echtay et al. 2002) can negatively affect P/O ratio. NO3
-, NO2

- and NO may interact 
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with the mitochondrion in several different ways. These interactions may include the 

binding of NO to cytochrome-c-oxidase leading to partial inhibition of mitochondrial 

respiration (Brown and Cooper 1994) and the regulation of tissue protein expression 

and activity (Bryan et al. 2005).  

 

Larsen et al., (2011) assessed the mitochondrial P/O ratio by isolating mitochondria 

from the vastus lateralis muscle of healthy humans who had supplemented their diet 

for 3 days with NaNO3 (0.1 mmol NO3
- kg-1∙d-1). To allow for mitochondrial respiration 

to be investigated, the resultant mitochondrial suspension was added to a reaction 

medium containing the substrates pyruvate and malate. With a controlled submaximal 

infusion of ADP, which was chosen to closely resemble the metabolic state in vivo 

(Kuznetsov et al. 1996), the P/O ratio was increased by 19% (Larsen et al. 2011). 

Further analyses revealed that both the respiratory control ratio (ratio between state 3 

(coupled) and state 4 (uncoupled) respiration) and maximal rate of ATP production 

through oxidative phosphorylation were increased following NaNO3 supplementation 

(Larsen et al. 2011). Mitochondrial respiration with substrates (pyruvate and malate) 

but without added ADP, provided a measure of back leakage of protons through the 

inner mitochondrial membrane, termed state 2 respiration. Following NaNO3 

administration this back leak was reduced by 45% in addition to a 48% reduction in 

state 4 respiration, which was the O2 consumption when exhaustion of ADP had 

occurred (state 4). Taken together, these results suggest that NO3
- supplementation 

increased the P/O ratio by reducing proton leakage and uncoupled respiration. 

Importantly, the increased P/O ratio following NaNO3
- supplementation was correlated 

with the reduction in O2 during submaximal exercise (Larsen et al. 2011).  

 

The mitochondrial proteins, uncoupling protein 3 (UCP-3) and adenine nucleotide 

translocase (ANT), are believed to be responsible for a major part of the proton leak in 

mitochondria (Parker et al. 2008; Bevilacqua et al. 2010). Using Western blotting, 

Larsen et al., (2011) reported a significant down regulation in ANT expression 

following 3 days of NO3
- supplementation. This provides a possible mechanistic basis 

for a reduced proton leak following NO3
- administration and also a rationale for the 

reduction in the O2 cost of exercise following chronic (≥3 days) NO3
- supplementation. 

However, it is important to note that these changes would not occur quickly enough to 

explain the same effect 1-3 h post ingestion of NO3
-. Indeed, Larsen et al., (2011) 
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reported no effect of acute NO2
- exposure on P/O ratio or state 2 and 4 respiration. 

Notably, NO and NO2
- have previously been reported to acutely and reversibly cause 

post-translational protein modifications via s-nitrosation, which may result in an 

alteration of mitochondrial respiration (Reid 1998). Further research is required to 

determine the mechanistic basis of an acute reduction in submaximal O2 1-3 h after 

NO3
- ingestion.  

 

Despite the results of Larsen et al., (2011), more recent findings suggest that an 

improvement in mitochondrial efficiency may not be achieved when NO3
- is 

administered in the form of NO3
- rich BR (Whitfield et al. 2016). Indeed, Whitfield et 

al., (2016) demonstrated that while 7 days of BR supplementation (26 mmol NO3
- per 

day) did significantly lower submaximal exercise O2, measures of mitochondrial 

coupling, including the P/O ratio, and the expression of ANT and UCP-3 were not 

altered. In this case, the observed lowering of O2 is likely due solely to a reduction in 

the ATP cost of force production, as previously shown by Bailey et al., (2010). The 

reason for the discrepancy between the effects of NO3
- salts and BR on mitochondrial 

efficiency is not clear. It is important to acknowledged, however, that the studies of 

Larsen et al., (2011) and Whitfield et al., (2016) varied considerably in terms of 

supplementation duration (3 days vs. 7 days), dose of NO3
- administered (~7 mmol vs. 

26 mmol NO3
- per day). Although not experimentally proven, it is possible that the 

different physiological effects observed in these two studies were a result of these 

between-study differences rather than the form of NO3
- used per se. In this regard, it 

may be that at particular doses and durations of BR supplementation, an improvement 

in mitochondrial efficiency may be observed. In order to comprehensively assess the 

mechanistic basis for a reduction in O2 following BR and NaNO3 supplementation, a 

study in which both NO3
- forms are compared directly (in terms of mitochondrial 

efficiency, the ATP cost of force production [using 31P-magnetic resonance 

spectroscopy] and the O2 cost of submaximal exercise) is required.   

 

Exercise performance 

In 2010, Dreißigacker et al., identified plasma [NO2
-] as an important correlate of 

exercise tolerance (Dreißigacker et al. 2010) suggesting that interventions, such as 

dietary NO3- supplementation, that increase plasma [NO2
-] may have the potential to 
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improve exercise tolerance. In support of this hypothesis, Bailey et al., (2009) reported 

a significant rise in plasma [NO2
-] and a 16% improvement in severe-intensity constant 

work rate exercise tolerance (at 70% Δ, where Δ refers to the difference between the 

work rate at the gas exchange threshold (GET) and the O2peak) following 4-6 days of 

BR supplementation (0.5 L·d-1 containing 5.5 mmol.d-1 of NO3
-) (Bailey et al. 2009). 

Since this observation, several studies have investigated the influence of dietary NO3
- 

supplementation on exercise tolerance (Table 2.2). Although not a universal finding 

(Kelly et al. 2014), supplementation with 5-10 mmol NO3
- daily for 5-11 days has been 

shown to improve exercise tolerance in healthy, recreationally-active or moderately-

trained participants during two-legged knee-extensor exercise (+ 25%; Bailey et al. 

2009), treadmill running (+ 15%; Lansley et al. 2011b) and across a range of severe-

intensity cycling work rates (+ 12-21%; Kelly et al. 2013; Thompson et al. 2014; Breese 

et al. 2013). In a similar participant cohort, an improvement in incremental exercise 

tolerance has also been shown during single-legged knee-extensor exercise (Lansley et 

al. 2011b) and cycling (Vanhatalo et al. 2010) following 3-15 days of supplementation 

with NO3
- (~5-8 mmol/day). Conversely, incremental exercise was not significantly 

improved in trained athletes following acute NaNO3 (0.16 mmol·kg-1·BM) 

administration (Bescós et al. 2011).  

 

While dietary NO3
- supplementation has been reported to improve exercise tolerance 

by 12-25% during constant work rate exercise (i.e. time to reach exhaustion) (Bailey et 

al. 2009; Bailey et al. 2010; Lansley et al. 2011b; Breese et al. 2013; Kelly et al. 2013; 

Thompson et al. 2014), this benefit would be expected to translate into no more than a 

1-2% improvement in exercise performance (i.e. time to cover a set distance, e.g. a 

cycling time trial) (Hopkins et al. 1999). The influence of dietary NO3
- on exercise 

performance has been examined on many occasions with varying outcomes (Table 2.2). 

Consistent with the prediction of Hopkins et al., (1999), acute NO3
- supplementation 

has been shown to enhance performance in trained cyclists during a 
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Table 2.2. The effects of dietary NO3
- supplementation on exercise performance 

 
Author Participants O2peak 

(ml.kg-1.min-1) 

Supplementation regime Exercise 

Mode 

Exercise protocol NO indices Performance 

Bailey et al., (2009) 8 recreationally 
active males 

49 ± 5  6 days of NO3
- rich BR 

supplementation (~5.6 mmol 

NO3
- ∙ day-1) 

Cycling SI (70% ∆) exercise bouts 
completed on day 4 of 

supplementation 

↑ plasma [NO2
-] 

 
↑ Tlim 

Larsen et al., (2010) 9 healthy 

recreationally 
active males and 

females 

3.72 ± 0.33 l.min-1 (note: 

relative O2peak data not 
available).  

 

2 days NaNO3 supplementation 

(0.1 mmol ∙ kg-1 ∙ day-1)  

Leg and 

arm 
cycling 

Incremental exercise test to 

Tlim 

↑ plasma [NO2
-] 

↑ plasma [NO2
-] 

↑ plasma cGMP 

 

 

Trend for ↑ Tlim (P = 

0.13) 

Bailey et al., (2010) 8 recreationally 

active males 

Not available 6 days of NO3
- rich BR 

supplementation (~5.1 mmol 

NO3
- ∙ day-1) 

Two-

legged 

knee-
extensor 

exercise 

HI (30% MVC iEMG signal) 

exercise bout completed on 

day 4 of supplementation 

↑ plasma [NO2
-] 

 

↑ Tlim 

Vanhatalo et al., (2010) 8 recreationally 

active males and 
females 

47 ± 8 Acute (2.5 h prior to exercise), 5 

d and 15 d of NO3
- rich BR 

supplementation (~5.2 mmol 

NO3
- ∙ day-1) 

Cycling Incremental exercise test to 

Tlim after 2.5 h, 5 d and 15 d 
of supplementation 

↑ plasma [NO2
-] at 

all time points 
 

↑ peak power output 

after 15 d, but not 2.5 
h or 5 d of 

supplementation.  

Lansley et al., (2011a) 9 competitive male 
cyclists 

56 ± 6 Acute (2-2.5 h prior to exercise) 
ingestion of NO3

- rich BR (~6.2 

mmol NO3
-).  

Cycling 4- and 16.1 km TT ↑ plasma [NO2
-] 

 
Improved 4- and 16.1 
km TT performance 

Lansley et al., (2011b) 9 recreationally 

active males 

55 ± 7 6 days of NO3
- rich BR 

supplementation (~5.1 mmol 
NO3

- ∙day-1) 

Running SI (75% ∆) running bout and 

incremental single-legged, 
knee-extension exercise test 

to Tlim on days 4-6 of 
supplementation 

↑ plasma [NO2
-] 

 

↑ Tlim during SI 

running and the 
incremental test. 

Bescos et al., (2011) 11 male cyclists 

and triathletes 

65 ± 6 Acute (3 h prior to exercise) 

ingestion of NaNO3 (10 mg kg-1 

∙day-1) 

Cycling Incremental exercise test to 

Tlim 

↑ plasma [NO2
-] 

 

↔ peak power output 

Cermak et al., (2012) 13 trained male 

cyclists or 

triathletes 

58 ± 2 6 days NO3
- rich BR 

supplementation (8 mmol NO3
- 

∙day-1) 

Cycling 10 km TT ↑ plasma [NO3
-]︎ ↑ performance 

Cermak et al., (2012) 20 trained male 
cyclists 

60 ± 1 Acute (2.5 h prior to exercise) 
ingestion of NO3

- rich BR (8.7 

mmol NO3
-).  

Cycling 1 h TT ↑ plasma [NO2
-] 

↑ plasma [NO2
-] 

 

↔ performance 

Peacock et al., (2012) 10 highly trained 
skiers  

70 ± 5 Acute (2.5 h prior to exercise) 
ingestion of KNO3 (9.9 mmol 

NO3
-) 

Running 5 km TT ↑ plasma [NO2
-] 

 
↔ performance 
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Murphy et al., (2012) 5 male and 6 

female subjects 

Not available Acute (75 min prior to exercise) 

ingestion of baked beetroot 
(~500 mg NO3

-).  

Running 5 km TT Not measured (Note: 

BP was reduced 
following BR 

supplementation) 

Trend for ↑ 

performance (P = 
0.06) 

Bescos et al., (2012) 13 trained male 

cyclists and 
triathletes 

60 ± 7 3 days supplementation with 

NaNO3 (10 mg ∙kg-1∙day-1).  

Cycling 40 min TT  ↑ plasma [NO3
-]︎  

↑ plasma [NO2
-] 

 

↔ performance 

Wilkerson et al., (2012) 8 well-trained male 

cyclists 

63 ± 8 Acute (2.5 h prior to exercise) 

ingestion of NO3
- rich BR (~6.2 

mmol NO3
-) 

Cycling 50 km TT ↑ plasma [NO2
-] 

 

↔ performance 

Muggeridge et al., (2013) 8 trained male 

kayakers  

49 ± 5 Acute (2.5 h prior to exercise) 

ingestion of NO3
- rich BR (4.2 

mmol NO3
-) 

Kayaking 1 km TT  ↑ plasma [NO3
-]︎  

↑ plasma [NO2
-] 

 

↔ performance 

Christensen et al., (2013) 10 elite male 

cyclists 

72 ± 4 6 days NO3
- rich BR 

supplementation (8 mmol NO3
-

∙day-1) 

Cycling 400 kcal TT (post completion 

of a 120 min ‘preload’ 

exercise bout) 

↑ plasma NOx 

(nitrate + nitrite)  

 

↔ performance  

Breese et al., (2013) 9 recreationally 
active males and 

females 

Males: 48 ± 6 
Females: 46 ± 9 

6 days of NO3
- rich BR 

supplementation (8 mmol NO3
- 

∙day-1) 

Cycling SI (70% ∆) exercise bout 
(following transition from MI 

exercise bout) on day 6 of 

supplementation.  

↑ plasma [NO2
-] 

 
↑ Tlim 

Kelly et al., (2013) 9 active males 55 ± 8 7-12 days NO3
- rich BR 

supplementation (8.2 mmol NO3
-

∙day-1).  

Cycling SI exercise bouts at WRs 

corresponding to 60, 70, 80% 

∆ & 100% peak power output 
achieved during a ramp 

incremental test 

↑ plasma [NO2
-] 

 

↑ Tlim at 60, 70, 80% 

∆. 

 
↔ Tlim at 100% peak 

power output 

Kelly et al., (2014) 12 recreationally 

active males 

58 ± 6 6 days of NO3
- rich BR 

supplementation (8.4 mmol NO3
- 

∙day-1) 

Cycling SI (70% ∆) exercise bout ↑ plasma [NO3
-]︎  

↑ plasma [NO2
-] 

 

↔ Tlim  

Muggeridge et al., (2014) 9 male trained 

cyclists 

53 ± 4 Acute (2.5 h prior to exercise) 

ingestion of NO3
- rich gel (~8.1 

mmol NO3
-) 

Cycling 16.1 km TT ↑ plasma [NO3
-]︎  

↑ plasma [NO2
-] 

 

↔ performance 

Thompson et al., (2014) 16 recreationally 

active males 

47± 6 Acute (90 min before exercise) 

ingestion of NO3
- rich BR (5 

mmol NO3
-). 

Cycling SI (90% O2peak)  ↑ plasma [NO2
-] 

 

↑ Tlim 

Peeling et al., (2015) Study consists of 2 

sub-studies:  

 
(a) 6 national level 

male kayakers 

 

(b) 5 international 

female kayakers 

Not available (a) Acute (2.5 before exercise) 

ingestion of NO3
- rich BR (4.8 

mmol NO3
-) 

 

(b) Acute (2.5 h before exercise) 

ingestion of NO3
- rich BR (9.6 

mmol NO3
-).  

Kayaking (a) 4 min maximal laboratory 

kayak TT 

 
(b) 500 m on water kayak TT 

↑ plasma [NO2
-] 

 

(a) ↔ performance 

 

(b) ↑ performance 

Porcelli et al., (2014) 8 untrained males 
 

Untrained: 28 - 44  
 

6 days NaNO3 supplementation  
(8.4 mmol NO3

- ∙day-1).  
Running (a) Incremental exercise test 

to Tlim 
All groups:  
↑ plasma [NO3

-]  
Untrained:  
(a) ↔ performance 
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7 moderately 

trained males 
 

6 highly trained 

males 
 

Moderately trained: 46-

57 
 

Highly trained: 64-82 

b) 3 km TT ↑ plasma [NO2
-] 

 
Note: the increase in 

plasma [NO3
-] & 

[NO2
-] was lower in 

the highly trained 

individuals. 

(b) ↑ performance 

Moderately trained:  
(a) ↔ performance 

(b) ↑ performance 

 
 

Highly trained: 

(a) ↔ performance 
(b) ↑ performance 

 

Sandbakk et al., (2015) 9 male elite cross-

country skiers 

69 ± 6 Acute (2.5 h prior to exercise) of 

KNO3 (9.9 mmol NO3
-) 

Running 5 km TT ↑ plasma [NO3
-]︎  

↑ plasma [NO2
-] 

 

↔ performance 

Boorsma et al., (2016) 8 male elite 1500 

m runners 

80 ± 5 Acute (2.5 h prior to exercise) 

ingestion of NO3
- rich BR (19.5 

mmol NO3
-)  

 

8 days NO3
- rich BR 

supplementation (days 1 & 8 

subjects consumed 19.5 mmol 

NO3
- ∙day-1 and on day 2-7 

subjects consumed 13 mmol 

NO3
-∙day-1) 

Running 1500 m TT.  ↑ plasma [NO3
-]︎ 

after acute ingestion 
and 8 days of 

supplementation 

 

↔ performance at 

both measurement 
points.  

 

↑, significant increase; ↓, significant reduction; ↔, no significant difference; NaNO3, sodium nitrate; KNO3, potassium nitrate; [NO3
-]︎, nitrate concentration; [NO2

-], nitrite concentration; O2, oxygen uptake; WRs, 
work rates; MI, moderate-intensity; SI, severe-intensity; TT, time trial; cGMP, cyclic guanosine monophosphate; GET, gas exchange threshold; Tlim, time until limit of tolerance; BR, beetroot juice; ∆, difference 

between power output at the gas exchange threshold and peak oxygen uptake; O2peak, peak oxygen uptake 
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4 and 16.1 km cycling TT (Lansley et al. 2011a) and in recreationally-active 

participants during a 5 km running TT (Murphy et al. 2012). Furthermore, an 

improvement in exercise performance has been observed in trained male 

cyclists/triathletes during a 10 km TT following chronic NO3
- supplementation (8 mmol 

NO3
- daily for 6 days; Cermak et al. 2012a). However, several studies administering 

NO3
- acutely (Wilkerson et al. 2012; Cermak et al. 2012b; Peacock et al. 2012; Bescós 

et al. 2012; Muggeridge et al. 2013; Muggeridge et al. 2014; Sandbakk et al. 2015) or 

chronically (Christensen et al. 2013; Boorsma et al. 2014) have not observed an 

improvement in performance during a cycling TT (Christensen et al. 2013; Cermak et 

al. 2012b; Wilkerson et al. 2012; Muggeridge et al. 2014), running TT (Sandbakk et al. 

2015; Boorsma et al. 2014; Peacock et al. 2012) or a kayacking TT (Muggeridge et al. 

2013), in trained (Muggeridge et al. 2014; Muggeridge et al. 2013) or highly-

trained/elite (i.e. O2peak ≥ 60 ml.kg-1.min-1; Christensen et al. 2013; Sandbakk et al. 

2015; Boorsma et al. 2014; Peacock et al. 2012; Wilkerson et al. 2012; Cermak et al. 

2012b) endurance athletes. Although these result do not provide promising evidence 

for an ergogenic effect of dietary NO3
- in elite athletes, a recent study by Peeling et al., 

(2015) has observed a 1.7% improvement during an on-water 500 m kayaking TT in 

National and International level kayak athletes following acute BR ingestion (~9.6 

mmol NO3
-). Furthermore, while previous studies have not reported an improvement in 

cycling TT performance at the group mean level in elite athletes after NO3
- 

supplementation, individual ‘responders’ within the group have been identified 

(Christensen et al. 2013; Boorsma et al. 2014). Together, these results suggest that 

under certain circumstance, dietary NO3
- can provide a worthwhile performance 

enhancement in this population.   

 

It is likely that intra-study differences in the supplementation regime (acute vs. chronic 

and dose administered), exercise duration, exercise modality and participant 

populations (moderately trained vs. highly trained) contribute to the inconsistent 

influence of dietary NO3
- on exercise performance/tolerance. Indeed, a growing body 

of literature now appears to demonstrate that dietary NO3
- supplementation may be less 

effective at improving exercise efficiency (Bescós et al. 2011; Peacock et al. 2012; 

Boorsma et al. 2014; Sandbakk et al. 2015) and/or performance (Christensen et al. 

2013; Sandbakk et al. 2015; Boorsma et al. 2014; Peacock et al. 2012; Wilkerson et al. 

2012; Cermak et al. 2012b) in highly trained/elite athletes, particularly following acute 
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NO3
- administration (see Jones 2014 and Jonvik et al. 2015 for discussion).  The reason 

for this is unclear, but it may be related, in part, to the higher NOS activity (and 

therefore baseline plasma [NO2
-]) reported in this participant population (Jungersten et 

al. 1997), which might reduce the potential increase in plasma [NO2
-] from a standard 

NO3
- dose and thus attenuate any accompanying benefits. In addition, these participants 

are likely to have greater skeletal muscle capillarisation (Jensen et al. 2004) which 

would potentially minimise areas of hypoxia, an environment where the reduction of 

NO2
- to NO is enhanced (Castello et al. 2006). Finally, considering recent evidence 

suggesting the targeted effects of NO3
- supplementation on type II muscle fibres 

(Hernández et al. 2012; Ferguson et al. 2013a; see Mechanistic basis for improvement 

in exercise performance for further details), the lower proportion of these fibres in 

endurance trained athletes (Tesch and Karlsson 1985) compared to their recreationally 

active counterparts may also reduce the potential benefits of NO3
- supplementation. 

Therefore, when comparing the influence of dietary NO3
- supplementation on exercise 

efficiency and/or tolerance/performance between studies, the participant population 

must be taken into consideration.  

 

Mechanistic bases for improvement in exercise performance 

Bailey et al., (2010) were the first to investigate the mechanistic bases for 

improvements in high-intensity exercise tolerance following NO3
- supplementation.  

Specifically, the muscle metabolic (using 31P-MRS) and pulmonary O2 responses were 

measured during high-intensity knee extensor exercise following 4-6 days 

supplementation with BR. Together with a significant improvement in exercise 

tolerance (~25%), the primary [PCr] amplitude and the [PCr] slow-component 

amplitude were reduced, with no significant alteration in pH dynamics after NO3
- 

supplementation. These changes were accompanied by a strong trend for reduced 

[ADP] and [Pi] accumulation. Consistent with the findings during low-intensity 

exercise, total ATP turnover was reduced as a result of reduced ATP turnover from PCr 

hydrolysis and oxidative phosphorylation. It is therefore likely that NO3
- 

supplementation significantly reduced the ATP cost of muscle force production, 

facilitating a sparing of finite PCr stores. Accumulation of metabolites such as [ADP] 

and [Pi] and the rate of depletion of the finite intramuscular [PCr] reserve are known as 

important contributors to muscle fatigue development (Allen et al. 2008; Jones et al. 
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2008). Although the intramuscular [ADP], [Pi] and [PCr] were not altered at exhaustion 

following NO3
- administration, the time taken to reach these critical concentrations was 

delayed. Therefore, improvements in exercise tolerance may be a result of an attenuated 

rate of decline in [PCr] and accumulation of [ADP] and [Pi], enabling high-intensity 

exercise to be sustained for longer before the attainment of critical values. In support, 

the O2 slow-component amplitude was also reduced during high-intensity exercise, 

meaning that the attainment of O2peak was delayed and tolerable duration of exercise 

was extended.  

 

An increase in mitochondrial biogenesis could also contribute to an enhancement in 

exercise tolerance. However, in a later study, Lansley et al (2011b) found that the 

maximal rate of mitochondrial ATP resynthesis, estimated from the maximal rate of 

PCr resynthesis, was not significantly altered after 4-6 days of NO3
- supplementation, 

suggesting that mitochondrial biogenesis had not occurred. Consistent with this, Larsen 

et al., (2011) did not observe changes in markers of mitochondrial density or biogenesis 

following 3 days of NO3
- supplementation. Together, these findings suggest that 

mitochondrial biogenesis does not contribute to an enhanced exercise tolerance with 

NO3
- after up to 6 days of supplementation. However, this does not exclude the 

possibility that a longer supplementation period could stimulate mitochondrial 

biogenesis.  

 

Recent studies suggest that NO3
- supplementation may result in targeted benefits for 

type II (‘fast-twitch’) muscle fibres (Hernández et al. 2012; Ferguson et al. 2013a). 

Although there is significant heterogeneity between and within muscle fibre types, 

when compared to type I (‘slow-twitch) fibres, type II fibres tend to differ in terms of 

calcium handling, and normally have lower mitochondrial and capillary density 

(Bottinelli and Reggiani 2000). Together, these factors result in type II fibres having a 

lower microvascular PO2 during rest and contraction (Behnke et al. 2003; McDonough 

et al. 2005; Ferreira et al. 2006), a relatively greater reliance on anaerobic pathways for 

ATP production and a greater susceptibility to fatigue, when compared to type I fibres. 

Unsurprisingly, these type II fibres are recruited heavily during high-intensity exercise 

(Krustrup et al. 2004; Krustrup et al. 2009) and thus the preferential effects of NO3
- 

supplementation in these fibres might account for some of the ergogenic effects 

observed at this intensity of exercise. 
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Hernandez et al., (2012) excised fast-twitch skeletal muscles (m. extensor digitorum 

longus, EDL) and slow-twitch muscles (m. soleus) from mice that had consumed NO3
- 

in drinking water or drinking water without NO3
- for 7 days. The EDL, but not the 

soleus muscle, manifest increased contractile force at low stimulation frequencies 

(those used most often for normal movement) in the mice supplemented with NO3
-. 

This result was accompanied by increased expression of the Ca2+ handling proteins 

calsequestrin 1 (CASQ1) and dihydropyridine receptor (DHPR) only in the EDL 

muscle. Subsequent analysis of isolated fast-twitch m. flexor digitorum brevis (FDB) 

single fibres then revealed that NO3
- supplementation increased tetanic [Ca2+]i and force 

production. It therefore appears that NO3
- supplementation improves contractile force 

by enhancing SR Ca2+ release via modifications to sarcoplasmic reticulum (SR) Ca2+ 

handling in fast-twitch but not slow-twitch muscles.  Interestingly, when applied to an 

in vivo model, these data suggest that following NO3
- supplementation fast-twitch 

muscle can be activated at a lower frequency to achieve the same force output, and that, 

for a given force output, the number of motor units needed to be recruited will be 

reduced. These data are consistent with the reduction in ATP cost of force production 

reported by Bailey et al., (2010) in low- and high-intensity exercise discussed above. It 

is important to note that the improvements in skeletal muscle Ca2+ handling reported 

by Hernandez et al., (2012) are only likely to be activated following chronic NO3- 

supplementation due to the time required for protein expression changes to be manifest. 

However, it is possible that NO and/or NO2
- may improve skeletal muscle Ca2+ 

handling by acutely and reversibly altering SR protein function through post-

translational modifications (Reid 1998).  

 

Changes in blood flow may also contribute to enhanced high-intensity exercise 

performance following NO3
- supplementation. Acute infusion of NO2

- has been shown 

to increase muscle blood flow (BF) in humans completing forearm exercise (Gladwin 

et al. 2000). Recently, Ferguson et al., (2013a) examined the effect of 5 days BR 

supplementation on total, and inter- and intra-muscular hindlimb BF and vascular 

conductance (VC) at rest and during submaximal exercise in rats. Together with a 

reduction in MAP, BR supplementation resulted in higher total hindlimb muscle BF 

and VC during exercise, with targeted increases in the muscles and muscle parts 

comprising principally type II muscle fibres. Interestingly, NO has also been shown to 
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modulate the distribution of tissue and intracellular O2 via quenching the metabolic 

activity of fibres in close proximity of the capillaries and increasing oxygenation of the 

fibres further away by elevating the O2 gradient (Thomas et al. 2001). Both an increase 

in BF, and therefore presumably O2 delivery, and improved distribution of this O2, 

specifically in muscle compartments comprising type II muscle fibres, may improve 

exercise performance by, for example, increasing the relative contribution of aerobic 

ATP resynthesis and reducing metabolic perturbation (Bailey et al. 2010; Breese et al. 

2013). 

 

In summary, the improved exercise tolerance after NO3
- supplementation might be 

linked to a blunted muscle metabolic perturbation, or improved skeletal muscle blood 

flow distribution and/or skeletal muscle Ca2+ handling, particularly in type II muscle 

fibres.  

 

Dose optimisation for dietary NO3
- supplementation 

From the above review of literature, it is clear that both acute and chronic dietary NO3
- 

supplementation has the potential to lower the O2 cost of submaximal exercise and 

improve exercise performance, at least in recreationally-active participants. 

Unsurprisingly, these observations have led to the widespread use of dietary NO3
-, 

particularly in the form of BR, as an aid to enhance exercise performance, and an 

exponential increase in researchers assessing the effects of dietary NO3
- on a variety of 

exercise parameters. However, there are still unanswered questions regarding the NO3
- 

intake regime that may optimise these effects, which might explain some of the 

inconsistencies between studies.  Therefore additional research is required to  improve 

supplementation guidelines for future NO3
-supplementation studies.  

 

To date, studies assessing the acute effects of dietary NO3
-/BR on the O2 cost of 

submaximal exercise and performance have administered 5-10 mmol NO3
-/BR 1-3 h 

prior to assessment (Vanhatalo et al. 2010; Lansley et al. 2011a; Cermak et al. 2012b). 

Therefore, it is currently unclear if a dose-response relationship between NO3
- intake 

and these measures exist. Resolving the dose-response relationship between NO3
-/BR 

dose and exercise economy/performance responses  will provide valuable information 

to inform the supplementation guidelines in both a research and applied sports setting. 
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These data may also explain why a proportion of studies administering NO3
- acutely 

have observed no significant effect on exercise economy and performance (e.g. Cermak 

et al. 2012b). It is important to note here, that for the dose-response relationship 

between BR intake and exercise parameters to be determined accurately, the kinetic 

response of plasma [NO2
-] following different doses of dietary BR must be considered. 

These data will allow for the timing of acute supplementation to be optimised for the 

peak elevation of plasma [NO2
-] (see Plasma [NO3

-] and [NO2
-] for further details).  

 

As highlighted in the review above, chronic (>3 days) NO3
- supplementation has been 

shown to alter the expression of key mitochondrial and skeletal muscle Ca2+ handling 

proteins. These structural adaptations may be responsible, in part, for the reduction in 

submaximal exercise O2 and improvements in exercise performance following chronic 

NO3
- supplementation (Larsen et al. 2011; Hernández et al. 2012). However, these 

modifications to skeletal muscle would unlikely be manifest within 1-3 h following 

NO3
- ingestion, and therefore cannot account for the same effects observed after acute 

NO3
- ingestion. Given this potential benefit of a chronic NO3

- supplementation period, 

it may be reasoned that the NO3
- dose required to elicit a beneficial effect when a 

chronic supplementation regime is adopted is lower than that required to elicit an effect 

after ingestion of a single acute bolus. Examining if a period of chronic NO3
- 

supplementation alters the acute dose-response relationship of NO3
- supplementation 

will therefore contribute further to understanding the optimal NO3
- supplementation 

strategy. 

 

It is also important to fully understand the different independent and combined effects 

afforded by a chronic supplementation strategy compared to those evoked by an acute 

ingestion strategy. However, while several studies have assessed the influence of 

chronic NO3
- supplementation on the physiological response to exercise, in all of these 

studies an acute bolus of dietary NO3
- has been administered 1-3 h prior to the 

physiological assessment to ensure that plasma [NO2
-] was significantly elevated (e.g. 

Larsen et al. 2007; Bailey et al. 2009; Vanhatalo et al. 2010; Lansley et al. 2011b). 

Therefore, these studies are in fact assessing the combined effects of chronic NO3
- 

loading and acute NO3
- ingestion, not chronic NO3

- supplementation alone. This leaves 

the possibility that: 1) an acute bolus of dietary NO3
- and the accompanying rise in 

plasma [NO2
-] is not required for lowering submaximal exercise O2 after a period of 
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chronic supplementation; 2) the acute ingestion of NO3
- may augment the effects of 

chronic supplementation alone; and 3) the effects of acute NO3
- ingestion may account 

for some (or all) of the effects observed after chronic NO3
- supplementation. 

Assessment of the chronic effects of dietary NO3
- exposure without the acute ingestion 

of dietary NO3
- is therefore warranted to improve understanding of the potential 

mechanisms by which NO3
- supplementation might be ergogenic. The information 

would provide important practical advice to guide the optimal supplementation strategy 

before competition after a period of chronic NO3
- supplementation.  

 

Potential effects of dietary NO3
- supplementation on intermittent exercise 

performance 

 

The literature reviewed above provides encouraging evidence that, at least in 

moderately-trained individuals, NO3
- supplementation has the potential to improve 

continuous endurance exercise performance (Bailey et al. 2009; Vanhatalo et al. 2010; 

Lansley et al. 2011a; Cermak et al. 2012a). However, it is less clear whether NO3
- 

supplementation can improve performance during high-intensity intermittent exercise, 

which is a hallmark of some of the world’s most popular sports, such as association 

football, basketball and rugby union/league. Typically, intermittent exercise involves 

repeated bouts of high-intensity (near maximal) exercise interspersed with periods of 

recovery. The requirement to repeatedly transition from a low to high metabolic rate 

requires a substantial contribution from both the anaerobic and aerobic energy 

pathways (Gaitanos et al. 1993; Bogdanis et al. 1995; Casey et al. 1996; Bangsbo et al. 

2008).  

 

During a single brief period of high intensity exercise, the rapid requirement for ATP 

is predominantly met via anaerobic metabolic systems, specifically PCr hydrolysis and 

glycolysis (Cheetham et al. 1986; Gaitanos et al. 1993; Bogdanis et al. 1995; Casey et 

al. 1996). For example, during a single short (~6 s) all-out sprint, PCr hydrolysis and 

glycolysis accounts for approximately 50% and 44% of total ATP provision 

respectively, with the remaining ~6% provided by the muscle’s small store of ATP 

(Gaitanos et al. 1993). As a consequence of the rapid anaerobic metabolism of PCr and 

glycogen, lactate, hydrogen (H+) ions and Pi accumulate and pH, PCr and glycogen are 

reduced, whilst ionic balances are also disturbed (see Glaister 2005 for review). In 
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intermittent exercise, the following recovery period provides time to restore metabolic 

homeostasis to resting conditions, but if the duration of recovery is not sufficient to 

achieve this, subsequent performance may be compromised (e.g. Gaitanos et al. 1993; 

Casey et al. 1996). Therefore, any intervention that can improve metabolic responses 

during the ‘work’ periods and/or aid metabolic recovery during the ‘recovery’ periods 

will likely benefit intermittent exercise performance.  

 

Fatigue during intermittent exercise 

Fatigue during repeated bouts of high-intensity exercise has been associated, in part,  

with the incomplete recovery of muscle PCr levels during the recovery period (Gaitanos 

et al. 1993; Bogdanis et al. 1995; Trump et al. 1996). Indeed, a reduced level of muscle 

PCr limits ATP provision from PCr hydrolysis and increases the relative contribution 

of ATP provision from oxidative phosphorylation in subsequent bouts of exercise 

(Bogdanis et al. 1995). As a consequence, ATP turnover is attenuated and force 

production (or power output) declines with repeated bouts of exercise (Gaitanos et al. 

1993; Bogdanis et al. 1995). Along with a progressive increase in the contribution of 

aerobic metabolism to ATP resynthesis during repeated bouts of high-intensity 

exercise, aerobic metabolism is also essential for PCr resysnthesis during recovery 

(Harris et al. 1976; Haseler et al. 1999). This was neatly demonstrated in 1976, by 

Harris and colleagues, who reported that PCr resynthesis during recovery from intense 

single knee-extension exercise was completely abolished when the circulation (and 

therefore O2 delivery) to the quadriceps was occluded (Harris et al., 1976). In line with 

this, it has since been shown that increasing muscle O2 delivery via the inhalation of 

hyperoxic gas can enhance PCr resyntheisis (Haseler et al. 1999).  

 

Together with a reduction in PCr hydrolysis, fatigue during repeated bouts of high-

intensity exercise has also been associated with the reduced energy contribution from 

anaerobic glycolysis (Gaitanos et al. 1993; Bogdanis et al. 1995; Parolin et al. 1999), 

potentially as a result of the accumulation of H+ ions and/or cytosolic citrate which may 

inhibit key regulatory enzymes of glycolysis (Parmeggiani and Bowman 1963; Taylor 

and Halperin 1973; Boscá et al. 1985). Indeed, Gaitanos et al., (1993) suggested that 

acidosis was responsible for the reduction in glycogen breakdown and glycolytic rate 

as sprint number increased during 10 x 6-s all-out sprints. Furthermore, Bishop et al., 
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(2003) has reported a significant correlation between performance decrement in 

repeated sprints and the reduction in blood pH. The depletion of muscle glycogen also 

has the potential to result in glycolytic inhibition, but it has been suggested that 

glycogen would not fall sufficiently to cause fatigue during short-duration intermittent 

exercise, as long as pre-exercise intramuscular glycogen stores are within the normal 

range 300 mmol/kg dm, as measured in muscle homogenate (Gaitanos et al. 1993; 

Hultman et al., 1990). However, it is possible that during prolonged periods of 

intermittent exercise, where aerobic metabolism of glycogen is increased, glycogen 

availability may contribute to the attenuated rate of glycolysis and fatigue (Saltin 1973; 

Krustrup et al. 2006; Karlsson et al., 1969). Furthermore, it should be acknowledged 

that localised depletion of glycogen in areas of high ATP demand (e.g. SERCA and 

actomyosin ATPase; Nielsen et al. 2011) may contribute to fatigue development, even 

when glycogen concentration in muscle homogenate may appear to be sufficient.  

 

The accumulation of Pi and changes in ionic balances may also negatively impact 

performance during high-intensity intermittent exercise. For instance, intracellular Pi 

accumulation has been shown to inhibit muscle excitation contraction coupling directly, 

by attenuating Ca+ release from the SR (Fryer et al. 1995; Kabbara and Allen 1999; 

Dahlstedt et al. 2000; Dahlstedt and Westerblad 2001; Allen et al. 2002). On the other 

hand, the accumulation of potassium (K+) in the muscle interstitum during contraction 

has been proposed to cause fatigue during intense exercise in humans (Fitts 1994; Fitts 

and Balog 1996; Juel et al. 2000; Sejersted and Sjøgaard 2000) by impairing cell 

membrane excitability (Ruff et al. 1988).  

 

Muscle fibre type recruitment 

During intense exercise, it is well documented that type II skeletal muscle fibres 

contribute heavily to skeletal muscle force production (Greenhaff et al. 1994; Casey et 

al. 1996). It is also known that the progressive loss of force/power output with repeated 

bouts of exercise is associated with fatigue in these fibres (Soderlund et al. 1992; 

Greenhaff et al. 1994; Casey et al. 1996). For example, it has been shown that during a 

single all-out bout of exercise, PCr and glycogen are depleted to a greater extent in type 

II fibres compared to type I (Greenhaff et al. 1994; Casey et al. 1996), and that the 

incomplete resynthesis of PCr in these fibres during recovery is associated with reduced 
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performance during a subsequent bout of exercise (Casey et al. 1996). Furthermore, 

given their expected recruitment during high-intensity intermittent exercise, metabolic 

byproducts such as Pi and H+ are likely to accumulate predominantly in type II fibres 

(Greenhaff et al. 1994; Casey et al. 1996).   

 

Nitrate supplementation and high-intensity intermittent exercise 

The fact that type II muscle fibres are recruited heavily during high-intensity 

intermittent exercise, and that NO3
- supplementation has recently been found to have a 

preferential effect on these fibres, suggests that dietary NO3
- may be an effective 

ergogenic aid for individuals participating in this type of exercise. Indeed, as discussed 

earlier (see Mechanistic bases for improvement in exercise performance), NO3
- 

supplementation has been found to improve perfusion of type II muscle (Ferguson et 

al. 2013a) and contractile function in type II muscle fibres (Hernández et al. 2012). 

Both of these have the potential to improve high-intensity intermittent exercise 

performance.  For example, an improvement in skeletal muscle oxygenation (through 

an improvement in perfusion) specifically in type II muscle portions has the potential 

to improve performance by: 1) increasing the proportional contribution of aerobic 

metabolism to ATP resynthesis (Bangsbo et al. 2001) and thus blunt the rate of PCr 

decline and accumulation of metabolic byproducts (i.e. H+, Pi, ADP); and 2) improve 

recovery of type II muscle fibres by improving muscle oxygenation during recovery 

periods (Paganini et al. 1997; Vanhatalo et al. 2011). It is also important to highlight 

that the proportionally high O2 demand relative to O2 delivery during this type of 

exercise is likely to result in a hypoxic and acidic environment, particularly in type II 

fibres, and, as discussed previously, this is an environment which accelerates the 

reduction from NO2
- to NO (Castello et al. 2006; Modin et al. 2001; see section NO 

synthesis from NO2
- for more information).  

 

Together, these observations provide a strong rationale for the efficacy of dietary NO3
- 

supplementation to improve high-intensity intermittent exercise performance. While 

little was known about the effects of dietary NO3
- on intermittent exercise performance 

at the time this thesis was conceived, Bond et al (2012) first observed a higher mean 

power output during 6 x 500 m rowing ergometer repetitions with 90 s recovery 

following NO3
- supplementation. Although promising, the intensity and duration of 
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these bouts of exercise, along with the duration of recovery, was not applicable to team 

sport game play. Therefore, more research was required to determine whether NO3
- 

supplementation could be ergogenic in team sport specific intermittent exercise.  

 

Intermittent exercise during team sports  

The majority of team sports (e.g. association football, field hockey, rugby union/league) 

require participants to repeatedly produce high intensity efforts over a prolonged period 

of time (1-2 h) (Bishop et al. 2003; Bishop and Edge 2005), requiring a substantial 

energy contribution from both the anaerobic and aerobic energy pathways. In these 

sports, the mean duration of high-intensity efforts has been reported to range from 1-7 

s (Mayhew and Wenger 1985; Docherty et al. 1988; Bangsbo et al. 1991; Withers et al. 

1991). Whilst many of these efforts are separated by relatively long rest intervals (>1 

min), a series of repeated bouts interspersed with short recovery periods (< 30 s) are 

often required (Spencer et al. 2005).  Unsurprisingly, the ability of players to repeatedly 

perform these intense periods of exercise is associated with performance in these sports.  

For example, the standard  of a soccer player has been positively correlated with the 

amount of high-intensity running performed throughout a game (Ekblom 1986; 

Bangsbo et al. 1991) (Mohr & Bangsbo 2001). A variety of laboratory/field tests have 

been designed in an attempt to reproduce the physiological and metabolic demands of 

these intermittent sports, including the Yo-Yo Intermittent Recovery Test (Bangsbo et 

al. 2008).  

 

Yo-Yo Intermittent Recovery Test  

The Yo-Yo Intermittent Recovery Test Level 1 (IR1) was specifically designed to 

mimic the high-intensity bouts typical of team sport gameplay (Bangsbo et al. 2008) 

and to assess fatigue resistance during intermittent exercise taxing both the aerobic and 

anaerobic energy systems (Krustrup et al. 2003). The test requires participants to 

complete repeated 2 x 20 m shuttle runs interspersed with a 10-s period of active 

recovery, at increasing speeds controlled by audio signals from an audio player 

(Bangsbo et al. 2008; Figure 2.4). Participants are required to run until they are not able 

to maintain the required speed, and the distance covered at that point is the test result 

(Bangsbo et al. 2008). Assessments of the physiological response to the Yo-Yo IR1 test 

confirm that both the aerobic and anaerobic energy systems are heavily utilised during 
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the test (Bangsbo et al. 2008). Indeed, the heart rate (HR) at the end of the test has been 

reported to be ~99% of the peak HR achieved during a treadmill test in which 

participants reached their maximum O2 ( O2max; Krustrup et al. 2003). Furthermore, 

exhaustion during the Yo-Yo IR1 test is associated with a significant reduction in 

muscle [PCr], [glycogen] and pH, as well as a significant increase in muscle [lactate] 

(Krustrup et al. 2003), which are all consistent with a significant contribution of 

anaerobic metabolism to ATP turnover. It has also been reported that, at exhaustion, 

glycogen depletion is greater in type II fibres compared to type I, demonstrating the 

significant activation of these fibres during the test (Krustrup et al. 2003), as would be 

expected in intermittent exercise (see above).  

 

Figure 2.4. Schematic diagram of the Yo-Yo Intermittent Recovery Test.  

 

Importantly, the Yo-Yo IR1 test has been shown to have a high level of sensitivity and 

ecological validity (see Bangsbo et al. 2008 for review).  Performance during the test 

has been closely correlated with the high-intensity running during soccer games 

(Krustrup et al. 2003) and has been shown to discriminate between players of different 

ability levels in different team sports, including; rugby league (Atkins 2006), 

association football (Bangsbo et al. 2008), Australian football (Veale et al. 2010), and 

basketball (Vernillo et al. 2012). Furthermore, it is clear that the test is sensitive to 

training interventions  (Iaia et al., 2008; Krustrup and Bangsbo 2001; Mohr et al. 2007). 

For example, Krustrup and Bangsbo (2001) observed a 31% improvement in 

performance during the IR1 test after 12-weeks of training, which was associated with 

23% more high-intensity work during a game as well as a significant reduction in the 

fall in high-intensity exercise towards the end of the game in soccer referees (Krustrup 
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and Bangsbo 2001). Together, these observations support the notion that an 

improvement in the Yo-Yo IR1 test would positively impact performance during 

invasion games.  

 

Given its physiological demands, sensitivity and ecological validity, the Yo-Yo IR1 

test will serve as a valid test to examine the influence of dietary NO3
- supplementation 

on team-sport specific high-intensity exercise. In carrying out this assessment, 

important information on the potential of dietary NO3
- to be an ergogenic aid for team 

sport athletes would be assessed. 

 

Variations of intermittent exercise 

Intermittent exercise can vary in work and rest intensities, work and rest durations, 

work-to-rest ratio, and number of work intervals. An alteration in any or a combination 

of these variables inevitably has an impact on the physiological demands of intermittent 

exercise. For instance, extending the duration of all-out exercise or reducing the 

intensity of exercise would be expected to increase the relative contribution of aerobic 

ATP provision, and, in turn, reduce the relative contribution from the faster anaerobic 

energy systems (Withers et al. 1991; Gaitanos et al. 1993; Casey et al. 1996; 

Esbjörnsson-Liljedahl et al. 1999). In line with this, the relative contribution of type II 

muscle fibres to force production will also be lowered (Casey et al. 1996; Esbjörnsson-

Liljedahl et al. 1999; Karatzaferi et al. 2001; Soderlund et al., 1992). Extending the 

recovery period can also have a significant impact on subsequent exercise performance 

by allowing more time for the metabolic homeostasis to return (Nevill et al. 1997; 

McMahon and Jenkins 2012). For example, following a 6 s sprint, PCr was restored to 

55% of pre-sprint levels by 10 s, and to 90% by 3 min, post exercise (Dawson et al. 

1997).  

 

As discussed above, team sports generally involve repeated bouts of short duration (1-

6 s) high-intensity or all-out sprint exercise interspersed with brief (< 30 s) periods of 

recovery (Mohr et al. 2003; Spencer et al. 2004; King et al. 2009). However, in contrast, 

the use of intermittent exercise with longer periods of exercise and recovery are 

regularly used by athletes during training. For example, the so-called Burgomaster 

protocol (Burgomaster et al. 2006) involves repeated 30 s all-out cycling sprints 
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interspersed with 4 min of recovery whereas a classic high-intensity interval training 

session may consist of repeated bouts of prolonged high-intensity exercise interspersed 

with an equal duration of rest (i.e. 60 s exercise and 60 s rest; Weston et al. 2014). 

Given the between-protocol variation in physiological demand, a study examining the 

effects of NO3
- supplementation on different intermittent protocols is warranted. In 

order to accurately compare effects between protocols, the same participant population, 

exercise modality and NO3
- supplementation procedures should be used to limit 

potential for these factors to influence the effects of NO3
- supplementation. The 

findings from such a study would provide important information to ascertain the 

efficacy of dietary NO3
- to improve performance in a range of different intermittent 

exercise protocols, thereby enhancing guidance for the use of dietary NO3
- as an 

ergogenic aid during intermittent exercise.  

 

Summary 

Both chronic and acute dietary NO3
- supplementation have the potential to significantly 

lower the O2 cost of submaximal exercise and improve exercise performance during 

continuous endurance exercise. However, the optimal supplementation strategy to elicit 

these effects is currently unknown. Elucidating the optimal supplementation regime 

would require: 1) determining the optimal acute dose of NO3
- for beneficial effects; 2) 

understanding how the duration of supplementation alters the NO3
- dose required to 

elicit an effect; and, 3) elucidating the independent effects of acute NO3
- ingestion and 

chronic NO3
- supplementation. Moreover, while the influence of dietary NO3

- 

supplementation on continuous endurance exercise has been widely investigated, 

understanding of the influence of NO3
- supplementation on intermittent exercise 

performance is comparatively poor. It is therefore necessary to elucidate the efficacy of 

dietary NO3
- supplementation in enhancing performance during this type of exercise.  

 

Aims 

The aims of this project were twofold. Firstly, to understand the optimal 

supplementation strategies for dietary NO3
- to improve physiological responses during 

exercise and exercise performance, with a particular focus on dose-response 

relationships, and, secondly, to provide a thorough examination of the potential for 

NO3
- supplementation to improve performance during intermittent exercise.  
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The following research questions will be addressed: 

 

1) What are the pharmacokinetic responses of plasma [NO3
-] and [NO2

-] following 

different doses of BR and do the acute physiological and performance effects 

of BR/NO3
- intake improve dose-dependently? 

- What is the influence of acute NO3
- doses of 4.2, 8.4 and 16.8 mmol, 

consumed as 70, 140 and 280 mL concentrated BR, on plasma [NO3
-] 

and [NO2
-] and BP over a 24 h period? 

- What are the physiological responses to moderate- and severe-intensity 

exercise, 2.5 h postingestion of the same NO3
- doses? 

 

2) How does the duration of supplementation influence the dose-response 

relationship of NO3
- supplementation on exercise economy, and what are the 

effects of chronic supplementation without the acute ingestion NO3
- pre-

exercise?  

- What are the effects of acute (2 h), 7 d and 30 d supplementation with a 

low dose (3 mmol) and standard dose (6 mmol) of dietary NO3
- on the 

O2 cost of moderate intensity exercise? 

- What is the effect of chronic (~30 d) NO3
- supplementation on the O2 

cost of submaximal exercise without the intake of dietary NO3
- 2-3 h 

prior to testing? 

 

3)  What are the physiological and performance effects of dietary NO3
- 

supplementation on exhaustive team-specific intermittent exercise? 

- Can dietary NO3
- supplementation increase the distance covered in the 

Yo-Yo IR1 test? 

- What is the kinetic response of plasma [NO3
-] and [NO2

-] during 

intermittent exercise? 

 

4) Does dietary NO3
- supplementation improve performance during a variety of 

intermittent exercise tests consisting of different work-to-rest ratios? 
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- Can dietary NO3
- supplementation improve performance during: twenty 

four 6-s all-out sprints interspersed with 24 s recovery; seven 30-s all-out 

sprints interspersed with 4 min of recovery; and, six 60-s self-paced maximal 

efforts interspersed with 60 s of recovery? 

 

Hypotheses 
 

This thesis will test the following hypotheses: 

 

1) The effects of acute dietary inorganic NO3
- ingestion on plasma [NO3

-] and 

[NO2
-], BP, the O2 cost of moderate-intensity exercise, and exercise tolerance 

(assessed as the time-to-task failure) during severe-intensity exercise will be 

improved dose dependent. 

 

2) Supplementation with 3 mmol NO3
- and 6 mmol NO3

- will result in improved 

exercise efficiency at 7 d and 28-30 d when an acute bolus of NO3
- is consumed 

prior to assessment. Secondly, any effects observed will still be present, albeit 

to a lesser extent, when an acute bolus of NO3
- is not consumed prior to the 

assessment.  

 

3) Dietary NO3
- supplementation will increase the distance covered in the Yo-Yo 

IR1 test. Plasma [NO2
-] will fall as exercise intensity increases and to a greater 

extent after NO3
- ingestion.  

 

4) NO3
- supplementation will improve performance in all three intermittent 

exercise tests and performance would be enhanced to the greatest extent when 

maximal-intensity intermittent exercise was accompanied by the shortest 

recovery duration (i.e. in the 24 x 6-s test). 
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Chapter 3: General Methods 

 

The four experimental Chapters (Chapters 4-7) that comprise this thesis required 396 

exercise tests to be conducted. A further 40 laboratory visits were conducted for the 

assessment of plasma [NO3
-] and [NO2

-] kinetics in Chapter 4. All of the tests in 

Chapters 4, 5 and 7 were conducted in an air conditioned exercise physiology laboratory 

at sea level with an ambient temperature of 18-22ºC. Exercise tests in Chapter 5 were 

conducted in a sports hall on a wooden surface. Prior to the commencement of data 

collection, the University of Exeter Ethics Committee approved all experimental 

procedures employed in each of these experimental Chapters.  

 

Health and Safety 

During all experimental testing, health and safety guidelines established by the School 

of Sport and Health Sciences at the University of Exeter were closely followed. Great 

care was taken to ensure that the laboratory and sports hall provided a clean and safe 

environment for the assessment of human participants. This included the regular 

cleaning of trolleys, ergometers, work surfaces and floors using dilute Virkon 

disinfectant. All respiratory apparatus was disinfected according to manufacturers’ 

recommendations. Experimenters wore disposable nitrile gloves during blood sampling 

and analysis. All biohazard material and sharps were disposed appropriately for later 

incineration.  

 

Participants  

Volunteers for all experiments were recruited from the student and staff University 

population. All participants were non-smokers, free from disease and were not using 

dietary supplements at the time of data collection. Participants in Chapters 4 and 5 were 

recreationally active, and participated in regular structured exercise and/or competitive 

sport. Participants in Chapters 6 and 7 were recreational team sport players, competing 

in either Associate Football or Rugby Union/League games on a regular basis. No 

participants in any experimental Chapters were elite-level athletes. Participants in 

Chapter 4 were instructed to arrive at the laboratory in a well-hydrated state, following 

an overnight fast. All other participants were instructed to arrive at the laboratory 

(Chapters 5 and 7) or sports hall (Chapter 6) well hydrated, at least 3 hours postprandial 

in a rested state. All participants were also asked to avoid strenuous exercise and 
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alcohol for 24 h, and caffeine for 6 hours, preceding each exercise test. Participants in 

all experimental Chapters were also asked not to use antibacterial mouthwash for the 

duration of the experiment. For each participant, all tests were conducted at the same 

time of day (±2 h).  

 

Informed consent 

Prior to any experimentation, participants were given a study information sheet that 

provided a comprehensive description of the experimental procedures and what they 

would be required to do. All potential risks and benefits of participation were also 

explained in this information sheet, and participants were informed that, while their 

anonymity would be preserved and their data stored safely, data of the participants may 

be published in academic journals or presented at national/international conferences. It 

was stressed to participants that they had the right to withdraw from the investigation 

at any time with no disadvantage to themselves. When the participants were happy that 

they understood the requirements of the study, participants gave written informed 

consent to participate.  

 

Supplementation 

In Chapters 4, 6 and 7, inorganic NO3
- was administered in the form of concentrated 

beetroot juice (Beet it, James White Drinks, Ipswich, UK). In each of these 

experimental Chapters, participants were instructed to consume either NO3
--rich 

beetroot juice (BR) or NO3
--depleted beetroot juice (PL), in a double-blind randomised, 

crossover study design (with exception of the pharmacokinetic and pharmacodynamics 

experiment in Chapter 4; see details below). A washout period of at least 72 hours 

separated each supplementation period. The NO3
--depleted placebo beverage was 

created by passage of the juice through a column containing an ion-exchange resin that 

selectively removes NO3
- ions while leaving the juice identical in appearance, taste, 

smell and texture (Lansley et al. 2011b). A brief description of the supplementation 

regime for each experimental Chapter is provided below.  

 

In Chapter 4, volunteers for the pharmacokinetics and pharmacodynamics experiments 

consumed a single bolus of 70, 140 or 280 mL NO3
--rich BR (containing ~4.2, ~8.4, or 

~16.8 mmol NO3
-, respectively) or 140 mL water (control). Volunteers for the dose-
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response exercise testing experiments in Chapter 4 consumed a single bolus of either 

70, 140, or 280 mL NO3
--rich BR (containing ~4.2, ~8.4, or ~16.8 mmol NO3

-, 

respectively) or 70, 140, or 280 mL NO3
--depleted PL (containing ~0.04, ~0.08, or 0.12 

mmol NO3
-) 2.5 h prior to exercise testing.  

 

In Chapter 6, participants were asked to consume 2 x 70 mL of NO3
--rich BR 

(containing ~4.1 mmol NO3
- per 70 mL) or NO3

--depleted PL (containing ~0.04 mmol 

NO3
- per 70 mL) in the morning and 2 x 70 mL in the evening on the day before each 

experimental trial. On each experimental day, participants consumed an additional 2 x 

70 mL 2.5 h prior, and 1 x 70 mL 1.5 h prior, to the onset of testing procedures.  

 

In Chapter 7, participants were asked to consume 2 x 70 mL NO3
--rich BR (containing 

~4.1 mmol NO3
- per 70 mL) or NO3

--depleted PL (containing ~0.04 mmol NO3
- per 70 

mL) on days 1 and 2 of supplementation (non-experimental days). On experimental 

days (days 3, 4 and 5 of supplementation), participants consumed 2 x 70 mL prior to 

the onset of testing procedures. On experimental days 1 and 2 for BR and PL (days 3 

and 4 of supplementation), participants consumed a further 1 x 70 mL dose 3 h post-

completion of testing procedures.  

 

In Chapter 5, inorganic NO3
- was administered in the form of dry beetroot extract 

diluted in water (PepsiCo, USA). Participants were assigned in a group-matched 

fashion to receive either 3 mmol NO3
- (9.75 g of dry beetroot extract diluted in 50 mL 

of water), 6 mmol NO3
- (19.5 g of dry beetroot extract diluted in 50 mL of water), or a 

placebo (containing 0.001 mmol NO3
-, administered as 9.5 g of sucrose and red shade 

colouring diluted in 50 ml water [PepsiCo, USA]) per day, for 30 days. A novel 

supplementation procedure was adopted on days 28-30 of this supplementation period 

in order to assess the influence of chronic NO3
- supplementation with and without the 

acute consumption of NO3
- prior to exercise testing. Further details of this procedure 

are provided in the methods section of Chapter 5.  

 

In all experimental Chapters, participants were asked to replicate their diet in the 24 h 

preceding each laboratory visit. Participants were warned that supplementation might 

cause a harmless side effect of temporary beeturia (red urine) and red stools. In all 
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experimental Chapters the supplementation regime was tolerated well by all 

participants. 

  

Measurement procedures 

Descriptive data 

Prior to any testing, participants’ height and mass were measured and recorded together 

with the participants’ age.  

 

Heart rate 

During Chapters 4 and 6, heart rate (HR) was recorded every 5 s throughout all exercise 

tests using short-range telemetry (Polar RS400, Polar Electro Oy, Kempele, Finland).  

 

Blood pressure 

In Chapter 4, blood pressure of the brachial artery was measured using an automated 

sphygmomanometer (Dinamap Pro; GE Medical Systems, Tampa, FL), with the 

participants in a seated position. Following 10 min of rest in an isolated room, four 

measurements were recorded, and the mean of the final three measurements was used 

for data analysis.  

 

The reliability of measuring systolic blood pressure was determined by repeat 

assessments on two separate days in 10 participants. On each visit, subjects were 

instructed to arrive in a fasted state and then asked to remain seated in an isolated room 

for 10 min before four blood pressure measurements were made. The inter-study 

variation was calculated by comparing the average of the final 3 systolic blood pressure 

measurements recorded on each day. The coefficient of variation (CV) for inter-study 

variation was 1.7% at an overall systolic blood pressure of 118 mmHg.  

 

Plasma NO3
- and NO2

- concentration 

In Chapters 4, 5 and 7, venous blood samples were obtained from the antecubital fossa 

by venepuncture, while in Chapter 6 venous blood samples were obtained from an 

antecubital vein through an intravenous cannula (see Blood lactate and glucose, and 

plasma potassium and sodium concentration for more details). These blood samples 
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were collected into 7.5 ml lithium-heparin tubes (Vacutainer, Becton-Dickinson, New 

Jersey, USA) and centrifuged at 4,000 rpm and 4ºC for 5-8 min, within 3 min of 

collection. Plasma was extracted and immediately frozen at -80ºC. In Chapters 4, 5 and 

6 these samples were later analysed for plasma [NO3
-] and [NO2

-] whereas samples 

collected in Chapter 7 were used for the determination of plasma [NO2
-] only. 

 

Plasma NO2
- and NO3

- were analysed via gas-phase chemiluminescence. This 

technique is dependent on the reduction of NO2
- and NO3

- to NO gas. To reduce NO2
-, 

neat plasma was injected into a gas sealed purge vessel containing 5 mL glacial acetic 

acid and 1 mL sodium iodide (NaI; 4% w/v) at 35ºC. Before the determination of 

plasma [NO3
-], neat plasma was first deproteinized using zinc sulfate (ZnSO4)/sodium 

hydroxide (NaOH). In short, 200 μL plasma, 400 μL ZnSO4 (10% w/v) and 400 μL 0.5 

M NaOH were added together and vortexed for 30 s before being left to stand at room 

temperature for 15 min. Thereafter, samples were centrifuged at 4,000 rpm for 5 min, 

and the supernatant was removed for the analysis of NO3
-. For NO3

- reduction, this 

supernatant was injected into the gas sealed purge vessel containing 0.8% (w/v) 

vanadium trichloride in 1 M HCl at 95ºC.  

 

The NO content was measured using a NO analyser (Sievers NOA 280; Analytix Ltd, 

Durham, UK). The reaction of NO with ozone in the chemiluminescent reaction 

chamber yielded nitrogen dioxide, which on creation emits light at the infra-red region 

of the electromagnetic spectrum. This luminescence was detected by a 

thermoelectrically cooled, red-sensitive photomultiplier tube housed within the NO 

analyser, and amplified producing an analog mV output signal. [NO2
-] and [NO3

-] were 

determined by plotting signal area against a calibration plot of 50 nM to 1.25 μM 

NaNO2
- and 250 nM to 10 μM NaNO3

-, respectively. For duplicate samples of NO3
- 

and NO2
- using these techniques, the coefficients of variation were 1.6% and 9.0%, 

respectively.  

 

Blood lactate and glucose, and plasma potassium and sodium concentration 

In Chapters 4, 5 and 7, fingertip blood samples were obtained to determine the whole 

blood [lactate]. Prior to puncturing the skin, the tip of the finger was cleaned thoroughly 

with an alcohol swab and left to dry. A disposable safety lancet (Safety-Lanzette, 
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Sarstedt) was used to make a small puncture. Initial drops of blood were wiped away 

and approximately 20-25 μL of free flowing blood was collected into a heparinized 

microvette (Microvette CB 300, Sarstedt). Samples were either analysed immediately 

(Chapter 4) or placed on ice and analysed within 5 min of collection (Chapters 5 and 

7), using an automated blood lactate and glucose analyser (YSI 1500, Yellow Sprints 

Instruments, Yellow Springs, OH, USA).  

 

In Chapter 6, venous blood samples were obtained before, during and after exercise 

testing, via a 20 gauge cannula (Insyte-WTM Becton-Dickinson, Madrid, Spain), which 

was inserted into the antecubital forearm vein. The infusion of 0.9% saline using a 

syringe driver  (Terumo NV, Leuven, Belgium) kept the cannula patent. Blood samples 

were collected into 5 mL heparin syringes (Terumo NV, Leuven, Belgium). 200 uL of 

blood was immediately haemolyzed in 200 μL of ice-cold Triton X-100 buffer solution 

(Triton X-100, Amresco, Salon, OH) on ice, and analysed to determine blood [lactate] 

and [glucose] within 5 min of collection (YSI 1500, Yellow Sprints Instruments, 

Yellow Springs, OH, USA). The remaining whole blood was then centrifuged at 4,000 

rpm for 3 min (Hettich EBA 20, Germany) before plasma was extracted and stored on 

ice for ~30 min before being frozen at -80ºC. Plasma [K+] and [Na+] were later 

determined using an automated ion-selective electrode analyser (9180 Electrolyte 

Analyzer, F. Hoffman-La Roche, Basel, Switzerland).  

 

Calibration of both the lactate and glucose analyser and the electrolyte analyser was 

completed regularly (i.e. hourly or after every 10 samples) and daily maintenance was 

carried out by a laboratory technician in accordance with the manufacturer’s guidelines. 

 

Pulmonary gas exchange  

With the exception of the exercise tests conducted in the sports hall in Chapter 6, 

pulmonary gas exchange was measured breath-by-breath during all exercise tests. This 

gas analysis was conducted using a metabolic cart system that comprised of a 

bidirectional “Triple V” digital transducer and differential paramagnetic (O2) and 

infrared absorption (CO2) analysers (Jaegar Oxycon Pro, Hoechberg, Germany). Before 

each exercise test the gas analyser was calibrated with gases of known concentration 

while the volume sensor was calibrated using a 3-litre syringe (Hans Rudolph, Kansas 
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City, MO). Participants wore a nose clip and breathed through a low resistance (0.75 

mmHg l-1.s-1 at 15 l/s) turbine volume transducer (Triple V, Jaeger, The Netherlands), 

which had a low dead space of 90 mL. Gas was continuously drawn down a capillary 

line and sampled for O2, carbon dioxide ( cO2) and minute ventilation ( E) with values 

being displayed breath-by-breath on-line. After the completion of each test, raw breath-

by-breath gas exchange and ventilation data were exported for later analysis.  

 

The reliability of measuring pulmonary gas exchange was determined by repeat 

assessments on two separate days, in 10 participants. On each visit, participants 

completed two constant work rate step exercise tests consisting of 3 min baseline 

pedalling at 20 W, followed by an abrupt increase in work-rate to 80% of the work-rate 

associated with the gas exchange threshold (GET) for 5 min (interspersed by 10 min of 

rest). Before inter-study variation was calculated by comparing the estimated steady-

state O2 for the tests performed on separate days, breath-by-breath pulmonary gas 

exchange data collected during the two identical moderate-bouts on each day were 

averaged over 10-s periods, and time aligned to the start of exercise and ensemble-

averaged. The steady-state O2 response was found to be highly reproducible with 

coefficient of variation of 1.5% at an absolute power output of 92 W.  

 

Cycle ergometry 

All exercise tests in Chapters 4, 5 and 7 were conducted on an electronically-braked 

cycle ergometer (Lode Excalibur Sport, Groningen, The Netherlands), which can 

administer work rate in various functions. In the series of experiments in these 

Chapters, the proportional, step and linear work rate forcing functions of the ergometer 

were used. The proportional function permits work rate to increase or decrease linearly 

as a function of time. This function was employed during the ramp incremental tests in 

Chapters 4, 5 and 7. The step function permits work rate to be rapidly (1000 W.s-1) 

increased or decreased, from one constant work rate to another in a stepwise manner 

for a predetermined duration. This function was employed in Chapters 4 and 5, for all 

step exercise tests of various exercise intensities.  The linear work rate function was 

employed for all three intermittent high-intensity exercise tests in Chapter 7. In 

comparison to the step and proportional functions that administer the external power 

output independent of pedal cadence by instantaneously adjusting the flywheel 
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resistance via electrical braking, the linear function is a cadence dependent system of 

work rate imposition and is given by the following equation:  

 

Linear factor = Power Output ÷ Cadence2 

 

This work rate function administers a fixed work rate such that the attainment of a 

particular cadence will elicit a known power output. In line with manufacturers 

guidelines, a laboratory technician regularly calibrated the cycle ergometer and 

calibration equipment.  

 

Exercise testing procedures 

Incremental ramp test 

In Chapters 4, 5 and 7, the first visit to the laboratory was used for the completion of a 

ramp incremental test to the limit of tolerance. This test consisted of a 3 min period of 

baseline pedaling at 20 W, following which the work rate was increased at a rate of 30 

W.min-1 in a linear (ramp) fashion until the participant was unable to continue. The test 

was terminated when the pedal rate fell by >10 rpm. Participants cycled at a constant 

self selected pedal rate (70-90 rpm), and this pedal rate, along with saddle and handle 

bar height and configuration was recorded and reproduced in subsequent tests. 

Pulmonary gas exchange was continuously collected breath-by-breath throughout these 

incremental ramp tests. 

 

Determination of O2peak and GET   

The pulmonary gas exchange data from the preliminary ramp incremental test was used 

to calculate both the O2peak (Chapters 4, 5 and 7) and gas exchange threshold (GET; 

Chapters 4 and 5). The breath-by-breath pulmonary gas exchange data were averaged 

over consecutive 10-s periods, and O2peak was defined as the highest 30-s mean value 

attained before the participants volitional exhaustion. GET was estimated from 10 s 

average O2 and cO2 measurements. A cluster of measures were used to identify the 

GET, including: 1) the first disproportionate increase in cO2 from visual inspection of 

individual plots of cO2 vs. O2 (V-slope method; Beaver et al. 1986); an increase in 

E/ O2 with no increase in E/ cO2; and 3) an increase in end-tidal O2 tension with no 

fall in end-tidal CO2 tension.  
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Constant-load step tests and calculation of work-rates 

In Chapters 4 and 5, constant work rate step exercise tests were used to assess the 

participant’s physiological responses to exercise. These tests involve the abrupt 

transition from a lower to higher work rate. In both Chapters, these step tests were 

performed at work rates calculated on the basis of the GET and peak work rates attained 

in the ramp incremental tests. It is pertinent to note that when prescribing work rates 

based on pulmonary gas exchange data from incremental tests the O2 ‘lag’ time (mean 

response time) must be corrected for. This ‘lag’ time was assumed to approximate two-

thirds of the ramp rate during incremental exercise (Whipp et al. 1981). Consequently, 

the GET and peak work rates used to normalize exercise intensity reflect work rates 20 

W less than the work rates that coincide with the appearance of the GET and O2peak.  

 

In Chapters 4 and 5, the moderate-intensity work rates used were calculated as 80% of 

the GET. For Chapter 4, the severe-intensity work rates were calculated as 75% ∆ (i.e. 

a work rate equal to the difference between the power output at GET and O2peak plus 

the power output at GET).  

 

Reliability of exercise performance/tolerance measurements 

In Chapter 4, exercise tolerance was assessed as the time-to-exhaustion during severe-

intensity constant work rate cycling exercise. The reliability of this measure was 

determined by repeat assessments on two separate days, in 9 participants. The measure 

was shown to be very reliable with a coefficient of variation of 5.9%.  

 

In Chapter 7, the total distance covered during the Yo-Yo Intermittent Recovery Test 

(level 1) was used to assess team-sport specific intermittent exercise performance. The 

reliability of this measure was determined by repeat assessments on two separate days, 

in 7 participants. The coefficient of variation was found to be 3.0%.  

 

In Chapter 8, 3 different cycling intermittent exercise tests were used to assess 

intermittent exercise performance. Specifically, these 3 tests were: twenty four 6-s all-

out sprints interspersed with 24 s recovery (24 x 6 s); seven 30-s all-out sprints 

interspersed with 4 min of recovery (7 x 30 s); and, six 60-s self-paced maximal efforts 
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interspersed with 60 s of recovery (6 x 60 s). For each exercise bout the mean power 

output (MPO) was determined. Subsequently, the mean of all the exercise bouts within 

each protocol were calculated (MPOmean). To determine the reliability of MPOmean, it 

was assessed in 4 participants on two separate days. For the 24 x 6-s, 7 x 30-s and 6 x 

60-s protocols, the coefficient of variation was found to be 3.3%. 3.1% and 2.8%, 

respectively.  

 

Data analysis procedures 

Information on the data analysis procedures applied is provided in the specific 

experimental Chapters.  

 

Statistical Analysis 

All statistical analysis within the experimental Chapters was conducted with the 

Statistical Package for Social Sciences (SPSS). Detailed information regarding the 

specific statistical analysis conducted is given within each experimental Chapters. The 

data were screened for normal distribution using standard procedures before any 

statistical analysis was carried out. Data are presented as mean ± SD unless otherwise 

stated. Statistical significance was accepted if P < 0.05.  
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Chapter 8: General Discussion 

 

NO is a crucial signalling molecule that is known to modulate a number of 

physiological responses (Moncada and Higgs 1993; Stamler and Meissner 2001; Clerc 

et al. 2007; Garthwaite 2008; Merry et al. 2010). For a long time, NO was thought to 

be synthesised solely by the O2-dependent oxidation of L-arginine via a family of NOS 

enzymes located in various tissues throughout the body (Moncada and Higgs 1993; 

Stamler and Meissner 2001). However, from research performed over the past two 

decades, it is now clear that an alternative, complementary and O2-independent pathway 

for NO production exists where NO3
- is reduced to NO2

- and further to NO (Benjamin 

et al. 1994; Lundberg et al. 1994). Interestingly, the ingestion of dietary NO3
- has been 

shown to significantly elevate plasma [NO2
-] (e.g. Larsen et al. 2007; Webb et al. 2008; 

Bailey et al. 2009; Kapil et al. 2010) (and therefore the potential for O2-independent 

NO generation) and have a number of beneficial physiological effects (Larsen et al. 

2007; Webb et al. 2008; Bailey et al. 2009; Lundberg et al. 2010; Bailey et al. 2012). 

In particular, supplementation with dietary NO3
- has been reported to reduce the O2 cost 

of submaximal exercise (Larsen et al. 2007; Bailey et al. 2009), improve exercise 

tolerance (Bailey et al. 2009; Bailey et al. 2010; Lansley et al. 2011b) and enhance 

continuous endurance exercise performance (Lansley et al. 2011a; Cermak et al. 

2012a). Both scientific interest and the use of dietary NO3
- as an ergogenic aid has 

increased considerably in recent years. This thesis has contributed novel information 

regarding: 1) optimal dosing regimens and associated effects on O2 cost of exercise; 

and 2) the ergogenic effects of dietary NO3
- in intermittent exercise. These contributions 

to knowledge and their practical implications are discussed below.  

 

Research questions addressed 

The aim of this thesis was to further understanding on the optimal supplementation 

procedures for dietary NO3
- to enhance exercise economy and performance and to 

examine the ergogenic potential of dietary NO3
- in intermittent exercise. 

 

 

 

 

Specifically, we set about answering the following research questions: 



Chapter 8: General Discussion. 

 

99 

 

1) What are the pharmacokinetic responses of plasma [NO3
-] and [NO2

-] following 

the ingestion of different doses of BR and do the acute physiological and 

performance benefits of BR/NO3
- intake occur dose-dependently? 

 

2) How does the duration of supplementation influence the dose-response 

relationship of NO3
- supplementation on the physiological response to exercise, 

and what are the effects of chronic NO3
- supplementation without the acute 

ingestion NO3
- pre-exercise?  

3) What are the physiological and performance effects of dietary NO3
- 

supplementation on team-sport specific intermittent exercise? 

4) In what type of intermittent exercise is dietary NO3
- supplementation most 

likely to improve performance?  

Summary of main findings 

Influence of dietary NO3
- : pharmacokinetics and acute dose-response relationships 

Chapter 4, for the first time, characterised the pharmacokinetic and pharmacodynamic 

effects of different doses of NO3
--rich BR and investigated the dose-dependent effects 

of acute BR ingestion on the physiological response to exercise. In short, we 

investigated how the acute ingestion of three different NO3
- doses (4.2, 8.4 and 16.8 

mmol NO3
-), administered as three different BR volumes (70, 140 and 280 mL, 

respectively), influenced plasma [NO3
-] and [NO2

-], resting BP, the physiological 

response to moderate- and severe-intensity exercise, and exercise tolerance. Results 

demonstrated that plasma [NO3
-] and [NO2

-] were dose-dependently increased, with 

peak increases occurring 1 h and 2-3 h post consumption, respectively. Both systolic 

blood pressure and mean arterial pressure were also dose-dependently reduced, up to 

an intake of 8.4 mmol NO3
-, with peak reductions of 10 mmHg and 5 mmHg, 

respectively.Relative to PL, a NO3
- dose of 16.8 mmol was required to cause a 

significant reduction in submaximal exercise O2, although there was a trend (P = 0.06) 

for a reduction with 8.4 mmol NO3
-. In contrast, 8.4 mmol NO3

- improved exercise 

tolerance, with 16.8 mmol NO3
- not providing any further benefit. An acute dose of 4.2 

mmol NO3
- did not significantly influence either the O2 cost of submaximal exercise or 

exercise tolerance. Together, these data suggest that a low dose (≤ 4.2 mmol) of NO3
- 

is insufficient to acutely lower the O2 cost of submaximal exercise and improve exercise 
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performance. These results provide important practical information to guide the use of 

acute BR supplementation as a nutritional aid to enhance exercise performance.   

  

Having established that the acute ingestion of a low dose of dietary NO3
- is ineffective 

at lowering submaximal exercise O2, Chapter 5 sought to determine if a significant and 

consistent reduction in submaximal exercise O2 can be achieved with a low dose of 

dietary NO3
- if it is consumed daily for a prolonged period of time. Hypothetically, this 

was possible due to favourable changes in the expression of mitochondrial and skeletal 

muscle Ca2+ handling proteins that may accompany chronic, but not acute, NO3
- 

supplementation.   

 

Dose-dependent effect of dietary NO3
-: acute vs. chronic supplementation 

Chapter 5 investigated the influence of 3 mmol and 6 mmol NO3
- on the O2 cost of 

submaximal exercise after 2 h, 7 days and ~4 weeks of supplementation. As expected, 

the O2 cost of submaximal exercise was not acutely affected by 3 mmol NO3
-; however, 

the O2 cost of submaximal exercise was also unaffected when the supplementation 

period was extended to ~4 weeks, despite plasma [NO3
-] and [NO2

-] being significantly 

elevated throughout the supplementation period. These data therefore suggest that a 

reduction in submaximal exercise O2 cannot be achieved with a low dose of dietary 

NO3
- even when consumed daily for up to ~4 weeks.  In contrast, the greater rise in 

plasma [NO3
-] and [NO2

-] following 6 mmol NO3
- tended to lower submaximal exercise 

O2 after 2 h, and significantly lowered submaximal exercise O2 at both 7 days and ~4 

weeks of supplementation. A secondary aim of this experiment was to determine the 

importance of acute NO3
- ingestion, and the accompanying pre-exercise rise in plasma 

[NO2
-], for lowering submaximal exercise O2 after a period of chronic 

supplementation. To achieve this, the influence of chronic NO3
- supplementation on the 

O2 cost of submaximal exercise was also assessed without the acute ingestion of dietary 

NO3
- 2 h prior to exercise. An interesting novel finding here was that the reduction in 

submaximal O2 after ~4 weeks supplementation with 6 mmol NO3
- was preserved up 

to 24 h after the final dose of NO3
- was ingested, and thus, in the absence of an elevated 

plasma [NO2
-]. Together these data provide further important, practical information to 

inform the supplementation guidelines for individuals wishing to use dietary NO3
- as 
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an ergogenic aid.  They also lend insight into the potential mechanism by which NO3
- 

supplementation improved exercise economy.    

 

Influence of dietary NO3
- in team-sport specific intermittent exercise 

The remaining two experimental chapters of this thesis were focused on exploring the 

potential ergogenic effects of dietary NO3
- supplementation on high-intensity 

intermittent exercise performance. Chapter 6 aimed to determine if dietary NO3
- could 

improve performance during the Yo-Yo IR1 test, which is designed to mimic the 

interval and recovery durations that are characteristic of team sports game play. In this 

Chapter we observed a 4.2% increase in the total distance covered in the Yo-Yo IR1 

test with BR compared to PL. Further measurements indicated that plasma [NO2
-] 

declined at exhaustion in both PL and BR, but that the relative magnitude of decline 

was greater with BR. Interestingly, the magnitude of this reduction was significantly 

and positively correlated with the distance covered during the Yo-Yo IR1 test, 

suggesting that the utilization of plasma [NO2
-] after dietary NO3

- supplementation may 

be important in determining if dietary NO3
- is effective at improving intermittent 

exercise performance. Strong trends for a reduction of blood [glucose] and plasma [K+] 

during the Yo-Yo IR1 test with BR were also observed, suggesting that changes in 

muscle glucose uptake excitability may have contributed to improvement intermittent 

exercise performance following NO3
- supplementation. The results of this study suggest 

that NO3
- may be an effective ergogenic aid for improving intermittent high-intensity 

exercise performance in team sport players.  

 

Having established that dietary NO3
- supplementation could improve team sport 

specific high-intensity intermittent exercise performance, Chapter 7 sought to establish 

if dietary NO3
- could improve performance during a variety of intermittent exercise 

tests consisting of different work-to-rest ratios as well as exercise and recovery 

durations. Importantly, performance was assessed in all protocols using the same 

participant population, exercise modality and NO3
- dosing procedures, to facilitate the 

determination of the relative efficacy of NO3
- supplementation to improve performance 

in the different intermittent exercise protocols.   
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Influence of dietary NO3
- on intermittent exercise featuring different work and recovery 

intervals  

 

The principal novel finding of Chapter 7 was that NO3
- supplementation increased 

plasma [NO2
-] and significantly improved cycling mean power output (by ~5%) during 

24 × 6-s all-out sprints interspersed with 24 s of recovery, but not during protocols 

comprising seven 30-s all-out sprints interspersed with 4 min of recovery or six 60-s 

self-paced maximal efforts interspersed with 60 s of recovery. When the 24 × 6-s 

protocol was divided into 25% segments, mean power output following NO3
- 

supplementation was significantly improved in sprints 1-6  (+7 %), and non-

significantly higher during sprints 7-12 (+ 4%; P = 0.18), 13-18 (+5%; P = 0.12) and 

19-24 (+5%; P = 0.14). These findings highlight the conditions under which NO3
- 

supplementation may be most likely to benefit high-intensity intermittent exercise 

performance. More specifically, they suggest that chronic dietary NO3
- 

supplementation may be most effective at improving intermittent exercise comprising 

repeated bouts of brief-duration high-intensity exercise interspersed with short recovery 

intervals, which is consistent with the typical intermittent exercise pattern required of 

team sport players (e.g. association football, hockey and rugby union/league).  

 

Optimising the dietary NO3
- supplementation procedure – insights from the 

measurement of plasma [NO3
-] and [NO2

-]  

 

Timing of acute supplementation  

In all four experimental Chapters the results confirmed a number of previous reports 

(Larsen et al. 2007; Webb et al. 2008; Bailey et al. 2009; Kapil et al. 2010; Vanhatalo 

et al. 2010) by showing that both acute and chronic NO3
- supplementation resulted in a 

significant elevation in plasma [NO3
-] and [NO2

-]. Prior to commencing data collection 

for this thesis, studies had characterized plasma [NO3
-] and [NO2

-] pharmacokinetics 

after the ingestion of different doses of KNO3
- (Kapil et al. 2010) and a single dose of 

NO3
--rich non-concentrated BR (Webb et al. 2008). The time-to-peak plasma [NO2

-] in 

these studies have been used to guide the timing of dietary NO3
- ingestion pre-

experiment and to ensure that plasma [NO2
-] peaks at the time of assessment in studies 

investigating the physiological effects of dietary NO3
-. However, in the present thesis, 

the recent availability of concentrated BR enabled the influence of different doses of 
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BR on plasma [NO3
-] and [NO2

-] pharmacokinetics (as well as the O2 cost of exercise 

and exercise tolerance; see later) to be examined. This was not previously feasible due 

to the large volumes of non-concentrated BR that would have been required. This novel 

contribution to knowledge is important because the polyphenol and antioxidant content 

of BR has the potential to alter plasma [NO2
-] pharmacokinetics when compared to that 

observed following KNO3
- ingestion and therefore have important implications for the 

timing of BR supplementation prior to an athletic event or scientific experiment. This 

is especially important considering the growing use of BR as an ergogenic aid and its 

increased use in basic scientific research.  

 

Results from Chapter 4 demonstrated that plasma [NO3
-] and [NO2

-] increased in a 

dose-dependent manner following the consumption of 70, 140 and 280 mL of 

concentrated BR, containing 4.2, 8.4 and 16.8 mmol NO3
-. While peak increases in 

plasma [NO3
-] occurred 1-2 h post consumption, peak elevation in plasma [NO2

-] 

occurred later, peaking at 2-3 h, which is consistent with the time required for NO3
- to 

enter the enterosalivary circulation and be reduced to NO2
- by lingual bacteria (Govoni 

et al. 2008; Webb et al. 2008). These pharmacokinetic responses to BR ingestion are 

consistent with those reported previously following acute ingestion of KNO3
- (Kapil et 

al. 2010). The observed time-to-peak plasma [NO2
-] in Chapter 4 should be used by 

both athletes and scientists to guide the timing of concentrated BR ingestion to optimize 

its physiological effects. In line with this, the pharmacokinetic data in Chapter 4 

informed supplementation procedures in Chapters 5, 6 and 7, as well as the exercise 

dose-response sub-study in Chapter 4. Specifically, NO3
- was consumed 2-2.5 h prior 

to exercise in all Chapters in order to coincide with the peak elevation in plasma [NO2
-

].  

 

In contrast to the pharmacokinetic assessment in Chapter 4, the increases in plasma 

[NO3
-] and [NO2

-] were assessed at a single pre-determined time-point post acute 

ingestion of dietary NO3
- in Chapter 5 and in the exercise dose-response sub-study of 

Chapter 4. These measurements were made 2-2.5 h post ingestion to coincide with peak 

elevation in plasma [NO2
-] observed in Chapter 4. Plasma [NO3

-] was increased by 

334%, 778% and 1,556% while plasma [NO2
-] was increased by 121%, 218%, and 

338%, 2.5 h post-administration of 4.2, 8.4 and 16.8 mmol NO3
- (administered as 70, 

140, 280 ml concentrated BR) respectively, in Chapter 4. Note that these measurements 
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were made in a different set of participants than that used for the pharmacokinetic sub-

study (Chapter 4). Consistent with this dose-dependent response, the ingestion of 3 

mmol and 6 mmol NO3
- (administered in the form of beetroot extract) in Chapter 5 

resulted in a ~300% and 867% increase in plasma [NO3
-] and a ~165% and 579% 

increase in plasma [NO2
-] 2 h post consumption. Together the data from Chapters 4 and 

5 showed that the acute ingestion of different doses of dietary NO3
- does result in a 

dose-dependent increase in plasma [NO3
-] and [NO2

-].  

 

Interestingly, comparison of the plasma [NO2
-] pharmacokinetics in Chapter 4, and, and 

the acute increases in plasma [NO2
-] 2-2.5 h post consumption in Chapter 5 and the 

dose-response study in Chapter 4, provide some important novel insights into the 

variability of plasma [NO2
-] responses between individuals and studies.  

 

Variability in plasma [NO2
-] responses to acute dietary NO3

- supplementation 

between individuals and studies 

 

An important observation in Chapter 4 was that the group mean rise in plasma [NO2
-] 

in the exercise dose-response study was somewhat lower than those observed at 2-4 h 

postingestion of the same BR doses in the pharmacokinetic assessment. Because a 

different participant cohort was recruited for each sub-study, this discrepancy may have 

arisen from between-participant variations in the pharmacokinetic response of plasma 

[NO3
-] and [NO2

-] to BR ingestion. Evidence for this variability was provided by kinetic 

analysis of the plasma [NO2
-] responses following the ingestion of 16.8 mmol NO3

- in 

the pharmacokinetic sub-study. Importantly, these analyses found that peak NO2
- 

concentrations ranged from 493 to 1,523 nM, and the time-to-peak concentration 

ranged from 130 to 367 min (see Figure 8.1). This large inter-participant variation may 

be related to between-participant differences in the presence and/or activity of the oral 

bacteria responsible for the reduction of NO3
- to NO2

- (Govoni et al. 2008; Webb et al. 

2008), and/or other factors associated with the enterosalivary circulation such as saliva 

flow rate and the uptake of NO3
- by the protein sialin in salivary glands (Qin et al. 

2012). A further possibility is that the variability is in part related to the somewhat 

different NO3
- doses administered when expressed relative to BM (i.e. 4.2, 8.4 and 16.8 

mmol NO3
- = 0.05-0.07, 0.09-0.13, and 0.19-0.25 mmol NO3

-/kg BM, respectively). 

Although further research is required to understand the cause of the pharmacokinetic 
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variability, these findings do suggest that by setting a fixed time of supplementation 

before assessment or an athletic event, the potential peak increase in plasma [NO2
-] may 

not be achieved in all individuals when the same absolute dose of NO3
- is administered 

(see Figure 8.1 for visual illustration of this). This interesting issue has recently been 

discussed in detail elsewhere (James et al. 2015) and might account for some of the 

disparate effects of NO3
- supplementation.  

 

 

Figure 8.1. Plasma [NO2
-] pharmacokinetic response following the ingestion of 280 mL 

concentrated BR containing 16.4 mmol NO3
- in two representative participants. Note the 

substantially higher and later peak increase in plasma [NO2
-] in participant 1 (▲) compared to 

participant 2 (●).  

 

This inter-participant variation in pharmacokinetics may have also contributed to the 

greater relative percentage rise in plasma [NO2
-] in Chapter 5 compared to Chapter 4 

(e.g. Chapter 4: 4.2 mmol NO3
- = 121%; vs. Chapter 5: 3 mmol NO3

- = 165%) 2-2.5 h 

post ingestion. However, other factors may have contributed, including between-study 

differences in: 1) group mean baseline plasma [NO2
-] (Chapter 4: ~120 nM vs. Chapter 

5: ~40 nM); 2) the timing of ingestion (Chapter 4: 2.5 h vs. Chapter 5: 2 h); and/or, 3) 

the NO3
- supplement administered (Chapter 4: concentrated BR vs. Chapter 5: beetroot 

extract diluted in water) which may have an influence on the uptake and metabolism of 
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NO3
- (James et al. 2015). Also note that another potential source of variability between 

studies is the chemiluminescence technique used to measure plasma [NO3
-] and [NO2

-

]. In the present thesis this was minimised by the use of the same analysis procedures 

in all experimental Chapters. The factors above, in addition to a variation in the analysis 

technique used may, have contributed to the significantly lower rise reported previously 

following the acute ingestion of 4-6 mmol NO3
- (Larsen et al. 2010; Vanhatalo et al. 

2010; Bescós et al. 2011; Lansley et al. 2011a).  

 

Chapters 5, 6 and 7 demonstrated that both short-term (36 h - 7 d) and longer term (~4 

weeks) NO3
- supplementation procedures significantly elevated plasma [NO3

-] and 

[NO2
-], a finding consistent with previous reports (Larsen et al. 2007; Bailey et al. 2009; 

Vanhatalo et al. 2010; Lansley et al. 2011b; Cermak et al. 2012a).  In Chapter 5, the 

daily ingestion of 3 mmol and 6 mmol NO3
- significantly elevated plasma [NO3

-] and 

[NO2
-] at 7 days and ~4 weeks of supplementation. Importantly, the increases in plasma 

[NO3
-] and [NO2

-] from baseline after 7 days and ~4 weeks of supplementation were 

not different to those observed 2 h following the first ingestion of the same NO3
- dose. 

These findings are consistent with with previous reports (Vanhatalo et al. 2010; Fulford 

et al. 2013) and suggest that prolonging the supplementation period does not affect (i.e. 

neither increases or decreases) the bioavailability of plasma [NO2
-]. However, it must 

be acknowledged that skeletal muscle tissue [NO2
-] was not measured in these studies 

and therefore it is not feasible to exclude the possibility that prolonging the 

supplementation period may result in the accumulation of tissue [NO2
-].   

 

In Chapters 6 and 7, a short-term supplementation period was used (i.e. < 6 days). In 

Chapter 6, the consumption of ~29 mmol NO3
- (administered as 490 mL of 

concentrated BR) over a 36 h period resulted in a ~3,000% and ~400% increase in 

plasma [NO3
-] and [NO2

-] whereas in Chapters 7, 5 days supplementation with 8.4 

mmol NO3
- (administered as 140 mL concentrated BR) per day significantly elevated 

plasma [NO2
-] by 237% relative to PL on days 3-5. Importantly, and consistent with 

findings from Chapter 5, plasma [NO2
-] did not continue to rise on days 3, 4 and 5 of 

supplementation in Chapter 7. The magnitude of increase in plasma [NO2
-] in Chapters 

6 and 7 are similar to those observed in some previous studies (Kelly et al. 2013; Kelly 

et al. 2014). In comparison, the large ~3000% increase in plasma [NO3
-] in Chapter 6 
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is somewhat higher than these previous studies, probably due to the large dose (29 

mmol) administered across a short period of time (36 h).  

 

Despite the variations in the magnitude of increase between studies, plasma [NO3
-] and 

[NO2
-] are clearly elevated by NO3

- supplementation in all Chapters. Interestingly, 

Chapter 6 presented novel information to suggest that the ‘utilization’ of this elevated 

plasma [NO2
-] during exercise is an important determinant of the effectiveness of 

dietary NO3
- supplementation, as described below.  

 

Utilisation of NO3
- and NO2

- as substrate for NO production during exercise? 

Chapter 6 characterised the changes in plasma [NO3
-] and [NO2

-] during high-intensity 

intermittent exercise for the first time. Results indicated that plasma [NO2
-] declined 

and plasma [NO3
-] increased at exhaustion during the Yo-Yo IR1 test in both the PL 

and BR conditions. The majority of previous research has also shown a significant 

decrease in plasma [NO2
-] during exercise (Cosby et al. 2003; Larsen et al. 2010; 

Dreißigacker et al. 2010; Kelly et al. 2013; Vanhatalo et al. 2013; Kelly et al. 2014); 

however, others have also observed an increase (Gladwin et al. 2000; Rassaf et al. 2004; 

Allen et al. 2010). The increase in plasma [NO3
-] at exhaustion in the Yo-Yo IR1 test 

is in contrast to a previous reports of no change (Kelly et al. 2014). Interestingly, we 

found that the decline in plasma [NO2
-] and the increase in plasma [NO3

-] were 

significantly greater with BR compared to PL. Given that circulating NO2
- can serve as 

a storage pool for hypoxic NO production (Lundberg et al. 2010), and that high-

intensity exercise reduces muscle PO2 (Richardson et al. 1999), a decline in plasma 

[NO2
-] during high intensity exercise could represent a reduction of NO2

- to NO within 

the muscle or surrounding areas. Therefore, it may be reasoned that increasing the 

amount of circulating NO2
- by supplementation with dietary NO3

- might augment the 

synthesis of NO during high-intensity intermittent exercise. However, it must be 

acknowledged that while NO2
- is an end-product of NO production via the classical 

NOS pathway, it can also be reduced to NO, particularly in hypoxic conditions (Castello 

et al. 2006), as part of the NO3
--NO2

--NO pathway of NO generation (Ignarro et al. 

1987). Therefore, changes in plasma [NO2
-] during high-intensity exercise are likely to 

reflect a balance between these two pathways. Importantly, the decline in plasma [NO2
-
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] observed during intermittent exercise in Chapter 6 suggests that NO2
- reduction to NO 

outweighed NO oxidation to NO2
-. 

 

Despite the complexities of NO2
- metabolism, an important observation in Chapter 6 

was that the reduction in venous plasma [NO2
-] observed at exhaustion during the 

intermittent Yo-Yo IR1 test following BR supplementation was significantly correlated 

with Yo-Yo IR1 test performance.  These results are consistent with Dreissigacker et 

al., (2010) who reported that the magnitude of reduction in plasma [NO2
-] from the 

beginning to end of constant work rate exercise at 80% of maximal work rate was 

correlated with exercise capacity. Together these results suggest that the ability to 

‘utilize’ plasma [NO2
-] may be an important determinant of high intensity exercise 

performance, and the effectiveness of dietary NO3
- supplementation. Interestingly, in 

Chapter 6, between-participant differences in the ‘utilisation’ of NO2
- were also 

reported which may provide a novel insight into why NO3
- supplementation does not 

improve exercise performance in some individuals. See further discussion under 

Responders and Non-responders.  

 

Dietary NO3
- and BP: acute dose-response relationship 

 

A body of research now exists to demonstrate that acute and chronic supplementation 

with inorganic NO3
-, administered in the form of BR (e.g. Bailey et al., 2009; Vanhatalo 

et al., 2010; Webb et al., 2008) or NO3
- salts (e.g. Larsen et al., 2006; Kapil et al., 2010), 

has the potential to lower resting BP in humans. Chapter 4 added to this existing 

literature by assessing, for the first time, how the acute administration of three different 

doses of concentrated BR (i.e. 70 mL, 140 mL and 280 mL providing NO3
- doses of 

4.2, 8.4 and 16.8 mmol NO3
-, respectively) affected BP over a 24 h period. The findings 

indicated a dose-dependent reduction in both systolic BP and MAP up to an intake of 

8.4 mmol NO3
-.  Specifically, peak reductions in systolic BP of ~5, ~10, and ~9 mmHg 

and peak reductions in MAP of ~2, ~5, and ~5 mmHg, were observed after acute 

ingestion of 4.2, 8.4 and 16.8 mmol NO3
-, respectively. These findings are similar to 

those reported by Kapil et al., (2010) who administered inorganic NO3
- as NO3

- salts. 

However, Kapil et al., (2010) reported a dose-dependent reduction up to a dose of 24 

mmol NO3
- with no evidence of a ‘threshold’ effect. Interestingly, despite the 

‘threshold’ effect, the reductions in systolic BP afforded by BR in Chapter 4 (e.g. peak 
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reductions of 10 mmHg after 140 mL BR containing 8.4 mmol NO3
-) were greater than 

those reported by Kapil et al., (2010) with higher doses of KNO3
- (e.g. peak reductions 

of 6 and 9 mmHg after 12 and 24 mmol KNO3
-, respectively). This greater potency of 

a NO3
- rich vegetable juice compared with NO3

- salt in reducing BP is consistent with 

recent work by Jonvik et al., (2016). Although currently unclear, this enhanced potency 

may be related to the NO2
- reducing properties of polyphenols and antioxidants which 

are present in natural NO3
- sources but not NO3

- salts (Weitzberg and Lundberg 1998; 

Gago et al. 2007).  

 

The reductions in BP evident in Chapter 4 suggest that BR consumption can provide an 

effective, natural and practical approach to maintaining and improving BP. More 

specifically, the results provide novel practical information to guide the optimal BR 

dose for lowering BP in young healthy individuals, while also contributing to the 

growing evidence (Jonvik et al., 2016; Flueck et al., 2016) to suggest that a natural 

source of NO3
- (e.g. vegetables) may be advantageous over NO3

- salts in eliciting 

physiological effects. 

 

Influence of different supplementation regimes on the O2 cost of submaximal 

exercise  

 

Acute dose-response relationship 

A high exercise efficiency (i.e. a low O2 for a given power output) is an important 

determinant of exercise performance (Jones & Burnley, 2009). The O2 cost of cycling 

at a fixed work rate below the GET (i.e. moderate-intensity exercise) has long been 

considered to be independent of factors such as age, training status, as well as 

unaffected by known physical (e.g. exercise training), nutritional and pharmaceutical 

agents (Jones & Poole 2005). Remarkably, however, a number of research experiments 

have now reported that both chronic (3-15 d; Larsen et al. 2007; Bailey et al. 2009; 

Vanhatalo et al. 2010; Lansley et al. 2011b) and acute (1-2.5 h; (Larsen et al. 2010; 

Vanhatalo et al. 2010; Thompson et al. 2014) supplementation with dietary NO3
- can 

lower the O2 cost of submaximal exercise, at least in untrained healthy young adults. In 

line with one of the overreaching aims of this thesis, to further understand the optimal 

dietary NO3
- supplementation procedure, Chapters 4 and 5 assessed the influence of 
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different dietary NO3
- supplementation procedures on the O2 cost of submaximal 

exercise, with a particular focus on the influence of the NO3
- dose administered.  

 

For the first time, Chapter 4 examined the acute dose-response relationship between 

NO3
- ingestion and the O2 cost of submaximal exercise. Specifically, the influence of 

70, 140 and 280 ml of concentrated BR (containing 4.2, 8.4 and 16.8 mmol NO3
-, 

respectively) on submaximal exercise O2 was assessed 2.5 h post administration. The 

findings indicated a dose-dependent effect. Specifically, the O2 cost of submaximal 

exercise was unaffected following the administration of 4.2 mmol NO3
-, tended (P = 

0.06) to be lower following the administration of 8.4 mmol NO3
- and was lowered 

significantly following the administration of 16.8 mmol NO3
-. The magnitude of 

reduction in submaximal O2 following consumption of 16.8 mmol NO3
- (~3%) was 

similar to that reported after acute NO3
- supplementation (~5-5.2 mmol NO3

-) 

previously (Vanhatalo et al. 2010; Muggeridge et al. 2013). Based on these results from 

Chapter 4, the acute ingestion of low doses (≤ 4.2 mmol) of NO3
- should be considered 

insufficient to lower the O2 cost of submaximal cycling exercise.  

 

As outlined in the literature review, a reduction in submaximal exercise O2 following 

NO3
- supplementation may result from improved mitochondrial efficiency (Larsen et 

al. 2011; Vaughan et al. 2015; cf. Whitfield et al. 2016) and/or a reduction in the ATP 

cost of force production (Bailey et al. 2010), which might be mediated by enhanced 

Ca2+-related contractility (Hernández et al. 2012). An alteration in the expression (and 

therefore content) of mitochondrial and contractile proteins in skeletal muscle is 

believed to be the mechanistic basis of these effects (Larsen et al. 2011; Hernández et 

al. 2012). For instance, Larsen et al., (2011) found that a reduction in submaximal 

exercise O2 was correlated to an improvement in mitochondrial efficiency (i.e. 

increase in mitochondrial P/O ratio) after 3 days of NO3
- supplementation, and that this 

was associated with a decreased protein expression of ANT, which is responsible for a 

major part of the proton leak in mitochondria (Parker et al. 2008; Bevilacqua et al. 

2010). Interestingly, Larsen et al., (2011) proposed that the downregulation of ANT 

may have resulted from the activation of a signalling pathway triggered by the cell 

sensing mild hypoxia after the acute binding of NO to cytochrome-c oxidase (COX) in 

place of O2 (Brown and Cooper 1994). However, structural adaptations, such as those 

observed by Larsen et al., (2011), are unlikely to be manifest within 1-3 h post ingestion 
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of a single NO3
- bolus and are therefore unlikely to explain the observed reduction in 

O2 in Chapter 4. Alternatively, the acute lowering of submaximal O2 may be related to 

the NO mediated acute and reversible alteration in mitochondrial and/or contractile 

protein function via post-translational protein modifications (Reid 1998), possibly by 

nitos(yl)ation, as has been described previously (Shiva et al. 2007b). The mechanistic 

basis for a lowering of submaximal exercise O2 as soon as 2.5 h after the ingestion of 

a single bolus of dietary NO3
- warrants further investigation.  

 

Influence of supplementation duration on dose-response relationship 

The potential for beneficial structural adaptations post chronic but not acute NO3
- 

supplementation suggested that the duration of supplementation may have influenced 

the acute-dose response relationship between NO3
- intake and the reduction in 

submaximal exercise O2 observed in Chapter 4. Therefore, Chapter 5 assessed the 

influence of 3 mmol and 6 mmol NO3
- on the O2 cost of submaximal exercise after 2 h, 

7 days and ~4 weeks of supplementation. Of particular interest was whether a low dose 

of dietary NO3
- (i.e. ≤4.2 mmol NO3

-), that was unsuccessful at acutely lowering O2 in 

Chapter 4, would elicit a significant reduction in submaximal exercise O2 if consumed 

daily for an extended period of time (i.e. up to ~4 weeks).  Determining if a reduction 

in submaximal O2 can be achieved when a low dose of NO3
- is consumed chronically 

was important for providing further information to guide the optimal chronic 

supplementation procedure. 

 

In Chapter 5, the submaximal exercise O2 was unaffected 2 h post ingestion of 3 mmol 

NO3
- but tended (P = 0.06) to be lower (by 3%) following acute ingestion of 6 mmol 

NO3
-. These results are consistent with the acute dose-response effect observed in 

Chapter 4. However, a novel finding of Chapter 5 was that that the O2 cost of 

submaximal exercise was not affected with 3 mmol NO3
- even when consumed daily 

for a period of up to ~4 weeks, despite a consistent elevation in plasma [NO2
-] 

throughout this period. These results suggest that: a) a reduction in submaximal O2 

cannot be achieved with a low dose of NO3
- even with an extension of the 

supplementation period; and, b) a threshold NO3
- dose and/or rise in plasma [NO2

-] may 

be required to elicit physiological and performance benefits after acute and chronic 

NO3
- supplementation. Furthermore, the results indicate that the aforementioned 
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structural modifications associated with the reduction of O2 following chronic NO3
- 

supplementation may not only be dependent on the duration of exposure but also the 

magnitude of the exposure to NO2
- and/or NO. In contrast, 6 mmol NO3

- significantly 

lowered the O2 cost of submaximal exercise by 3% after both 7 days and ~4 weeks of 

supplementation. This observation is consistent with the reduction in submaximal 

exercise O2 reported in untrained participants following 3-15 days of supplementation 

with 5-8 mmol NO3
- per day (Larsen et al. 2007; Bailey et al. 2009; Vanhatalo et al. 

2010). Moreover, the consistent reduction in submaximal exercise O2 over 30 days of 

supplementation indicates that sensitivity to supplementation is not reduced with a 

prolonged supplementation procedure, a finding consistent with previous work 

(Vanhatalo et al. 2010).  

 

Together, the findings from Chapters 4 and 5 suggest that a low dose (≤4.2 mmol) of 

dietary NO3
- is unlikely to be effective at lowering submaximal O2 after acute ingestion 

or chronic supplementation of up to 30 days.  

 

 Chronic NO3
- supplementation: importance of acute NO3

- ingestion and plasma [NO2
-

] 

 

It is clear from Chapters 4 and 5, and previous research (Bailey et al. 2009; Larsen et 

al. 2010; Vanhatalo et al. 2010; Muggeridge et al. 2013) that both an acute and chronic 

supplementation strategy can lower the O2 cost of submaximal exercise. However, in 

all previous studies assessing the influence of chronic NO3
- supplementation on the O2 

cost of submaximal exercise, participants have been instructed to consume their final 

dose of NO3
- 1-3 hours prior to exercise testing, to ensure a significant elevation in 

plasma [NO2
-] at the time of re-assessment (e.g. Larsen et al. 2007; Bailey et al. 2009; 

Vanhatalo et al. 2010; Lansley et al. 2011b). The use of this study design left two 

obvious and important unanswered questions: 1) are the effects of chronic NO3
- 

supplementation evident without the acute ingestion of NO3
- and associated rise in 

plasma [NO2
-]? 2) Does the ingestion of an acute dietary NO3

- dose augment the effects 

of chronic dietary NO3
- supplementation without the consumption of the acute NO3

- 

dose prior to assessment? These questions were addressed in Chapter 6 by testing 

participants after ~4 weeks of supplementation both with and without the administration 

of an acute NO3
- dose. Using the plasma [NO2

-] pharmacokinetic profiles in Chapter 4 
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as a reference, participants were asked to consume their final dose of NO3
- 24 h prior 

to exercise to ensure plasma [NO2
-] returned to pre-supplementation baseline.  

 

A novel finding of Chapter 5 was that the O2 cost of submaximal exercise was 

significantly reduced following ~4 weeks of supplementation with 6 mmol NO3
-, even 

24 h after the final ingestion of NO3
- when plasma [NO2

-] was not elevated. This is the 

first study to demonstrate a reduction in submaximal exercise O2 following NO3
- 

supplementation, in the absence of an elevated plasma [NO2
-]. Interestingly, the results 

also suggested that the inclusion of an acute bolus NO3
- prior to exercise after ~4 weeks 

of supplementation did not augment the reduction in submaximal exercise O2. 

Therefore, these data suggest that an acute dose of NO3
- prior to exercise (and an 

increase in plasma [NO2
-]) is not required to lower submaximal exercise O2 following 

chronic dietary NO3
- supplementation. In this Chapter it was suggested that the 

mechanistic basis for this preserved reduction in submaximal O2 may be related to: 1) 

a preserved change in the content of mitochondrial and/or contractile proteins that have 

been associated with a reduction in O2 following chronic NO3
- supplementation 

(Larsen et al. 2011; Hernández et al. 2012); or, 2) a maintained elevation in NO 

bioavailability in the skeletal muscle tissue, despite plasma [NO2
-] returning to pre-

treatment baseline (Piknova et al. 2015). These findings from Chapter 5 provide 

important novel information to inform the dietary NO3
- supplementation strategy pre-

competition for endurance athletes. Further research is, however, required to confirm 

the mechanistic basis of the preserved reduction in submaximal O2 following chronic 

dietary NO3
- supplementation, and to determine how long this effect is preserved for 

following cessation of NO3
- supplementation.  

 

In summary, Chapters 4 and 5 contribute substantial novel information to guide the 

dietary NO3
- supplementation regime used to lower the O2 cost of submaximal exercise. 

Specifically, results from both Chapters suggest that higher doses (>6 mmol NO3
-) are 

required to acutely lower submaximal exercise O2, and that the acute ingestion of 

lower doses (≤4.2 mmol NO3
-) should not be considered sufficient for this purpose. 

Chapter 5 extends these findings by showing that a lowering of submaximal exercise 

O2 cannot be achieved with a low dose of dietary NO3
- even by extending the 

supplementation period. Chapter 5 also indicates that a reduction in submaximal 
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exercise O2 following chronic NO3
- supplementation can be achieved without an acute 

dose of NO3
- and the associated rise in plasma [NO2

-].  

 

Dietary NO3
- and exercise tolerance: acute dose-response effects  

Chapter 4 was the first study to examine the acute dose-response relationship between 

NO3
- ingestion and exercise tolerance. Specifically, the effect of 70, 140 and 280 ml of 

BR (containing 4.2, 8.4 and 16.8 mmol NO3
-, respectively) on exercise tolerance during 

severe-intensity exercise was investigated. A novel finding was that 8.4 and 16.8 mmol 

NO3
-, but not 4.2 mmol NO3

-, administered 2.5 h prior to the test significantly improved 

exercise tolerance by 14 and 12%, respectively. Therefore, these findings indicate a 

dose-dependent effect of BR ingestion on exercise tolerance up to 8.4 mmol NO3
-, and 

that the ingestion of more BR does not provide a further ergogenic effect. The 12-14% 

improvement in exercise tolerance is similar to the 12-17% improvement observed 

previously following 3-6 days of BR supplementation with doses of 5-8.4 mmol NO3
- 

(Bailey et al. 2009; Lansley et al. 2011b; Kelly et al. 2013).  

 

The improvement in exercise tolerance in Chapter 4 with 8.4 and 16.8 mmol NO3
- was 

accompanied by no change in the O2 slow component or O2peak. This is consistent with 

some (Kelly et al., 2013) but not all (Bailey et al. 2009; Lansley et al. 2011b) previous 

research. For instance, Bailey et al., (2009) reported a significant improvement in 

exercise tolerance and a reduction in the O2 slow-component following 3 days of 

dietary NO3
- supplementation. Research on the influence of dietary NO3

- 

supplementation on the O2peak is also conflicting, with some studies showing an 

unchanged O2peak (Kelly et al., 2013; Bailey et al., 2009; Thompson et al., 2014; Bailey 

et al., 2010) and others reporting a lowered O2peak  (Lansley et al., 20; Bescos et al., 

2011; Larsen et al., 2010) or increased O2peak (Vanhatalo et al., 2010). The reason for 

these discrepancies is currently unclear but may be related to between study difference 

in the dose and duration of supplementation, the source of NO3
-, the modality of 

exercise, the protocol adopted or the training status of the participants.  

Although the ~12-18% improvement in exercise tolerance demonstrated in Chapter 4 

following the acute ingestion of 8.4 and 16.8 mmol NO3
- may appear impressive, it is 

likely to translate into no more than a 1-2% improvement during a time trial exercise 

task in which a given distance is completed in the shortest possible time (Hopkins et al. 
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1999). This is consistent with the magnitude of improvement in endurance performance 

reported previously in moderately trained cyclists ( O2peak = 56-58 ml-kg-1-min-1) during 

a 10 km cycling TT following 6 days of BR supplementation (Cermak et al. 2012a) and 

during 4 km and 16.1 km cycling TT after acute BR ingestion (Lansley et al. 2011a). A 

1% improvement in endurance performance is highly meaningful in elite sport (Paton 

and Hopkins 2006) and the dose-response data from Chapter 4 indicate that the dose of 

NO3
- administered may be an important factor in determining whether dietary NO3

- can 

provide this benefit or not. In support, Hoon et al., (2014) recently reported an 

improvement in 2000-m rowing performance time with the acute ingestion of 8.4 mmol 

NO3
- but not 4.2 mmol NO3

- (administered as 140 ml and 70 ml concentrated BR, 

respectively).  

 

There are a number of potential mechanisms responsible for the improvement in 

exercise tolerance following acute dietary NO3
- supplementation. Dietary NO3

- 

supplementation has been shown to preferentially increase perfusion and oxygenation 

during exercise in muscle groups containing principally type II muscle fibres (Ferguson 

et al. 2013a; Ferguson et al. 2014), while NO2
- infusion has been reported to acutely 

increase blood flow in the exercising forearm (Cosby et al. 2003). It is therefore 

possible that an improvement in exercise tolerance may be mediated, in part, by an 

improved blood flow to muscle or to an NO-mediated enhancement of local matching 

of O2 delivery to metabolic rate, particularly in type II muscle fibres which are 

progressively recruited during severe intensity exercise. The improvement in exercise 

tolerance may also be related to a reduction in the ATP and PCr cost of muscle force 

production (Bailey et al. 2010), possibly through Ca2+-related improvements in type II 

muscle fibre contractility (Hernández et al. 2012). Although it is suggested that a 

structural modification may be required for an improvement in contractile function to 

occur (Hernández et al. 2012), and that this is unlikely to occur after acute ingestion, 

recent research by Coggan et al., (2014) has reported a significant improvement in 

contractile function at high contraction velocities in human skeletal muscle following 

acute ingestion of 11.2 mmol NO3
-. It is possible that improvements in skeletal muscle 

perfusion and oxygenation, and contractility, particularly in type II fibres, may operate 

simultaneously and/or synergistically to improve exercise tolerance following acute 

dietary NO3
- supplementation. However, further research is required to understand how 

dietary NO3
- improves exercise tolerance as soon as 2.5 h post administration.  
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As discussed previously, Chapter 5 showed that a reduction in submaximal exercise 

O2 following chronic dietary NO3
- supplementation is preserved up to 24 h after the final 

ingestion of NO3
- and thus, in the absence of an increase in plasma [NO2

-]. However, it 

is currently unclear if the increase in plasma [NO2
-] afforded by an acute bolus of 

dietary NO3
- pre-exercise is advantageous during high-intensity exercise where the 

vascular effects of dietary NO3
- may be beneficial and where the PO2 and pH decline 

more which provides better conditions for nitrite reduction to NO. Indeed, while 

improvements in contractile function following NO3
- supplementation (Hernández et 

al. 2012; Coggan et al. 2014) may be maintained due to the preserved alteration of 

contractile protein content (Hernández et al. 2012), an improvement in perfusion and 

oxygenation in type II muscles (Ferguson et al. 2013a; Ferguson et al. 2014) are likely 

coupled closely to circulating NO bioavailability (Cosby et al. 2003; Wylie et al. 2013) 

and therefore may not be maintained when plasma [NO2
-] returns to baseline. On the 

other hand, if a prolonged chronic NO3
- supplementation does result in a greater storage 

of skeletal muscle tissue NO2
- (see discussion above) and this tissue NO2

- is mobilized 

during exercise (Piknova et al. 2015), then the vascular benefits of NO3
- 

supplementation may also be preserved after NO3
- supplementation is terminated and 

plasma [NO2
-] returns to baseline. Consequently, further research is required to 

determine the impact of an acute bolus of dietary NO3
- on high-intensity exercise 

performance after chronic NO3
- supplementation.  

 

In summary, Chapter 4 demonstrates that the acute ingestion of a low dose (≤4.2 mmol) 

of NO3
- is not sufficient to improve exercise tolerance during severe-intensity exercise. 

In contrast, the acute ingestion of 8.4 mmol NO3
- does improve exercise tolerance, but 

the acute ingestion of a higher dose (i.e. 16.8 mmol NO3
-) does not provide a further 

benefit. Furthermore, it is also clear that the influence of dietary NO3
- on O2peak and the 

O2 slow component is controversial and requires further investigation.  

 

Responders and non-responders 

As with many other nutritional ergogenic aids (e.g. caffeine, beta alanine, creatine and 

sodium bicarbonate), research has outlined the potential for ‘responders’ and ‘non-

responders’ to NO3
- supplementation (Wilkerson et al. 2012; Christensen et al. 2013; 
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Boorsma et al. 2014). Understanding the mechanistic bases behind differences in the 

responsiveness of individuals to dietary NO3
- supplementation is important in 

optimising the effectiveness of this supplement and nutritional advice for athletes. 

Some studies indicate that NO3
- supplementation may be less effective in highly trained 

endurance athletes (Wilkerson et al. 2012; Christensen et al. 2013; Boorsma et al. 

2014). Compared to less well-trained athletes, highly trained endurance athletes have a 

higher proportion of type I fibres, greater mitochondrial and capillary density and a 

higher baseline plasma [NO2
-] due to greater training related NOS activity, all of which 

may reduce the potential benefits of NO3
- supplementation (Wilkerson et al. 2012; 

Jones 2014). Importantly, Chapters 4 and 6 provide further insights into why there may 

be responders and non-responders to NO3
- supplementation. In Chapter 4 the number 

of non-responders (in terms of exercise capacity) decreased as the dose of NO3
- ingested 

increased. For example, there were three non-responders in the 4.2 mmol condition, 

two in the 8.4 mmol condition, and one in the 16.8 mmol condition.  However, unlike 

in a previous study by Wilkerson et al (2012) the increase in plasma [NO2
-] from 

baseline to pre-exercise for non-responders was not smaller than that measured in the 

other subjects who did respond, and the non-responders did not have a particularly high 

baseline plasma [NO2
-]. Therefore, these results suggest that some individuals require 

larger acute NO3
- doses than others to elicit any positive effect on exercise capacity, but 

that this does not appear to be related to the magnitude of increase in plasma [NO2
-]. In 

other words, it appears that each individual may have an independent threshold which 

plasma [NO2
-] must surpass before a beneficial effect is observed.  

 

Another interesting observation with regard to responders and non-responders was 

made in Chapter 6. In this experiment, three participants of the 14 tested did not 

experience an improvement in Yo-Yo test performance with BR and, consistent with 

Chapter 4, these participants did not appear to have a particularly low rise in plasma 

[NO2
-] following dietary NO3

- supplementation. However, it was found that although 

the majority of participants exhibited a greater decline of plasma [NO2
-] with BR 

compared to PL during the Yo-Yo IR1 test, this was not the case in two of three 

participants whose test performance did not improve with BR. In other words, it appears 

that two of the three non-responders may not have experienced an improvement in 

performance following BR because they did not ‘utilize’ the increased availability of 

plasma [NO2
-].  
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When considered together, the results of the present thesis suggest that an individual’s 

lack of responsiveness to dietary NO3
- supplementation, in terms of improving exercise 

tolerance/performance, may be related to the administration of an insufficient dose 

and/or a limited ability to utilize elevated levels of plasma NO2
- during exercise.  

 

Dietary NO3
- as an ergogenic aid to improve Intermittent Exercise Performance  

At the onset of the series of experiments that comprise this thesis, the majority of 

literature on the performance benefits of dietary NO3
- supplementation were focused 

on continuous endurance type exercise (Bailey et al. 2009; Lansley et al. 2011a; Cermak 

et al. 2012a; Wilkerson et al. 2012).  Importantly, this neglected intermittent exercise 

which is a hallmark of many of the worlds most popular sports (e.g. association football, 

rugby union/league and field hockey), and a key part of the training programmes (i.e. 

high intensity interval training) used by endurance and team sport athletes. In an attempt 

to further explore the application of dietary NO3
- as an ergogenic aid, and in light of the 

potential preferential effects of NO3
- supplementation on type II muscle that is recruited 

during high-intensity intermittent exercise, Chapters 6 and 7 investigated the influence 

of dietary NO3
- supplementation on high-intensity intermittent exercise performance. 

 

The first available evidence to support the ergogenic potential of dietary NO3
- in high-

intensity intermittent exercise was provided by Bond and colleagues in 2012. These 

researchers observed a higher mean power output with NO3
- supplementation in trained 

rowers during 6 x 500 m rowing ergometer repetitions (~90-s completion time per 

repetition) interspersed with 90 s recovery (Bond et al. 2012). Although promising, the 

exercise protocol adopted by Bond et al., (2012) was not applicable to the intermittent 

exercise undertaken by team sport athletes, i.e. brief high-intensity exercise bouts 

interspersed with short recovery periods. Therefore, Chapter 6 aimed to elucidate if 

dietary NO3
- could improve performance during team sport specific intermittent 

exercise.  

 

An important novel finding in Chapter 6 was that dietary NO3
- supplementation 

improved performance by 4.2% (compared to a PL) during a Yo-Yo IR1 test, which is 

a test specifically designed to mimic the intermittent high-intensity running bouts in 
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association football match-play (Bangsbo et al. 2008). Importantly, performance during 

this test has been shown to: 1) discriminate between players of different fitness in 

various sports (Atkins 2006; Bangsbo et al. 2008; Veale et al. 2010; Vernillo et al. 

2012); and 2) correlate closely with high-intensity running during soccer games 

(Krustrup et al. 2003), which is a key determinant of soccer performance (Mohr et al. 

2003; Bradley et al., 2011). These results suggest that an improvement in Yo-Yo IR1 

test performance may be expected to improve the amount of high intensity running 

during a team sport game. Therefore, the 4.2% improvement in Yo-Yo IR1 test 

performance following dietary NO3
- supplementation in this Chapter indicated, for the 

first time, that dietary NO3
- might be an effective ergogenic aid for team sport players. 

This finding is consistent with a recent study by Thompson et al., (2015) which reported 

an increase in total work done during a prolonged intermittent sprint test designed to 

reflect the metabolic demands of a hockey match. Specifically, dietary NO3
- 

supplementation improved total work done in the first of two 40-min halves comprising 

repeated 2 min blocks of a 6-s sprint, 100-s active recovery, and 20 s of rest.  

 

While intermittent exercise during team sport games typically consist of brief bouts of 

high intensity work interspersed with short recovery periods, other athletic events (e.g. 

track cycling) and exercise training interventions (e.g. high-intensity interval training) 

often consist of longer duration high intensity work with longer periods of rest 

(Burgomaster et al. 2006; Weston et al. 2014). As discussed in the literature review, the 

physiological demands of intermittent exercise can change considerably by alterations 

in: work and rest intensities; work and rest durations; work-to-rest ratio; and the number 

of work intervals. Consequently, the intermittent protocol itself may influence the 

ergogenic potential of dietary NO3
- supplementation and therefore may contribute to 

the conflicting findings from studies investigating the effects of NO3
- supplementation 

on intermittent exercise performance (e.g. Bond et al. 2012; Muggeridge et al. 2013; 

Martin et al. 2014; Thompson et al. 2015). To fully understand the ergogenic potential 

of dietary NO3
- during intermittent exercise, Chapter 6 examined the influence of 

dietary NO3
- supplementation on performance during three different intermittent 

exercise protocols. Specifically, performance was assessed in 24 x 6 s all-out sprints, 

interspersed by 24 s of recovery, 7 x 30 s all-out sprints interspersed by 4 min of 

recovery or 6 x 60 s self-paced maximal efforts interspersed with 60 s of recovery 

following 2-5 d of supplementation with concentrated BR. Importantly, the influence 
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of dietary NO3
- supplementation on performance in all three of these tests was 

conducted using the same participant population, exercise modality and 

supplementation regime, in an attempt to limit the potential for these factors to 

confound the interpretation of the relative effects of dietary NO3
- ingestion across the 

intermittent exercise protocols investigated.  

 

The novel finding of Chapter 7 was that dietary NO3
- supplementation improved the 

mean power output during the 24 x 6-s all-out sprint protocol, but not the 7 x 30-s all 

out sprint or 6 x 60-s self-paced maximal effort protocol. Specifically, performance 

(measured as MPO) during the 24 x 6-s protocol was improved by 7% in BR compared 

to PL. Furthermore, when the protocol was divided into 25% completion segments, 

MPO was improved with BR in sprints 1-6 (+ 7%) but not in sprints 7-12 (+4%; P = 

0.18), 13-18 (+5%; P = 0.12) or 19-24 (+5%; P = 0.14). An important observation here 

is that dietary NO3
- improved performance during the test that most closely resembles 

the intermittent exercise pattern typical of team sport play. These data are therefore 

consistent with those of Chapter 6, and other recent observations (Thompson et al., 

2015). Together, Chapters 6 and 7 provide support for the use of dietary NO3
- as an 

ergogenic aid for team sport players. However, it must be acknowledged that in Chapter 

6 the study was performed using cycle ergometry and therefore further research is 

needed to determine if repeated running sprint performance is also improved after NO3
- 

supplementation... Moreover, considering that in Chapters 6 and 7 the studies were 

conducted on only recreational team sport players additional research is required to 

examine the ergogenic potential of dietary NO3
- in elite level team sport players (See 

Further Directions section for more discussion).  

 

An important observation in Chapter 7 was that dietary NO3
- supplementation did not 

improve performance during seven 30-s all-out sprints interspersed with 4 min of 

recovery or six 60-s maximal self-paced efforts interspersed with 1 min of recovery. 

Other studies have also reported no improvement in high-intensity intermittent exercise 

performance following NO3
- supplementation (Christensen et al. 2013; Muggeridge et 

al. 2013; Martin et al. 2014). Since the beginning of the programme of research reported 

in this thesis, many studies have now investigated the influence of dietary NO3
- on 

intermittent exercise performance. In addition to the findings presented in Chapter 6 

and 7, there is currently evidence that dietary NO3
- supplementation can improve (Bond 
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et al. 2012; Aucouturier et al. 2015; Thompson et al. 2015), compromise (Martin et al. 

2014), or have no effect (Christensen et al. 2013; Muggeridge et al. 2013) on 

intermittent exercise performance. The intermittent exercise tests employed differs 

between these studies; moreover, interpretation of how dietary NO3
- supplementation 

impacts intermittent exercise performance is further complicated by inter-study 

differences in participant training status, exercise modality and supplementation 

procedures, which could also contribute to the disparate results. A strength of Chapter 

7 is that the influence of dietary NO3
- supplementation on intermittent exercise 

performance was assessed in three different protocols in the same participant population 

(i.e. recreational team sport players) and following the same supplementation 

procedure, allowing for a more accurate assessment of how the exercise test impacts 

the relative efficacy of dietary NO3
-. Therefore, the observation that dietary NO3

- 

improved performance in the 24 x 6-s protocol but not the 7 x 30-s or 6 x 60-s protocol 

provides an important addition to the current knowledge of the ergogenic potential of 

dietary NO3
- in intermittent exercise. Specifically, these results suggest that dietary 

NO3
- may not improve performance during intermittent exercise with long duration 

(>30 s) and/or long recovery periods, at least during cycling exercise and in recreational 

team sport players.  

 

As explained earlier, a previous study has reported an improvement in intermittent 

exercise with longer bouts of exercise and longer recovery periods during rowing 

ergometry following chronic NO3
- supplementation (Bond et al. 2012), suggesting that 

there may be situations in which dietary NO3
- can improve intermittent exercise with 

this activity pattern and/or exercise modality. A body of evidence exists to demonstrate 

that dietary NO3
- supplementation is more effective at enhancing physiological 

responses and performance in type II compared to type I muscle (Hernández et al. 2012; 

Ferguson et al. 2013a; Ferguson et al. 2014), or in situations where type II muscle fibre 

recruitment is expected to be greater (Breese et al. 2013; Coggan et al. 2014; Bailey et 

al. 2015). Importantly, when compared to cycling, rowing ergometry results in the 

greater recruitment of the upper body musculature, which is suggested to contain a 

higher proportion of type II muscle fibres than the lower body.  The reason for the 

inconsistency between Bond et al., (2012) and Chapter 7 may therefore be related to 

the exercise modality adopted (i.e. cycling vs. rowing ergometry) and its impact on 

muscle fibre recruitment. Interestingly, this hypothesis may also explain why NO3
- 
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supplementation has been shown to improve performance during a kayak TT in elite 

level kayak athletes (Peeling et al. 2015) but not during cycling and running TT’s in 

elite level cyclists, skiers or runners (Christensen et al. 2013; Boorsma et al. 2014; 

Sandbakk et al. 2015).  

 

There are a number of potential mechanisms by which dietary NO3
- supplementation 

may improve intermittent exercise performance. Fatigue development during 

intermittent exercise is linked, in part, to the depletion of muscle PCr (Gaitanos et al. 

1993; Fulford et al. 2013) and the capacity to resynthesise this PCr during recovery 

periods (Bogdanis et al. 1995; Bogdanis et al. 1996; Mendez-Villanueva et al. 2012), 

particularly in the type II muscle fibres that are heavily recruited during this type of 

exercise (Green 1977; Essén 1978; Krustrup et al. 2004; Krustrup et al. 2009). 

Interestingly, supplementation with dietary NO3
- has been reported to significantly 

lower the PCr cost of force production during high-intensity intermittent exercise 

(Fulford et al. 2013) which may delay the attainment of a critically low muscle [PCr] 

during intermittent exercise (Chidnok et al. 2013). Improvement in intermittent exercise 

performance following NO3
- supplementation may also be related to enhanced force 

production in type II muscle (Hernández et al. 2012; Coggan et al. 2014) as a result of 

increased sarcoplasmic reticulum Ca2+ release (Hernández et al. 2012), and/or an 

improved perfusion and oxygenation of type II muscle (Ferguson et al. 2013a; Ferguson 

et al. 2014). For example, an increase in O2 delivery to type II muscle may improve the 

resynthesis of PCr during recovery period (Paganini et al. 1997; Vanhatalo et al. 2011). 

It is possible that these mechanisms operate simultaneously or synergistically to 

enhance performance during high-intensity intermittent exercise.  

 

Physiological measurements made during the Yo-Yo IR1 test in Chapter 6 provided 

insights into the potential mechanism responsible for improved intermittent exercise 

performance following dietary NO3
- supplementation.  In Chapter 6, blood [glucose] 

was significantly lower over the Yo-Yo IR1 test with BR compared to PL. This is the 

first (and currently only) report to show that dietary NO3
- supplementation lowers blood 

[glucose] during exercise. A lower blood glucose concentration may be interpreted as 

an increase in skeletal muscle glucose uptake which has the potential to improve 

performance during the Yo-Yo IR1 test by sparing glycogen utilisation (Tsintzas and 

Williams 1998). Indeed, NO has been shown to play a key role in glucose uptake during 
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contraction in skeletal muscle (Merry et al., 2010; Bradley et al. 1999; McConell and 

Kingwell 2006; McConell et al. 2012), while NO2
- has been reported to increase glucose 

transporter 4 (GLUT-4) translocation (Jiang et al. 2014). It is important to note that 

although recent research has shown that acute dietary NO3
- ingestion (~8 mmol) does 

not improve skeletal muscle glucose uptake during submaximal exercise (Betteridge et 

al. 2016), this does not exclude the possibility that dietary NO3
- supplementation can 

enhance glucose uptake during high-intensity intermittent exercise when PO2 and pH 

decline more, the reduction of NO2
- to NO may be enhanced (compared to submaximal 

constant work rate exercise), and glycogen utilisation is greater, and/or when larger 

doses or a chronic supplementation procedure is adopted. Further research is required 

to investigate the effects of chronic dietary NO3
- supplementation on glucose kinetics 

during high-intensity exercise.  

 

Fatigue during intermittent exercise may also be related, in part, to reduced muscle 

excitability, due to a net loss of muscle K+ (Nielsen and de Paoli 2007; McKenna et al. 

2008). Interestingly, in Chapter 6 there was a trend (P = 0.08) for the rise in plasma 

[K+] during the Yo-Yo IR1 test to be attenuated with BR. These data suggest that BR 

supplementation may have reduced muscle K+ efflux and accumulation in the 

extracellular fluids, and therefore contributed to the enhanced Yo-Yo IR1 test 

performance by preserving muscle excitability.  

 

In summary, the results from Chapters 6 and 7 have made important novel contributions 

to further understanding of the ergogenic potential of dietary NO3
- in intermittent 

exercise. Findings in both Chapters 6 and 7 provide evidence that short-term (36 h – 3 

d) dietary NO3
- supplementation can improve performance during intermittent exercise 

that closely resembles the exercise pattern typical of team sports game play. In doing 

so, these results provide support for the use of dietary NO3
- as an ergogenic aid by team 

sport players competing at a non-elite level. While a number of possible mechanisms 

exist for this ergogenic effect, physiological measurements made in Chapter 6 suggest 

that an improvement in intermittent exercise may, in part, be related to an increase in 

glucose uptake and/or muscle excitability. Other important findings in Chapter 7 also 

indicate that chronic dietary NO3
- supplementation may not be effective at improving 

intermittent cycling exercise with longer work bouts (i.e. >30 s) and longer recovery 

periods (i.e. >60 s). However, it should be acknowledged that the exercise modality, 
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supplementation period, and participant population tested may have a substantial 

influence on the ergogenic potential of dietary NO3
- in intermittent exercise.   

 

Future directions 
 

Exploring the variability in plasma [NO2
-] pharmacokinetics following acute dietary 

NO3
- ingestion. 

 

In Chapter 4, kinetic analysis of plasma [NO2
-] pharmacokinetics following the acute 

ingestion of 16.8 mmol NO3
- demonstrated a large between-participant variation in the 

time for plasma [NO2
-] to reach peak concentration, and the magnitude of this peak 

increase. However, the measurements made in Chapter 4 did not allow for the cause of 

this variation to be ascertained. Considering that the acute effects of dietary NO3
- on 

BP, exercise efficiency and performance are likely related to the reduction of NO2
- to 

NO, or NO2
- itself (Lundberg et al. 2010; Bailey et al. 2012), understanding this 

variability is likely to prove important in understanding the effectiveness of acute NO3
- 

supplementation. The reduction of NO3
- to NO2

- is largely dependent on oral bacteria 

capable of NO3
- reduction (Govoni et al. 2008). Therefore, research should focus on 

investigating how the pharmacokinetics of plasma [NO2
-] are affected by inter-

individual differences in microbiome as well as changes in factors that may alter the 

activity of the oral bacteria (e.g. temperature and pH). Moreover, investigating how 

normalising NO3
- dose to body mass (as opposed to administering a set absolute NO3

- 

load) influences the pharmacokinetics may also provide valuable information.  

 

Dose-response in elite endurance athletes  

In Chapter 4, the dose-response relationship between acute NO3
- supplementation and 

the O2 cost of submaximal exercise and exercise tolerance was examined. However, the 

participant cohort in this Chapter (and Chapter 5) was limited to healthy, recreationally-

active participants. Studies suggest that highly trained/elite endurance athletes may not 

experience performance benefits from dietary NO3
- supplementation (e.g. Wilkerson et 

al. 2012; Christensen et al. 2013; Porcelli et al. 2014), potentially due to a higher 

baseline plasma [NO2
-], greater training related NOS activity, a higher proportion of 

type I fibres, and a greater mitochondrial and capillary density, compared to their 

recreationally active counterparts. However, it is possible that the dose-response 
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relationship is altered in this population, and elite athletes need more NO3
- to elicit an 

ergogenic effect (cf. Boorsma et al. 2014). Furthermore, it is also possible that this 

population may benefit from additional interventions that may ‘boost’ NO production. 

For instance, Muggeridge et al., (2014) has reported that while acute NO3
- 

supplementation alone did not improve 16.1 km cycling TT performance in trained 

cyclists, combining NO3
- ingestion with ultra-violet (UV)-A irradiation further 

increased the rise in plasma [NO2
-] (by decomposing photo reactive nitrogen oxides 

stored in dermal cells [Mowbray et al. 2009; Opländer et al. 2009]) and enhanced 

performance. Further research should be aimed at determining the influence of different 

NO3
- doses, as well as the influence of NO3

- supplementation combined with UVA 

irradiation (or other treatments found to ‘boost’ NO availability) on exercise 

performance in elite endurance athletes.  

 

Exploring the mechanisms for, and duration of, a preserved reduction in submaximal 

exercise O2 following chronic dietary NO3
- supplementation.  

 

A novel finding of Chapter 5 was that a reduction in submaximal exercise O2 following 

~4 weeks NO3
- supplementation was observed 24 h after the latest ingestion of dietary 

NO3
-, and thus in the absence of a significant rise in plasma [NO2

-]. Although 

interesting, the measurements and study design in Chapter 5 did not allow this effect to 

be explored further. Further research should focus on the mechanism responsible for 

this preserved effect, the duration of supplementation required to elicit this preserved 

effect and how long the effect is preserved for. In regards to the mechanism, further 

research should explore whether the preserved reduction in submaximal O2 is related 

to: 1) a maintained elevation in muscle NO availability (via the measurement of skeletal 

muscle tissue [NO2
-]); and/or, 2) protein expression changes that occur and are 

maintained. In addition, further research should ascertain whether an improvement in 

high-intensity exercise performance following chronic dietary NO3
- supplementation is 

also preserved after the cessation of supplementation.  

 

Elite-level team sport athletes 

Chapters 6 and 7 demonstrated that dietary NO3
- supplementation can improve 

performance during intermittent exercise that closely resembles the exercise pattern 

typical of team sports game play. However, the participants in these experiments were 
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limited to recreational team-sport players. Further research is required to determine if 

dietary NO3
-
 supplementation can improve high-intensity intermittent exercise 

performance in highly trained/elite team sport athletes. Although evidence for a 

performance-enhancing effect following dietary NO3
- supplementation in highly 

trained/elite endurance athletes is weak (Wilkerson et al. 2012; Christensen et al. 2013; 

Porcelli et al. 2014), the type II fibre specific effects of dietary NO3
- supplementation 

(Hernández et al. 2012; Ferguson et al. 2013a; Coggan et al. 2014; Ferguson et al. 2014) 

are likely to favour highly trained/elite team sport players who would be expected to 

have a greater proportion of type II muscle fibres than their endurance-trained 

counterparts (Tesch and Karlsson 1985).  

 

Can dietary NO3
- improve performance during a simulated team sport game? 

The improvements in high-intensity intermittent performance observed during the Yo-

Yo IR1 test (Chapter 6) and 24 x 6-s sprints (Chapter 7) provides evidence that dietary 

NO3
- may improve intermittent exercise performance during team sport game play. 

Consistent with this, Thompson et al., (2015) recently reported an improvement in mean 

work done during an intermittent cycling test that aimed to mimic the physical demands 

and also duration of team sports match-play. However, further research is required to 

confirm if dietary NO3
- can improve performance during a running test that also 

simulates the activity pattern, physical demands and typical distance covered during a 

team sport game. The Loughborough Intermittent Recovery Test (LIST; Nicholas et al. 

2000) should be considered a valid test for this purpose.  

 

Conclusion 

Following reports that dietary NO3
- supplementation can reduce the O2 cost of 

submaximal exercise and improve endurance exercise performance (e.g. time-to-

exhaustion tests and time-trials), the use of dietary NO3
- as ergogenic aid has grown 

exponentially. By examining the influence of different dietary NO3
- supplementation 

regimes, and exploring the potential of this natural supplement to improve performance 

during intermittent exercise, the current thesis has contributed novel information to 

optimise the use of dietary NO3
- as an ergogenic aid not only for endurance exercise, 

but also individuals participating in invasion games.  
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Results in the current thesis demonstrate that 16.8 mmol NO3
- is optimal for acutely 

reducing submaximal exercise O2, while an optimal improvement in exercise tolerance 

is achieved with an acute dose of 8.4 mmol NO3
-, with 16.8 mmol NO3

- not providing 

a further benefit. Moreover, evidence is provided to suggest that low doses of dietary 

NO3
- should not be expected to improve exercise performance or lower the O2 cost of 

submaximal exercise, even when a chronic supplementation regime is adopted.  

Although an elevation in plasma [NO2
-] has long been considered crucial for the effects 

of dietary NO3
- supplementation to be elicited, results in this thesis showed that a 

lowering of submaximal exercise O2 is preserved after chronic supplementation is 

ceased and plasma [NO2
-] returns to baseline.   

 

At the onset of this programme of research, dietary NO3
- was reported as an aid to 

enhance performance mainly during continuous endurance exercise.  The present thesis 

has presented data to indicate that this ergogenic effect also extends to intermittent 

exercise. Specifically, data presented herein show that dietary NO3
- can improve 

performance during intermittent exercise consisting of brief bouts of high-intensity/all-

out exercise, interspersed with short-recovery periods. Given that this activity pattern 

is consistent with that typically required during team-sport games, these data provide 

evidence that dietary NO3
- may be an effective ergogenic aid for team sport players. 

However, dietary NO3
- may not be effective at improving performance during cycling 

intermittent exercise that consists of longer work bouts and recovery periods.  

 

In summary, the findings presented in this thesis suggest that the supplementation 

procedure, particularly the dose of NO3
-, should be carefully considered by individuals 

wishing to benefit from the ergogenic potential of dietary NO3
- and that dietary NO3

- 

can be considered as a potential ergogenic aid for team sport players.  
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