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Abstract

Northern peatlands are an important component of the global carbon (C) cycle and
have been a net sink of atmospheric C during the Holocene. Under current climate
warming conditions, the future sink-source balance of these peatlands is uncertain. In
particular, peatlands near the southern limit of permafrost are likely to be sensitive to
changes in topography as well as climate. In order to predict how the sink-source
balance may change, this thesis focuses on determining the generality of observed

patterns of C accumulation in Northeastern Canada.

The methodological approach in this thesis is unique. A total of 30 cores were taken
from 9 peatlands located in 3 ecoclimatic regions along the North Shore of the Gulf of
St Lawrence. This replication of records allows for climate-scale (allogenic) signals to
be separated from the internal or local factors (autogenic), and for statistical testing of
differences between regions and within sites over time. Trends in carbon accumulation
rates (CAR) were analysed on three levels: (1) within individual sites along a
hydrological or microtopography gradient, (2) between overall regions located along a

climatic or permafrost gradient, and (3) over time on a multi-centennial scale.

Lead-210 (*"°Pb) dating was used throughout the analysis to increase temporal
resolution for the last 150-200 years of C accumulation. The method was thoroughly
tested from preparation to analysis and found to produce reliable results, comparable
with other dating methods. These dates were then used to develop combined age-
depth models for longer-term context. Replicated records of #'°Pb inventories and
fallout rates were also used to address questions of deposition patterns and post-
depositional mobility in peat profiles. Total inventories decreased with water table
depth, with lichen hummocks having significantly higher inventories. One site also
received significantly higher ?'°Pb deposition than the other two, as it is more sheltered

from the Gulf influence.

Recent carbon accumulation rates for the 150-year period for all microforms across all
regions was 62.1 + 4.4 g C m? a”', and were highest for Sphagnum hummocks (79.9 +
8.9 g C m-?a™") and lowest for dry lichen hummocks (42.7 + 6.2 g C m? a™). Patterns
and trends at this scale were mainly driven by autogenic processes, including
incomplete decomposition in the acrotelm peat. Models of peat accumulation related to
acrotelm thickness were found to be overly simplistic, as carbon accumulation for

intermediate microforms showed large natural variability driven by changing



ecohydrological feedbacks, in part due to permafrost degradation at one of the sites.
Over a multi-centennial scale, carbon accumulation rates were driven by a combination
of climatic changes and ecohydrological feedbacks due to shifts in the microform
configuration in response to permafrost degradation. Changes in carbon accumulation
rates were detected and coincided with Little Ice Age temperature/solar minima
(including the Spdrer, Maunder and Dalton Minima), permafrost degradation since the
1950s, and recent climatic changes in the mid-1990s. Snow cover and exposure of
sites and microforms were found to play an important role, rather than solely climatic
variables. Rapid Sphagnum re-establishment in post-permafrost degraded features and
increasing temperatures meant that carbon accumulation was highest for the
northernmost site in the transect. Age-depth models using a combination of lead-210
and radiocarbon dates allowed for the calculation of carbon accumulation rates at a
decadal resolution. While peat carbon sequestration is projected to increase in northern
regions, the fate of peatland C near the southern limit of permafrost is complex. Future
studies seeking to interpret recent changes should include multiple cores and consider

both regional climatic and local ecohydrological drivers.
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cores; each column is one peatland (from left to right, 1: Red Bay, 2: Lac a la
Truite, 3: Vallée) and each row is one replicate microform core, from wet (top) to
dry (bottom). Water table depth is not represented here, as there was ice at the
time of coring (see Stratigraphy; Chapter 4). Note that y-axes for D cores are on a
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Figure 6.4. 2’°Pb CRS age models (solid line) plotted against depth for all Baie Comeau
cores; each column is one peatland (from left to right, 1: Lebel, 2: Baie, 3: Manic)
and each row is one replicate microform core, from wet (top) to dry (bottom). The
dotted line is the CRS-derived apparent accumulation rate; open squares are
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Figure 6.5. 2’°Pb CRS age models (solid line) plotted against depth for all Havre-St-

Pierre cores; each column is one peatland (from left to right, 1: Plaine, 2: Morts, 3:
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Figure 7.1 Age-depth models for Baie Comeau (BC) lawn cores (A), modelled using
BACON package (Blaauw and Christen, 2011). '°Pb dates calculated using the
CRS model (Chapter 6) are in green; calibrated "C dates in blue; darker greys
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Figure 7.7. Carbon results for Baie Comeau lawn cores (BC1A: Lebel, BC2A: Baie,
BC3A: Manic). For each core, C density, cumulative C and CAR (from left to right)
were modelled using the BACON package for R (Blaauw and Christen, 2011; R
Development Team, 2014), with darker grey indicating more likely calendar ages
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Figure 7.8 Carbon results for Havre-St-Pierre lawn cores (HP1A: Plaine, HP2A: Morts,
HP3A: Romaine). For each core, C density, cumulative C and CAR (from left to
right) were modelled using the BACON package for R (Blaauw and Christen, 2011;
R Development Team, 2014), with darker grey indicating more likely calendar ages
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1 Introduction

1.1 Project background

Peatlands are an important component of the global carbon (C) cycle. Cool and moist
conditions characteristic of boreal and subarctic environments have facilitated the net
accumulation of organic matter and carbon in peatlands by restricting decomposition
processes in waterlogged environments (Charman, 2002). Ombrotrophic, i.e.
precipitation-fed, peatlands preserve past local climatic and hydrological changes,

reflected in the vegetation and state of decomposition over time.

Northern peatlands, usually defined as those peatlands located North of 45°N
(MacDonald et al.,, 2006), contain up to a third of the global soil C in less than 3% of
the land’s surface (Gorham, 1991; Turunen et al., 2002), or 547 Pg C in 4 million km?
(Yu et al., 2010). While the annual rate of Holocene C accumulation in northern
peatlands (0.07-0.10 Pg C a™'; Gorham, 1991) is relatively low compared to the total
annual atmosphere-biosphere C exchange (120 Pg CO, a™'; Denman et al,. 2007), it
has been sustained for thousands of years (Yu et al., 2009). C sequestration in peat
has been an important net sink for atmospheric carbon dioxide (CO.) during the
Holocene (Ciais et al., 2013; Yu, 2011). However, peatlands are also an important
contributor to the global methane (CH,) flux (50 Tg C a™; Ciais et al., 2013). Global C
model predictions do not typically include peatlands despite their geographical extent
and potential large contribution to climate-C feedbacks (e.g. IPCC ARS5: Ciais et al.,

2013; Global Carbon Budget 2014: Le Quéré et al., 2015).

Under current warming conditions, the future sink-source C balance for peatlands is
uncertain (Friedlingstein et al., 2006). While carbon emissions to the atmosphere are

projected to rise from respiration from increased microbial activity (Dorrepaal et al.,
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2009) and CH4 production from permafrost melt (Turetsky et al., 2002a) (positive
feedback), longer growing seasons and higher rates of productivity (NPP) and carbon
uptake are also expected (Charman et al., 2013) (negative feedback). As northern
latitudes warm faster than the global rate (Jansen et al., 2007), C cycling in peatlands
located in these regions is likely to be affected more intensely. In particular, peatlands
near the southern limit of permafrost are likely to be sensitive to alterations in
microtopography and hydrology as well as climate changes as the limit shifts northward

(Schuur et al., 2008; Tarnocai et al., 2009).

During the Little Ice Age (LIA: ca. 1400-1700 AD; Jansen et al., 2007; Mann et al.,
2008), permafrost in Canada reached its southernmost extent for the Holocene.
Permafrost degradation has been accelerating during the last 50-100 years and this
has been linked to warming since the end of the LIA (Payette, 2004). While carbon
stocks have been shown to increase as a result in Western Canada (Vitt et al., 2000;
Turetsky et al., 2002b) as well as in Arctic and Subarctic Canada (Vardy et al., 2000;
Lamarre et al., 2012; Magnan and Garneau, 2014a), the decadal- and centennial-scale
changes are poorly understood. Recent work by Garneau et al. (2014) indicates that
long-term peatland C dynamics in Northeastern Canada are primarily linked with
climate with the lowest accumulation rates during LIA. Changes in the peatland carbon
accumulation and the C sink-source balance in response to disturbance (fire and
permafrost) and associated altered microtopography and ecohydrological feedbacks
has been well-documented in Western Canada (e.g. Vitt et al., 2000; Turetsky et al.,

2002a,b, 2007; Benscoter et al., 2015); limited work exists for Eastern Canada.

As carbon cycling is complex with considerable spatial and temporal variations not only
between but also within individual peatlands (e.g. Roulet et al., 2007), determining the
generality of the patterns observed is therefore a priority. Carbon accumulation

responses to climate changes in the late Holocene have been variable; however, it has
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been suggested that the detection of Little Ice Age climate change-driven signals have
been limited by poor dating resolution in recent peat samples. In order to predict how
the C balance may change in the future, this thesis focuses on the recent trends in
carbon accumulation since the LIA in this region by increasing the dating resolution as
well as considering within-site variability with replicate cores from a range of
microforms. This novel approach allows for the separation of allogenic and autogenic
drivers of changes in carbon accumulation rates. In addition, as dynamic peat
accumulation models (e.g. Belyea and Baird, 2006; Frolking et al., 2010; Morris et al.,
2011) seek to incorporate greater levels of spatial variability, replication across a
microtopography gradient will improve understanding of ecohydrological feedbacks. As
Canadian permafrost peatlands contain approximately 44 Gt C (Tarnocai, 2006),
climate-driven peat accumulation changes could represent an important future global

source or sink for carbon.

1.2 Overall aim and objectives

This thesis aims to answer the following key question: to what extent does climate,
permafrost and microtopography influence carbon accumulation rates (CAR) in
northeastern Canadian peatlands on decadal and centennial scales? This question will

be addressed using the following four objectives:

(1) Construct reliable high-resolution chronologies to evaluate high resolution
changes in recent CAR (Chapters 5 and 6)

(2) Calculate local, within-site spatial variability in carbon accumulated along a
microtopography gradient for the last 150 years (Chapter 6)

(3) Reconstruct centennial-scale regional and temporal changes in carbon
accumulation between sites located along a climatic and permafrost gradient
(Chapter 7)

(4) Evaluate potential drivers of changes in CAR over time (Chapters 7 and 8).
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1.3 Methodology rationale

In order to address these objectives, three ecoclimatic regions with different permafrost
histories were selected along the North coast of the Gulf of St. Lawrence. These
regions are part of a larger GEOTOP project considering Holocene carbon
accumulation rates for Québec and Labrador (synthesis in Garneau et al., 2014). Two
of the three regions were studied in parallel, evaluating Holocene C trends (Magnan
and Garneau, 2014a,b) and contemporary C fluxes (Pelletier, 2014; Pelletier et al.,
2014). In this thesis, multiple replicated records of high-resolution carbon accumulation
rates from a range of microforms from different ecoregions are considered, based on a
combination of radiocarbon (**C) and lead-210 (*'°Pb) dates. The *'°Pb dating method
was optimised and thoroughly evaluated in order to minimise methodological

uncertainty.

The unique replication of records both within regions (3 peatlands per region) and
within sites (3-4 microforms per peatland) allows for climate-scale (allogenic) signals to
be separated from variability reflecting peatland development or other local (autogenic)
factors and testing differences in peat and carbon accumulation rates statistically.

Specific hypotheses are listed in Section 2.5.

1.4 Thesis outline

Chapter 1 has outlined the project rationale and overall thesis objectives. Chapter 2
presents a review of the published literature and provides context to peatland carbon
accumulation, in particular allogenic and autogenic drivers, and outlines uncertainties
related to constructing chronologies. Based on this review, hypotheses are generated

from the research gaps (Section 2.5) in order to address the overall aim.

Chapters 3 and 4 provide an overall perspective of the project design and basic coring

results; as this thesis is based on replicate methodology, these chapters are meant to
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assemble key data to be referred back to. Chapter 3 outlines the project design and
sampling strategy as well as the methodological rationale used including site
descriptions, core types and field/laboratory methods. Chapter 4 presents basic core
information (bulk density, organic matter %, stratigraphy and dates) that will be used as

the basis for all carbon calculations and age-depth models.

To address the objectives listed in the previous section, the main results are presented
and discussed in Chapters 5, 6 and 7. Chapter 5 is a stand-alone method chapter,
reviewing and evaluating a new method for lead-210 (*'°Pb) dating peat and discusses
sources of uncertainty for subsequent analysis; the sample set for this chapter are
different from the rest of this thesis. Different treatments and peat types are tested in
order to optimise the method to prepare samples for alpha-spectrometry, the results of
which are then compared to gamma-spectrometry results. Chapter 6 presents recent
carbon accumulation results from the 2'°Pb-dated profiles for the last ca. 150 years
across all microforms. This chapter evaluates spatial variability within peatlands and
regions using replicates as well as changes over time. Chapter 7 examines centennial-
scale changes in carbon accumulation rates for the three regions, using replicates to

look at between-site variability.

Finally, Chapter 8 discusses the main results of this thesis and its limitations and

avenues for future research and lists some concluding remarks.
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2 Carbon Accumulation in Northern Peatlands

This chapter summarises findings from the literature, including a patterns and drivers of
peat accumulation and climate-carbon cycle feedbacks, as well as the importance of
chronologies, and regional and temporal context of this project. Key questions to be

addressed in the thesis are identified in Section 2.5.

2.1 Peat and peatlands

Peatlands are waterlogged, acidic soils made up of at least 30-40 cm of slowly
decomposing organic matter (National Wetland Working Group, 1997; Charman, 2002;
Rydin and Jeglum, 2006) leading to a net accumulation of peat in these systems. The
phrase ‘northern peatlands’ is used to differentiate between tropical or southern
hemisphere peatlands from those peatlands located North of 45° (Figure 2.1). This

section will outline the processes of peat formation and expansion, vertical structure

/ \
K /BDUS
Figure 2.1 Map of global peatland distribution; green represents peatland area (from Yu

et al., 2010; Supplementary Material)

and surface patterning.
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2 | LITERATURE REVIEW

2.1.1 Formation and expansion of northern peatlands

Peatland formation and subsequent expansion are driven by a combination of
geomorphological, climatic and anthropogenic conditions. Northern peatlands, located
in boreal and subarctic regions, provide ideal conditions for peat growth and
accumulation (Yu et al., 2009). While initiation times and basal dates differ regionally
due to different regional deglaciation timings (Dyke et al., 2004), the majority of
peatlands initiated and expanded rapidly after the Last Glacial Maximum (LGM) after
the retreat of ice sheets, during the early to mid-Holocene (11-8 ka BP; 1 ka BP = 1000
years before ‘present’, or 1950AD) (MacDonald et al., 2006; Gorham et al., 2007).
Peatlands expand via two main mechanisms: paludification (expansion into terrestrial
ecosystem) or terrestrialisation (lake or pond-infilling). Locally, climate, topography and
parent material play a role in explaining differing accumulation histories (Yu et al.,
2009). In Alaska and Western Canada, maximum peat expansion took place around
the Holocene Thermal Maximum (HTM); in Eastern Canada and Labrador, this timing
was later during warm/humid periods of the mid-Holocene (5-3 ka BP; Kaufman et al.,
2004) as the Laurentide Ice Sheet persisted longer. Net peat accumulation has been
taking place since this time (Yu et al., 2011). Trends in peat and carbon accumulation

in Eastern Canada will be reviewed in more detail in Section 2.4.2.

Peatland surface vegetation is variable and depends on the hydrology. Along with
vascular plants, bryophytes (Sphagnum and feather mosses) are the main building
blocks of northern ombrotrophic peatlands, with Sphagnum mosses forming almost
50% of the biomass (Rydin and Jeglum, 2006). Sphagnum is more resistant to acidic
conditions and to decay (recalcitrant) and creates feedbacks to acidify and maintains
its own environment (van Breemen, 1995). Due to their high cation exchange capacity,
i.e. their ability to preferentially bind with cations, these mosses are able to extract

nutrients from nutrient-poor systems and to further modify their own environment
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(Clymo et al., 1990). This acidifying feedback also favours the lateral expansion of

Sphagnum over other plants into peatland margins and adjacent areas.

Peatlands form in areas with a positive water balance, i.e. with poor drainage. The
source of water (suffix —genous) and nutrient inputs for plant growth (suffix —trophic)
characterise the type of peatland. Minerotrophic peatlands (fens) are fed by surface
runoff and/or groundwater infiltration and are relatively wet and nutrient-rich; they range
from rich fens dominated by sedges (oligotrophic, pH 6.0-8.5 or higher) to Sphagnum-
dominated poor fens (mesotrophic, pH 4.5-4.4). Ombrotrophic peatlands (bogs) are
primarily rain-fed and isolated from groundwater supplies, creating an acidic (pH 4-4.8),
nutrient-poor environment dominated by Sphagnum mosses and ericaceous shrubs
(Vitt et al., 2009). Dry bog surfaces can also be covered in lichens (Cladonia sp.). The
surface of an ombrotrophic bogs is often raised above the surrounding landscape, but
the height and shape depends on the topography, climate, and isolation from the water
table (e.g. basin bog, domed bog, blanked bog, plateau bog common in Atlantic
regions) (National Wetlands Working Group, 1997). The type of peatland can change
over time based on local climate and topography; for instance, as a topographically
constrained peatland continues to grow and the surface becomes more distant from the
water table, drier conditions and Sphagnum feedbacks may lead to a fen-bog

transition.

Ombrotrophic bogs are useful as ‘environmental archives’ as their only source of inputs
is from the atmosphere (wind-blown dust, precipitation). Peat records are useful for
reconstructing local and regional geochemical (e.g. heavy metal deposition, pollution)
and palaeoecological (e.g. pollen, testate amoeba) records of past environmental

conditions (cf. review of proxies in Charman, 2002).

33



2 | LITERATURE REVIEW
2.1.2 \Vertical structure and peat accumulation
2.1.2.1 Layered structure of peatlands

Organic matter deposited as litter on the peatland surface collapses and accumulates
vertically into two functional layers: the acrotelm and the catotelm. lvanov (1981) first
defined this two-layer structure, and the limits, transition and fluxes between the zones

have been much discussed since (e.g. Clymo, 1992: structural and functional layers;

Figure 2.2).
FUNCTIONAL Dry bulk Proportion
STRUCTURAL PEAT density of total
LAYERS LAYERS (g cm?) volume
Euphotic layer (living; acrotelm) —E 2— Euphotic zone 0 010 1
Second layer (acrotelm) 1 — 0, rich layer Gas
Collapse layer _[; —1— Transitional zone
(acrotelm-catotelm transition)
Liquid
Lower peat layer (catotelm) — — Anoxic zone
a. b. lid

Figure 2.2. a) Schematic representation of structural and functional peat layers, from acrotelm
to catotelm (adapted from Clymo, 1992). Blue dotted line is the water table and arrow is
seasonal range; b) dry bulk density changes with depth and changes in relative proportions of
gasl/air/solid — catotelm there is anaerobic.

The acrotelm is composed of the living layer (‘euphotic’) and recently decaying matter
and roots; as it is porous and well aerated, it has higher hydraulic conductivity and
allows for the lateral transfer of water beneath the peatland surface. There is the most
microbial activity and most decomposition occurring in peatland systems (80-90% dry
peat mass) is aerobic, taking place in the acrotelm (Clymo, 1984; Belyea and Clymo,
2001). As decaying plants accumulate in the acrotelm, they eventually get compressed
in the catotelm (ca. 10-20% of initial surface material; Clymo, 1984). The increasing

bulk density with depth reduces pore space and causes the water level to rise and
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leading to lower hydraulic conductivity. The catotelm (Figure 2.2), or anoxic zone, is
permanently saturated; anaerobic decomposition is orders of magnitude (x1000) slower
than aerobic decay but recalcitrant material continues to accumulate (Clymo et al.,
1998). The acrotelm-catotelm transition is typically defined as the average depth of the
minimum summer water table (Ingram, 1978; Clymo, 1984; Belyea and Clymo, 2001);
however, this is not always straightforward to identify in the field as the water table

changes seasonally.

Peat accumulation occurs when organic matter inputs are greater than decomposition
(Turunen et al., 2002) and peat is added to the catotelm. The amount and rate of peat
entering the catotelm depends on the amount and recalcitrance of litter in the acrotelm
(organic matter quality and quantity) and its residence time in the acrotelm. This means
that peat accumulation varies spatially and temporally based on plant productivity and
water table depth. For instance, a higher water table means a shorter period of aerobic
decay in the acrotelm, leading to higher net peat accumulation (Yu et al., 2003).
Despite short-term fluctuations in inputs, long-term peat accumulation rates have been

found to remain steady in the catotelm (Belyea and Clymo, 2001).

2.1.2.2 \Vertical accumulation models

Two main ‘classical’ peatland growth models are the basis of peatland studies: the
Groundwater Mound Hypothesis (GMH: Ingram, 1978) and the Bog Growth Model
(BGM: Clymo, 1984). More recently, alternative models are being proposed to attempt
to represent dynamic peat accumulation (Belyea and Baird, 2006; the Holocene Peat

Model: Frolking et al., 2010; Quillet et al., 2010; Morris et al., 2011).

The Groundwater Mound Hypothesis (GMH: Ingram, 1978) considers hydrology and
the water flow in the catotelm. The GMH proposes that bogs reach a hemi-elliptical
cross section, the shape of which feeds back with the size and shape of the bog. This

model assumes that hydraulic conductivity in the catotelm is constant and that all net
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precipitation flows straight through the acrotelm. However, this model is limited as the
precipitation-evapotranspiration balance varies seasonally (e.g. winter snow melt) and

it only considers catotelm hydrology (Belyea and Baird, 2006).

Clymo’s 1984 Bog Growth Model (BGM), also called ‘limits to growth’ model, describes
accumulation patterns typical of maritime raised bogs in the UK. As peatland age
increases, long-term catotelm decomposition becomes the dominant process, therefore
decreasing apparent accumulation. Conversely, younger peats will have undergone
less decomposition and so apparent accumulation rates are higher. This trend
produces concave age-depth profiles of peat accumulation. Yu et al. (2003) built on this
by describing peat accumulation patterns more typical of continental fens, where
height-driven long-term drying trends were found to produce convex age-depth peat
profiles; accumulation is the dominant trend in these peatlands. The BGM assumes
that, in the centre of the peatland, constant proportions are lost by aerobic and
anaerobic decay in the acrotelm and catotelm respectively, and that the acrotelm-
catotelm transfer rate is constant. At the start of peatland development, litter production
is greater than decay loss resulting in peat accumulation; the water table rises at the
same rate as the bog growth. At steady state, litter production is equal to decay loss so
peatland height and water table depth are maintained (see also Belyea and Baird, 2006

for schematic representation).

Recent models have included a hierarchical approach considering horizontal expansion
(van Bellen et al., 2011a) and heterogeneity at different time and spatial scales; these
treat peatlands as complex adaptive systems to better represent peatland development
and to predict responses to various feedbacks (Belyea and Clymo, 2001; Belyea and
Baird, 2006; Frolking et al., 2010). The BGM and GMH approaches assume that the
catotelm is homogenous and that the acrotelm depends on catotelm conditions (water

table depth). However, they do not include hydrology (GMH) and peat accumulation
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processes (BGM) together, nor do they consider impacts of ecohydrological feedbacks,
lateral expansion, rapid changes and spatial heterogeneity on acrotelm peat. In reality,
microforms differ in their hydrological characteristics, formation and decay rates; for
instance, hummock plant species are more recalcitrant than those growing in hollows
(Turetsky et al., 2008). Extensive spatial variability may lead to variations in peat
accumulation rates across peatlands, such as the expansion of pool complexes in
Newfoundland, Canada (Foster and Wright, 1990). When considering recent changes
in peat accumulation in response to climate or other changes, hierarchical models of
peat accumulation are attempting to include acrotelm dynamics, including the
distribution patterns of microforms as well as their persistence over time in order to
better represent peatland accumulation responses to ecohydrological changes (Belyea

and Baird, 2006; Morris et al., 2011).

2.1.3 Self-organisation and surface patterning

The thickness of the acrotelm can vary considerably with